]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
Merge branch 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 wake_up_all(&q->mq_freeze_wq);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
382 /**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 lockdep_assert_held(q->queue_lock);
396 WARN_ON_ONCE(q->mq_ops);
397
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
409 q->request_fn(q);
410 q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue.
420 */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 lockdep_assert_held(q->queue_lock);
424 WARN_ON_ONCE(q->mq_ops);
425
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
429 __blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432
433 /**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
445 */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 lockdep_assert_held(q->queue_lock);
449 WARN_ON_ONCE(q->mq_ops);
450
451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455
456 /**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
462 * May be used to restart queueing when a request has completed.
463 */
464 void blk_run_queue(struct request_queue *q)
465 {
466 unsigned long flags;
467
468 WARN_ON_ONCE(q->mq_ops);
469
470 spin_lock_irqsave(q->queue_lock, flags);
471 __blk_run_queue(q);
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475
476 void blk_put_queue(struct request_queue *q)
477 {
478 kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481
482 /**
483 * __blk_drain_queue - drain requests from request_queue
484 * @q: queue to drain
485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486 *
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
490 */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
494 {
495 int i;
496
497 lockdep_assert_held(q->queue_lock);
498 WARN_ON_ONCE(q->mq_ops);
499
500 while (true) {
501 bool drain = false;
502
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
510 blkcg_drain_queue(q);
511
512 /*
513 * This function might be called on a queue which failed
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
518 */
519 if (!list_empty(&q->queue_head) && q->request_fn)
520 __blk_run_queue(q);
521
522 drain |= q->nr_rqs_elvpriv;
523 drain |= q->request_fn_active;
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
534 drain |= q->nr_rqs[i];
535 drain |= q->in_flight[i];
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
538 }
539 }
540
541 if (!drain)
542 break;
543
544 spin_unlock_irq(q->queue_lock);
545
546 msleep(10);
547
548 spin_lock_irq(q->queue_lock);
549 }
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
557 struct request_list *rl;
558
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
562 }
563 }
564
565 /**
566 * blk_queue_bypass_start - enter queue bypass mode
567 * @q: queue of interest
568 *
569 * In bypass mode, only the dispatch FIFO queue of @q is used. This
570 * function makes @q enter bypass mode and drains all requests which were
571 * throttled or issued before. On return, it's guaranteed that no request
572 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
573 * inside queue or RCU read lock.
574 */
575 void blk_queue_bypass_start(struct request_queue *q)
576 {
577 WARN_ON_ONCE(q->mq_ops);
578
579 spin_lock_irq(q->queue_lock);
580 q->bypass_depth++;
581 queue_flag_set(QUEUE_FLAG_BYPASS, q);
582 spin_unlock_irq(q->queue_lock);
583
584 /*
585 * Queues start drained. Skip actual draining till init is
586 * complete. This avoids lenghty delays during queue init which
587 * can happen many times during boot.
588 */
589 if (blk_queue_init_done(q)) {
590 spin_lock_irq(q->queue_lock);
591 __blk_drain_queue(q, false);
592 spin_unlock_irq(q->queue_lock);
593
594 /* ensure blk_queue_bypass() is %true inside RCU read lock */
595 synchronize_rcu();
596 }
597 }
598 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
599
600 /**
601 * blk_queue_bypass_end - leave queue bypass mode
602 * @q: queue of interest
603 *
604 * Leave bypass mode and restore the normal queueing behavior.
605 *
606 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
607 * this function is called for both blk-sq and blk-mq queues.
608 */
609 void blk_queue_bypass_end(struct request_queue *q)
610 {
611 spin_lock_irq(q->queue_lock);
612 if (!--q->bypass_depth)
613 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
614 WARN_ON_ONCE(q->bypass_depth < 0);
615 spin_unlock_irq(q->queue_lock);
616 }
617 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
618
619 void blk_set_queue_dying(struct request_queue *q)
620 {
621 spin_lock_irq(q->queue_lock);
622 queue_flag_set(QUEUE_FLAG_DYING, q);
623 spin_unlock_irq(q->queue_lock);
624
625 /*
626 * When queue DYING flag is set, we need to block new req
627 * entering queue, so we call blk_freeze_queue_start() to
628 * prevent I/O from crossing blk_queue_enter().
629 */
630 blk_freeze_queue_start(q);
631
632 if (q->mq_ops)
633 blk_mq_wake_waiters(q);
634 else {
635 struct request_list *rl;
636
637 spin_lock_irq(q->queue_lock);
638 blk_queue_for_each_rl(rl, q) {
639 if (rl->rq_pool) {
640 wake_up_all(&rl->wait[BLK_RW_SYNC]);
641 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
642 }
643 }
644 spin_unlock_irq(q->queue_lock);
645 }
646
647 /* Make blk_queue_enter() reexamine the DYING flag. */
648 wake_up_all(&q->mq_freeze_wq);
649 }
650 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
651
652 /**
653 * blk_cleanup_queue - shutdown a request queue
654 * @q: request queue to shutdown
655 *
656 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
657 * put it. All future requests will be failed immediately with -ENODEV.
658 */
659 void blk_cleanup_queue(struct request_queue *q)
660 {
661 spinlock_t *lock = q->queue_lock;
662
663 /* mark @q DYING, no new request or merges will be allowed afterwards */
664 mutex_lock(&q->sysfs_lock);
665 blk_set_queue_dying(q);
666 spin_lock_irq(lock);
667
668 /*
669 * A dying queue is permanently in bypass mode till released. Note
670 * that, unlike blk_queue_bypass_start(), we aren't performing
671 * synchronize_rcu() after entering bypass mode to avoid the delay
672 * as some drivers create and destroy a lot of queues while
673 * probing. This is still safe because blk_release_queue() will be
674 * called only after the queue refcnt drops to zero and nothing,
675 * RCU or not, would be traversing the queue by then.
676 */
677 q->bypass_depth++;
678 queue_flag_set(QUEUE_FLAG_BYPASS, q);
679
680 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
681 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
682 queue_flag_set(QUEUE_FLAG_DYING, q);
683 spin_unlock_irq(lock);
684 mutex_unlock(&q->sysfs_lock);
685
686 /*
687 * Drain all requests queued before DYING marking. Set DEAD flag to
688 * prevent that q->request_fn() gets invoked after draining finished.
689 */
690 blk_freeze_queue(q);
691 spin_lock_irq(lock);
692 if (!q->mq_ops)
693 __blk_drain_queue(q, true);
694 queue_flag_set(QUEUE_FLAG_DEAD, q);
695 spin_unlock_irq(lock);
696
697 /* for synchronous bio-based driver finish in-flight integrity i/o */
698 blk_flush_integrity();
699
700 /* @q won't process any more request, flush async actions */
701 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
702 blk_sync_queue(q);
703
704 if (q->mq_ops)
705 blk_mq_free_queue(q);
706 percpu_ref_exit(&q->q_usage_counter);
707
708 spin_lock_irq(lock);
709 if (q->queue_lock != &q->__queue_lock)
710 q->queue_lock = &q->__queue_lock;
711 spin_unlock_irq(lock);
712
713 /* @q is and will stay empty, shutdown and put */
714 blk_put_queue(q);
715 }
716 EXPORT_SYMBOL(blk_cleanup_queue);
717
718 /* Allocate memory local to the request queue */
719 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
720 {
721 struct request_queue *q = data;
722
723 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
724 }
725
726 static void free_request_simple(void *element, void *data)
727 {
728 kmem_cache_free(request_cachep, element);
729 }
730
731 static void *alloc_request_size(gfp_t gfp_mask, void *data)
732 {
733 struct request_queue *q = data;
734 struct request *rq;
735
736 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
737 q->node);
738 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
739 kfree(rq);
740 rq = NULL;
741 }
742 return rq;
743 }
744
745 static void free_request_size(void *element, void *data)
746 {
747 struct request_queue *q = data;
748
749 if (q->exit_rq_fn)
750 q->exit_rq_fn(q, element);
751 kfree(element);
752 }
753
754 int blk_init_rl(struct request_list *rl, struct request_queue *q,
755 gfp_t gfp_mask)
756 {
757 if (unlikely(rl->rq_pool) || q->mq_ops)
758 return 0;
759
760 rl->q = q;
761 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
762 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
763 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
764 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
765
766 if (q->cmd_size) {
767 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
768 alloc_request_size, free_request_size,
769 q, gfp_mask, q->node);
770 } else {
771 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
772 alloc_request_simple, free_request_simple,
773 q, gfp_mask, q->node);
774 }
775 if (!rl->rq_pool)
776 return -ENOMEM;
777
778 if (rl != &q->root_rl)
779 WARN_ON_ONCE(!blk_get_queue(q));
780
781 return 0;
782 }
783
784 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
785 {
786 if (rl->rq_pool) {
787 mempool_destroy(rl->rq_pool);
788 if (rl != &q->root_rl)
789 blk_put_queue(q);
790 }
791 }
792
793 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
794 {
795 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
796 }
797 EXPORT_SYMBOL(blk_alloc_queue);
798
799 /**
800 * blk_queue_enter() - try to increase q->q_usage_counter
801 * @q: request queue pointer
802 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
803 */
804 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
805 {
806 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
807
808 while (true) {
809 bool success = false;
810 int ret;
811
812 rcu_read_lock_sched();
813 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
814 /*
815 * The code that sets the PREEMPT_ONLY flag is
816 * responsible for ensuring that that flag is globally
817 * visible before the queue is unfrozen.
818 */
819 if (preempt || !blk_queue_preempt_only(q)) {
820 success = true;
821 } else {
822 percpu_ref_put(&q->q_usage_counter);
823 }
824 }
825 rcu_read_unlock_sched();
826
827 if (success)
828 return 0;
829
830 if (flags & BLK_MQ_REQ_NOWAIT)
831 return -EBUSY;
832
833 /*
834 * read pair of barrier in blk_freeze_queue_start(),
835 * we need to order reading __PERCPU_REF_DEAD flag of
836 * .q_usage_counter and reading .mq_freeze_depth or
837 * queue dying flag, otherwise the following wait may
838 * never return if the two reads are reordered.
839 */
840 smp_rmb();
841
842 ret = wait_event_interruptible(q->mq_freeze_wq,
843 (atomic_read(&q->mq_freeze_depth) == 0 &&
844 (preempt || !blk_queue_preempt_only(q))) ||
845 blk_queue_dying(q));
846 if (blk_queue_dying(q))
847 return -ENODEV;
848 if (ret)
849 return ret;
850 }
851 }
852
853 void blk_queue_exit(struct request_queue *q)
854 {
855 percpu_ref_put(&q->q_usage_counter);
856 }
857
858 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
859 {
860 struct request_queue *q =
861 container_of(ref, struct request_queue, q_usage_counter);
862
863 wake_up_all(&q->mq_freeze_wq);
864 }
865
866 static void blk_rq_timed_out_timer(struct timer_list *t)
867 {
868 struct request_queue *q = from_timer(q, t, timeout);
869
870 kblockd_schedule_work(&q->timeout_work);
871 }
872
873 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
874 {
875 struct request_queue *q;
876
877 q = kmem_cache_alloc_node(blk_requestq_cachep,
878 gfp_mask | __GFP_ZERO, node_id);
879 if (!q)
880 return NULL;
881
882 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
883 if (q->id < 0)
884 goto fail_q;
885
886 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
887 if (!q->bio_split)
888 goto fail_id;
889
890 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
891 if (!q->backing_dev_info)
892 goto fail_split;
893
894 q->stats = blk_alloc_queue_stats();
895 if (!q->stats)
896 goto fail_stats;
897
898 q->backing_dev_info->ra_pages =
899 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
900 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
901 q->backing_dev_info->name = "block";
902 q->node = node_id;
903
904 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
905 laptop_mode_timer_fn, 0);
906 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
907 INIT_WORK(&q->timeout_work, NULL);
908 INIT_LIST_HEAD(&q->queue_head);
909 INIT_LIST_HEAD(&q->timeout_list);
910 INIT_LIST_HEAD(&q->icq_list);
911 #ifdef CONFIG_BLK_CGROUP
912 INIT_LIST_HEAD(&q->blkg_list);
913 #endif
914 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
915
916 kobject_init(&q->kobj, &blk_queue_ktype);
917
918 #ifdef CONFIG_BLK_DEV_IO_TRACE
919 mutex_init(&q->blk_trace_mutex);
920 #endif
921 mutex_init(&q->sysfs_lock);
922 spin_lock_init(&q->__queue_lock);
923
924 /*
925 * By default initialize queue_lock to internal lock and driver can
926 * override it later if need be.
927 */
928 q->queue_lock = &q->__queue_lock;
929
930 /*
931 * A queue starts its life with bypass turned on to avoid
932 * unnecessary bypass on/off overhead and nasty surprises during
933 * init. The initial bypass will be finished when the queue is
934 * registered by blk_register_queue().
935 */
936 q->bypass_depth = 1;
937 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
938
939 init_waitqueue_head(&q->mq_freeze_wq);
940
941 /*
942 * Init percpu_ref in atomic mode so that it's faster to shutdown.
943 * See blk_register_queue() for details.
944 */
945 if (percpu_ref_init(&q->q_usage_counter,
946 blk_queue_usage_counter_release,
947 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
948 goto fail_bdi;
949
950 if (blkcg_init_queue(q))
951 goto fail_ref;
952
953 return q;
954
955 fail_ref:
956 percpu_ref_exit(&q->q_usage_counter);
957 fail_bdi:
958 blk_free_queue_stats(q->stats);
959 fail_stats:
960 bdi_put(q->backing_dev_info);
961 fail_split:
962 bioset_free(q->bio_split);
963 fail_id:
964 ida_simple_remove(&blk_queue_ida, q->id);
965 fail_q:
966 kmem_cache_free(blk_requestq_cachep, q);
967 return NULL;
968 }
969 EXPORT_SYMBOL(blk_alloc_queue_node);
970
971 /**
972 * blk_init_queue - prepare a request queue for use with a block device
973 * @rfn: The function to be called to process requests that have been
974 * placed on the queue.
975 * @lock: Request queue spin lock
976 *
977 * Description:
978 * If a block device wishes to use the standard request handling procedures,
979 * which sorts requests and coalesces adjacent requests, then it must
980 * call blk_init_queue(). The function @rfn will be called when there
981 * are requests on the queue that need to be processed. If the device
982 * supports plugging, then @rfn may not be called immediately when requests
983 * are available on the queue, but may be called at some time later instead.
984 * Plugged queues are generally unplugged when a buffer belonging to one
985 * of the requests on the queue is needed, or due to memory pressure.
986 *
987 * @rfn is not required, or even expected, to remove all requests off the
988 * queue, but only as many as it can handle at a time. If it does leave
989 * requests on the queue, it is responsible for arranging that the requests
990 * get dealt with eventually.
991 *
992 * The queue spin lock must be held while manipulating the requests on the
993 * request queue; this lock will be taken also from interrupt context, so irq
994 * disabling is needed for it.
995 *
996 * Function returns a pointer to the initialized request queue, or %NULL if
997 * it didn't succeed.
998 *
999 * Note:
1000 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1001 * when the block device is deactivated (such as at module unload).
1002 **/
1003
1004 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1005 {
1006 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1007 }
1008 EXPORT_SYMBOL(blk_init_queue);
1009
1010 struct request_queue *
1011 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1012 {
1013 struct request_queue *q;
1014
1015 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1016 if (!q)
1017 return NULL;
1018
1019 q->request_fn = rfn;
1020 if (lock)
1021 q->queue_lock = lock;
1022 if (blk_init_allocated_queue(q) < 0) {
1023 blk_cleanup_queue(q);
1024 return NULL;
1025 }
1026
1027 return q;
1028 }
1029 EXPORT_SYMBOL(blk_init_queue_node);
1030
1031 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1032
1033
1034 int blk_init_allocated_queue(struct request_queue *q)
1035 {
1036 WARN_ON_ONCE(q->mq_ops);
1037
1038 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1039 if (!q->fq)
1040 return -ENOMEM;
1041
1042 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1043 goto out_free_flush_queue;
1044
1045 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1046 goto out_exit_flush_rq;
1047
1048 INIT_WORK(&q->timeout_work, blk_timeout_work);
1049 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1050
1051 /*
1052 * This also sets hw/phys segments, boundary and size
1053 */
1054 blk_queue_make_request(q, blk_queue_bio);
1055
1056 q->sg_reserved_size = INT_MAX;
1057
1058 /* Protect q->elevator from elevator_change */
1059 mutex_lock(&q->sysfs_lock);
1060
1061 /* init elevator */
1062 if (elevator_init(q, NULL)) {
1063 mutex_unlock(&q->sysfs_lock);
1064 goto out_exit_flush_rq;
1065 }
1066
1067 mutex_unlock(&q->sysfs_lock);
1068 return 0;
1069
1070 out_exit_flush_rq:
1071 if (q->exit_rq_fn)
1072 q->exit_rq_fn(q, q->fq->flush_rq);
1073 out_free_flush_queue:
1074 blk_free_flush_queue(q->fq);
1075 return -ENOMEM;
1076 }
1077 EXPORT_SYMBOL(blk_init_allocated_queue);
1078
1079 bool blk_get_queue(struct request_queue *q)
1080 {
1081 if (likely(!blk_queue_dying(q))) {
1082 __blk_get_queue(q);
1083 return true;
1084 }
1085
1086 return false;
1087 }
1088 EXPORT_SYMBOL(blk_get_queue);
1089
1090 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1091 {
1092 if (rq->rq_flags & RQF_ELVPRIV) {
1093 elv_put_request(rl->q, rq);
1094 if (rq->elv.icq)
1095 put_io_context(rq->elv.icq->ioc);
1096 }
1097
1098 mempool_free(rq, rl->rq_pool);
1099 }
1100
1101 /*
1102 * ioc_batching returns true if the ioc is a valid batching request and
1103 * should be given priority access to a request.
1104 */
1105 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1106 {
1107 if (!ioc)
1108 return 0;
1109
1110 /*
1111 * Make sure the process is able to allocate at least 1 request
1112 * even if the batch times out, otherwise we could theoretically
1113 * lose wakeups.
1114 */
1115 return ioc->nr_batch_requests == q->nr_batching ||
1116 (ioc->nr_batch_requests > 0
1117 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1118 }
1119
1120 /*
1121 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1122 * will cause the process to be a "batcher" on all queues in the system. This
1123 * is the behaviour we want though - once it gets a wakeup it should be given
1124 * a nice run.
1125 */
1126 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1127 {
1128 if (!ioc || ioc_batching(q, ioc))
1129 return;
1130
1131 ioc->nr_batch_requests = q->nr_batching;
1132 ioc->last_waited = jiffies;
1133 }
1134
1135 static void __freed_request(struct request_list *rl, int sync)
1136 {
1137 struct request_queue *q = rl->q;
1138
1139 if (rl->count[sync] < queue_congestion_off_threshold(q))
1140 blk_clear_congested(rl, sync);
1141
1142 if (rl->count[sync] + 1 <= q->nr_requests) {
1143 if (waitqueue_active(&rl->wait[sync]))
1144 wake_up(&rl->wait[sync]);
1145
1146 blk_clear_rl_full(rl, sync);
1147 }
1148 }
1149
1150 /*
1151 * A request has just been released. Account for it, update the full and
1152 * congestion status, wake up any waiters. Called under q->queue_lock.
1153 */
1154 static void freed_request(struct request_list *rl, bool sync,
1155 req_flags_t rq_flags)
1156 {
1157 struct request_queue *q = rl->q;
1158
1159 q->nr_rqs[sync]--;
1160 rl->count[sync]--;
1161 if (rq_flags & RQF_ELVPRIV)
1162 q->nr_rqs_elvpriv--;
1163
1164 __freed_request(rl, sync);
1165
1166 if (unlikely(rl->starved[sync ^ 1]))
1167 __freed_request(rl, sync ^ 1);
1168 }
1169
1170 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1171 {
1172 struct request_list *rl;
1173 int on_thresh, off_thresh;
1174
1175 WARN_ON_ONCE(q->mq_ops);
1176
1177 spin_lock_irq(q->queue_lock);
1178 q->nr_requests = nr;
1179 blk_queue_congestion_threshold(q);
1180 on_thresh = queue_congestion_on_threshold(q);
1181 off_thresh = queue_congestion_off_threshold(q);
1182
1183 blk_queue_for_each_rl(rl, q) {
1184 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1185 blk_set_congested(rl, BLK_RW_SYNC);
1186 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1187 blk_clear_congested(rl, BLK_RW_SYNC);
1188
1189 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1190 blk_set_congested(rl, BLK_RW_ASYNC);
1191 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1192 blk_clear_congested(rl, BLK_RW_ASYNC);
1193
1194 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1195 blk_set_rl_full(rl, BLK_RW_SYNC);
1196 } else {
1197 blk_clear_rl_full(rl, BLK_RW_SYNC);
1198 wake_up(&rl->wait[BLK_RW_SYNC]);
1199 }
1200
1201 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1202 blk_set_rl_full(rl, BLK_RW_ASYNC);
1203 } else {
1204 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1205 wake_up(&rl->wait[BLK_RW_ASYNC]);
1206 }
1207 }
1208
1209 spin_unlock_irq(q->queue_lock);
1210 return 0;
1211 }
1212
1213 /**
1214 * __get_request - get a free request
1215 * @rl: request list to allocate from
1216 * @op: operation and flags
1217 * @bio: bio to allocate request for (can be %NULL)
1218 * @flags: BLQ_MQ_REQ_* flags
1219 *
1220 * Get a free request from @q. This function may fail under memory
1221 * pressure or if @q is dead.
1222 *
1223 * Must be called with @q->queue_lock held and,
1224 * Returns ERR_PTR on failure, with @q->queue_lock held.
1225 * Returns request pointer on success, with @q->queue_lock *not held*.
1226 */
1227 static struct request *__get_request(struct request_list *rl, unsigned int op,
1228 struct bio *bio, blk_mq_req_flags_t flags)
1229 {
1230 struct request_queue *q = rl->q;
1231 struct request *rq;
1232 struct elevator_type *et = q->elevator->type;
1233 struct io_context *ioc = rq_ioc(bio);
1234 struct io_cq *icq = NULL;
1235 const bool is_sync = op_is_sync(op);
1236 int may_queue;
1237 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1238 __GFP_DIRECT_RECLAIM;
1239 req_flags_t rq_flags = RQF_ALLOCED;
1240
1241 lockdep_assert_held(q->queue_lock);
1242
1243 if (unlikely(blk_queue_dying(q)))
1244 return ERR_PTR(-ENODEV);
1245
1246 may_queue = elv_may_queue(q, op);
1247 if (may_queue == ELV_MQUEUE_NO)
1248 goto rq_starved;
1249
1250 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1251 if (rl->count[is_sync]+1 >= q->nr_requests) {
1252 /*
1253 * The queue will fill after this allocation, so set
1254 * it as full, and mark this process as "batching".
1255 * This process will be allowed to complete a batch of
1256 * requests, others will be blocked.
1257 */
1258 if (!blk_rl_full(rl, is_sync)) {
1259 ioc_set_batching(q, ioc);
1260 blk_set_rl_full(rl, is_sync);
1261 } else {
1262 if (may_queue != ELV_MQUEUE_MUST
1263 && !ioc_batching(q, ioc)) {
1264 /*
1265 * The queue is full and the allocating
1266 * process is not a "batcher", and not
1267 * exempted by the IO scheduler
1268 */
1269 return ERR_PTR(-ENOMEM);
1270 }
1271 }
1272 }
1273 blk_set_congested(rl, is_sync);
1274 }
1275
1276 /*
1277 * Only allow batching queuers to allocate up to 50% over the defined
1278 * limit of requests, otherwise we could have thousands of requests
1279 * allocated with any setting of ->nr_requests
1280 */
1281 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1282 return ERR_PTR(-ENOMEM);
1283
1284 q->nr_rqs[is_sync]++;
1285 rl->count[is_sync]++;
1286 rl->starved[is_sync] = 0;
1287
1288 /*
1289 * Decide whether the new request will be managed by elevator. If
1290 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1291 * prevent the current elevator from being destroyed until the new
1292 * request is freed. This guarantees icq's won't be destroyed and
1293 * makes creating new ones safe.
1294 *
1295 * Flush requests do not use the elevator so skip initialization.
1296 * This allows a request to share the flush and elevator data.
1297 *
1298 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1299 * it will be created after releasing queue_lock.
1300 */
1301 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1302 rq_flags |= RQF_ELVPRIV;
1303 q->nr_rqs_elvpriv++;
1304 if (et->icq_cache && ioc)
1305 icq = ioc_lookup_icq(ioc, q);
1306 }
1307
1308 if (blk_queue_io_stat(q))
1309 rq_flags |= RQF_IO_STAT;
1310 spin_unlock_irq(q->queue_lock);
1311
1312 /* allocate and init request */
1313 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1314 if (!rq)
1315 goto fail_alloc;
1316
1317 blk_rq_init(q, rq);
1318 blk_rq_set_rl(rq, rl);
1319 rq->cmd_flags = op;
1320 rq->rq_flags = rq_flags;
1321 if (flags & BLK_MQ_REQ_PREEMPT)
1322 rq->rq_flags |= RQF_PREEMPT;
1323
1324 /* init elvpriv */
1325 if (rq_flags & RQF_ELVPRIV) {
1326 if (unlikely(et->icq_cache && !icq)) {
1327 if (ioc)
1328 icq = ioc_create_icq(ioc, q, gfp_mask);
1329 if (!icq)
1330 goto fail_elvpriv;
1331 }
1332
1333 rq->elv.icq = icq;
1334 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1335 goto fail_elvpriv;
1336
1337 /* @rq->elv.icq holds io_context until @rq is freed */
1338 if (icq)
1339 get_io_context(icq->ioc);
1340 }
1341 out:
1342 /*
1343 * ioc may be NULL here, and ioc_batching will be false. That's
1344 * OK, if the queue is under the request limit then requests need
1345 * not count toward the nr_batch_requests limit. There will always
1346 * be some limit enforced by BLK_BATCH_TIME.
1347 */
1348 if (ioc_batching(q, ioc))
1349 ioc->nr_batch_requests--;
1350
1351 trace_block_getrq(q, bio, op);
1352 return rq;
1353
1354 fail_elvpriv:
1355 /*
1356 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1357 * and may fail indefinitely under memory pressure and thus
1358 * shouldn't stall IO. Treat this request as !elvpriv. This will
1359 * disturb iosched and blkcg but weird is bettern than dead.
1360 */
1361 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1362 __func__, dev_name(q->backing_dev_info->dev));
1363
1364 rq->rq_flags &= ~RQF_ELVPRIV;
1365 rq->elv.icq = NULL;
1366
1367 spin_lock_irq(q->queue_lock);
1368 q->nr_rqs_elvpriv--;
1369 spin_unlock_irq(q->queue_lock);
1370 goto out;
1371
1372 fail_alloc:
1373 /*
1374 * Allocation failed presumably due to memory. Undo anything we
1375 * might have messed up.
1376 *
1377 * Allocating task should really be put onto the front of the wait
1378 * queue, but this is pretty rare.
1379 */
1380 spin_lock_irq(q->queue_lock);
1381 freed_request(rl, is_sync, rq_flags);
1382
1383 /*
1384 * in the very unlikely event that allocation failed and no
1385 * requests for this direction was pending, mark us starved so that
1386 * freeing of a request in the other direction will notice
1387 * us. another possible fix would be to split the rq mempool into
1388 * READ and WRITE
1389 */
1390 rq_starved:
1391 if (unlikely(rl->count[is_sync] == 0))
1392 rl->starved[is_sync] = 1;
1393 return ERR_PTR(-ENOMEM);
1394 }
1395
1396 /**
1397 * get_request - get a free request
1398 * @q: request_queue to allocate request from
1399 * @op: operation and flags
1400 * @bio: bio to allocate request for (can be %NULL)
1401 * @flags: BLK_MQ_REQ_* flags.
1402 *
1403 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1404 * this function keeps retrying under memory pressure and fails iff @q is dead.
1405 *
1406 * Must be called with @q->queue_lock held and,
1407 * Returns ERR_PTR on failure, with @q->queue_lock held.
1408 * Returns request pointer on success, with @q->queue_lock *not held*.
1409 */
1410 static struct request *get_request(struct request_queue *q, unsigned int op,
1411 struct bio *bio, blk_mq_req_flags_t flags)
1412 {
1413 const bool is_sync = op_is_sync(op);
1414 DEFINE_WAIT(wait);
1415 struct request_list *rl;
1416 struct request *rq;
1417
1418 lockdep_assert_held(q->queue_lock);
1419 WARN_ON_ONCE(q->mq_ops);
1420
1421 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1422 retry:
1423 rq = __get_request(rl, op, bio, flags);
1424 if (!IS_ERR(rq))
1425 return rq;
1426
1427 if (op & REQ_NOWAIT) {
1428 blk_put_rl(rl);
1429 return ERR_PTR(-EAGAIN);
1430 }
1431
1432 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1433 blk_put_rl(rl);
1434 return rq;
1435 }
1436
1437 /* wait on @rl and retry */
1438 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1439 TASK_UNINTERRUPTIBLE);
1440
1441 trace_block_sleeprq(q, bio, op);
1442
1443 spin_unlock_irq(q->queue_lock);
1444 io_schedule();
1445
1446 /*
1447 * After sleeping, we become a "batching" process and will be able
1448 * to allocate at least one request, and up to a big batch of them
1449 * for a small period time. See ioc_batching, ioc_set_batching
1450 */
1451 ioc_set_batching(q, current->io_context);
1452
1453 spin_lock_irq(q->queue_lock);
1454 finish_wait(&rl->wait[is_sync], &wait);
1455
1456 goto retry;
1457 }
1458
1459 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1460 static struct request *blk_old_get_request(struct request_queue *q,
1461 unsigned int op, blk_mq_req_flags_t flags)
1462 {
1463 struct request *rq;
1464 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1465 __GFP_DIRECT_RECLAIM;
1466 int ret = 0;
1467
1468 WARN_ON_ONCE(q->mq_ops);
1469
1470 /* create ioc upfront */
1471 create_io_context(gfp_mask, q->node);
1472
1473 ret = blk_queue_enter(q, flags);
1474 if (ret)
1475 return ERR_PTR(ret);
1476 spin_lock_irq(q->queue_lock);
1477 rq = get_request(q, op, NULL, flags);
1478 if (IS_ERR(rq)) {
1479 spin_unlock_irq(q->queue_lock);
1480 blk_queue_exit(q);
1481 return rq;
1482 }
1483
1484 /* q->queue_lock is unlocked at this point */
1485 rq->__data_len = 0;
1486 rq->__sector = (sector_t) -1;
1487 rq->bio = rq->biotail = NULL;
1488 return rq;
1489 }
1490
1491 /**
1492 * blk_get_request_flags - allocate a request
1493 * @q: request queue to allocate a request for
1494 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1495 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1496 */
1497 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1498 blk_mq_req_flags_t flags)
1499 {
1500 struct request *req;
1501
1502 WARN_ON_ONCE(op & REQ_NOWAIT);
1503 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1504
1505 if (q->mq_ops) {
1506 req = blk_mq_alloc_request(q, op, flags);
1507 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1508 q->mq_ops->initialize_rq_fn(req);
1509 } else {
1510 req = blk_old_get_request(q, op, flags);
1511 if (!IS_ERR(req) && q->initialize_rq_fn)
1512 q->initialize_rq_fn(req);
1513 }
1514
1515 return req;
1516 }
1517 EXPORT_SYMBOL(blk_get_request_flags);
1518
1519 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1520 gfp_t gfp_mask)
1521 {
1522 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1523 0 : BLK_MQ_REQ_NOWAIT);
1524 }
1525 EXPORT_SYMBOL(blk_get_request);
1526
1527 /**
1528 * blk_requeue_request - put a request back on queue
1529 * @q: request queue where request should be inserted
1530 * @rq: request to be inserted
1531 *
1532 * Description:
1533 * Drivers often keep queueing requests until the hardware cannot accept
1534 * more, when that condition happens we need to put the request back
1535 * on the queue. Must be called with queue lock held.
1536 */
1537 void blk_requeue_request(struct request_queue *q, struct request *rq)
1538 {
1539 lockdep_assert_held(q->queue_lock);
1540 WARN_ON_ONCE(q->mq_ops);
1541
1542 blk_delete_timer(rq);
1543 blk_clear_rq_complete(rq);
1544 trace_block_rq_requeue(q, rq);
1545 wbt_requeue(q->rq_wb, &rq->issue_stat);
1546
1547 if (rq->rq_flags & RQF_QUEUED)
1548 blk_queue_end_tag(q, rq);
1549
1550 BUG_ON(blk_queued_rq(rq));
1551
1552 elv_requeue_request(q, rq);
1553 }
1554 EXPORT_SYMBOL(blk_requeue_request);
1555
1556 static void add_acct_request(struct request_queue *q, struct request *rq,
1557 int where)
1558 {
1559 blk_account_io_start(rq, true);
1560 __elv_add_request(q, rq, where);
1561 }
1562
1563 static void part_round_stats_single(struct request_queue *q, int cpu,
1564 struct hd_struct *part, unsigned long now,
1565 unsigned int inflight)
1566 {
1567 if (inflight) {
1568 __part_stat_add(cpu, part, time_in_queue,
1569 inflight * (now - part->stamp));
1570 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1571 }
1572 part->stamp = now;
1573 }
1574
1575 /**
1576 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1577 * @q: target block queue
1578 * @cpu: cpu number for stats access
1579 * @part: target partition
1580 *
1581 * The average IO queue length and utilisation statistics are maintained
1582 * by observing the current state of the queue length and the amount of
1583 * time it has been in this state for.
1584 *
1585 * Normally, that accounting is done on IO completion, but that can result
1586 * in more than a second's worth of IO being accounted for within any one
1587 * second, leading to >100% utilisation. To deal with that, we call this
1588 * function to do a round-off before returning the results when reading
1589 * /proc/diskstats. This accounts immediately for all queue usage up to
1590 * the current jiffies and restarts the counters again.
1591 */
1592 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1593 {
1594 struct hd_struct *part2 = NULL;
1595 unsigned long now = jiffies;
1596 unsigned int inflight[2];
1597 int stats = 0;
1598
1599 if (part->stamp != now)
1600 stats |= 1;
1601
1602 if (part->partno) {
1603 part2 = &part_to_disk(part)->part0;
1604 if (part2->stamp != now)
1605 stats |= 2;
1606 }
1607
1608 if (!stats)
1609 return;
1610
1611 part_in_flight(q, part, inflight);
1612
1613 if (stats & 2)
1614 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1615 if (stats & 1)
1616 part_round_stats_single(q, cpu, part, now, inflight[0]);
1617 }
1618 EXPORT_SYMBOL_GPL(part_round_stats);
1619
1620 #ifdef CONFIG_PM
1621 static void blk_pm_put_request(struct request *rq)
1622 {
1623 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1624 pm_runtime_mark_last_busy(rq->q->dev);
1625 }
1626 #else
1627 static inline void blk_pm_put_request(struct request *rq) {}
1628 #endif
1629
1630 void __blk_put_request(struct request_queue *q, struct request *req)
1631 {
1632 req_flags_t rq_flags = req->rq_flags;
1633
1634 if (unlikely(!q))
1635 return;
1636
1637 if (q->mq_ops) {
1638 blk_mq_free_request(req);
1639 return;
1640 }
1641
1642 lockdep_assert_held(q->queue_lock);
1643
1644 blk_pm_put_request(req);
1645
1646 elv_completed_request(q, req);
1647
1648 /* this is a bio leak */
1649 WARN_ON(req->bio != NULL);
1650
1651 wbt_done(q->rq_wb, &req->issue_stat);
1652
1653 /*
1654 * Request may not have originated from ll_rw_blk. if not,
1655 * it didn't come out of our reserved rq pools
1656 */
1657 if (rq_flags & RQF_ALLOCED) {
1658 struct request_list *rl = blk_rq_rl(req);
1659 bool sync = op_is_sync(req->cmd_flags);
1660
1661 BUG_ON(!list_empty(&req->queuelist));
1662 BUG_ON(ELV_ON_HASH(req));
1663
1664 blk_free_request(rl, req);
1665 freed_request(rl, sync, rq_flags);
1666 blk_put_rl(rl);
1667 blk_queue_exit(q);
1668 }
1669 }
1670 EXPORT_SYMBOL_GPL(__blk_put_request);
1671
1672 void blk_put_request(struct request *req)
1673 {
1674 struct request_queue *q = req->q;
1675
1676 if (q->mq_ops)
1677 blk_mq_free_request(req);
1678 else {
1679 unsigned long flags;
1680
1681 spin_lock_irqsave(q->queue_lock, flags);
1682 __blk_put_request(q, req);
1683 spin_unlock_irqrestore(q->queue_lock, flags);
1684 }
1685 }
1686 EXPORT_SYMBOL(blk_put_request);
1687
1688 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1689 struct bio *bio)
1690 {
1691 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1692
1693 if (!ll_back_merge_fn(q, req, bio))
1694 return false;
1695
1696 trace_block_bio_backmerge(q, req, bio);
1697
1698 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1699 blk_rq_set_mixed_merge(req);
1700
1701 req->biotail->bi_next = bio;
1702 req->biotail = bio;
1703 req->__data_len += bio->bi_iter.bi_size;
1704 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1705
1706 blk_account_io_start(req, false);
1707 return true;
1708 }
1709
1710 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1711 struct bio *bio)
1712 {
1713 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1714
1715 if (!ll_front_merge_fn(q, req, bio))
1716 return false;
1717
1718 trace_block_bio_frontmerge(q, req, bio);
1719
1720 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1721 blk_rq_set_mixed_merge(req);
1722
1723 bio->bi_next = req->bio;
1724 req->bio = bio;
1725
1726 req->__sector = bio->bi_iter.bi_sector;
1727 req->__data_len += bio->bi_iter.bi_size;
1728 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1729
1730 blk_account_io_start(req, false);
1731 return true;
1732 }
1733
1734 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1735 struct bio *bio)
1736 {
1737 unsigned short segments = blk_rq_nr_discard_segments(req);
1738
1739 if (segments >= queue_max_discard_segments(q))
1740 goto no_merge;
1741 if (blk_rq_sectors(req) + bio_sectors(bio) >
1742 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1743 goto no_merge;
1744
1745 req->biotail->bi_next = bio;
1746 req->biotail = bio;
1747 req->__data_len += bio->bi_iter.bi_size;
1748 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1749 req->nr_phys_segments = segments + 1;
1750
1751 blk_account_io_start(req, false);
1752 return true;
1753 no_merge:
1754 req_set_nomerge(q, req);
1755 return false;
1756 }
1757
1758 /**
1759 * blk_attempt_plug_merge - try to merge with %current's plugged list
1760 * @q: request_queue new bio is being queued at
1761 * @bio: new bio being queued
1762 * @request_count: out parameter for number of traversed plugged requests
1763 * @same_queue_rq: pointer to &struct request that gets filled in when
1764 * another request associated with @q is found on the plug list
1765 * (optional, may be %NULL)
1766 *
1767 * Determine whether @bio being queued on @q can be merged with a request
1768 * on %current's plugged list. Returns %true if merge was successful,
1769 * otherwise %false.
1770 *
1771 * Plugging coalesces IOs from the same issuer for the same purpose without
1772 * going through @q->queue_lock. As such it's more of an issuing mechanism
1773 * than scheduling, and the request, while may have elvpriv data, is not
1774 * added on the elevator at this point. In addition, we don't have
1775 * reliable access to the elevator outside queue lock. Only check basic
1776 * merging parameters without querying the elevator.
1777 *
1778 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1779 */
1780 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1781 unsigned int *request_count,
1782 struct request **same_queue_rq)
1783 {
1784 struct blk_plug *plug;
1785 struct request *rq;
1786 struct list_head *plug_list;
1787
1788 plug = current->plug;
1789 if (!plug)
1790 return false;
1791 *request_count = 0;
1792
1793 if (q->mq_ops)
1794 plug_list = &plug->mq_list;
1795 else
1796 plug_list = &plug->list;
1797
1798 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1799 bool merged = false;
1800
1801 if (rq->q == q) {
1802 (*request_count)++;
1803 /*
1804 * Only blk-mq multiple hardware queues case checks the
1805 * rq in the same queue, there should be only one such
1806 * rq in a queue
1807 **/
1808 if (same_queue_rq)
1809 *same_queue_rq = rq;
1810 }
1811
1812 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1813 continue;
1814
1815 switch (blk_try_merge(rq, bio)) {
1816 case ELEVATOR_BACK_MERGE:
1817 merged = bio_attempt_back_merge(q, rq, bio);
1818 break;
1819 case ELEVATOR_FRONT_MERGE:
1820 merged = bio_attempt_front_merge(q, rq, bio);
1821 break;
1822 case ELEVATOR_DISCARD_MERGE:
1823 merged = bio_attempt_discard_merge(q, rq, bio);
1824 break;
1825 default:
1826 break;
1827 }
1828
1829 if (merged)
1830 return true;
1831 }
1832
1833 return false;
1834 }
1835
1836 unsigned int blk_plug_queued_count(struct request_queue *q)
1837 {
1838 struct blk_plug *plug;
1839 struct request *rq;
1840 struct list_head *plug_list;
1841 unsigned int ret = 0;
1842
1843 plug = current->plug;
1844 if (!plug)
1845 goto out;
1846
1847 if (q->mq_ops)
1848 plug_list = &plug->mq_list;
1849 else
1850 plug_list = &plug->list;
1851
1852 list_for_each_entry(rq, plug_list, queuelist) {
1853 if (rq->q == q)
1854 ret++;
1855 }
1856 out:
1857 return ret;
1858 }
1859
1860 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1861 {
1862 struct io_context *ioc = rq_ioc(bio);
1863
1864 if (bio->bi_opf & REQ_RAHEAD)
1865 req->cmd_flags |= REQ_FAILFAST_MASK;
1866
1867 req->__sector = bio->bi_iter.bi_sector;
1868 if (ioprio_valid(bio_prio(bio)))
1869 req->ioprio = bio_prio(bio);
1870 else if (ioc)
1871 req->ioprio = ioc->ioprio;
1872 else
1873 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1874 req->write_hint = bio->bi_write_hint;
1875 blk_rq_bio_prep(req->q, req, bio);
1876 }
1877 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1878
1879 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1880 {
1881 struct blk_plug *plug;
1882 int where = ELEVATOR_INSERT_SORT;
1883 struct request *req, *free;
1884 unsigned int request_count = 0;
1885 unsigned int wb_acct;
1886
1887 /*
1888 * low level driver can indicate that it wants pages above a
1889 * certain limit bounced to low memory (ie for highmem, or even
1890 * ISA dma in theory)
1891 */
1892 blk_queue_bounce(q, &bio);
1893
1894 blk_queue_split(q, &bio);
1895
1896 if (!bio_integrity_prep(bio))
1897 return BLK_QC_T_NONE;
1898
1899 if (op_is_flush(bio->bi_opf)) {
1900 spin_lock_irq(q->queue_lock);
1901 where = ELEVATOR_INSERT_FLUSH;
1902 goto get_rq;
1903 }
1904
1905 /*
1906 * Check if we can merge with the plugged list before grabbing
1907 * any locks.
1908 */
1909 if (!blk_queue_nomerges(q)) {
1910 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1911 return BLK_QC_T_NONE;
1912 } else
1913 request_count = blk_plug_queued_count(q);
1914
1915 spin_lock_irq(q->queue_lock);
1916
1917 switch (elv_merge(q, &req, bio)) {
1918 case ELEVATOR_BACK_MERGE:
1919 if (!bio_attempt_back_merge(q, req, bio))
1920 break;
1921 elv_bio_merged(q, req, bio);
1922 free = attempt_back_merge(q, req);
1923 if (free)
1924 __blk_put_request(q, free);
1925 else
1926 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1927 goto out_unlock;
1928 case ELEVATOR_FRONT_MERGE:
1929 if (!bio_attempt_front_merge(q, req, bio))
1930 break;
1931 elv_bio_merged(q, req, bio);
1932 free = attempt_front_merge(q, req);
1933 if (free)
1934 __blk_put_request(q, free);
1935 else
1936 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1937 goto out_unlock;
1938 default:
1939 break;
1940 }
1941
1942 get_rq:
1943 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1944
1945 /*
1946 * Grab a free request. This is might sleep but can not fail.
1947 * Returns with the queue unlocked.
1948 */
1949 blk_queue_enter_live(q);
1950 req = get_request(q, bio->bi_opf, bio, 0);
1951 if (IS_ERR(req)) {
1952 blk_queue_exit(q);
1953 __wbt_done(q->rq_wb, wb_acct);
1954 if (PTR_ERR(req) == -ENOMEM)
1955 bio->bi_status = BLK_STS_RESOURCE;
1956 else
1957 bio->bi_status = BLK_STS_IOERR;
1958 bio_endio(bio);
1959 goto out_unlock;
1960 }
1961
1962 wbt_track(&req->issue_stat, wb_acct);
1963
1964 /*
1965 * After dropping the lock and possibly sleeping here, our request
1966 * may now be mergeable after it had proven unmergeable (above).
1967 * We don't worry about that case for efficiency. It won't happen
1968 * often, and the elevators are able to handle it.
1969 */
1970 blk_init_request_from_bio(req, bio);
1971
1972 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1973 req->cpu = raw_smp_processor_id();
1974
1975 plug = current->plug;
1976 if (plug) {
1977 /*
1978 * If this is the first request added after a plug, fire
1979 * of a plug trace.
1980 *
1981 * @request_count may become stale because of schedule
1982 * out, so check plug list again.
1983 */
1984 if (!request_count || list_empty(&plug->list))
1985 trace_block_plug(q);
1986 else {
1987 struct request *last = list_entry_rq(plug->list.prev);
1988 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1989 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1990 blk_flush_plug_list(plug, false);
1991 trace_block_plug(q);
1992 }
1993 }
1994 list_add_tail(&req->queuelist, &plug->list);
1995 blk_account_io_start(req, true);
1996 } else {
1997 spin_lock_irq(q->queue_lock);
1998 add_acct_request(q, req, where);
1999 __blk_run_queue(q);
2000 out_unlock:
2001 spin_unlock_irq(q->queue_lock);
2002 }
2003
2004 return BLK_QC_T_NONE;
2005 }
2006
2007 static void handle_bad_sector(struct bio *bio)
2008 {
2009 char b[BDEVNAME_SIZE];
2010
2011 printk(KERN_INFO "attempt to access beyond end of device\n");
2012 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2013 bio_devname(bio, b), bio->bi_opf,
2014 (unsigned long long)bio_end_sector(bio),
2015 (long long)get_capacity(bio->bi_disk));
2016 }
2017
2018 #ifdef CONFIG_FAIL_MAKE_REQUEST
2019
2020 static DECLARE_FAULT_ATTR(fail_make_request);
2021
2022 static int __init setup_fail_make_request(char *str)
2023 {
2024 return setup_fault_attr(&fail_make_request, str);
2025 }
2026 __setup("fail_make_request=", setup_fail_make_request);
2027
2028 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2029 {
2030 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2031 }
2032
2033 static int __init fail_make_request_debugfs(void)
2034 {
2035 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2036 NULL, &fail_make_request);
2037
2038 return PTR_ERR_OR_ZERO(dir);
2039 }
2040
2041 late_initcall(fail_make_request_debugfs);
2042
2043 #else /* CONFIG_FAIL_MAKE_REQUEST */
2044
2045 static inline bool should_fail_request(struct hd_struct *part,
2046 unsigned int bytes)
2047 {
2048 return false;
2049 }
2050
2051 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2052
2053 /*
2054 * Remap block n of partition p to block n+start(p) of the disk.
2055 */
2056 static inline int blk_partition_remap(struct bio *bio)
2057 {
2058 struct hd_struct *p;
2059 int ret = 0;
2060
2061 /*
2062 * Zone reset does not include bi_size so bio_sectors() is always 0.
2063 * Include a test for the reset op code and perform the remap if needed.
2064 */
2065 if (!bio->bi_partno ||
2066 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2067 return 0;
2068
2069 rcu_read_lock();
2070 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2071 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2072 bio->bi_iter.bi_sector += p->start_sect;
2073 bio->bi_partno = 0;
2074 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2075 bio->bi_iter.bi_sector - p->start_sect);
2076 } else {
2077 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2078 ret = -EIO;
2079 }
2080 rcu_read_unlock();
2081
2082 return ret;
2083 }
2084
2085 /*
2086 * Check whether this bio extends beyond the end of the device.
2087 */
2088 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2089 {
2090 sector_t maxsector;
2091
2092 if (!nr_sectors)
2093 return 0;
2094
2095 /* Test device or partition size, when known. */
2096 maxsector = get_capacity(bio->bi_disk);
2097 if (maxsector) {
2098 sector_t sector = bio->bi_iter.bi_sector;
2099
2100 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2101 /*
2102 * This may well happen - the kernel calls bread()
2103 * without checking the size of the device, e.g., when
2104 * mounting a device.
2105 */
2106 handle_bad_sector(bio);
2107 return 1;
2108 }
2109 }
2110
2111 return 0;
2112 }
2113
2114 static noinline_for_stack bool
2115 generic_make_request_checks(struct bio *bio)
2116 {
2117 struct request_queue *q;
2118 int nr_sectors = bio_sectors(bio);
2119 blk_status_t status = BLK_STS_IOERR;
2120 char b[BDEVNAME_SIZE];
2121
2122 might_sleep();
2123
2124 if (bio_check_eod(bio, nr_sectors))
2125 goto end_io;
2126
2127 q = bio->bi_disk->queue;
2128 if (unlikely(!q)) {
2129 printk(KERN_ERR
2130 "generic_make_request: Trying to access "
2131 "nonexistent block-device %s (%Lu)\n",
2132 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2133 goto end_io;
2134 }
2135
2136 /*
2137 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2138 * if queue is not a request based queue.
2139 */
2140
2141 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2142 goto not_supported;
2143
2144 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2145 goto end_io;
2146
2147 if (blk_partition_remap(bio))
2148 goto end_io;
2149
2150 if (bio_check_eod(bio, nr_sectors))
2151 goto end_io;
2152
2153 /*
2154 * Filter flush bio's early so that make_request based
2155 * drivers without flush support don't have to worry
2156 * about them.
2157 */
2158 if (op_is_flush(bio->bi_opf) &&
2159 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2160 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2161 if (!nr_sectors) {
2162 status = BLK_STS_OK;
2163 goto end_io;
2164 }
2165 }
2166
2167 switch (bio_op(bio)) {
2168 case REQ_OP_DISCARD:
2169 if (!blk_queue_discard(q))
2170 goto not_supported;
2171 break;
2172 case REQ_OP_SECURE_ERASE:
2173 if (!blk_queue_secure_erase(q))
2174 goto not_supported;
2175 break;
2176 case REQ_OP_WRITE_SAME:
2177 if (!q->limits.max_write_same_sectors)
2178 goto not_supported;
2179 break;
2180 case REQ_OP_ZONE_REPORT:
2181 case REQ_OP_ZONE_RESET:
2182 if (!blk_queue_is_zoned(q))
2183 goto not_supported;
2184 break;
2185 case REQ_OP_WRITE_ZEROES:
2186 if (!q->limits.max_write_zeroes_sectors)
2187 goto not_supported;
2188 break;
2189 default:
2190 break;
2191 }
2192
2193 /*
2194 * Various block parts want %current->io_context and lazy ioc
2195 * allocation ends up trading a lot of pain for a small amount of
2196 * memory. Just allocate it upfront. This may fail and block
2197 * layer knows how to live with it.
2198 */
2199 create_io_context(GFP_ATOMIC, q->node);
2200
2201 if (!blkcg_bio_issue_check(q, bio))
2202 return false;
2203
2204 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2205 trace_block_bio_queue(q, bio);
2206 /* Now that enqueuing has been traced, we need to trace
2207 * completion as well.
2208 */
2209 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2210 }
2211 return true;
2212
2213 not_supported:
2214 status = BLK_STS_NOTSUPP;
2215 end_io:
2216 bio->bi_status = status;
2217 bio_endio(bio);
2218 return false;
2219 }
2220
2221 /**
2222 * generic_make_request - hand a buffer to its device driver for I/O
2223 * @bio: The bio describing the location in memory and on the device.
2224 *
2225 * generic_make_request() is used to make I/O requests of block
2226 * devices. It is passed a &struct bio, which describes the I/O that needs
2227 * to be done.
2228 *
2229 * generic_make_request() does not return any status. The
2230 * success/failure status of the request, along with notification of
2231 * completion, is delivered asynchronously through the bio->bi_end_io
2232 * function described (one day) else where.
2233 *
2234 * The caller of generic_make_request must make sure that bi_io_vec
2235 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2236 * set to describe the device address, and the
2237 * bi_end_io and optionally bi_private are set to describe how
2238 * completion notification should be signaled.
2239 *
2240 * generic_make_request and the drivers it calls may use bi_next if this
2241 * bio happens to be merged with someone else, and may resubmit the bio to
2242 * a lower device by calling into generic_make_request recursively, which
2243 * means the bio should NOT be touched after the call to ->make_request_fn.
2244 */
2245 blk_qc_t generic_make_request(struct bio *bio)
2246 {
2247 /*
2248 * bio_list_on_stack[0] contains bios submitted by the current
2249 * make_request_fn.
2250 * bio_list_on_stack[1] contains bios that were submitted before
2251 * the current make_request_fn, but that haven't been processed
2252 * yet.
2253 */
2254 struct bio_list bio_list_on_stack[2];
2255 blk_qc_t ret = BLK_QC_T_NONE;
2256
2257 if (!generic_make_request_checks(bio))
2258 goto out;
2259
2260 /*
2261 * We only want one ->make_request_fn to be active at a time, else
2262 * stack usage with stacked devices could be a problem. So use
2263 * current->bio_list to keep a list of requests submited by a
2264 * make_request_fn function. current->bio_list is also used as a
2265 * flag to say if generic_make_request is currently active in this
2266 * task or not. If it is NULL, then no make_request is active. If
2267 * it is non-NULL, then a make_request is active, and new requests
2268 * should be added at the tail
2269 */
2270 if (current->bio_list) {
2271 bio_list_add(&current->bio_list[0], bio);
2272 goto out;
2273 }
2274
2275 /* following loop may be a bit non-obvious, and so deserves some
2276 * explanation.
2277 * Before entering the loop, bio->bi_next is NULL (as all callers
2278 * ensure that) so we have a list with a single bio.
2279 * We pretend that we have just taken it off a longer list, so
2280 * we assign bio_list to a pointer to the bio_list_on_stack,
2281 * thus initialising the bio_list of new bios to be
2282 * added. ->make_request() may indeed add some more bios
2283 * through a recursive call to generic_make_request. If it
2284 * did, we find a non-NULL value in bio_list and re-enter the loop
2285 * from the top. In this case we really did just take the bio
2286 * of the top of the list (no pretending) and so remove it from
2287 * bio_list, and call into ->make_request() again.
2288 */
2289 BUG_ON(bio->bi_next);
2290 bio_list_init(&bio_list_on_stack[0]);
2291 current->bio_list = bio_list_on_stack;
2292 do {
2293 struct request_queue *q = bio->bi_disk->queue;
2294 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2295 BLK_MQ_REQ_NOWAIT : 0;
2296
2297 if (likely(blk_queue_enter(q, flags) == 0)) {
2298 struct bio_list lower, same;
2299
2300 /* Create a fresh bio_list for all subordinate requests */
2301 bio_list_on_stack[1] = bio_list_on_stack[0];
2302 bio_list_init(&bio_list_on_stack[0]);
2303 ret = q->make_request_fn(q, bio);
2304
2305 blk_queue_exit(q);
2306
2307 /* sort new bios into those for a lower level
2308 * and those for the same level
2309 */
2310 bio_list_init(&lower);
2311 bio_list_init(&same);
2312 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2313 if (q == bio->bi_disk->queue)
2314 bio_list_add(&same, bio);
2315 else
2316 bio_list_add(&lower, bio);
2317 /* now assemble so we handle the lowest level first */
2318 bio_list_merge(&bio_list_on_stack[0], &lower);
2319 bio_list_merge(&bio_list_on_stack[0], &same);
2320 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2321 } else {
2322 if (unlikely(!blk_queue_dying(q) &&
2323 (bio->bi_opf & REQ_NOWAIT)))
2324 bio_wouldblock_error(bio);
2325 else
2326 bio_io_error(bio);
2327 }
2328 bio = bio_list_pop(&bio_list_on_stack[0]);
2329 } while (bio);
2330 current->bio_list = NULL; /* deactivate */
2331
2332 out:
2333 return ret;
2334 }
2335 EXPORT_SYMBOL(generic_make_request);
2336
2337 /**
2338 * direct_make_request - hand a buffer directly to its device driver for I/O
2339 * @bio: The bio describing the location in memory and on the device.
2340 *
2341 * This function behaves like generic_make_request(), but does not protect
2342 * against recursion. Must only be used if the called driver is known
2343 * to not call generic_make_request (or direct_make_request) again from
2344 * its make_request function. (Calling direct_make_request again from
2345 * a workqueue is perfectly fine as that doesn't recurse).
2346 */
2347 blk_qc_t direct_make_request(struct bio *bio)
2348 {
2349 struct request_queue *q = bio->bi_disk->queue;
2350 bool nowait = bio->bi_opf & REQ_NOWAIT;
2351 blk_qc_t ret;
2352
2353 if (!generic_make_request_checks(bio))
2354 return BLK_QC_T_NONE;
2355
2356 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2357 if (nowait && !blk_queue_dying(q))
2358 bio->bi_status = BLK_STS_AGAIN;
2359 else
2360 bio->bi_status = BLK_STS_IOERR;
2361 bio_endio(bio);
2362 return BLK_QC_T_NONE;
2363 }
2364
2365 ret = q->make_request_fn(q, bio);
2366 blk_queue_exit(q);
2367 return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(direct_make_request);
2370
2371 /**
2372 * submit_bio - submit a bio to the block device layer for I/O
2373 * @bio: The &struct bio which describes the I/O
2374 *
2375 * submit_bio() is very similar in purpose to generic_make_request(), and
2376 * uses that function to do most of the work. Both are fairly rough
2377 * interfaces; @bio must be presetup and ready for I/O.
2378 *
2379 */
2380 blk_qc_t submit_bio(struct bio *bio)
2381 {
2382 /*
2383 * If it's a regular read/write or a barrier with data attached,
2384 * go through the normal accounting stuff before submission.
2385 */
2386 if (bio_has_data(bio)) {
2387 unsigned int count;
2388
2389 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2390 count = queue_logical_block_size(bio->bi_disk->queue);
2391 else
2392 count = bio_sectors(bio);
2393
2394 if (op_is_write(bio_op(bio))) {
2395 count_vm_events(PGPGOUT, count);
2396 } else {
2397 task_io_account_read(bio->bi_iter.bi_size);
2398 count_vm_events(PGPGIN, count);
2399 }
2400
2401 if (unlikely(block_dump)) {
2402 char b[BDEVNAME_SIZE];
2403 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2404 current->comm, task_pid_nr(current),
2405 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2406 (unsigned long long)bio->bi_iter.bi_sector,
2407 bio_devname(bio, b), count);
2408 }
2409 }
2410
2411 return generic_make_request(bio);
2412 }
2413 EXPORT_SYMBOL(submit_bio);
2414
2415 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2416 {
2417 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2418 return false;
2419
2420 if (current->plug)
2421 blk_flush_plug_list(current->plug, false);
2422 return q->poll_fn(q, cookie);
2423 }
2424 EXPORT_SYMBOL_GPL(blk_poll);
2425
2426 /**
2427 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2428 * for new the queue limits
2429 * @q: the queue
2430 * @rq: the request being checked
2431 *
2432 * Description:
2433 * @rq may have been made based on weaker limitations of upper-level queues
2434 * in request stacking drivers, and it may violate the limitation of @q.
2435 * Since the block layer and the underlying device driver trust @rq
2436 * after it is inserted to @q, it should be checked against @q before
2437 * the insertion using this generic function.
2438 *
2439 * Request stacking drivers like request-based dm may change the queue
2440 * limits when retrying requests on other queues. Those requests need
2441 * to be checked against the new queue limits again during dispatch.
2442 */
2443 static int blk_cloned_rq_check_limits(struct request_queue *q,
2444 struct request *rq)
2445 {
2446 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2447 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2448 return -EIO;
2449 }
2450
2451 /*
2452 * queue's settings related to segment counting like q->bounce_pfn
2453 * may differ from that of other stacking queues.
2454 * Recalculate it to check the request correctly on this queue's
2455 * limitation.
2456 */
2457 blk_recalc_rq_segments(rq);
2458 if (rq->nr_phys_segments > queue_max_segments(q)) {
2459 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2460 return -EIO;
2461 }
2462
2463 return 0;
2464 }
2465
2466 /**
2467 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2468 * @q: the queue to submit the request
2469 * @rq: the request being queued
2470 */
2471 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2472 {
2473 unsigned long flags;
2474 int where = ELEVATOR_INSERT_BACK;
2475
2476 if (blk_cloned_rq_check_limits(q, rq))
2477 return BLK_STS_IOERR;
2478
2479 if (rq->rq_disk &&
2480 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2481 return BLK_STS_IOERR;
2482
2483 if (q->mq_ops) {
2484 if (blk_queue_io_stat(q))
2485 blk_account_io_start(rq, true);
2486 /*
2487 * Since we have a scheduler attached on the top device,
2488 * bypass a potential scheduler on the bottom device for
2489 * insert.
2490 */
2491 blk_mq_request_bypass_insert(rq, true);
2492 return BLK_STS_OK;
2493 }
2494
2495 spin_lock_irqsave(q->queue_lock, flags);
2496 if (unlikely(blk_queue_dying(q))) {
2497 spin_unlock_irqrestore(q->queue_lock, flags);
2498 return BLK_STS_IOERR;
2499 }
2500
2501 /*
2502 * Submitting request must be dequeued before calling this function
2503 * because it will be linked to another request_queue
2504 */
2505 BUG_ON(blk_queued_rq(rq));
2506
2507 if (op_is_flush(rq->cmd_flags))
2508 where = ELEVATOR_INSERT_FLUSH;
2509
2510 add_acct_request(q, rq, where);
2511 if (where == ELEVATOR_INSERT_FLUSH)
2512 __blk_run_queue(q);
2513 spin_unlock_irqrestore(q->queue_lock, flags);
2514
2515 return BLK_STS_OK;
2516 }
2517 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2518
2519 /**
2520 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2521 * @rq: request to examine
2522 *
2523 * Description:
2524 * A request could be merge of IOs which require different failure
2525 * handling. This function determines the number of bytes which
2526 * can be failed from the beginning of the request without
2527 * crossing into area which need to be retried further.
2528 *
2529 * Return:
2530 * The number of bytes to fail.
2531 */
2532 unsigned int blk_rq_err_bytes(const struct request *rq)
2533 {
2534 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2535 unsigned int bytes = 0;
2536 struct bio *bio;
2537
2538 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2539 return blk_rq_bytes(rq);
2540
2541 /*
2542 * Currently the only 'mixing' which can happen is between
2543 * different fastfail types. We can safely fail portions
2544 * which have all the failfast bits that the first one has -
2545 * the ones which are at least as eager to fail as the first
2546 * one.
2547 */
2548 for (bio = rq->bio; bio; bio = bio->bi_next) {
2549 if ((bio->bi_opf & ff) != ff)
2550 break;
2551 bytes += bio->bi_iter.bi_size;
2552 }
2553
2554 /* this could lead to infinite loop */
2555 BUG_ON(blk_rq_bytes(rq) && !bytes);
2556 return bytes;
2557 }
2558 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2559
2560 void blk_account_io_completion(struct request *req, unsigned int bytes)
2561 {
2562 if (blk_do_io_stat(req)) {
2563 const int rw = rq_data_dir(req);
2564 struct hd_struct *part;
2565 int cpu;
2566
2567 cpu = part_stat_lock();
2568 part = req->part;
2569 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2570 part_stat_unlock();
2571 }
2572 }
2573
2574 void blk_account_io_done(struct request *req)
2575 {
2576 /*
2577 * Account IO completion. flush_rq isn't accounted as a
2578 * normal IO on queueing nor completion. Accounting the
2579 * containing request is enough.
2580 */
2581 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2582 unsigned long duration = jiffies - req->start_time;
2583 const int rw = rq_data_dir(req);
2584 struct hd_struct *part;
2585 int cpu;
2586
2587 cpu = part_stat_lock();
2588 part = req->part;
2589
2590 part_stat_inc(cpu, part, ios[rw]);
2591 part_stat_add(cpu, part, ticks[rw], duration);
2592 part_round_stats(req->q, cpu, part);
2593 part_dec_in_flight(req->q, part, rw);
2594
2595 hd_struct_put(part);
2596 part_stat_unlock();
2597 }
2598 }
2599
2600 #ifdef CONFIG_PM
2601 /*
2602 * Don't process normal requests when queue is suspended
2603 * or in the process of suspending/resuming
2604 */
2605 static bool blk_pm_allow_request(struct request *rq)
2606 {
2607 switch (rq->q->rpm_status) {
2608 case RPM_RESUMING:
2609 case RPM_SUSPENDING:
2610 return rq->rq_flags & RQF_PM;
2611 case RPM_SUSPENDED:
2612 return false;
2613 }
2614
2615 return true;
2616 }
2617 #else
2618 static bool blk_pm_allow_request(struct request *rq)
2619 {
2620 return true;
2621 }
2622 #endif
2623
2624 void blk_account_io_start(struct request *rq, bool new_io)
2625 {
2626 struct hd_struct *part;
2627 int rw = rq_data_dir(rq);
2628 int cpu;
2629
2630 if (!blk_do_io_stat(rq))
2631 return;
2632
2633 cpu = part_stat_lock();
2634
2635 if (!new_io) {
2636 part = rq->part;
2637 part_stat_inc(cpu, part, merges[rw]);
2638 } else {
2639 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2640 if (!hd_struct_try_get(part)) {
2641 /*
2642 * The partition is already being removed,
2643 * the request will be accounted on the disk only
2644 *
2645 * We take a reference on disk->part0 although that
2646 * partition will never be deleted, so we can treat
2647 * it as any other partition.
2648 */
2649 part = &rq->rq_disk->part0;
2650 hd_struct_get(part);
2651 }
2652 part_round_stats(rq->q, cpu, part);
2653 part_inc_in_flight(rq->q, part, rw);
2654 rq->part = part;
2655 }
2656
2657 part_stat_unlock();
2658 }
2659
2660 static struct request *elv_next_request(struct request_queue *q)
2661 {
2662 struct request *rq;
2663 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2664
2665 WARN_ON_ONCE(q->mq_ops);
2666
2667 while (1) {
2668 list_for_each_entry(rq, &q->queue_head, queuelist) {
2669 if (blk_pm_allow_request(rq))
2670 return rq;
2671
2672 if (rq->rq_flags & RQF_SOFTBARRIER)
2673 break;
2674 }
2675
2676 /*
2677 * Flush request is running and flush request isn't queueable
2678 * in the drive, we can hold the queue till flush request is
2679 * finished. Even we don't do this, driver can't dispatch next
2680 * requests and will requeue them. And this can improve
2681 * throughput too. For example, we have request flush1, write1,
2682 * flush 2. flush1 is dispatched, then queue is hold, write1
2683 * isn't inserted to queue. After flush1 is finished, flush2
2684 * will be dispatched. Since disk cache is already clean,
2685 * flush2 will be finished very soon, so looks like flush2 is
2686 * folded to flush1.
2687 * Since the queue is hold, a flag is set to indicate the queue
2688 * should be restarted later. Please see flush_end_io() for
2689 * details.
2690 */
2691 if (fq->flush_pending_idx != fq->flush_running_idx &&
2692 !queue_flush_queueable(q)) {
2693 fq->flush_queue_delayed = 1;
2694 return NULL;
2695 }
2696 if (unlikely(blk_queue_bypass(q)) ||
2697 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2698 return NULL;
2699 }
2700 }
2701
2702 /**
2703 * blk_peek_request - peek at the top of a request queue
2704 * @q: request queue to peek at
2705 *
2706 * Description:
2707 * Return the request at the top of @q. The returned request
2708 * should be started using blk_start_request() before LLD starts
2709 * processing it.
2710 *
2711 * Return:
2712 * Pointer to the request at the top of @q if available. Null
2713 * otherwise.
2714 */
2715 struct request *blk_peek_request(struct request_queue *q)
2716 {
2717 struct request *rq;
2718 int ret;
2719
2720 lockdep_assert_held(q->queue_lock);
2721 WARN_ON_ONCE(q->mq_ops);
2722
2723 while ((rq = elv_next_request(q)) != NULL) {
2724 if (!(rq->rq_flags & RQF_STARTED)) {
2725 /*
2726 * This is the first time the device driver
2727 * sees this request (possibly after
2728 * requeueing). Notify IO scheduler.
2729 */
2730 if (rq->rq_flags & RQF_SORTED)
2731 elv_activate_rq(q, rq);
2732
2733 /*
2734 * just mark as started even if we don't start
2735 * it, a request that has been delayed should
2736 * not be passed by new incoming requests
2737 */
2738 rq->rq_flags |= RQF_STARTED;
2739 trace_block_rq_issue(q, rq);
2740 }
2741
2742 if (!q->boundary_rq || q->boundary_rq == rq) {
2743 q->end_sector = rq_end_sector(rq);
2744 q->boundary_rq = NULL;
2745 }
2746
2747 if (rq->rq_flags & RQF_DONTPREP)
2748 break;
2749
2750 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2751 /*
2752 * make sure space for the drain appears we
2753 * know we can do this because max_hw_segments
2754 * has been adjusted to be one fewer than the
2755 * device can handle
2756 */
2757 rq->nr_phys_segments++;
2758 }
2759
2760 if (!q->prep_rq_fn)
2761 break;
2762
2763 ret = q->prep_rq_fn(q, rq);
2764 if (ret == BLKPREP_OK) {
2765 break;
2766 } else if (ret == BLKPREP_DEFER) {
2767 /*
2768 * the request may have been (partially) prepped.
2769 * we need to keep this request in the front to
2770 * avoid resource deadlock. RQF_STARTED will
2771 * prevent other fs requests from passing this one.
2772 */
2773 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2774 !(rq->rq_flags & RQF_DONTPREP)) {
2775 /*
2776 * remove the space for the drain we added
2777 * so that we don't add it again
2778 */
2779 --rq->nr_phys_segments;
2780 }
2781
2782 rq = NULL;
2783 break;
2784 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2785 rq->rq_flags |= RQF_QUIET;
2786 /*
2787 * Mark this request as started so we don't trigger
2788 * any debug logic in the end I/O path.
2789 */
2790 blk_start_request(rq);
2791 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2792 BLK_STS_TARGET : BLK_STS_IOERR);
2793 } else {
2794 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2795 break;
2796 }
2797 }
2798
2799 return rq;
2800 }
2801 EXPORT_SYMBOL(blk_peek_request);
2802
2803 static void blk_dequeue_request(struct request *rq)
2804 {
2805 struct request_queue *q = rq->q;
2806
2807 BUG_ON(list_empty(&rq->queuelist));
2808 BUG_ON(ELV_ON_HASH(rq));
2809
2810 list_del_init(&rq->queuelist);
2811
2812 /*
2813 * the time frame between a request being removed from the lists
2814 * and to it is freed is accounted as io that is in progress at
2815 * the driver side.
2816 */
2817 if (blk_account_rq(rq)) {
2818 q->in_flight[rq_is_sync(rq)]++;
2819 set_io_start_time_ns(rq);
2820 }
2821 }
2822
2823 /**
2824 * blk_start_request - start request processing on the driver
2825 * @req: request to dequeue
2826 *
2827 * Description:
2828 * Dequeue @req and start timeout timer on it. This hands off the
2829 * request to the driver.
2830 */
2831 void blk_start_request(struct request *req)
2832 {
2833 lockdep_assert_held(req->q->queue_lock);
2834 WARN_ON_ONCE(req->q->mq_ops);
2835
2836 blk_dequeue_request(req);
2837
2838 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2839 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2840 req->rq_flags |= RQF_STATS;
2841 wbt_issue(req->q->rq_wb, &req->issue_stat);
2842 }
2843
2844 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2845 blk_add_timer(req);
2846 }
2847 EXPORT_SYMBOL(blk_start_request);
2848
2849 /**
2850 * blk_fetch_request - fetch a request from a request queue
2851 * @q: request queue to fetch a request from
2852 *
2853 * Description:
2854 * Return the request at the top of @q. The request is started on
2855 * return and LLD can start processing it immediately.
2856 *
2857 * Return:
2858 * Pointer to the request at the top of @q if available. Null
2859 * otherwise.
2860 */
2861 struct request *blk_fetch_request(struct request_queue *q)
2862 {
2863 struct request *rq;
2864
2865 lockdep_assert_held(q->queue_lock);
2866 WARN_ON_ONCE(q->mq_ops);
2867
2868 rq = blk_peek_request(q);
2869 if (rq)
2870 blk_start_request(rq);
2871 return rq;
2872 }
2873 EXPORT_SYMBOL(blk_fetch_request);
2874
2875 /*
2876 * Steal bios from a request and add them to a bio list.
2877 * The request must not have been partially completed before.
2878 */
2879 void blk_steal_bios(struct bio_list *list, struct request *rq)
2880 {
2881 if (rq->bio) {
2882 if (list->tail)
2883 list->tail->bi_next = rq->bio;
2884 else
2885 list->head = rq->bio;
2886 list->tail = rq->biotail;
2887
2888 rq->bio = NULL;
2889 rq->biotail = NULL;
2890 }
2891
2892 rq->__data_len = 0;
2893 }
2894 EXPORT_SYMBOL_GPL(blk_steal_bios);
2895
2896 /**
2897 * blk_update_request - Special helper function for request stacking drivers
2898 * @req: the request being processed
2899 * @error: block status code
2900 * @nr_bytes: number of bytes to complete @req
2901 *
2902 * Description:
2903 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2904 * the request structure even if @req doesn't have leftover.
2905 * If @req has leftover, sets it up for the next range of segments.
2906 *
2907 * This special helper function is only for request stacking drivers
2908 * (e.g. request-based dm) so that they can handle partial completion.
2909 * Actual device drivers should use blk_end_request instead.
2910 *
2911 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2912 * %false return from this function.
2913 *
2914 * Return:
2915 * %false - this request doesn't have any more data
2916 * %true - this request has more data
2917 **/
2918 bool blk_update_request(struct request *req, blk_status_t error,
2919 unsigned int nr_bytes)
2920 {
2921 int total_bytes;
2922
2923 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2924
2925 if (!req->bio)
2926 return false;
2927
2928 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2929 !(req->rq_flags & RQF_QUIET)))
2930 print_req_error(req, error);
2931
2932 blk_account_io_completion(req, nr_bytes);
2933
2934 total_bytes = 0;
2935 while (req->bio) {
2936 struct bio *bio = req->bio;
2937 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2938
2939 if (bio_bytes == bio->bi_iter.bi_size)
2940 req->bio = bio->bi_next;
2941
2942 /* Completion has already been traced */
2943 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2944 req_bio_endio(req, bio, bio_bytes, error);
2945
2946 total_bytes += bio_bytes;
2947 nr_bytes -= bio_bytes;
2948
2949 if (!nr_bytes)
2950 break;
2951 }
2952
2953 /*
2954 * completely done
2955 */
2956 if (!req->bio) {
2957 /*
2958 * Reset counters so that the request stacking driver
2959 * can find how many bytes remain in the request
2960 * later.
2961 */
2962 req->__data_len = 0;
2963 return false;
2964 }
2965
2966 req->__data_len -= total_bytes;
2967
2968 /* update sector only for requests with clear definition of sector */
2969 if (!blk_rq_is_passthrough(req))
2970 req->__sector += total_bytes >> 9;
2971
2972 /* mixed attributes always follow the first bio */
2973 if (req->rq_flags & RQF_MIXED_MERGE) {
2974 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2975 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2976 }
2977
2978 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2979 /*
2980 * If total number of sectors is less than the first segment
2981 * size, something has gone terribly wrong.
2982 */
2983 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2984 blk_dump_rq_flags(req, "request botched");
2985 req->__data_len = blk_rq_cur_bytes(req);
2986 }
2987
2988 /* recalculate the number of segments */
2989 blk_recalc_rq_segments(req);
2990 }
2991
2992 return true;
2993 }
2994 EXPORT_SYMBOL_GPL(blk_update_request);
2995
2996 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2997 unsigned int nr_bytes,
2998 unsigned int bidi_bytes)
2999 {
3000 if (blk_update_request(rq, error, nr_bytes))
3001 return true;
3002
3003 /* Bidi request must be completed as a whole */
3004 if (unlikely(blk_bidi_rq(rq)) &&
3005 blk_update_request(rq->next_rq, error, bidi_bytes))
3006 return true;
3007
3008 if (blk_queue_add_random(rq->q))
3009 add_disk_randomness(rq->rq_disk);
3010
3011 return false;
3012 }
3013
3014 /**
3015 * blk_unprep_request - unprepare a request
3016 * @req: the request
3017 *
3018 * This function makes a request ready for complete resubmission (or
3019 * completion). It happens only after all error handling is complete,
3020 * so represents the appropriate moment to deallocate any resources
3021 * that were allocated to the request in the prep_rq_fn. The queue
3022 * lock is held when calling this.
3023 */
3024 void blk_unprep_request(struct request *req)
3025 {
3026 struct request_queue *q = req->q;
3027
3028 req->rq_flags &= ~RQF_DONTPREP;
3029 if (q->unprep_rq_fn)
3030 q->unprep_rq_fn(q, req);
3031 }
3032 EXPORT_SYMBOL_GPL(blk_unprep_request);
3033
3034 void blk_finish_request(struct request *req, blk_status_t error)
3035 {
3036 struct request_queue *q = req->q;
3037
3038 lockdep_assert_held(req->q->queue_lock);
3039 WARN_ON_ONCE(q->mq_ops);
3040
3041 if (req->rq_flags & RQF_STATS)
3042 blk_stat_add(req);
3043
3044 if (req->rq_flags & RQF_QUEUED)
3045 blk_queue_end_tag(q, req);
3046
3047 BUG_ON(blk_queued_rq(req));
3048
3049 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3050 laptop_io_completion(req->q->backing_dev_info);
3051
3052 blk_delete_timer(req);
3053
3054 if (req->rq_flags & RQF_DONTPREP)
3055 blk_unprep_request(req);
3056
3057 blk_account_io_done(req);
3058
3059 if (req->end_io) {
3060 wbt_done(req->q->rq_wb, &req->issue_stat);
3061 req->end_io(req, error);
3062 } else {
3063 if (blk_bidi_rq(req))
3064 __blk_put_request(req->next_rq->q, req->next_rq);
3065
3066 __blk_put_request(q, req);
3067 }
3068 }
3069 EXPORT_SYMBOL(blk_finish_request);
3070
3071 /**
3072 * blk_end_bidi_request - Complete a bidi request
3073 * @rq: the request to complete
3074 * @error: block status code
3075 * @nr_bytes: number of bytes to complete @rq
3076 * @bidi_bytes: number of bytes to complete @rq->next_rq
3077 *
3078 * Description:
3079 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3080 * Drivers that supports bidi can safely call this member for any
3081 * type of request, bidi or uni. In the later case @bidi_bytes is
3082 * just ignored.
3083 *
3084 * Return:
3085 * %false - we are done with this request
3086 * %true - still buffers pending for this request
3087 **/
3088 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3089 unsigned int nr_bytes, unsigned int bidi_bytes)
3090 {
3091 struct request_queue *q = rq->q;
3092 unsigned long flags;
3093
3094 WARN_ON_ONCE(q->mq_ops);
3095
3096 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3097 return true;
3098
3099 spin_lock_irqsave(q->queue_lock, flags);
3100 blk_finish_request(rq, error);
3101 spin_unlock_irqrestore(q->queue_lock, flags);
3102
3103 return false;
3104 }
3105
3106 /**
3107 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3108 * @rq: the request to complete
3109 * @error: block status code
3110 * @nr_bytes: number of bytes to complete @rq
3111 * @bidi_bytes: number of bytes to complete @rq->next_rq
3112 *
3113 * Description:
3114 * Identical to blk_end_bidi_request() except that queue lock is
3115 * assumed to be locked on entry and remains so on return.
3116 *
3117 * Return:
3118 * %false - we are done with this request
3119 * %true - still buffers pending for this request
3120 **/
3121 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3122 unsigned int nr_bytes, unsigned int bidi_bytes)
3123 {
3124 lockdep_assert_held(rq->q->queue_lock);
3125 WARN_ON_ONCE(rq->q->mq_ops);
3126
3127 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3128 return true;
3129
3130 blk_finish_request(rq, error);
3131
3132 return false;
3133 }
3134
3135 /**
3136 * blk_end_request - Helper function for drivers to complete the request.
3137 * @rq: the request being processed
3138 * @error: block status code
3139 * @nr_bytes: number of bytes to complete
3140 *
3141 * Description:
3142 * Ends I/O on a number of bytes attached to @rq.
3143 * If @rq has leftover, sets it up for the next range of segments.
3144 *
3145 * Return:
3146 * %false - we are done with this request
3147 * %true - still buffers pending for this request
3148 **/
3149 bool blk_end_request(struct request *rq, blk_status_t error,
3150 unsigned int nr_bytes)
3151 {
3152 WARN_ON_ONCE(rq->q->mq_ops);
3153 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3154 }
3155 EXPORT_SYMBOL(blk_end_request);
3156
3157 /**
3158 * blk_end_request_all - Helper function for drives to finish the request.
3159 * @rq: the request to finish
3160 * @error: block status code
3161 *
3162 * Description:
3163 * Completely finish @rq.
3164 */
3165 void blk_end_request_all(struct request *rq, blk_status_t error)
3166 {
3167 bool pending;
3168 unsigned int bidi_bytes = 0;
3169
3170 if (unlikely(blk_bidi_rq(rq)))
3171 bidi_bytes = blk_rq_bytes(rq->next_rq);
3172
3173 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3174 BUG_ON(pending);
3175 }
3176 EXPORT_SYMBOL(blk_end_request_all);
3177
3178 /**
3179 * __blk_end_request - Helper function for drivers to complete the request.
3180 * @rq: the request being processed
3181 * @error: block status code
3182 * @nr_bytes: number of bytes to complete
3183 *
3184 * Description:
3185 * Must be called with queue lock held unlike blk_end_request().
3186 *
3187 * Return:
3188 * %false - we are done with this request
3189 * %true - still buffers pending for this request
3190 **/
3191 bool __blk_end_request(struct request *rq, blk_status_t error,
3192 unsigned int nr_bytes)
3193 {
3194 lockdep_assert_held(rq->q->queue_lock);
3195 WARN_ON_ONCE(rq->q->mq_ops);
3196
3197 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3198 }
3199 EXPORT_SYMBOL(__blk_end_request);
3200
3201 /**
3202 * __blk_end_request_all - Helper function for drives to finish the request.
3203 * @rq: the request to finish
3204 * @error: block status code
3205 *
3206 * Description:
3207 * Completely finish @rq. Must be called with queue lock held.
3208 */
3209 void __blk_end_request_all(struct request *rq, blk_status_t error)
3210 {
3211 bool pending;
3212 unsigned int bidi_bytes = 0;
3213
3214 lockdep_assert_held(rq->q->queue_lock);
3215 WARN_ON_ONCE(rq->q->mq_ops);
3216
3217 if (unlikely(blk_bidi_rq(rq)))
3218 bidi_bytes = blk_rq_bytes(rq->next_rq);
3219
3220 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3221 BUG_ON(pending);
3222 }
3223 EXPORT_SYMBOL(__blk_end_request_all);
3224
3225 /**
3226 * __blk_end_request_cur - Helper function to finish the current request chunk.
3227 * @rq: the request to finish the current chunk for
3228 * @error: block status code
3229 *
3230 * Description:
3231 * Complete the current consecutively mapped chunk from @rq. Must
3232 * be called with queue lock held.
3233 *
3234 * Return:
3235 * %false - we are done with this request
3236 * %true - still buffers pending for this request
3237 */
3238 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3239 {
3240 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3241 }
3242 EXPORT_SYMBOL(__blk_end_request_cur);
3243
3244 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3245 struct bio *bio)
3246 {
3247 if (bio_has_data(bio))
3248 rq->nr_phys_segments = bio_phys_segments(q, bio);
3249
3250 rq->__data_len = bio->bi_iter.bi_size;
3251 rq->bio = rq->biotail = bio;
3252
3253 if (bio->bi_disk)
3254 rq->rq_disk = bio->bi_disk;
3255 }
3256
3257 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3258 /**
3259 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3260 * @rq: the request to be flushed
3261 *
3262 * Description:
3263 * Flush all pages in @rq.
3264 */
3265 void rq_flush_dcache_pages(struct request *rq)
3266 {
3267 struct req_iterator iter;
3268 struct bio_vec bvec;
3269
3270 rq_for_each_segment(bvec, rq, iter)
3271 flush_dcache_page(bvec.bv_page);
3272 }
3273 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3274 #endif
3275
3276 /**
3277 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3278 * @q : the queue of the device being checked
3279 *
3280 * Description:
3281 * Check if underlying low-level drivers of a device are busy.
3282 * If the drivers want to export their busy state, they must set own
3283 * exporting function using blk_queue_lld_busy() first.
3284 *
3285 * Basically, this function is used only by request stacking drivers
3286 * to stop dispatching requests to underlying devices when underlying
3287 * devices are busy. This behavior helps more I/O merging on the queue
3288 * of the request stacking driver and prevents I/O throughput regression
3289 * on burst I/O load.
3290 *
3291 * Return:
3292 * 0 - Not busy (The request stacking driver should dispatch request)
3293 * 1 - Busy (The request stacking driver should stop dispatching request)
3294 */
3295 int blk_lld_busy(struct request_queue *q)
3296 {
3297 if (q->lld_busy_fn)
3298 return q->lld_busy_fn(q);
3299
3300 return 0;
3301 }
3302 EXPORT_SYMBOL_GPL(blk_lld_busy);
3303
3304 /**
3305 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3306 * @rq: the clone request to be cleaned up
3307 *
3308 * Description:
3309 * Free all bios in @rq for a cloned request.
3310 */
3311 void blk_rq_unprep_clone(struct request *rq)
3312 {
3313 struct bio *bio;
3314
3315 while ((bio = rq->bio) != NULL) {
3316 rq->bio = bio->bi_next;
3317
3318 bio_put(bio);
3319 }
3320 }
3321 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3322
3323 /*
3324 * Copy attributes of the original request to the clone request.
3325 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3326 */
3327 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3328 {
3329 dst->cpu = src->cpu;
3330 dst->__sector = blk_rq_pos(src);
3331 dst->__data_len = blk_rq_bytes(src);
3332 dst->nr_phys_segments = src->nr_phys_segments;
3333 dst->ioprio = src->ioprio;
3334 dst->extra_len = src->extra_len;
3335 }
3336
3337 /**
3338 * blk_rq_prep_clone - Helper function to setup clone request
3339 * @rq: the request to be setup
3340 * @rq_src: original request to be cloned
3341 * @bs: bio_set that bios for clone are allocated from
3342 * @gfp_mask: memory allocation mask for bio
3343 * @bio_ctr: setup function to be called for each clone bio.
3344 * Returns %0 for success, non %0 for failure.
3345 * @data: private data to be passed to @bio_ctr
3346 *
3347 * Description:
3348 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3349 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3350 * are not copied, and copying such parts is the caller's responsibility.
3351 * Also, pages which the original bios are pointing to are not copied
3352 * and the cloned bios just point same pages.
3353 * So cloned bios must be completed before original bios, which means
3354 * the caller must complete @rq before @rq_src.
3355 */
3356 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3357 struct bio_set *bs, gfp_t gfp_mask,
3358 int (*bio_ctr)(struct bio *, struct bio *, void *),
3359 void *data)
3360 {
3361 struct bio *bio, *bio_src;
3362
3363 if (!bs)
3364 bs = fs_bio_set;
3365
3366 __rq_for_each_bio(bio_src, rq_src) {
3367 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3368 if (!bio)
3369 goto free_and_out;
3370
3371 if (bio_ctr && bio_ctr(bio, bio_src, data))
3372 goto free_and_out;
3373
3374 if (rq->bio) {
3375 rq->biotail->bi_next = bio;
3376 rq->biotail = bio;
3377 } else
3378 rq->bio = rq->biotail = bio;
3379 }
3380
3381 __blk_rq_prep_clone(rq, rq_src);
3382
3383 return 0;
3384
3385 free_and_out:
3386 if (bio)
3387 bio_put(bio);
3388 blk_rq_unprep_clone(rq);
3389
3390 return -ENOMEM;
3391 }
3392 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3393
3394 int kblockd_schedule_work(struct work_struct *work)
3395 {
3396 return queue_work(kblockd_workqueue, work);
3397 }
3398 EXPORT_SYMBOL(kblockd_schedule_work);
3399
3400 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3401 {
3402 return queue_work_on(cpu, kblockd_workqueue, work);
3403 }
3404 EXPORT_SYMBOL(kblockd_schedule_work_on);
3405
3406 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3407 unsigned long delay)
3408 {
3409 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3410 }
3411 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3412
3413 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3414 unsigned long delay)
3415 {
3416 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3417 }
3418 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3419
3420 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3421 unsigned long delay)
3422 {
3423 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3424 }
3425 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3426
3427 /**
3428 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3429 * @plug: The &struct blk_plug that needs to be initialized
3430 *
3431 * Description:
3432 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3433 * pending I/O should the task end up blocking between blk_start_plug() and
3434 * blk_finish_plug(). This is important from a performance perspective, but
3435 * also ensures that we don't deadlock. For instance, if the task is blocking
3436 * for a memory allocation, memory reclaim could end up wanting to free a
3437 * page belonging to that request that is currently residing in our private
3438 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3439 * this kind of deadlock.
3440 */
3441 void blk_start_plug(struct blk_plug *plug)
3442 {
3443 struct task_struct *tsk = current;
3444
3445 /*
3446 * If this is a nested plug, don't actually assign it.
3447 */
3448 if (tsk->plug)
3449 return;
3450
3451 INIT_LIST_HEAD(&plug->list);
3452 INIT_LIST_HEAD(&plug->mq_list);
3453 INIT_LIST_HEAD(&plug->cb_list);
3454 /*
3455 * Store ordering should not be needed here, since a potential
3456 * preempt will imply a full memory barrier
3457 */
3458 tsk->plug = plug;
3459 }
3460 EXPORT_SYMBOL(blk_start_plug);
3461
3462 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3463 {
3464 struct request *rqa = container_of(a, struct request, queuelist);
3465 struct request *rqb = container_of(b, struct request, queuelist);
3466
3467 return !(rqa->q < rqb->q ||
3468 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3469 }
3470
3471 /*
3472 * If 'from_schedule' is true, then postpone the dispatch of requests
3473 * until a safe kblockd context. We due this to avoid accidental big
3474 * additional stack usage in driver dispatch, in places where the originally
3475 * plugger did not intend it.
3476 */
3477 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3478 bool from_schedule)
3479 __releases(q->queue_lock)
3480 {
3481 lockdep_assert_held(q->queue_lock);
3482
3483 trace_block_unplug(q, depth, !from_schedule);
3484
3485 if (from_schedule)
3486 blk_run_queue_async(q);
3487 else
3488 __blk_run_queue(q);
3489 spin_unlock(q->queue_lock);
3490 }
3491
3492 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3493 {
3494 LIST_HEAD(callbacks);
3495
3496 while (!list_empty(&plug->cb_list)) {
3497 list_splice_init(&plug->cb_list, &callbacks);
3498
3499 while (!list_empty(&callbacks)) {
3500 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3501 struct blk_plug_cb,
3502 list);
3503 list_del(&cb->list);
3504 cb->callback(cb, from_schedule);
3505 }
3506 }
3507 }
3508
3509 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3510 int size)
3511 {
3512 struct blk_plug *plug = current->plug;
3513 struct blk_plug_cb *cb;
3514
3515 if (!plug)
3516 return NULL;
3517
3518 list_for_each_entry(cb, &plug->cb_list, list)
3519 if (cb->callback == unplug && cb->data == data)
3520 return cb;
3521
3522 /* Not currently on the callback list */
3523 BUG_ON(size < sizeof(*cb));
3524 cb = kzalloc(size, GFP_ATOMIC);
3525 if (cb) {
3526 cb->data = data;
3527 cb->callback = unplug;
3528 list_add(&cb->list, &plug->cb_list);
3529 }
3530 return cb;
3531 }
3532 EXPORT_SYMBOL(blk_check_plugged);
3533
3534 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3535 {
3536 struct request_queue *q;
3537 unsigned long flags;
3538 struct request *rq;
3539 LIST_HEAD(list);
3540 unsigned int depth;
3541
3542 flush_plug_callbacks(plug, from_schedule);
3543
3544 if (!list_empty(&plug->mq_list))
3545 blk_mq_flush_plug_list(plug, from_schedule);
3546
3547 if (list_empty(&plug->list))
3548 return;
3549
3550 list_splice_init(&plug->list, &list);
3551
3552 list_sort(NULL, &list, plug_rq_cmp);
3553
3554 q = NULL;
3555 depth = 0;
3556
3557 /*
3558 * Save and disable interrupts here, to avoid doing it for every
3559 * queue lock we have to take.
3560 */
3561 local_irq_save(flags);
3562 while (!list_empty(&list)) {
3563 rq = list_entry_rq(list.next);
3564 list_del_init(&rq->queuelist);
3565 BUG_ON(!rq->q);
3566 if (rq->q != q) {
3567 /*
3568 * This drops the queue lock
3569 */
3570 if (q)
3571 queue_unplugged(q, depth, from_schedule);
3572 q = rq->q;
3573 depth = 0;
3574 spin_lock(q->queue_lock);
3575 }
3576
3577 /*
3578 * Short-circuit if @q is dead
3579 */
3580 if (unlikely(blk_queue_dying(q))) {
3581 __blk_end_request_all(rq, BLK_STS_IOERR);
3582 continue;
3583 }
3584
3585 /*
3586 * rq is already accounted, so use raw insert
3587 */
3588 if (op_is_flush(rq->cmd_flags))
3589 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3590 else
3591 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3592
3593 depth++;
3594 }
3595
3596 /*
3597 * This drops the queue lock
3598 */
3599 if (q)
3600 queue_unplugged(q, depth, from_schedule);
3601
3602 local_irq_restore(flags);
3603 }
3604
3605 void blk_finish_plug(struct blk_plug *plug)
3606 {
3607 if (plug != current->plug)
3608 return;
3609 blk_flush_plug_list(plug, false);
3610
3611 current->plug = NULL;
3612 }
3613 EXPORT_SYMBOL(blk_finish_plug);
3614
3615 #ifdef CONFIG_PM
3616 /**
3617 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3618 * @q: the queue of the device
3619 * @dev: the device the queue belongs to
3620 *
3621 * Description:
3622 * Initialize runtime-PM-related fields for @q and start auto suspend for
3623 * @dev. Drivers that want to take advantage of request-based runtime PM
3624 * should call this function after @dev has been initialized, and its
3625 * request queue @q has been allocated, and runtime PM for it can not happen
3626 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3627 * cases, driver should call this function before any I/O has taken place.
3628 *
3629 * This function takes care of setting up using auto suspend for the device,
3630 * the autosuspend delay is set to -1 to make runtime suspend impossible
3631 * until an updated value is either set by user or by driver. Drivers do
3632 * not need to touch other autosuspend settings.
3633 *
3634 * The block layer runtime PM is request based, so only works for drivers
3635 * that use request as their IO unit instead of those directly use bio's.
3636 */
3637 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3638 {
3639 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3640 if (q->mq_ops)
3641 return;
3642
3643 q->dev = dev;
3644 q->rpm_status = RPM_ACTIVE;
3645 pm_runtime_set_autosuspend_delay(q->dev, -1);
3646 pm_runtime_use_autosuspend(q->dev);
3647 }
3648 EXPORT_SYMBOL(blk_pm_runtime_init);
3649
3650 /**
3651 * blk_pre_runtime_suspend - Pre runtime suspend check
3652 * @q: the queue of the device
3653 *
3654 * Description:
3655 * This function will check if runtime suspend is allowed for the device
3656 * by examining if there are any requests pending in the queue. If there
3657 * are requests pending, the device can not be runtime suspended; otherwise,
3658 * the queue's status will be updated to SUSPENDING and the driver can
3659 * proceed to suspend the device.
3660 *
3661 * For the not allowed case, we mark last busy for the device so that
3662 * runtime PM core will try to autosuspend it some time later.
3663 *
3664 * This function should be called near the start of the device's
3665 * runtime_suspend callback.
3666 *
3667 * Return:
3668 * 0 - OK to runtime suspend the device
3669 * -EBUSY - Device should not be runtime suspended
3670 */
3671 int blk_pre_runtime_suspend(struct request_queue *q)
3672 {
3673 int ret = 0;
3674
3675 if (!q->dev)
3676 return ret;
3677
3678 spin_lock_irq(q->queue_lock);
3679 if (q->nr_pending) {
3680 ret = -EBUSY;
3681 pm_runtime_mark_last_busy(q->dev);
3682 } else {
3683 q->rpm_status = RPM_SUSPENDING;
3684 }
3685 spin_unlock_irq(q->queue_lock);
3686 return ret;
3687 }
3688 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3689
3690 /**
3691 * blk_post_runtime_suspend - Post runtime suspend processing
3692 * @q: the queue of the device
3693 * @err: return value of the device's runtime_suspend function
3694 *
3695 * Description:
3696 * Update the queue's runtime status according to the return value of the
3697 * device's runtime suspend function and mark last busy for the device so
3698 * that PM core will try to auto suspend the device at a later time.
3699 *
3700 * This function should be called near the end of the device's
3701 * runtime_suspend callback.
3702 */
3703 void blk_post_runtime_suspend(struct request_queue *q, int err)
3704 {
3705 if (!q->dev)
3706 return;
3707
3708 spin_lock_irq(q->queue_lock);
3709 if (!err) {
3710 q->rpm_status = RPM_SUSPENDED;
3711 } else {
3712 q->rpm_status = RPM_ACTIVE;
3713 pm_runtime_mark_last_busy(q->dev);
3714 }
3715 spin_unlock_irq(q->queue_lock);
3716 }
3717 EXPORT_SYMBOL(blk_post_runtime_suspend);
3718
3719 /**
3720 * blk_pre_runtime_resume - Pre runtime resume processing
3721 * @q: the queue of the device
3722 *
3723 * Description:
3724 * Update the queue's runtime status to RESUMING in preparation for the
3725 * runtime resume of the device.
3726 *
3727 * This function should be called near the start of the device's
3728 * runtime_resume callback.
3729 */
3730 void blk_pre_runtime_resume(struct request_queue *q)
3731 {
3732 if (!q->dev)
3733 return;
3734
3735 spin_lock_irq(q->queue_lock);
3736 q->rpm_status = RPM_RESUMING;
3737 spin_unlock_irq(q->queue_lock);
3738 }
3739 EXPORT_SYMBOL(blk_pre_runtime_resume);
3740
3741 /**
3742 * blk_post_runtime_resume - Post runtime resume processing
3743 * @q: the queue of the device
3744 * @err: return value of the device's runtime_resume function
3745 *
3746 * Description:
3747 * Update the queue's runtime status according to the return value of the
3748 * device's runtime_resume function. If it is successfully resumed, process
3749 * the requests that are queued into the device's queue when it is resuming
3750 * and then mark last busy and initiate autosuspend for it.
3751 *
3752 * This function should be called near the end of the device's
3753 * runtime_resume callback.
3754 */
3755 void blk_post_runtime_resume(struct request_queue *q, int err)
3756 {
3757 if (!q->dev)
3758 return;
3759
3760 spin_lock_irq(q->queue_lock);
3761 if (!err) {
3762 q->rpm_status = RPM_ACTIVE;
3763 __blk_run_queue(q);
3764 pm_runtime_mark_last_busy(q->dev);
3765 pm_request_autosuspend(q->dev);
3766 } else {
3767 q->rpm_status = RPM_SUSPENDED;
3768 }
3769 spin_unlock_irq(q->queue_lock);
3770 }
3771 EXPORT_SYMBOL(blk_post_runtime_resume);
3772
3773 /**
3774 * blk_set_runtime_active - Force runtime status of the queue to be active
3775 * @q: the queue of the device
3776 *
3777 * If the device is left runtime suspended during system suspend the resume
3778 * hook typically resumes the device and corrects runtime status
3779 * accordingly. However, that does not affect the queue runtime PM status
3780 * which is still "suspended". This prevents processing requests from the
3781 * queue.
3782 *
3783 * This function can be used in driver's resume hook to correct queue
3784 * runtime PM status and re-enable peeking requests from the queue. It
3785 * should be called before first request is added to the queue.
3786 */
3787 void blk_set_runtime_active(struct request_queue *q)
3788 {
3789 spin_lock_irq(q->queue_lock);
3790 q->rpm_status = RPM_ACTIVE;
3791 pm_runtime_mark_last_busy(q->dev);
3792 pm_request_autosuspend(q->dev);
3793 spin_unlock_irq(q->queue_lock);
3794 }
3795 EXPORT_SYMBOL(blk_set_runtime_active);
3796 #endif
3797
3798 int __init blk_dev_init(void)
3799 {
3800 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3801 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3802 FIELD_SIZEOF(struct request, cmd_flags));
3803 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3804 FIELD_SIZEOF(struct bio, bi_opf));
3805
3806 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3807 kblockd_workqueue = alloc_workqueue("kblockd",
3808 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3809 if (!kblockd_workqueue)
3810 panic("Failed to create kblockd\n");
3811
3812 request_cachep = kmem_cache_create("blkdev_requests",
3813 sizeof(struct request), 0, SLAB_PANIC, NULL);
3814
3815 blk_requestq_cachep = kmem_cache_create("request_queue",
3816 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3817
3818 #ifdef CONFIG_DEBUG_FS
3819 blk_debugfs_root = debugfs_create_dir("block", NULL);
3820 #endif
3821
3822 return 0;
3823 }