]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 if (error)
136 bio->bi_error = error;
137
138 if (unlikely(rq->rq_flags & RQF_QUIET))
139 bio_set_flag(bio, BIO_QUIET);
140
141 bio_advance(bio, nbytes);
142
143 /* don't actually finish bio if it's part of flush sequence */
144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 bio_endio(bio);
146 }
147
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 (unsigned long long) rq->cmd_flags);
153
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161
162 static void blk_delay_work(struct work_struct *work)
163 {
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170 }
171
172 /**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189
190 /**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205
206 /**
207 * blk_start_queue - restart a previously stopped queue
208 * @q: The &struct request_queue in question
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 WARN_ON(!irqs_disabled());
218
219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 __blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223
224 /**
225 * blk_stop_queue - stop a queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 cancel_delayed_work(&q->delay_work);
241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244
245 /**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
254 * that the callbacks might use. The caller must already have made sure
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
258 * This function does not cancel any asynchronous activity arising
259 * out of elevator or throttling code. That would require elevator_exit()
260 * and blkcg_exit_queue() to be called with queue lock initialized.
261 *
262 */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 del_timer_sync(&q->timeout);
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
271 queue_for_each_hw_ctx(q, hctx, i) {
272 cancel_work_sync(&hctx->run_work);
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
278 }
279 EXPORT_SYMBOL(blk_sync_queue);
280
281 /**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292 inline void __blk_run_queue_uncond(struct request_queue *q)
293 {
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
305 q->request_fn(q);
306 q->request_fn_active--;
307 }
308 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
309
310 /**
311 * __blk_run_queue - run a single device queue
312 * @q: The queue to run
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
316 * held and interrupts disabled.
317 */
318 void __blk_run_queue(struct request_queue *q)
319 {
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
323 __blk_run_queue_uncond(q);
324 }
325 EXPORT_SYMBOL(__blk_run_queue);
326
327 /**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
333 * of us. The caller must hold the queue lock.
334 */
335 void blk_run_queue_async(struct request_queue *q)
336 {
337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
339 }
340 EXPORT_SYMBOL(blk_run_queue_async);
341
342 /**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
348 * May be used to restart queueing when a request has completed.
349 */
350 void blk_run_queue(struct request_queue *q)
351 {
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
355 __blk_run_queue(q);
356 spin_unlock_irqrestore(q->queue_lock, flags);
357 }
358 EXPORT_SYMBOL(blk_run_queue);
359
360 void blk_put_queue(struct request_queue *q)
361 {
362 kobject_put(&q->kobj);
363 }
364 EXPORT_SYMBOL(blk_put_queue);
365
366 /**
367 * __blk_drain_queue - drain requests from request_queue
368 * @q: queue to drain
369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
370 *
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
374 */
375 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
378 {
379 int i;
380
381 lockdep_assert_held(q->queue_lock);
382
383 while (true) {
384 bool drain = false;
385
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
393 blkcg_drain_queue(q);
394
395 /*
396 * This function might be called on a queue which failed
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
401 */
402 if (!list_empty(&q->queue_head) && q->request_fn)
403 __blk_run_queue(q);
404
405 drain |= q->nr_rqs_elvpriv;
406 drain |= q->request_fn_active;
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
417 drain |= q->nr_rqs[i];
418 drain |= q->in_flight[i];
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
421 }
422 }
423
424 if (!drain)
425 break;
426
427 spin_unlock_irq(q->queue_lock);
428
429 msleep(10);
430
431 spin_lock_irq(q->queue_lock);
432 }
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
440 struct request_list *rl;
441
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
445 }
446 }
447
448 /**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
454 * throttled or issued before. On return, it's guaranteed that no request
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
457 */
458 void blk_queue_bypass_start(struct request_queue *q)
459 {
460 spin_lock_irq(q->queue_lock);
461 q->bypass_depth++;
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
478 }
479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481 /**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487 void blk_queue_bypass_end(struct request_queue *q)
488 {
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494 }
495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
497 void blk_set_queue_dying(struct request_queue *q)
498 {
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
502
503 if (q->mq_ops)
504 blk_mq_wake_waiters(q);
505 else {
506 struct request_list *rl;
507
508 spin_lock_irq(q->queue_lock);
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 spin_unlock_irq(q->queue_lock);
516 }
517 }
518 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
519
520 /**
521 * blk_cleanup_queue - shutdown a request queue
522 * @q: request queue to shutdown
523 *
524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
525 * put it. All future requests will be failed immediately with -ENODEV.
526 */
527 void blk_cleanup_queue(struct request_queue *q)
528 {
529 spinlock_t *lock = q->queue_lock;
530
531 /* mark @q DYING, no new request or merges will be allowed afterwards */
532 mutex_lock(&q->sysfs_lock);
533 blk_set_queue_dying(q);
534 spin_lock_irq(lock);
535
536 /*
537 * A dying queue is permanently in bypass mode till released. Note
538 * that, unlike blk_queue_bypass_start(), we aren't performing
539 * synchronize_rcu() after entering bypass mode to avoid the delay
540 * as some drivers create and destroy a lot of queues while
541 * probing. This is still safe because blk_release_queue() will be
542 * called only after the queue refcnt drops to zero and nothing,
543 * RCU or not, would be traversing the queue by then.
544 */
545 q->bypass_depth++;
546 queue_flag_set(QUEUE_FLAG_BYPASS, q);
547
548 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
549 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
550 queue_flag_set(QUEUE_FLAG_DYING, q);
551 spin_unlock_irq(lock);
552 mutex_unlock(&q->sysfs_lock);
553
554 /*
555 * Drain all requests queued before DYING marking. Set DEAD flag to
556 * prevent that q->request_fn() gets invoked after draining finished.
557 */
558 blk_freeze_queue(q);
559 spin_lock_irq(lock);
560 if (!q->mq_ops)
561 __blk_drain_queue(q, true);
562 queue_flag_set(QUEUE_FLAG_DEAD, q);
563 spin_unlock_irq(lock);
564
565 /* for synchronous bio-based driver finish in-flight integrity i/o */
566 blk_flush_integrity();
567
568 /* @q won't process any more request, flush async actions */
569 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
570 blk_sync_queue(q);
571
572 if (q->mq_ops)
573 blk_mq_free_queue(q);
574 percpu_ref_exit(&q->q_usage_counter);
575
576 spin_lock_irq(lock);
577 if (q->queue_lock != &q->__queue_lock)
578 q->queue_lock = &q->__queue_lock;
579 spin_unlock_irq(lock);
580
581 put_disk_devt(q->disk_devt);
582
583 /* @q is and will stay empty, shutdown and put */
584 blk_put_queue(q);
585 }
586 EXPORT_SYMBOL(blk_cleanup_queue);
587
588 /* Allocate memory local to the request queue */
589 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
590 {
591 struct request_queue *q = data;
592
593 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
594 }
595
596 static void free_request_simple(void *element, void *data)
597 {
598 kmem_cache_free(request_cachep, element);
599 }
600
601 static void *alloc_request_size(gfp_t gfp_mask, void *data)
602 {
603 struct request_queue *q = data;
604 struct request *rq;
605
606 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
607 q->node);
608 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
609 kfree(rq);
610 rq = NULL;
611 }
612 return rq;
613 }
614
615 static void free_request_size(void *element, void *data)
616 {
617 struct request_queue *q = data;
618
619 if (q->exit_rq_fn)
620 q->exit_rq_fn(q, element);
621 kfree(element);
622 }
623
624 int blk_init_rl(struct request_list *rl, struct request_queue *q,
625 gfp_t gfp_mask)
626 {
627 if (unlikely(rl->rq_pool))
628 return 0;
629
630 rl->q = q;
631 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
632 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
633 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
634 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
635
636 if (q->cmd_size) {
637 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
638 alloc_request_size, free_request_size,
639 q, gfp_mask, q->node);
640 } else {
641 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
642 alloc_request_simple, free_request_simple,
643 q, gfp_mask, q->node);
644 }
645 if (!rl->rq_pool)
646 return -ENOMEM;
647
648 return 0;
649 }
650
651 void blk_exit_rl(struct request_list *rl)
652 {
653 if (rl->rq_pool)
654 mempool_destroy(rl->rq_pool);
655 }
656
657 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
658 {
659 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
660 }
661 EXPORT_SYMBOL(blk_alloc_queue);
662
663 int blk_queue_enter(struct request_queue *q, bool nowait)
664 {
665 while (true) {
666 int ret;
667
668 if (percpu_ref_tryget_live(&q->q_usage_counter))
669 return 0;
670
671 if (nowait)
672 return -EBUSY;
673
674 ret = wait_event_interruptible(q->mq_freeze_wq,
675 !atomic_read(&q->mq_freeze_depth) ||
676 blk_queue_dying(q));
677 if (blk_queue_dying(q))
678 return -ENODEV;
679 if (ret)
680 return ret;
681 }
682 }
683
684 void blk_queue_exit(struct request_queue *q)
685 {
686 percpu_ref_put(&q->q_usage_counter);
687 }
688
689 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
690 {
691 struct request_queue *q =
692 container_of(ref, struct request_queue, q_usage_counter);
693
694 wake_up_all(&q->mq_freeze_wq);
695 }
696
697 static void blk_rq_timed_out_timer(unsigned long data)
698 {
699 struct request_queue *q = (struct request_queue *)data;
700
701 kblockd_schedule_work(&q->timeout_work);
702 }
703
704 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
705 {
706 struct request_queue *q;
707
708 q = kmem_cache_alloc_node(blk_requestq_cachep,
709 gfp_mask | __GFP_ZERO, node_id);
710 if (!q)
711 return NULL;
712
713 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
714 if (q->id < 0)
715 goto fail_q;
716
717 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
718 if (!q->bio_split)
719 goto fail_id;
720
721 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
722 if (!q->backing_dev_info)
723 goto fail_split;
724
725 q->backing_dev_info->ra_pages =
726 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
727 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
728 q->backing_dev_info->name = "block";
729 q->node = node_id;
730
731 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
732 laptop_mode_timer_fn, (unsigned long) q);
733 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
734 INIT_LIST_HEAD(&q->queue_head);
735 INIT_LIST_HEAD(&q->timeout_list);
736 INIT_LIST_HEAD(&q->icq_list);
737 #ifdef CONFIG_BLK_CGROUP
738 INIT_LIST_HEAD(&q->blkg_list);
739 #endif
740 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
741
742 kobject_init(&q->kobj, &blk_queue_ktype);
743
744 mutex_init(&q->sysfs_lock);
745 spin_lock_init(&q->__queue_lock);
746
747 /*
748 * By default initialize queue_lock to internal lock and driver can
749 * override it later if need be.
750 */
751 q->queue_lock = &q->__queue_lock;
752
753 /*
754 * A queue starts its life with bypass turned on to avoid
755 * unnecessary bypass on/off overhead and nasty surprises during
756 * init. The initial bypass will be finished when the queue is
757 * registered by blk_register_queue().
758 */
759 q->bypass_depth = 1;
760 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
761
762 init_waitqueue_head(&q->mq_freeze_wq);
763
764 /*
765 * Init percpu_ref in atomic mode so that it's faster to shutdown.
766 * See blk_register_queue() for details.
767 */
768 if (percpu_ref_init(&q->q_usage_counter,
769 blk_queue_usage_counter_release,
770 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
771 goto fail_bdi;
772
773 if (blkcg_init_queue(q))
774 goto fail_ref;
775
776 return q;
777
778 fail_ref:
779 percpu_ref_exit(&q->q_usage_counter);
780 fail_bdi:
781 bdi_put(q->backing_dev_info);
782 fail_split:
783 bioset_free(q->bio_split);
784 fail_id:
785 ida_simple_remove(&blk_queue_ida, q->id);
786 fail_q:
787 kmem_cache_free(blk_requestq_cachep, q);
788 return NULL;
789 }
790 EXPORT_SYMBOL(blk_alloc_queue_node);
791
792 /**
793 * blk_init_queue - prepare a request queue for use with a block device
794 * @rfn: The function to be called to process requests that have been
795 * placed on the queue.
796 * @lock: Request queue spin lock
797 *
798 * Description:
799 * If a block device wishes to use the standard request handling procedures,
800 * which sorts requests and coalesces adjacent requests, then it must
801 * call blk_init_queue(). The function @rfn will be called when there
802 * are requests on the queue that need to be processed. If the device
803 * supports plugging, then @rfn may not be called immediately when requests
804 * are available on the queue, but may be called at some time later instead.
805 * Plugged queues are generally unplugged when a buffer belonging to one
806 * of the requests on the queue is needed, or due to memory pressure.
807 *
808 * @rfn is not required, or even expected, to remove all requests off the
809 * queue, but only as many as it can handle at a time. If it does leave
810 * requests on the queue, it is responsible for arranging that the requests
811 * get dealt with eventually.
812 *
813 * The queue spin lock must be held while manipulating the requests on the
814 * request queue; this lock will be taken also from interrupt context, so irq
815 * disabling is needed for it.
816 *
817 * Function returns a pointer to the initialized request queue, or %NULL if
818 * it didn't succeed.
819 *
820 * Note:
821 * blk_init_queue() must be paired with a blk_cleanup_queue() call
822 * when the block device is deactivated (such as at module unload).
823 **/
824
825 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
826 {
827 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
828 }
829 EXPORT_SYMBOL(blk_init_queue);
830
831 struct request_queue *
832 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
833 {
834 struct request_queue *q;
835
836 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
837 if (!q)
838 return NULL;
839
840 q->request_fn = rfn;
841 if (lock)
842 q->queue_lock = lock;
843 if (blk_init_allocated_queue(q) < 0) {
844 blk_cleanup_queue(q);
845 return NULL;
846 }
847
848 return q;
849 }
850 EXPORT_SYMBOL(blk_init_queue_node);
851
852 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
853
854
855 int blk_init_allocated_queue(struct request_queue *q)
856 {
857 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
858 if (!q->fq)
859 return -ENOMEM;
860
861 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
862 goto out_free_flush_queue;
863
864 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
865 goto out_exit_flush_rq;
866
867 INIT_WORK(&q->timeout_work, blk_timeout_work);
868 q->queue_flags |= QUEUE_FLAG_DEFAULT;
869
870 /*
871 * This also sets hw/phys segments, boundary and size
872 */
873 blk_queue_make_request(q, blk_queue_bio);
874
875 q->sg_reserved_size = INT_MAX;
876
877 /* Protect q->elevator from elevator_change */
878 mutex_lock(&q->sysfs_lock);
879
880 /* init elevator */
881 if (elevator_init(q, NULL)) {
882 mutex_unlock(&q->sysfs_lock);
883 goto out_exit_flush_rq;
884 }
885
886 mutex_unlock(&q->sysfs_lock);
887 return 0;
888
889 out_exit_flush_rq:
890 if (q->exit_rq_fn)
891 q->exit_rq_fn(q, q->fq->flush_rq);
892 out_free_flush_queue:
893 blk_free_flush_queue(q->fq);
894 wbt_exit(q);
895 return -ENOMEM;
896 }
897 EXPORT_SYMBOL(blk_init_allocated_queue);
898
899 bool blk_get_queue(struct request_queue *q)
900 {
901 if (likely(!blk_queue_dying(q))) {
902 __blk_get_queue(q);
903 return true;
904 }
905
906 return false;
907 }
908 EXPORT_SYMBOL(blk_get_queue);
909
910 static inline void blk_free_request(struct request_list *rl, struct request *rq)
911 {
912 if (rq->rq_flags & RQF_ELVPRIV) {
913 elv_put_request(rl->q, rq);
914 if (rq->elv.icq)
915 put_io_context(rq->elv.icq->ioc);
916 }
917
918 mempool_free(rq, rl->rq_pool);
919 }
920
921 /*
922 * ioc_batching returns true if the ioc is a valid batching request and
923 * should be given priority access to a request.
924 */
925 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
926 {
927 if (!ioc)
928 return 0;
929
930 /*
931 * Make sure the process is able to allocate at least 1 request
932 * even if the batch times out, otherwise we could theoretically
933 * lose wakeups.
934 */
935 return ioc->nr_batch_requests == q->nr_batching ||
936 (ioc->nr_batch_requests > 0
937 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
938 }
939
940 /*
941 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
942 * will cause the process to be a "batcher" on all queues in the system. This
943 * is the behaviour we want though - once it gets a wakeup it should be given
944 * a nice run.
945 */
946 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
947 {
948 if (!ioc || ioc_batching(q, ioc))
949 return;
950
951 ioc->nr_batch_requests = q->nr_batching;
952 ioc->last_waited = jiffies;
953 }
954
955 static void __freed_request(struct request_list *rl, int sync)
956 {
957 struct request_queue *q = rl->q;
958
959 if (rl->count[sync] < queue_congestion_off_threshold(q))
960 blk_clear_congested(rl, sync);
961
962 if (rl->count[sync] + 1 <= q->nr_requests) {
963 if (waitqueue_active(&rl->wait[sync]))
964 wake_up(&rl->wait[sync]);
965
966 blk_clear_rl_full(rl, sync);
967 }
968 }
969
970 /*
971 * A request has just been released. Account for it, update the full and
972 * congestion status, wake up any waiters. Called under q->queue_lock.
973 */
974 static void freed_request(struct request_list *rl, bool sync,
975 req_flags_t rq_flags)
976 {
977 struct request_queue *q = rl->q;
978
979 q->nr_rqs[sync]--;
980 rl->count[sync]--;
981 if (rq_flags & RQF_ELVPRIV)
982 q->nr_rqs_elvpriv--;
983
984 __freed_request(rl, sync);
985
986 if (unlikely(rl->starved[sync ^ 1]))
987 __freed_request(rl, sync ^ 1);
988 }
989
990 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
991 {
992 struct request_list *rl;
993 int on_thresh, off_thresh;
994
995 spin_lock_irq(q->queue_lock);
996 q->nr_requests = nr;
997 blk_queue_congestion_threshold(q);
998 on_thresh = queue_congestion_on_threshold(q);
999 off_thresh = queue_congestion_off_threshold(q);
1000
1001 blk_queue_for_each_rl(rl, q) {
1002 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1003 blk_set_congested(rl, BLK_RW_SYNC);
1004 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1005 blk_clear_congested(rl, BLK_RW_SYNC);
1006
1007 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1008 blk_set_congested(rl, BLK_RW_ASYNC);
1009 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1010 blk_clear_congested(rl, BLK_RW_ASYNC);
1011
1012 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1013 blk_set_rl_full(rl, BLK_RW_SYNC);
1014 } else {
1015 blk_clear_rl_full(rl, BLK_RW_SYNC);
1016 wake_up(&rl->wait[BLK_RW_SYNC]);
1017 }
1018
1019 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1020 blk_set_rl_full(rl, BLK_RW_ASYNC);
1021 } else {
1022 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1023 wake_up(&rl->wait[BLK_RW_ASYNC]);
1024 }
1025 }
1026
1027 spin_unlock_irq(q->queue_lock);
1028 return 0;
1029 }
1030
1031 /**
1032 * __get_request - get a free request
1033 * @rl: request list to allocate from
1034 * @op: operation and flags
1035 * @bio: bio to allocate request for (can be %NULL)
1036 * @gfp_mask: allocation mask
1037 *
1038 * Get a free request from @q. This function may fail under memory
1039 * pressure or if @q is dead.
1040 *
1041 * Must be called with @q->queue_lock held and,
1042 * Returns ERR_PTR on failure, with @q->queue_lock held.
1043 * Returns request pointer on success, with @q->queue_lock *not held*.
1044 */
1045 static struct request *__get_request(struct request_list *rl, unsigned int op,
1046 struct bio *bio, gfp_t gfp_mask)
1047 {
1048 struct request_queue *q = rl->q;
1049 struct request *rq;
1050 struct elevator_type *et = q->elevator->type;
1051 struct io_context *ioc = rq_ioc(bio);
1052 struct io_cq *icq = NULL;
1053 const bool is_sync = op_is_sync(op);
1054 int may_queue;
1055 req_flags_t rq_flags = RQF_ALLOCED;
1056
1057 if (unlikely(blk_queue_dying(q)))
1058 return ERR_PTR(-ENODEV);
1059
1060 may_queue = elv_may_queue(q, op);
1061 if (may_queue == ELV_MQUEUE_NO)
1062 goto rq_starved;
1063
1064 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1065 if (rl->count[is_sync]+1 >= q->nr_requests) {
1066 /*
1067 * The queue will fill after this allocation, so set
1068 * it as full, and mark this process as "batching".
1069 * This process will be allowed to complete a batch of
1070 * requests, others will be blocked.
1071 */
1072 if (!blk_rl_full(rl, is_sync)) {
1073 ioc_set_batching(q, ioc);
1074 blk_set_rl_full(rl, is_sync);
1075 } else {
1076 if (may_queue != ELV_MQUEUE_MUST
1077 && !ioc_batching(q, ioc)) {
1078 /*
1079 * The queue is full and the allocating
1080 * process is not a "batcher", and not
1081 * exempted by the IO scheduler
1082 */
1083 return ERR_PTR(-ENOMEM);
1084 }
1085 }
1086 }
1087 blk_set_congested(rl, is_sync);
1088 }
1089
1090 /*
1091 * Only allow batching queuers to allocate up to 50% over the defined
1092 * limit of requests, otherwise we could have thousands of requests
1093 * allocated with any setting of ->nr_requests
1094 */
1095 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1096 return ERR_PTR(-ENOMEM);
1097
1098 q->nr_rqs[is_sync]++;
1099 rl->count[is_sync]++;
1100 rl->starved[is_sync] = 0;
1101
1102 /*
1103 * Decide whether the new request will be managed by elevator. If
1104 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1105 * prevent the current elevator from being destroyed until the new
1106 * request is freed. This guarantees icq's won't be destroyed and
1107 * makes creating new ones safe.
1108 *
1109 * Flush requests do not use the elevator so skip initialization.
1110 * This allows a request to share the flush and elevator data.
1111 *
1112 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1113 * it will be created after releasing queue_lock.
1114 */
1115 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1116 rq_flags |= RQF_ELVPRIV;
1117 q->nr_rqs_elvpriv++;
1118 if (et->icq_cache && ioc)
1119 icq = ioc_lookup_icq(ioc, q);
1120 }
1121
1122 if (blk_queue_io_stat(q))
1123 rq_flags |= RQF_IO_STAT;
1124 spin_unlock_irq(q->queue_lock);
1125
1126 /* allocate and init request */
1127 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1128 if (!rq)
1129 goto fail_alloc;
1130
1131 blk_rq_init(q, rq);
1132 blk_rq_set_rl(rq, rl);
1133 blk_rq_set_prio(rq, ioc);
1134 rq->cmd_flags = op;
1135 rq->rq_flags = rq_flags;
1136
1137 /* init elvpriv */
1138 if (rq_flags & RQF_ELVPRIV) {
1139 if (unlikely(et->icq_cache && !icq)) {
1140 if (ioc)
1141 icq = ioc_create_icq(ioc, q, gfp_mask);
1142 if (!icq)
1143 goto fail_elvpriv;
1144 }
1145
1146 rq->elv.icq = icq;
1147 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1148 goto fail_elvpriv;
1149
1150 /* @rq->elv.icq holds io_context until @rq is freed */
1151 if (icq)
1152 get_io_context(icq->ioc);
1153 }
1154 out:
1155 /*
1156 * ioc may be NULL here, and ioc_batching will be false. That's
1157 * OK, if the queue is under the request limit then requests need
1158 * not count toward the nr_batch_requests limit. There will always
1159 * be some limit enforced by BLK_BATCH_TIME.
1160 */
1161 if (ioc_batching(q, ioc))
1162 ioc->nr_batch_requests--;
1163
1164 trace_block_getrq(q, bio, op);
1165 return rq;
1166
1167 fail_elvpriv:
1168 /*
1169 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1170 * and may fail indefinitely under memory pressure and thus
1171 * shouldn't stall IO. Treat this request as !elvpriv. This will
1172 * disturb iosched and blkcg but weird is bettern than dead.
1173 */
1174 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1175 __func__, dev_name(q->backing_dev_info->dev));
1176
1177 rq->rq_flags &= ~RQF_ELVPRIV;
1178 rq->elv.icq = NULL;
1179
1180 spin_lock_irq(q->queue_lock);
1181 q->nr_rqs_elvpriv--;
1182 spin_unlock_irq(q->queue_lock);
1183 goto out;
1184
1185 fail_alloc:
1186 /*
1187 * Allocation failed presumably due to memory. Undo anything we
1188 * might have messed up.
1189 *
1190 * Allocating task should really be put onto the front of the wait
1191 * queue, but this is pretty rare.
1192 */
1193 spin_lock_irq(q->queue_lock);
1194 freed_request(rl, is_sync, rq_flags);
1195
1196 /*
1197 * in the very unlikely event that allocation failed and no
1198 * requests for this direction was pending, mark us starved so that
1199 * freeing of a request in the other direction will notice
1200 * us. another possible fix would be to split the rq mempool into
1201 * READ and WRITE
1202 */
1203 rq_starved:
1204 if (unlikely(rl->count[is_sync] == 0))
1205 rl->starved[is_sync] = 1;
1206 return ERR_PTR(-ENOMEM);
1207 }
1208
1209 /**
1210 * get_request - get a free request
1211 * @q: request_queue to allocate request from
1212 * @op: operation and flags
1213 * @bio: bio to allocate request for (can be %NULL)
1214 * @gfp_mask: allocation mask
1215 *
1216 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1217 * this function keeps retrying under memory pressure and fails iff @q is dead.
1218 *
1219 * Must be called with @q->queue_lock held and,
1220 * Returns ERR_PTR on failure, with @q->queue_lock held.
1221 * Returns request pointer on success, with @q->queue_lock *not held*.
1222 */
1223 static struct request *get_request(struct request_queue *q, unsigned int op,
1224 struct bio *bio, gfp_t gfp_mask)
1225 {
1226 const bool is_sync = op_is_sync(op);
1227 DEFINE_WAIT(wait);
1228 struct request_list *rl;
1229 struct request *rq;
1230
1231 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1232 retry:
1233 rq = __get_request(rl, op, bio, gfp_mask);
1234 if (!IS_ERR(rq))
1235 return rq;
1236
1237 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1238 blk_put_rl(rl);
1239 return rq;
1240 }
1241
1242 /* wait on @rl and retry */
1243 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1244 TASK_UNINTERRUPTIBLE);
1245
1246 trace_block_sleeprq(q, bio, op);
1247
1248 spin_unlock_irq(q->queue_lock);
1249 io_schedule();
1250
1251 /*
1252 * After sleeping, we become a "batching" process and will be able
1253 * to allocate at least one request, and up to a big batch of them
1254 * for a small period time. See ioc_batching, ioc_set_batching
1255 */
1256 ioc_set_batching(q, current->io_context);
1257
1258 spin_lock_irq(q->queue_lock);
1259 finish_wait(&rl->wait[is_sync], &wait);
1260
1261 goto retry;
1262 }
1263
1264 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1265 gfp_t gfp_mask)
1266 {
1267 struct request *rq;
1268
1269 /* create ioc upfront */
1270 create_io_context(gfp_mask, q->node);
1271
1272 spin_lock_irq(q->queue_lock);
1273 rq = get_request(q, rw, NULL, gfp_mask);
1274 if (IS_ERR(rq)) {
1275 spin_unlock_irq(q->queue_lock);
1276 return rq;
1277 }
1278
1279 /* q->queue_lock is unlocked at this point */
1280 rq->__data_len = 0;
1281 rq->__sector = (sector_t) -1;
1282 rq->bio = rq->biotail = NULL;
1283 return rq;
1284 }
1285
1286 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1287 {
1288 if (q->mq_ops)
1289 return blk_mq_alloc_request(q, rw,
1290 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1291 0 : BLK_MQ_REQ_NOWAIT);
1292 else
1293 return blk_old_get_request(q, rw, gfp_mask);
1294 }
1295 EXPORT_SYMBOL(blk_get_request);
1296
1297 /**
1298 * blk_requeue_request - put a request back on queue
1299 * @q: request queue where request should be inserted
1300 * @rq: request to be inserted
1301 *
1302 * Description:
1303 * Drivers often keep queueing requests until the hardware cannot accept
1304 * more, when that condition happens we need to put the request back
1305 * on the queue. Must be called with queue lock held.
1306 */
1307 void blk_requeue_request(struct request_queue *q, struct request *rq)
1308 {
1309 blk_delete_timer(rq);
1310 blk_clear_rq_complete(rq);
1311 trace_block_rq_requeue(q, rq);
1312 wbt_requeue(q->rq_wb, &rq->issue_stat);
1313
1314 if (rq->rq_flags & RQF_QUEUED)
1315 blk_queue_end_tag(q, rq);
1316
1317 BUG_ON(blk_queued_rq(rq));
1318
1319 elv_requeue_request(q, rq);
1320 }
1321 EXPORT_SYMBOL(blk_requeue_request);
1322
1323 static void add_acct_request(struct request_queue *q, struct request *rq,
1324 int where)
1325 {
1326 blk_account_io_start(rq, true);
1327 __elv_add_request(q, rq, where);
1328 }
1329
1330 static void part_round_stats_single(int cpu, struct hd_struct *part,
1331 unsigned long now)
1332 {
1333 int inflight;
1334
1335 if (now == part->stamp)
1336 return;
1337
1338 inflight = part_in_flight(part);
1339 if (inflight) {
1340 __part_stat_add(cpu, part, time_in_queue,
1341 inflight * (now - part->stamp));
1342 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1343 }
1344 part->stamp = now;
1345 }
1346
1347 /**
1348 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1349 * @cpu: cpu number for stats access
1350 * @part: target partition
1351 *
1352 * The average IO queue length and utilisation statistics are maintained
1353 * by observing the current state of the queue length and the amount of
1354 * time it has been in this state for.
1355 *
1356 * Normally, that accounting is done on IO completion, but that can result
1357 * in more than a second's worth of IO being accounted for within any one
1358 * second, leading to >100% utilisation. To deal with that, we call this
1359 * function to do a round-off before returning the results when reading
1360 * /proc/diskstats. This accounts immediately for all queue usage up to
1361 * the current jiffies and restarts the counters again.
1362 */
1363 void part_round_stats(int cpu, struct hd_struct *part)
1364 {
1365 unsigned long now = jiffies;
1366
1367 if (part->partno)
1368 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1369 part_round_stats_single(cpu, part, now);
1370 }
1371 EXPORT_SYMBOL_GPL(part_round_stats);
1372
1373 #ifdef CONFIG_PM
1374 static void blk_pm_put_request(struct request *rq)
1375 {
1376 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1377 pm_runtime_mark_last_busy(rq->q->dev);
1378 }
1379 #else
1380 static inline void blk_pm_put_request(struct request *rq) {}
1381 #endif
1382
1383 /*
1384 * queue lock must be held
1385 */
1386 void __blk_put_request(struct request_queue *q, struct request *req)
1387 {
1388 req_flags_t rq_flags = req->rq_flags;
1389
1390 if (unlikely(!q))
1391 return;
1392
1393 if (q->mq_ops) {
1394 blk_mq_free_request(req);
1395 return;
1396 }
1397
1398 blk_pm_put_request(req);
1399
1400 elv_completed_request(q, req);
1401
1402 /* this is a bio leak */
1403 WARN_ON(req->bio != NULL);
1404
1405 wbt_done(q->rq_wb, &req->issue_stat);
1406
1407 /*
1408 * Request may not have originated from ll_rw_blk. if not,
1409 * it didn't come out of our reserved rq pools
1410 */
1411 if (rq_flags & RQF_ALLOCED) {
1412 struct request_list *rl = blk_rq_rl(req);
1413 bool sync = op_is_sync(req->cmd_flags);
1414
1415 BUG_ON(!list_empty(&req->queuelist));
1416 BUG_ON(ELV_ON_HASH(req));
1417
1418 blk_free_request(rl, req);
1419 freed_request(rl, sync, rq_flags);
1420 blk_put_rl(rl);
1421 }
1422 }
1423 EXPORT_SYMBOL_GPL(__blk_put_request);
1424
1425 void blk_put_request(struct request *req)
1426 {
1427 struct request_queue *q = req->q;
1428
1429 if (q->mq_ops)
1430 blk_mq_free_request(req);
1431 else {
1432 unsigned long flags;
1433
1434 spin_lock_irqsave(q->queue_lock, flags);
1435 __blk_put_request(q, req);
1436 spin_unlock_irqrestore(q->queue_lock, flags);
1437 }
1438 }
1439 EXPORT_SYMBOL(blk_put_request);
1440
1441 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1442 struct bio *bio)
1443 {
1444 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1445
1446 if (!ll_back_merge_fn(q, req, bio))
1447 return false;
1448
1449 trace_block_bio_backmerge(q, req, bio);
1450
1451 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1452 blk_rq_set_mixed_merge(req);
1453
1454 req->biotail->bi_next = bio;
1455 req->biotail = bio;
1456 req->__data_len += bio->bi_iter.bi_size;
1457 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1458
1459 blk_account_io_start(req, false);
1460 return true;
1461 }
1462
1463 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1464 struct bio *bio)
1465 {
1466 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1467
1468 if (!ll_front_merge_fn(q, req, bio))
1469 return false;
1470
1471 trace_block_bio_frontmerge(q, req, bio);
1472
1473 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1474 blk_rq_set_mixed_merge(req);
1475
1476 bio->bi_next = req->bio;
1477 req->bio = bio;
1478
1479 req->__sector = bio->bi_iter.bi_sector;
1480 req->__data_len += bio->bi_iter.bi_size;
1481 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1482
1483 blk_account_io_start(req, false);
1484 return true;
1485 }
1486
1487 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1488 struct bio *bio)
1489 {
1490 unsigned short segments = blk_rq_nr_discard_segments(req);
1491
1492 if (segments >= queue_max_discard_segments(q))
1493 goto no_merge;
1494 if (blk_rq_sectors(req) + bio_sectors(bio) >
1495 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1496 goto no_merge;
1497
1498 req->biotail->bi_next = bio;
1499 req->biotail = bio;
1500 req->__data_len += bio->bi_iter.bi_size;
1501 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1502 req->nr_phys_segments = segments + 1;
1503
1504 blk_account_io_start(req, false);
1505 return true;
1506 no_merge:
1507 req_set_nomerge(q, req);
1508 return false;
1509 }
1510
1511 /**
1512 * blk_attempt_plug_merge - try to merge with %current's plugged list
1513 * @q: request_queue new bio is being queued at
1514 * @bio: new bio being queued
1515 * @request_count: out parameter for number of traversed plugged requests
1516 * @same_queue_rq: pointer to &struct request that gets filled in when
1517 * another request associated with @q is found on the plug list
1518 * (optional, may be %NULL)
1519 *
1520 * Determine whether @bio being queued on @q can be merged with a request
1521 * on %current's plugged list. Returns %true if merge was successful,
1522 * otherwise %false.
1523 *
1524 * Plugging coalesces IOs from the same issuer for the same purpose without
1525 * going through @q->queue_lock. As such it's more of an issuing mechanism
1526 * than scheduling, and the request, while may have elvpriv data, is not
1527 * added on the elevator at this point. In addition, we don't have
1528 * reliable access to the elevator outside queue lock. Only check basic
1529 * merging parameters without querying the elevator.
1530 *
1531 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1532 */
1533 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1534 unsigned int *request_count,
1535 struct request **same_queue_rq)
1536 {
1537 struct blk_plug *plug;
1538 struct request *rq;
1539 struct list_head *plug_list;
1540
1541 plug = current->plug;
1542 if (!plug)
1543 return false;
1544 *request_count = 0;
1545
1546 if (q->mq_ops)
1547 plug_list = &plug->mq_list;
1548 else
1549 plug_list = &plug->list;
1550
1551 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1552 bool merged = false;
1553
1554 if (rq->q == q) {
1555 (*request_count)++;
1556 /*
1557 * Only blk-mq multiple hardware queues case checks the
1558 * rq in the same queue, there should be only one such
1559 * rq in a queue
1560 **/
1561 if (same_queue_rq)
1562 *same_queue_rq = rq;
1563 }
1564
1565 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1566 continue;
1567
1568 switch (blk_try_merge(rq, bio)) {
1569 case ELEVATOR_BACK_MERGE:
1570 merged = bio_attempt_back_merge(q, rq, bio);
1571 break;
1572 case ELEVATOR_FRONT_MERGE:
1573 merged = bio_attempt_front_merge(q, rq, bio);
1574 break;
1575 case ELEVATOR_DISCARD_MERGE:
1576 merged = bio_attempt_discard_merge(q, rq, bio);
1577 break;
1578 default:
1579 break;
1580 }
1581
1582 if (merged)
1583 return true;
1584 }
1585
1586 return false;
1587 }
1588
1589 unsigned int blk_plug_queued_count(struct request_queue *q)
1590 {
1591 struct blk_plug *plug;
1592 struct request *rq;
1593 struct list_head *plug_list;
1594 unsigned int ret = 0;
1595
1596 plug = current->plug;
1597 if (!plug)
1598 goto out;
1599
1600 if (q->mq_ops)
1601 plug_list = &plug->mq_list;
1602 else
1603 plug_list = &plug->list;
1604
1605 list_for_each_entry(rq, plug_list, queuelist) {
1606 if (rq->q == q)
1607 ret++;
1608 }
1609 out:
1610 return ret;
1611 }
1612
1613 void init_request_from_bio(struct request *req, struct bio *bio)
1614 {
1615 if (bio->bi_opf & REQ_RAHEAD)
1616 req->cmd_flags |= REQ_FAILFAST_MASK;
1617
1618 req->errors = 0;
1619 req->__sector = bio->bi_iter.bi_sector;
1620 if (ioprio_valid(bio_prio(bio)))
1621 req->ioprio = bio_prio(bio);
1622 blk_rq_bio_prep(req->q, req, bio);
1623 }
1624
1625 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1626 {
1627 struct blk_plug *plug;
1628 int where = ELEVATOR_INSERT_SORT;
1629 struct request *req, *free;
1630 unsigned int request_count = 0;
1631 unsigned int wb_acct;
1632
1633 /*
1634 * low level driver can indicate that it wants pages above a
1635 * certain limit bounced to low memory (ie for highmem, or even
1636 * ISA dma in theory)
1637 */
1638 blk_queue_bounce(q, &bio);
1639
1640 blk_queue_split(q, &bio, q->bio_split);
1641
1642 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1643 bio->bi_error = -EIO;
1644 bio_endio(bio);
1645 return BLK_QC_T_NONE;
1646 }
1647
1648 if (op_is_flush(bio->bi_opf)) {
1649 spin_lock_irq(q->queue_lock);
1650 where = ELEVATOR_INSERT_FLUSH;
1651 goto get_rq;
1652 }
1653
1654 /*
1655 * Check if we can merge with the plugged list before grabbing
1656 * any locks.
1657 */
1658 if (!blk_queue_nomerges(q)) {
1659 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1660 return BLK_QC_T_NONE;
1661 } else
1662 request_count = blk_plug_queued_count(q);
1663
1664 spin_lock_irq(q->queue_lock);
1665
1666 switch (elv_merge(q, &req, bio)) {
1667 case ELEVATOR_BACK_MERGE:
1668 if (!bio_attempt_back_merge(q, req, bio))
1669 break;
1670 elv_bio_merged(q, req, bio);
1671 free = attempt_back_merge(q, req);
1672 if (free)
1673 __blk_put_request(q, free);
1674 else
1675 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1676 goto out_unlock;
1677 case ELEVATOR_FRONT_MERGE:
1678 if (!bio_attempt_front_merge(q, req, bio))
1679 break;
1680 elv_bio_merged(q, req, bio);
1681 free = attempt_front_merge(q, req);
1682 if (free)
1683 __blk_put_request(q, free);
1684 else
1685 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1686 goto out_unlock;
1687 default:
1688 break;
1689 }
1690
1691 get_rq:
1692 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1693
1694 /*
1695 * Grab a free request. This is might sleep but can not fail.
1696 * Returns with the queue unlocked.
1697 */
1698 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1699 if (IS_ERR(req)) {
1700 __wbt_done(q->rq_wb, wb_acct);
1701 bio->bi_error = PTR_ERR(req);
1702 bio_endio(bio);
1703 goto out_unlock;
1704 }
1705
1706 wbt_track(&req->issue_stat, wb_acct);
1707
1708 /*
1709 * After dropping the lock and possibly sleeping here, our request
1710 * may now be mergeable after it had proven unmergeable (above).
1711 * We don't worry about that case for efficiency. It won't happen
1712 * often, and the elevators are able to handle it.
1713 */
1714 init_request_from_bio(req, bio);
1715
1716 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1717 req->cpu = raw_smp_processor_id();
1718
1719 plug = current->plug;
1720 if (plug) {
1721 /*
1722 * If this is the first request added after a plug, fire
1723 * of a plug trace.
1724 *
1725 * @request_count may become stale because of schedule
1726 * out, so check plug list again.
1727 */
1728 if (!request_count || list_empty(&plug->list))
1729 trace_block_plug(q);
1730 else {
1731 struct request *last = list_entry_rq(plug->list.prev);
1732 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1733 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1734 blk_flush_plug_list(plug, false);
1735 trace_block_plug(q);
1736 }
1737 }
1738 list_add_tail(&req->queuelist, &plug->list);
1739 blk_account_io_start(req, true);
1740 } else {
1741 spin_lock_irq(q->queue_lock);
1742 add_acct_request(q, req, where);
1743 __blk_run_queue(q);
1744 out_unlock:
1745 spin_unlock_irq(q->queue_lock);
1746 }
1747
1748 return BLK_QC_T_NONE;
1749 }
1750
1751 /*
1752 * If bio->bi_dev is a partition, remap the location
1753 */
1754 static inline void blk_partition_remap(struct bio *bio)
1755 {
1756 struct block_device *bdev = bio->bi_bdev;
1757
1758 /*
1759 * Zone reset does not include bi_size so bio_sectors() is always 0.
1760 * Include a test for the reset op code and perform the remap if needed.
1761 */
1762 if (bdev != bdev->bd_contains &&
1763 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1764 struct hd_struct *p = bdev->bd_part;
1765
1766 bio->bi_iter.bi_sector += p->start_sect;
1767 bio->bi_bdev = bdev->bd_contains;
1768
1769 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1770 bdev->bd_dev,
1771 bio->bi_iter.bi_sector - p->start_sect);
1772 }
1773 }
1774
1775 static void handle_bad_sector(struct bio *bio)
1776 {
1777 char b[BDEVNAME_SIZE];
1778
1779 printk(KERN_INFO "attempt to access beyond end of device\n");
1780 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1781 bdevname(bio->bi_bdev, b),
1782 bio->bi_opf,
1783 (unsigned long long)bio_end_sector(bio),
1784 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1785 }
1786
1787 #ifdef CONFIG_FAIL_MAKE_REQUEST
1788
1789 static DECLARE_FAULT_ATTR(fail_make_request);
1790
1791 static int __init setup_fail_make_request(char *str)
1792 {
1793 return setup_fault_attr(&fail_make_request, str);
1794 }
1795 __setup("fail_make_request=", setup_fail_make_request);
1796
1797 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1798 {
1799 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1800 }
1801
1802 static int __init fail_make_request_debugfs(void)
1803 {
1804 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1805 NULL, &fail_make_request);
1806
1807 return PTR_ERR_OR_ZERO(dir);
1808 }
1809
1810 late_initcall(fail_make_request_debugfs);
1811
1812 #else /* CONFIG_FAIL_MAKE_REQUEST */
1813
1814 static inline bool should_fail_request(struct hd_struct *part,
1815 unsigned int bytes)
1816 {
1817 return false;
1818 }
1819
1820 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1821
1822 /*
1823 * Check whether this bio extends beyond the end of the device.
1824 */
1825 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1826 {
1827 sector_t maxsector;
1828
1829 if (!nr_sectors)
1830 return 0;
1831
1832 /* Test device or partition size, when known. */
1833 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1834 if (maxsector) {
1835 sector_t sector = bio->bi_iter.bi_sector;
1836
1837 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1838 /*
1839 * This may well happen - the kernel calls bread()
1840 * without checking the size of the device, e.g., when
1841 * mounting a device.
1842 */
1843 handle_bad_sector(bio);
1844 return 1;
1845 }
1846 }
1847
1848 return 0;
1849 }
1850
1851 static noinline_for_stack bool
1852 generic_make_request_checks(struct bio *bio)
1853 {
1854 struct request_queue *q;
1855 int nr_sectors = bio_sectors(bio);
1856 int err = -EIO;
1857 char b[BDEVNAME_SIZE];
1858 struct hd_struct *part;
1859
1860 might_sleep();
1861
1862 if (bio_check_eod(bio, nr_sectors))
1863 goto end_io;
1864
1865 q = bdev_get_queue(bio->bi_bdev);
1866 if (unlikely(!q)) {
1867 printk(KERN_ERR
1868 "generic_make_request: Trying to access "
1869 "nonexistent block-device %s (%Lu)\n",
1870 bdevname(bio->bi_bdev, b),
1871 (long long) bio->bi_iter.bi_sector);
1872 goto end_io;
1873 }
1874
1875 part = bio->bi_bdev->bd_part;
1876 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1877 should_fail_request(&part_to_disk(part)->part0,
1878 bio->bi_iter.bi_size))
1879 goto end_io;
1880
1881 /*
1882 * If this device has partitions, remap block n
1883 * of partition p to block n+start(p) of the disk.
1884 */
1885 blk_partition_remap(bio);
1886
1887 if (bio_check_eod(bio, nr_sectors))
1888 goto end_io;
1889
1890 /*
1891 * Filter flush bio's early so that make_request based
1892 * drivers without flush support don't have to worry
1893 * about them.
1894 */
1895 if (op_is_flush(bio->bi_opf) &&
1896 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1897 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1898 if (!nr_sectors) {
1899 err = 0;
1900 goto end_io;
1901 }
1902 }
1903
1904 switch (bio_op(bio)) {
1905 case REQ_OP_DISCARD:
1906 if (!blk_queue_discard(q))
1907 goto not_supported;
1908 break;
1909 case REQ_OP_SECURE_ERASE:
1910 if (!blk_queue_secure_erase(q))
1911 goto not_supported;
1912 break;
1913 case REQ_OP_WRITE_SAME:
1914 if (!bdev_write_same(bio->bi_bdev))
1915 goto not_supported;
1916 break;
1917 case REQ_OP_ZONE_REPORT:
1918 case REQ_OP_ZONE_RESET:
1919 if (!bdev_is_zoned(bio->bi_bdev))
1920 goto not_supported;
1921 break;
1922 case REQ_OP_WRITE_ZEROES:
1923 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1924 goto not_supported;
1925 break;
1926 default:
1927 break;
1928 }
1929
1930 /*
1931 * Various block parts want %current->io_context and lazy ioc
1932 * allocation ends up trading a lot of pain for a small amount of
1933 * memory. Just allocate it upfront. This may fail and block
1934 * layer knows how to live with it.
1935 */
1936 create_io_context(GFP_ATOMIC, q->node);
1937
1938 if (!blkcg_bio_issue_check(q, bio))
1939 return false;
1940
1941 trace_block_bio_queue(q, bio);
1942 return true;
1943
1944 not_supported:
1945 err = -EOPNOTSUPP;
1946 end_io:
1947 bio->bi_error = err;
1948 bio_endio(bio);
1949 return false;
1950 }
1951
1952 /**
1953 * generic_make_request - hand a buffer to its device driver for I/O
1954 * @bio: The bio describing the location in memory and on the device.
1955 *
1956 * generic_make_request() is used to make I/O requests of block
1957 * devices. It is passed a &struct bio, which describes the I/O that needs
1958 * to be done.
1959 *
1960 * generic_make_request() does not return any status. The
1961 * success/failure status of the request, along with notification of
1962 * completion, is delivered asynchronously through the bio->bi_end_io
1963 * function described (one day) else where.
1964 *
1965 * The caller of generic_make_request must make sure that bi_io_vec
1966 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1967 * set to describe the device address, and the
1968 * bi_end_io and optionally bi_private are set to describe how
1969 * completion notification should be signaled.
1970 *
1971 * generic_make_request and the drivers it calls may use bi_next if this
1972 * bio happens to be merged with someone else, and may resubmit the bio to
1973 * a lower device by calling into generic_make_request recursively, which
1974 * means the bio should NOT be touched after the call to ->make_request_fn.
1975 */
1976 blk_qc_t generic_make_request(struct bio *bio)
1977 {
1978 struct bio_list bio_list_on_stack;
1979 blk_qc_t ret = BLK_QC_T_NONE;
1980
1981 if (!generic_make_request_checks(bio))
1982 goto out;
1983
1984 /*
1985 * We only want one ->make_request_fn to be active at a time, else
1986 * stack usage with stacked devices could be a problem. So use
1987 * current->bio_list to keep a list of requests submited by a
1988 * make_request_fn function. current->bio_list is also used as a
1989 * flag to say if generic_make_request is currently active in this
1990 * task or not. If it is NULL, then no make_request is active. If
1991 * it is non-NULL, then a make_request is active, and new requests
1992 * should be added at the tail
1993 */
1994 if (current->bio_list) {
1995 bio_list_add(current->bio_list, bio);
1996 goto out;
1997 }
1998
1999 /* following loop may be a bit non-obvious, and so deserves some
2000 * explanation.
2001 * Before entering the loop, bio->bi_next is NULL (as all callers
2002 * ensure that) so we have a list with a single bio.
2003 * We pretend that we have just taken it off a longer list, so
2004 * we assign bio_list to a pointer to the bio_list_on_stack,
2005 * thus initialising the bio_list of new bios to be
2006 * added. ->make_request() may indeed add some more bios
2007 * through a recursive call to generic_make_request. If it
2008 * did, we find a non-NULL value in bio_list and re-enter the loop
2009 * from the top. In this case we really did just take the bio
2010 * of the top of the list (no pretending) and so remove it from
2011 * bio_list, and call into ->make_request() again.
2012 */
2013 BUG_ON(bio->bi_next);
2014 bio_list_init(&bio_list_on_stack);
2015 current->bio_list = &bio_list_on_stack;
2016 do {
2017 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2018
2019 if (likely(blk_queue_enter(q, false) == 0)) {
2020 ret = q->make_request_fn(q, bio);
2021
2022 blk_queue_exit(q);
2023
2024 bio = bio_list_pop(current->bio_list);
2025 } else {
2026 struct bio *bio_next = bio_list_pop(current->bio_list);
2027
2028 bio_io_error(bio);
2029 bio = bio_next;
2030 }
2031 } while (bio);
2032 current->bio_list = NULL; /* deactivate */
2033
2034 out:
2035 return ret;
2036 }
2037 EXPORT_SYMBOL(generic_make_request);
2038
2039 /**
2040 * submit_bio - submit a bio to the block device layer for I/O
2041 * @bio: The &struct bio which describes the I/O
2042 *
2043 * submit_bio() is very similar in purpose to generic_make_request(), and
2044 * uses that function to do most of the work. Both are fairly rough
2045 * interfaces; @bio must be presetup and ready for I/O.
2046 *
2047 */
2048 blk_qc_t submit_bio(struct bio *bio)
2049 {
2050 /*
2051 * If it's a regular read/write or a barrier with data attached,
2052 * go through the normal accounting stuff before submission.
2053 */
2054 if (bio_has_data(bio)) {
2055 unsigned int count;
2056
2057 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2058 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2059 else
2060 count = bio_sectors(bio);
2061
2062 if (op_is_write(bio_op(bio))) {
2063 count_vm_events(PGPGOUT, count);
2064 } else {
2065 task_io_account_read(bio->bi_iter.bi_size);
2066 count_vm_events(PGPGIN, count);
2067 }
2068
2069 if (unlikely(block_dump)) {
2070 char b[BDEVNAME_SIZE];
2071 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2072 current->comm, task_pid_nr(current),
2073 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2074 (unsigned long long)bio->bi_iter.bi_sector,
2075 bdevname(bio->bi_bdev, b),
2076 count);
2077 }
2078 }
2079
2080 return generic_make_request(bio);
2081 }
2082 EXPORT_SYMBOL(submit_bio);
2083
2084 /**
2085 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2086 * for new the queue limits
2087 * @q: the queue
2088 * @rq: the request being checked
2089 *
2090 * Description:
2091 * @rq may have been made based on weaker limitations of upper-level queues
2092 * in request stacking drivers, and it may violate the limitation of @q.
2093 * Since the block layer and the underlying device driver trust @rq
2094 * after it is inserted to @q, it should be checked against @q before
2095 * the insertion using this generic function.
2096 *
2097 * Request stacking drivers like request-based dm may change the queue
2098 * limits when retrying requests on other queues. Those requests need
2099 * to be checked against the new queue limits again during dispatch.
2100 */
2101 static int blk_cloned_rq_check_limits(struct request_queue *q,
2102 struct request *rq)
2103 {
2104 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2105 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2106 return -EIO;
2107 }
2108
2109 /*
2110 * queue's settings related to segment counting like q->bounce_pfn
2111 * may differ from that of other stacking queues.
2112 * Recalculate it to check the request correctly on this queue's
2113 * limitation.
2114 */
2115 blk_recalc_rq_segments(rq);
2116 if (rq->nr_phys_segments > queue_max_segments(q)) {
2117 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2118 return -EIO;
2119 }
2120
2121 return 0;
2122 }
2123
2124 /**
2125 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2126 * @q: the queue to submit the request
2127 * @rq: the request being queued
2128 */
2129 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2130 {
2131 unsigned long flags;
2132 int where = ELEVATOR_INSERT_BACK;
2133
2134 if (blk_cloned_rq_check_limits(q, rq))
2135 return -EIO;
2136
2137 if (rq->rq_disk &&
2138 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2139 return -EIO;
2140
2141 if (q->mq_ops) {
2142 if (blk_queue_io_stat(q))
2143 blk_account_io_start(rq, true);
2144 blk_mq_sched_insert_request(rq, false, true, false, false);
2145 return 0;
2146 }
2147
2148 spin_lock_irqsave(q->queue_lock, flags);
2149 if (unlikely(blk_queue_dying(q))) {
2150 spin_unlock_irqrestore(q->queue_lock, flags);
2151 return -ENODEV;
2152 }
2153
2154 /*
2155 * Submitting request must be dequeued before calling this function
2156 * because it will be linked to another request_queue
2157 */
2158 BUG_ON(blk_queued_rq(rq));
2159
2160 if (op_is_flush(rq->cmd_flags))
2161 where = ELEVATOR_INSERT_FLUSH;
2162
2163 add_acct_request(q, rq, where);
2164 if (where == ELEVATOR_INSERT_FLUSH)
2165 __blk_run_queue(q);
2166 spin_unlock_irqrestore(q->queue_lock, flags);
2167
2168 return 0;
2169 }
2170 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2171
2172 /**
2173 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2174 * @rq: request to examine
2175 *
2176 * Description:
2177 * A request could be merge of IOs which require different failure
2178 * handling. This function determines the number of bytes which
2179 * can be failed from the beginning of the request without
2180 * crossing into area which need to be retried further.
2181 *
2182 * Return:
2183 * The number of bytes to fail.
2184 *
2185 * Context:
2186 * queue_lock must be held.
2187 */
2188 unsigned int blk_rq_err_bytes(const struct request *rq)
2189 {
2190 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2191 unsigned int bytes = 0;
2192 struct bio *bio;
2193
2194 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2195 return blk_rq_bytes(rq);
2196
2197 /*
2198 * Currently the only 'mixing' which can happen is between
2199 * different fastfail types. We can safely fail portions
2200 * which have all the failfast bits that the first one has -
2201 * the ones which are at least as eager to fail as the first
2202 * one.
2203 */
2204 for (bio = rq->bio; bio; bio = bio->bi_next) {
2205 if ((bio->bi_opf & ff) != ff)
2206 break;
2207 bytes += bio->bi_iter.bi_size;
2208 }
2209
2210 /* this could lead to infinite loop */
2211 BUG_ON(blk_rq_bytes(rq) && !bytes);
2212 return bytes;
2213 }
2214 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2215
2216 void blk_account_io_completion(struct request *req, unsigned int bytes)
2217 {
2218 if (blk_do_io_stat(req)) {
2219 const int rw = rq_data_dir(req);
2220 struct hd_struct *part;
2221 int cpu;
2222
2223 cpu = part_stat_lock();
2224 part = req->part;
2225 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2226 part_stat_unlock();
2227 }
2228 }
2229
2230 void blk_account_io_done(struct request *req)
2231 {
2232 /*
2233 * Account IO completion. flush_rq isn't accounted as a
2234 * normal IO on queueing nor completion. Accounting the
2235 * containing request is enough.
2236 */
2237 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2238 unsigned long duration = jiffies - req->start_time;
2239 const int rw = rq_data_dir(req);
2240 struct hd_struct *part;
2241 int cpu;
2242
2243 cpu = part_stat_lock();
2244 part = req->part;
2245
2246 part_stat_inc(cpu, part, ios[rw]);
2247 part_stat_add(cpu, part, ticks[rw], duration);
2248 part_round_stats(cpu, part);
2249 part_dec_in_flight(part, rw);
2250
2251 hd_struct_put(part);
2252 part_stat_unlock();
2253 }
2254 }
2255
2256 #ifdef CONFIG_PM
2257 /*
2258 * Don't process normal requests when queue is suspended
2259 * or in the process of suspending/resuming
2260 */
2261 static struct request *blk_pm_peek_request(struct request_queue *q,
2262 struct request *rq)
2263 {
2264 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2265 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2266 return NULL;
2267 else
2268 return rq;
2269 }
2270 #else
2271 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2272 struct request *rq)
2273 {
2274 return rq;
2275 }
2276 #endif
2277
2278 void blk_account_io_start(struct request *rq, bool new_io)
2279 {
2280 struct hd_struct *part;
2281 int rw = rq_data_dir(rq);
2282 int cpu;
2283
2284 if (!blk_do_io_stat(rq))
2285 return;
2286
2287 cpu = part_stat_lock();
2288
2289 if (!new_io) {
2290 part = rq->part;
2291 part_stat_inc(cpu, part, merges[rw]);
2292 } else {
2293 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2294 if (!hd_struct_try_get(part)) {
2295 /*
2296 * The partition is already being removed,
2297 * the request will be accounted on the disk only
2298 *
2299 * We take a reference on disk->part0 although that
2300 * partition will never be deleted, so we can treat
2301 * it as any other partition.
2302 */
2303 part = &rq->rq_disk->part0;
2304 hd_struct_get(part);
2305 }
2306 part_round_stats(cpu, part);
2307 part_inc_in_flight(part, rw);
2308 rq->part = part;
2309 }
2310
2311 part_stat_unlock();
2312 }
2313
2314 /**
2315 * blk_peek_request - peek at the top of a request queue
2316 * @q: request queue to peek at
2317 *
2318 * Description:
2319 * Return the request at the top of @q. The returned request
2320 * should be started using blk_start_request() before LLD starts
2321 * processing it.
2322 *
2323 * Return:
2324 * Pointer to the request at the top of @q if available. Null
2325 * otherwise.
2326 *
2327 * Context:
2328 * queue_lock must be held.
2329 */
2330 struct request *blk_peek_request(struct request_queue *q)
2331 {
2332 struct request *rq;
2333 int ret;
2334
2335 while ((rq = __elv_next_request(q)) != NULL) {
2336
2337 rq = blk_pm_peek_request(q, rq);
2338 if (!rq)
2339 break;
2340
2341 if (!(rq->rq_flags & RQF_STARTED)) {
2342 /*
2343 * This is the first time the device driver
2344 * sees this request (possibly after
2345 * requeueing). Notify IO scheduler.
2346 */
2347 if (rq->rq_flags & RQF_SORTED)
2348 elv_activate_rq(q, rq);
2349
2350 /*
2351 * just mark as started even if we don't start
2352 * it, a request that has been delayed should
2353 * not be passed by new incoming requests
2354 */
2355 rq->rq_flags |= RQF_STARTED;
2356 trace_block_rq_issue(q, rq);
2357 }
2358
2359 if (!q->boundary_rq || q->boundary_rq == rq) {
2360 q->end_sector = rq_end_sector(rq);
2361 q->boundary_rq = NULL;
2362 }
2363
2364 if (rq->rq_flags & RQF_DONTPREP)
2365 break;
2366
2367 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2368 /*
2369 * make sure space for the drain appears we
2370 * know we can do this because max_hw_segments
2371 * has been adjusted to be one fewer than the
2372 * device can handle
2373 */
2374 rq->nr_phys_segments++;
2375 }
2376
2377 if (!q->prep_rq_fn)
2378 break;
2379
2380 ret = q->prep_rq_fn(q, rq);
2381 if (ret == BLKPREP_OK) {
2382 break;
2383 } else if (ret == BLKPREP_DEFER) {
2384 /*
2385 * the request may have been (partially) prepped.
2386 * we need to keep this request in the front to
2387 * avoid resource deadlock. RQF_STARTED will
2388 * prevent other fs requests from passing this one.
2389 */
2390 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2391 !(rq->rq_flags & RQF_DONTPREP)) {
2392 /*
2393 * remove the space for the drain we added
2394 * so that we don't add it again
2395 */
2396 --rq->nr_phys_segments;
2397 }
2398
2399 rq = NULL;
2400 break;
2401 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2402 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2403
2404 rq->rq_flags |= RQF_QUIET;
2405 /*
2406 * Mark this request as started so we don't trigger
2407 * any debug logic in the end I/O path.
2408 */
2409 blk_start_request(rq);
2410 __blk_end_request_all(rq, err);
2411 } else {
2412 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2413 break;
2414 }
2415 }
2416
2417 return rq;
2418 }
2419 EXPORT_SYMBOL(blk_peek_request);
2420
2421 void blk_dequeue_request(struct request *rq)
2422 {
2423 struct request_queue *q = rq->q;
2424
2425 BUG_ON(list_empty(&rq->queuelist));
2426 BUG_ON(ELV_ON_HASH(rq));
2427
2428 list_del_init(&rq->queuelist);
2429
2430 /*
2431 * the time frame between a request being removed from the lists
2432 * and to it is freed is accounted as io that is in progress at
2433 * the driver side.
2434 */
2435 if (blk_account_rq(rq)) {
2436 q->in_flight[rq_is_sync(rq)]++;
2437 set_io_start_time_ns(rq);
2438 }
2439 }
2440
2441 /**
2442 * blk_start_request - start request processing on the driver
2443 * @req: request to dequeue
2444 *
2445 * Description:
2446 * Dequeue @req and start timeout timer on it. This hands off the
2447 * request to the driver.
2448 *
2449 * Block internal functions which don't want to start timer should
2450 * call blk_dequeue_request().
2451 *
2452 * Context:
2453 * queue_lock must be held.
2454 */
2455 void blk_start_request(struct request *req)
2456 {
2457 blk_dequeue_request(req);
2458
2459 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2460 blk_stat_set_issue_time(&req->issue_stat);
2461 req->rq_flags |= RQF_STATS;
2462 wbt_issue(req->q->rq_wb, &req->issue_stat);
2463 }
2464
2465 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2466 blk_add_timer(req);
2467 }
2468 EXPORT_SYMBOL(blk_start_request);
2469
2470 /**
2471 * blk_fetch_request - fetch a request from a request queue
2472 * @q: request queue to fetch a request from
2473 *
2474 * Description:
2475 * Return the request at the top of @q. The request is started on
2476 * return and LLD can start processing it immediately.
2477 *
2478 * Return:
2479 * Pointer to the request at the top of @q if available. Null
2480 * otherwise.
2481 *
2482 * Context:
2483 * queue_lock must be held.
2484 */
2485 struct request *blk_fetch_request(struct request_queue *q)
2486 {
2487 struct request *rq;
2488
2489 rq = blk_peek_request(q);
2490 if (rq)
2491 blk_start_request(rq);
2492 return rq;
2493 }
2494 EXPORT_SYMBOL(blk_fetch_request);
2495
2496 /**
2497 * blk_update_request - Special helper function for request stacking drivers
2498 * @req: the request being processed
2499 * @error: %0 for success, < %0 for error
2500 * @nr_bytes: number of bytes to complete @req
2501 *
2502 * Description:
2503 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2504 * the request structure even if @req doesn't have leftover.
2505 * If @req has leftover, sets it up for the next range of segments.
2506 *
2507 * This special helper function is only for request stacking drivers
2508 * (e.g. request-based dm) so that they can handle partial completion.
2509 * Actual device drivers should use blk_end_request instead.
2510 *
2511 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2512 * %false return from this function.
2513 *
2514 * Return:
2515 * %false - this request doesn't have any more data
2516 * %true - this request has more data
2517 **/
2518 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2519 {
2520 int total_bytes;
2521
2522 trace_block_rq_complete(req->q, req, nr_bytes);
2523
2524 if (!req->bio)
2525 return false;
2526
2527 /*
2528 * For fs requests, rq is just carrier of independent bio's
2529 * and each partial completion should be handled separately.
2530 * Reset per-request error on each partial completion.
2531 *
2532 * TODO: tj: This is too subtle. It would be better to let
2533 * low level drivers do what they see fit.
2534 */
2535 if (!blk_rq_is_passthrough(req))
2536 req->errors = 0;
2537
2538 if (error && !blk_rq_is_passthrough(req) &&
2539 !(req->rq_flags & RQF_QUIET)) {
2540 char *error_type;
2541
2542 switch (error) {
2543 case -ENOLINK:
2544 error_type = "recoverable transport";
2545 break;
2546 case -EREMOTEIO:
2547 error_type = "critical target";
2548 break;
2549 case -EBADE:
2550 error_type = "critical nexus";
2551 break;
2552 case -ETIMEDOUT:
2553 error_type = "timeout";
2554 break;
2555 case -ENOSPC:
2556 error_type = "critical space allocation";
2557 break;
2558 case -ENODATA:
2559 error_type = "critical medium";
2560 break;
2561 case -EIO:
2562 default:
2563 error_type = "I/O";
2564 break;
2565 }
2566 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2567 __func__, error_type, req->rq_disk ?
2568 req->rq_disk->disk_name : "?",
2569 (unsigned long long)blk_rq_pos(req));
2570
2571 }
2572
2573 blk_account_io_completion(req, nr_bytes);
2574
2575 total_bytes = 0;
2576 while (req->bio) {
2577 struct bio *bio = req->bio;
2578 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2579
2580 if (bio_bytes == bio->bi_iter.bi_size)
2581 req->bio = bio->bi_next;
2582
2583 req_bio_endio(req, bio, bio_bytes, error);
2584
2585 total_bytes += bio_bytes;
2586 nr_bytes -= bio_bytes;
2587
2588 if (!nr_bytes)
2589 break;
2590 }
2591
2592 /*
2593 * completely done
2594 */
2595 if (!req->bio) {
2596 /*
2597 * Reset counters so that the request stacking driver
2598 * can find how many bytes remain in the request
2599 * later.
2600 */
2601 req->__data_len = 0;
2602 return false;
2603 }
2604
2605 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2606
2607 req->__data_len -= total_bytes;
2608
2609 /* update sector only for requests with clear definition of sector */
2610 if (!blk_rq_is_passthrough(req))
2611 req->__sector += total_bytes >> 9;
2612
2613 /* mixed attributes always follow the first bio */
2614 if (req->rq_flags & RQF_MIXED_MERGE) {
2615 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2616 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2617 }
2618
2619 /*
2620 * If total number of sectors is less than the first segment
2621 * size, something has gone terribly wrong.
2622 */
2623 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2624 blk_dump_rq_flags(req, "request botched");
2625 req->__data_len = blk_rq_cur_bytes(req);
2626 }
2627
2628 /* recalculate the number of segments */
2629 blk_recalc_rq_segments(req);
2630
2631 return true;
2632 }
2633 EXPORT_SYMBOL_GPL(blk_update_request);
2634
2635 static bool blk_update_bidi_request(struct request *rq, int error,
2636 unsigned int nr_bytes,
2637 unsigned int bidi_bytes)
2638 {
2639 if (blk_update_request(rq, error, nr_bytes))
2640 return true;
2641
2642 /* Bidi request must be completed as a whole */
2643 if (unlikely(blk_bidi_rq(rq)) &&
2644 blk_update_request(rq->next_rq, error, bidi_bytes))
2645 return true;
2646
2647 if (blk_queue_add_random(rq->q))
2648 add_disk_randomness(rq->rq_disk);
2649
2650 return false;
2651 }
2652
2653 /**
2654 * blk_unprep_request - unprepare a request
2655 * @req: the request
2656 *
2657 * This function makes a request ready for complete resubmission (or
2658 * completion). It happens only after all error handling is complete,
2659 * so represents the appropriate moment to deallocate any resources
2660 * that were allocated to the request in the prep_rq_fn. The queue
2661 * lock is held when calling this.
2662 */
2663 void blk_unprep_request(struct request *req)
2664 {
2665 struct request_queue *q = req->q;
2666
2667 req->rq_flags &= ~RQF_DONTPREP;
2668 if (q->unprep_rq_fn)
2669 q->unprep_rq_fn(q, req);
2670 }
2671 EXPORT_SYMBOL_GPL(blk_unprep_request);
2672
2673 /*
2674 * queue lock must be held
2675 */
2676 void blk_finish_request(struct request *req, int error)
2677 {
2678 struct request_queue *q = req->q;
2679
2680 if (req->rq_flags & RQF_STATS)
2681 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2682
2683 if (req->rq_flags & RQF_QUEUED)
2684 blk_queue_end_tag(q, req);
2685
2686 BUG_ON(blk_queued_rq(req));
2687
2688 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2689 laptop_io_completion(req->q->backing_dev_info);
2690
2691 blk_delete_timer(req);
2692
2693 if (req->rq_flags & RQF_DONTPREP)
2694 blk_unprep_request(req);
2695
2696 blk_account_io_done(req);
2697
2698 if (req->end_io) {
2699 wbt_done(req->q->rq_wb, &req->issue_stat);
2700 req->end_io(req, error);
2701 } else {
2702 if (blk_bidi_rq(req))
2703 __blk_put_request(req->next_rq->q, req->next_rq);
2704
2705 __blk_put_request(q, req);
2706 }
2707 }
2708 EXPORT_SYMBOL(blk_finish_request);
2709
2710 /**
2711 * blk_end_bidi_request - Complete a bidi request
2712 * @rq: the request to complete
2713 * @error: %0 for success, < %0 for error
2714 * @nr_bytes: number of bytes to complete @rq
2715 * @bidi_bytes: number of bytes to complete @rq->next_rq
2716 *
2717 * Description:
2718 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2719 * Drivers that supports bidi can safely call this member for any
2720 * type of request, bidi or uni. In the later case @bidi_bytes is
2721 * just ignored.
2722 *
2723 * Return:
2724 * %false - we are done with this request
2725 * %true - still buffers pending for this request
2726 **/
2727 static bool blk_end_bidi_request(struct request *rq, int error,
2728 unsigned int nr_bytes, unsigned int bidi_bytes)
2729 {
2730 struct request_queue *q = rq->q;
2731 unsigned long flags;
2732
2733 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2734 return true;
2735
2736 spin_lock_irqsave(q->queue_lock, flags);
2737 blk_finish_request(rq, error);
2738 spin_unlock_irqrestore(q->queue_lock, flags);
2739
2740 return false;
2741 }
2742
2743 /**
2744 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2745 * @rq: the request to complete
2746 * @error: %0 for success, < %0 for error
2747 * @nr_bytes: number of bytes to complete @rq
2748 * @bidi_bytes: number of bytes to complete @rq->next_rq
2749 *
2750 * Description:
2751 * Identical to blk_end_bidi_request() except that queue lock is
2752 * assumed to be locked on entry and remains so on return.
2753 *
2754 * Return:
2755 * %false - we are done with this request
2756 * %true - still buffers pending for this request
2757 **/
2758 bool __blk_end_bidi_request(struct request *rq, int error,
2759 unsigned int nr_bytes, unsigned int bidi_bytes)
2760 {
2761 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2762 return true;
2763
2764 blk_finish_request(rq, error);
2765
2766 return false;
2767 }
2768
2769 /**
2770 * blk_end_request - Helper function for drivers to complete the request.
2771 * @rq: the request being processed
2772 * @error: %0 for success, < %0 for error
2773 * @nr_bytes: number of bytes to complete
2774 *
2775 * Description:
2776 * Ends I/O on a number of bytes attached to @rq.
2777 * If @rq has leftover, sets it up for the next range of segments.
2778 *
2779 * Return:
2780 * %false - we are done with this request
2781 * %true - still buffers pending for this request
2782 **/
2783 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2784 {
2785 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2786 }
2787 EXPORT_SYMBOL(blk_end_request);
2788
2789 /**
2790 * blk_end_request_all - Helper function for drives to finish the request.
2791 * @rq: the request to finish
2792 * @error: %0 for success, < %0 for error
2793 *
2794 * Description:
2795 * Completely finish @rq.
2796 */
2797 void blk_end_request_all(struct request *rq, int error)
2798 {
2799 bool pending;
2800 unsigned int bidi_bytes = 0;
2801
2802 if (unlikely(blk_bidi_rq(rq)))
2803 bidi_bytes = blk_rq_bytes(rq->next_rq);
2804
2805 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2806 BUG_ON(pending);
2807 }
2808 EXPORT_SYMBOL(blk_end_request_all);
2809
2810 /**
2811 * blk_end_request_cur - Helper function to finish the current request chunk.
2812 * @rq: the request to finish the current chunk for
2813 * @error: %0 for success, < %0 for error
2814 *
2815 * Description:
2816 * Complete the current consecutively mapped chunk from @rq.
2817 *
2818 * Return:
2819 * %false - we are done with this request
2820 * %true - still buffers pending for this request
2821 */
2822 bool blk_end_request_cur(struct request *rq, int error)
2823 {
2824 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2825 }
2826 EXPORT_SYMBOL(blk_end_request_cur);
2827
2828 /**
2829 * blk_end_request_err - Finish a request till the next failure boundary.
2830 * @rq: the request to finish till the next failure boundary for
2831 * @error: must be negative errno
2832 *
2833 * Description:
2834 * Complete @rq till the next failure boundary.
2835 *
2836 * Return:
2837 * %false - we are done with this request
2838 * %true - still buffers pending for this request
2839 */
2840 bool blk_end_request_err(struct request *rq, int error)
2841 {
2842 WARN_ON(error >= 0);
2843 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2844 }
2845 EXPORT_SYMBOL_GPL(blk_end_request_err);
2846
2847 /**
2848 * __blk_end_request - Helper function for drivers to complete the request.
2849 * @rq: the request being processed
2850 * @error: %0 for success, < %0 for error
2851 * @nr_bytes: number of bytes to complete
2852 *
2853 * Description:
2854 * Must be called with queue lock held unlike blk_end_request().
2855 *
2856 * Return:
2857 * %false - we are done with this request
2858 * %true - still buffers pending for this request
2859 **/
2860 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2861 {
2862 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2863 }
2864 EXPORT_SYMBOL(__blk_end_request);
2865
2866 /**
2867 * __blk_end_request_all - Helper function for drives to finish the request.
2868 * @rq: the request to finish
2869 * @error: %0 for success, < %0 for error
2870 *
2871 * Description:
2872 * Completely finish @rq. Must be called with queue lock held.
2873 */
2874 void __blk_end_request_all(struct request *rq, int error)
2875 {
2876 bool pending;
2877 unsigned int bidi_bytes = 0;
2878
2879 if (unlikely(blk_bidi_rq(rq)))
2880 bidi_bytes = blk_rq_bytes(rq->next_rq);
2881
2882 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2883 BUG_ON(pending);
2884 }
2885 EXPORT_SYMBOL(__blk_end_request_all);
2886
2887 /**
2888 * __blk_end_request_cur - Helper function to finish the current request chunk.
2889 * @rq: the request to finish the current chunk for
2890 * @error: %0 for success, < %0 for error
2891 *
2892 * Description:
2893 * Complete the current consecutively mapped chunk from @rq. Must
2894 * be called with queue lock held.
2895 *
2896 * Return:
2897 * %false - we are done with this request
2898 * %true - still buffers pending for this request
2899 */
2900 bool __blk_end_request_cur(struct request *rq, int error)
2901 {
2902 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2903 }
2904 EXPORT_SYMBOL(__blk_end_request_cur);
2905
2906 /**
2907 * __blk_end_request_err - Finish a request till the next failure boundary.
2908 * @rq: the request to finish till the next failure boundary for
2909 * @error: must be negative errno
2910 *
2911 * Description:
2912 * Complete @rq till the next failure boundary. Must be called
2913 * with queue lock held.
2914 *
2915 * Return:
2916 * %false - we are done with this request
2917 * %true - still buffers pending for this request
2918 */
2919 bool __blk_end_request_err(struct request *rq, int error)
2920 {
2921 WARN_ON(error >= 0);
2922 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2923 }
2924 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2925
2926 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2927 struct bio *bio)
2928 {
2929 if (bio_has_data(bio))
2930 rq->nr_phys_segments = bio_phys_segments(q, bio);
2931
2932 rq->__data_len = bio->bi_iter.bi_size;
2933 rq->bio = rq->biotail = bio;
2934
2935 if (bio->bi_bdev)
2936 rq->rq_disk = bio->bi_bdev->bd_disk;
2937 }
2938
2939 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2940 /**
2941 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2942 * @rq: the request to be flushed
2943 *
2944 * Description:
2945 * Flush all pages in @rq.
2946 */
2947 void rq_flush_dcache_pages(struct request *rq)
2948 {
2949 struct req_iterator iter;
2950 struct bio_vec bvec;
2951
2952 rq_for_each_segment(bvec, rq, iter)
2953 flush_dcache_page(bvec.bv_page);
2954 }
2955 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2956 #endif
2957
2958 /**
2959 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2960 * @q : the queue of the device being checked
2961 *
2962 * Description:
2963 * Check if underlying low-level drivers of a device are busy.
2964 * If the drivers want to export their busy state, they must set own
2965 * exporting function using blk_queue_lld_busy() first.
2966 *
2967 * Basically, this function is used only by request stacking drivers
2968 * to stop dispatching requests to underlying devices when underlying
2969 * devices are busy. This behavior helps more I/O merging on the queue
2970 * of the request stacking driver and prevents I/O throughput regression
2971 * on burst I/O load.
2972 *
2973 * Return:
2974 * 0 - Not busy (The request stacking driver should dispatch request)
2975 * 1 - Busy (The request stacking driver should stop dispatching request)
2976 */
2977 int blk_lld_busy(struct request_queue *q)
2978 {
2979 if (q->lld_busy_fn)
2980 return q->lld_busy_fn(q);
2981
2982 return 0;
2983 }
2984 EXPORT_SYMBOL_GPL(blk_lld_busy);
2985
2986 /**
2987 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2988 * @rq: the clone request to be cleaned up
2989 *
2990 * Description:
2991 * Free all bios in @rq for a cloned request.
2992 */
2993 void blk_rq_unprep_clone(struct request *rq)
2994 {
2995 struct bio *bio;
2996
2997 while ((bio = rq->bio) != NULL) {
2998 rq->bio = bio->bi_next;
2999
3000 bio_put(bio);
3001 }
3002 }
3003 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3004
3005 /*
3006 * Copy attributes of the original request to the clone request.
3007 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3008 */
3009 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3010 {
3011 dst->cpu = src->cpu;
3012 dst->__sector = blk_rq_pos(src);
3013 dst->__data_len = blk_rq_bytes(src);
3014 dst->nr_phys_segments = src->nr_phys_segments;
3015 dst->ioprio = src->ioprio;
3016 dst->extra_len = src->extra_len;
3017 }
3018
3019 /**
3020 * blk_rq_prep_clone - Helper function to setup clone request
3021 * @rq: the request to be setup
3022 * @rq_src: original request to be cloned
3023 * @bs: bio_set that bios for clone are allocated from
3024 * @gfp_mask: memory allocation mask for bio
3025 * @bio_ctr: setup function to be called for each clone bio.
3026 * Returns %0 for success, non %0 for failure.
3027 * @data: private data to be passed to @bio_ctr
3028 *
3029 * Description:
3030 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3031 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3032 * are not copied, and copying such parts is the caller's responsibility.
3033 * Also, pages which the original bios are pointing to are not copied
3034 * and the cloned bios just point same pages.
3035 * So cloned bios must be completed before original bios, which means
3036 * the caller must complete @rq before @rq_src.
3037 */
3038 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3039 struct bio_set *bs, gfp_t gfp_mask,
3040 int (*bio_ctr)(struct bio *, struct bio *, void *),
3041 void *data)
3042 {
3043 struct bio *bio, *bio_src;
3044
3045 if (!bs)
3046 bs = fs_bio_set;
3047
3048 __rq_for_each_bio(bio_src, rq_src) {
3049 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3050 if (!bio)
3051 goto free_and_out;
3052
3053 if (bio_ctr && bio_ctr(bio, bio_src, data))
3054 goto free_and_out;
3055
3056 if (rq->bio) {
3057 rq->biotail->bi_next = bio;
3058 rq->biotail = bio;
3059 } else
3060 rq->bio = rq->biotail = bio;
3061 }
3062
3063 __blk_rq_prep_clone(rq, rq_src);
3064
3065 return 0;
3066
3067 free_and_out:
3068 if (bio)
3069 bio_put(bio);
3070 blk_rq_unprep_clone(rq);
3071
3072 return -ENOMEM;
3073 }
3074 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3075
3076 int kblockd_schedule_work(struct work_struct *work)
3077 {
3078 return queue_work(kblockd_workqueue, work);
3079 }
3080 EXPORT_SYMBOL(kblockd_schedule_work);
3081
3082 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3083 {
3084 return queue_work_on(cpu, kblockd_workqueue, work);
3085 }
3086 EXPORT_SYMBOL(kblockd_schedule_work_on);
3087
3088 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3089 unsigned long delay)
3090 {
3091 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3092 }
3093 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3094
3095 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3096 unsigned long delay)
3097 {
3098 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3099 }
3100 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3101
3102 /**
3103 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3104 * @plug: The &struct blk_plug that needs to be initialized
3105 *
3106 * Description:
3107 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3108 * pending I/O should the task end up blocking between blk_start_plug() and
3109 * blk_finish_plug(). This is important from a performance perspective, but
3110 * also ensures that we don't deadlock. For instance, if the task is blocking
3111 * for a memory allocation, memory reclaim could end up wanting to free a
3112 * page belonging to that request that is currently residing in our private
3113 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3114 * this kind of deadlock.
3115 */
3116 void blk_start_plug(struct blk_plug *plug)
3117 {
3118 struct task_struct *tsk = current;
3119
3120 /*
3121 * If this is a nested plug, don't actually assign it.
3122 */
3123 if (tsk->plug)
3124 return;
3125
3126 INIT_LIST_HEAD(&plug->list);
3127 INIT_LIST_HEAD(&plug->mq_list);
3128 INIT_LIST_HEAD(&plug->cb_list);
3129 /*
3130 * Store ordering should not be needed here, since a potential
3131 * preempt will imply a full memory barrier
3132 */
3133 tsk->plug = plug;
3134 }
3135 EXPORT_SYMBOL(blk_start_plug);
3136
3137 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3138 {
3139 struct request *rqa = container_of(a, struct request, queuelist);
3140 struct request *rqb = container_of(b, struct request, queuelist);
3141
3142 return !(rqa->q < rqb->q ||
3143 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3144 }
3145
3146 /*
3147 * If 'from_schedule' is true, then postpone the dispatch of requests
3148 * until a safe kblockd context. We due this to avoid accidental big
3149 * additional stack usage in driver dispatch, in places where the originally
3150 * plugger did not intend it.
3151 */
3152 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3153 bool from_schedule)
3154 __releases(q->queue_lock)
3155 {
3156 trace_block_unplug(q, depth, !from_schedule);
3157
3158 if (from_schedule)
3159 blk_run_queue_async(q);
3160 else
3161 __blk_run_queue(q);
3162 spin_unlock(q->queue_lock);
3163 }
3164
3165 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3166 {
3167 LIST_HEAD(callbacks);
3168
3169 while (!list_empty(&plug->cb_list)) {
3170 list_splice_init(&plug->cb_list, &callbacks);
3171
3172 while (!list_empty(&callbacks)) {
3173 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3174 struct blk_plug_cb,
3175 list);
3176 list_del(&cb->list);
3177 cb->callback(cb, from_schedule);
3178 }
3179 }
3180 }
3181
3182 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3183 int size)
3184 {
3185 struct blk_plug *plug = current->plug;
3186 struct blk_plug_cb *cb;
3187
3188 if (!plug)
3189 return NULL;
3190
3191 list_for_each_entry(cb, &plug->cb_list, list)
3192 if (cb->callback == unplug && cb->data == data)
3193 return cb;
3194
3195 /* Not currently on the callback list */
3196 BUG_ON(size < sizeof(*cb));
3197 cb = kzalloc(size, GFP_ATOMIC);
3198 if (cb) {
3199 cb->data = data;
3200 cb->callback = unplug;
3201 list_add(&cb->list, &plug->cb_list);
3202 }
3203 return cb;
3204 }
3205 EXPORT_SYMBOL(blk_check_plugged);
3206
3207 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3208 {
3209 struct request_queue *q;
3210 unsigned long flags;
3211 struct request *rq;
3212 LIST_HEAD(list);
3213 unsigned int depth;
3214
3215 flush_plug_callbacks(plug, from_schedule);
3216
3217 if (!list_empty(&plug->mq_list))
3218 blk_mq_flush_plug_list(plug, from_schedule);
3219
3220 if (list_empty(&plug->list))
3221 return;
3222
3223 list_splice_init(&plug->list, &list);
3224
3225 list_sort(NULL, &list, plug_rq_cmp);
3226
3227 q = NULL;
3228 depth = 0;
3229
3230 /*
3231 * Save and disable interrupts here, to avoid doing it for every
3232 * queue lock we have to take.
3233 */
3234 local_irq_save(flags);
3235 while (!list_empty(&list)) {
3236 rq = list_entry_rq(list.next);
3237 list_del_init(&rq->queuelist);
3238 BUG_ON(!rq->q);
3239 if (rq->q != q) {
3240 /*
3241 * This drops the queue lock
3242 */
3243 if (q)
3244 queue_unplugged(q, depth, from_schedule);
3245 q = rq->q;
3246 depth = 0;
3247 spin_lock(q->queue_lock);
3248 }
3249
3250 /*
3251 * Short-circuit if @q is dead
3252 */
3253 if (unlikely(blk_queue_dying(q))) {
3254 __blk_end_request_all(rq, -ENODEV);
3255 continue;
3256 }
3257
3258 /*
3259 * rq is already accounted, so use raw insert
3260 */
3261 if (op_is_flush(rq->cmd_flags))
3262 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3263 else
3264 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3265
3266 depth++;
3267 }
3268
3269 /*
3270 * This drops the queue lock
3271 */
3272 if (q)
3273 queue_unplugged(q, depth, from_schedule);
3274
3275 local_irq_restore(flags);
3276 }
3277
3278 void blk_finish_plug(struct blk_plug *plug)
3279 {
3280 if (plug != current->plug)
3281 return;
3282 blk_flush_plug_list(plug, false);
3283
3284 current->plug = NULL;
3285 }
3286 EXPORT_SYMBOL(blk_finish_plug);
3287
3288 #ifdef CONFIG_PM
3289 /**
3290 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3291 * @q: the queue of the device
3292 * @dev: the device the queue belongs to
3293 *
3294 * Description:
3295 * Initialize runtime-PM-related fields for @q and start auto suspend for
3296 * @dev. Drivers that want to take advantage of request-based runtime PM
3297 * should call this function after @dev has been initialized, and its
3298 * request queue @q has been allocated, and runtime PM for it can not happen
3299 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3300 * cases, driver should call this function before any I/O has taken place.
3301 *
3302 * This function takes care of setting up using auto suspend for the device,
3303 * the autosuspend delay is set to -1 to make runtime suspend impossible
3304 * until an updated value is either set by user or by driver. Drivers do
3305 * not need to touch other autosuspend settings.
3306 *
3307 * The block layer runtime PM is request based, so only works for drivers
3308 * that use request as their IO unit instead of those directly use bio's.
3309 */
3310 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3311 {
3312 q->dev = dev;
3313 q->rpm_status = RPM_ACTIVE;
3314 pm_runtime_set_autosuspend_delay(q->dev, -1);
3315 pm_runtime_use_autosuspend(q->dev);
3316 }
3317 EXPORT_SYMBOL(blk_pm_runtime_init);
3318
3319 /**
3320 * blk_pre_runtime_suspend - Pre runtime suspend check
3321 * @q: the queue of the device
3322 *
3323 * Description:
3324 * This function will check if runtime suspend is allowed for the device
3325 * by examining if there are any requests pending in the queue. If there
3326 * are requests pending, the device can not be runtime suspended; otherwise,
3327 * the queue's status will be updated to SUSPENDING and the driver can
3328 * proceed to suspend the device.
3329 *
3330 * For the not allowed case, we mark last busy for the device so that
3331 * runtime PM core will try to autosuspend it some time later.
3332 *
3333 * This function should be called near the start of the device's
3334 * runtime_suspend callback.
3335 *
3336 * Return:
3337 * 0 - OK to runtime suspend the device
3338 * -EBUSY - Device should not be runtime suspended
3339 */
3340 int blk_pre_runtime_suspend(struct request_queue *q)
3341 {
3342 int ret = 0;
3343
3344 if (!q->dev)
3345 return ret;
3346
3347 spin_lock_irq(q->queue_lock);
3348 if (q->nr_pending) {
3349 ret = -EBUSY;
3350 pm_runtime_mark_last_busy(q->dev);
3351 } else {
3352 q->rpm_status = RPM_SUSPENDING;
3353 }
3354 spin_unlock_irq(q->queue_lock);
3355 return ret;
3356 }
3357 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3358
3359 /**
3360 * blk_post_runtime_suspend - Post runtime suspend processing
3361 * @q: the queue of the device
3362 * @err: return value of the device's runtime_suspend function
3363 *
3364 * Description:
3365 * Update the queue's runtime status according to the return value of the
3366 * device's runtime suspend function and mark last busy for the device so
3367 * that PM core will try to auto suspend the device at a later time.
3368 *
3369 * This function should be called near the end of the device's
3370 * runtime_suspend callback.
3371 */
3372 void blk_post_runtime_suspend(struct request_queue *q, int err)
3373 {
3374 if (!q->dev)
3375 return;
3376
3377 spin_lock_irq(q->queue_lock);
3378 if (!err) {
3379 q->rpm_status = RPM_SUSPENDED;
3380 } else {
3381 q->rpm_status = RPM_ACTIVE;
3382 pm_runtime_mark_last_busy(q->dev);
3383 }
3384 spin_unlock_irq(q->queue_lock);
3385 }
3386 EXPORT_SYMBOL(blk_post_runtime_suspend);
3387
3388 /**
3389 * blk_pre_runtime_resume - Pre runtime resume processing
3390 * @q: the queue of the device
3391 *
3392 * Description:
3393 * Update the queue's runtime status to RESUMING in preparation for the
3394 * runtime resume of the device.
3395 *
3396 * This function should be called near the start of the device's
3397 * runtime_resume callback.
3398 */
3399 void blk_pre_runtime_resume(struct request_queue *q)
3400 {
3401 if (!q->dev)
3402 return;
3403
3404 spin_lock_irq(q->queue_lock);
3405 q->rpm_status = RPM_RESUMING;
3406 spin_unlock_irq(q->queue_lock);
3407 }
3408 EXPORT_SYMBOL(blk_pre_runtime_resume);
3409
3410 /**
3411 * blk_post_runtime_resume - Post runtime resume processing
3412 * @q: the queue of the device
3413 * @err: return value of the device's runtime_resume function
3414 *
3415 * Description:
3416 * Update the queue's runtime status according to the return value of the
3417 * device's runtime_resume function. If it is successfully resumed, process
3418 * the requests that are queued into the device's queue when it is resuming
3419 * and then mark last busy and initiate autosuspend for it.
3420 *
3421 * This function should be called near the end of the device's
3422 * runtime_resume callback.
3423 */
3424 void blk_post_runtime_resume(struct request_queue *q, int err)
3425 {
3426 if (!q->dev)
3427 return;
3428
3429 spin_lock_irq(q->queue_lock);
3430 if (!err) {
3431 q->rpm_status = RPM_ACTIVE;
3432 __blk_run_queue(q);
3433 pm_runtime_mark_last_busy(q->dev);
3434 pm_request_autosuspend(q->dev);
3435 } else {
3436 q->rpm_status = RPM_SUSPENDED;
3437 }
3438 spin_unlock_irq(q->queue_lock);
3439 }
3440 EXPORT_SYMBOL(blk_post_runtime_resume);
3441
3442 /**
3443 * blk_set_runtime_active - Force runtime status of the queue to be active
3444 * @q: the queue of the device
3445 *
3446 * If the device is left runtime suspended during system suspend the resume
3447 * hook typically resumes the device and corrects runtime status
3448 * accordingly. However, that does not affect the queue runtime PM status
3449 * which is still "suspended". This prevents processing requests from the
3450 * queue.
3451 *
3452 * This function can be used in driver's resume hook to correct queue
3453 * runtime PM status and re-enable peeking requests from the queue. It
3454 * should be called before first request is added to the queue.
3455 */
3456 void blk_set_runtime_active(struct request_queue *q)
3457 {
3458 spin_lock_irq(q->queue_lock);
3459 q->rpm_status = RPM_ACTIVE;
3460 pm_runtime_mark_last_busy(q->dev);
3461 pm_request_autosuspend(q->dev);
3462 spin_unlock_irq(q->queue_lock);
3463 }
3464 EXPORT_SYMBOL(blk_set_runtime_active);
3465 #endif
3466
3467 int __init blk_dev_init(void)
3468 {
3469 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3470 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3471 FIELD_SIZEOF(struct request, cmd_flags));
3472 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3473 FIELD_SIZEOF(struct bio, bi_opf));
3474
3475 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3476 kblockd_workqueue = alloc_workqueue("kblockd",
3477 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3478 if (!kblockd_workqueue)
3479 panic("Failed to create kblockd\n");
3480
3481 request_cachep = kmem_cache_create("blkdev_requests",
3482 sizeof(struct request), 0, SLAB_PANIC, NULL);
3483
3484 blk_requestq_cachep = kmem_cache_create("request_queue",
3485 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3486
3487 #ifdef CONFIG_DEBUG_FS
3488 blk_debugfs_root = debugfs_create_dir("block", NULL);
3489 #endif
3490
3491 return 0;
3492 }