]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: add a op_is_flush helper
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-mq-sched.h"
43 #include "blk-wbt.h"
44
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
50
51 DEFINE_IDA(blk_queue_ida);
52
53 /*
54 * For the allocated request tables
55 */
56 struct kmem_cache *request_cachep;
57
58 /*
59 * For queue allocation
60 */
61 struct kmem_cache *blk_requestq_cachep;
62
63 /*
64 * Controlling structure to kblockd
65 */
66 static struct workqueue_struct *kblockd_workqueue;
67
68 static void blk_clear_congested(struct request_list *rl, int sync)
69 {
70 #ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72 #else
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
79 #endif
80 }
81
82 static void blk_set_congested(struct request_list *rl, int sync)
83 {
84 #ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86 #else
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
90 #endif
91 }
92
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106 }
107
108 /**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
115 */
116 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117 {
118 struct request_queue *q = bdev_get_queue(bdev);
119
120 return &q->backing_dev_info;
121 }
122 EXPORT_SYMBOL(blk_get_backing_dev_info);
123
124 void blk_rq_init(struct request_queue *q, struct request *rq)
125 {
126 memset(rq, 0, sizeof(*rq));
127
128 INIT_LIST_HEAD(&rq->queuelist);
129 INIT_LIST_HEAD(&rq->timeout_list);
130 rq->cpu = -1;
131 rq->q = q;
132 rq->__sector = (sector_t) -1;
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
135 rq->cmd = rq->__cmd;
136 rq->cmd_len = BLK_MAX_CDB;
137 rq->tag = -1;
138 rq->internal_tag = -1;
139 rq->start_time = jiffies;
140 set_start_time_ns(rq);
141 rq->part = NULL;
142 }
143 EXPORT_SYMBOL(blk_rq_init);
144
145 static void req_bio_endio(struct request *rq, struct bio *bio,
146 unsigned int nbytes, int error)
147 {
148 if (error)
149 bio->bi_error = error;
150
151 if (unlikely(rq->rq_flags & RQF_QUIET))
152 bio_set_flag(bio, BIO_QUIET);
153
154 bio_advance(bio, nbytes);
155
156 /* don't actually finish bio if it's part of flush sequence */
157 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
158 bio_endio(bio);
159 }
160
161 void blk_dump_rq_flags(struct request *rq, char *msg)
162 {
163 int bit;
164
165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 (unsigned long long) rq->cmd_flags);
168
169 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
170 (unsigned long long)blk_rq_pos(rq),
171 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
172 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
173 rq->bio, rq->biotail, blk_rq_bytes(rq));
174
175 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
176 printk(KERN_INFO " cdb: ");
177 for (bit = 0; bit < BLK_MAX_CDB; bit++)
178 printk("%02x ", rq->cmd[bit]);
179 printk("\n");
180 }
181 }
182 EXPORT_SYMBOL(blk_dump_rq_flags);
183
184 static void blk_delay_work(struct work_struct *work)
185 {
186 struct request_queue *q;
187
188 q = container_of(work, struct request_queue, delay_work.work);
189 spin_lock_irq(q->queue_lock);
190 __blk_run_queue(q);
191 spin_unlock_irq(q->queue_lock);
192 }
193
194 /**
195 * blk_delay_queue - restart queueing after defined interval
196 * @q: The &struct request_queue in question
197 * @msecs: Delay in msecs
198 *
199 * Description:
200 * Sometimes queueing needs to be postponed for a little while, to allow
201 * resources to come back. This function will make sure that queueing is
202 * restarted around the specified time. Queue lock must be held.
203 */
204 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
205 {
206 if (likely(!blk_queue_dead(q)))
207 queue_delayed_work(kblockd_workqueue, &q->delay_work,
208 msecs_to_jiffies(msecs));
209 }
210 EXPORT_SYMBOL(blk_delay_queue);
211
212 /**
213 * blk_start_queue_async - asynchronously restart a previously stopped queue
214 * @q: The &struct request_queue in question
215 *
216 * Description:
217 * blk_start_queue_async() will clear the stop flag on the queue, and
218 * ensure that the request_fn for the queue is run from an async
219 * context.
220 **/
221 void blk_start_queue_async(struct request_queue *q)
222 {
223 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
224 blk_run_queue_async(q);
225 }
226 EXPORT_SYMBOL(blk_start_queue_async);
227
228 /**
229 * blk_start_queue - restart a previously stopped queue
230 * @q: The &struct request_queue in question
231 *
232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 **/
237 void blk_start_queue(struct request_queue *q)
238 {
239 WARN_ON(!irqs_disabled());
240
241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 __blk_run_queue(q);
243 }
244 EXPORT_SYMBOL(blk_start_queue);
245
246 /**
247 * blk_stop_queue - stop a queue
248 * @q: The &struct request_queue in question
249 *
250 * Description:
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 **/
260 void blk_stop_queue(struct request_queue *q)
261 {
262 cancel_delayed_work(&q->delay_work);
263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 }
265 EXPORT_SYMBOL(blk_stop_queue);
266
267 /**
268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue
270 *
271 * Description:
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
276 * that the callbacks might use. The caller must already have made sure
277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function.
279 *
280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevator_exit()
282 * and blkcg_exit_queue() to be called with queue lock initialized.
283 *
284 */
285 void blk_sync_queue(struct request_queue *q)
286 {
287 del_timer_sync(&q->timeout);
288
289 if (q->mq_ops) {
290 struct blk_mq_hw_ctx *hctx;
291 int i;
292
293 queue_for_each_hw_ctx(q, hctx, i) {
294 cancel_work_sync(&hctx->run_work);
295 cancel_delayed_work_sync(&hctx->delay_work);
296 }
297 } else {
298 cancel_delayed_work_sync(&q->delay_work);
299 }
300 }
301 EXPORT_SYMBOL(blk_sync_queue);
302
303 /**
304 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
305 * @q: The queue to run
306 *
307 * Description:
308 * Invoke request handling on a queue if there are any pending requests.
309 * May be used to restart request handling after a request has completed.
310 * This variant runs the queue whether or not the queue has been
311 * stopped. Must be called with the queue lock held and interrupts
312 * disabled. See also @blk_run_queue.
313 */
314 inline void __blk_run_queue_uncond(struct request_queue *q)
315 {
316 if (unlikely(blk_queue_dead(q)))
317 return;
318
319 /*
320 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
321 * the queue lock internally. As a result multiple threads may be
322 * running such a request function concurrently. Keep track of the
323 * number of active request_fn invocations such that blk_drain_queue()
324 * can wait until all these request_fn calls have finished.
325 */
326 q->request_fn_active++;
327 q->request_fn(q);
328 q->request_fn_active--;
329 }
330 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
331
332 /**
333 * __blk_run_queue - run a single device queue
334 * @q: The queue to run
335 *
336 * Description:
337 * See @blk_run_queue. This variant must be called with the queue lock
338 * held and interrupts disabled.
339 */
340 void __blk_run_queue(struct request_queue *q)
341 {
342 if (unlikely(blk_queue_stopped(q)))
343 return;
344
345 __blk_run_queue_uncond(q);
346 }
347 EXPORT_SYMBOL(__blk_run_queue);
348
349 /**
350 * blk_run_queue_async - run a single device queue in workqueue context
351 * @q: The queue to run
352 *
353 * Description:
354 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
355 * of us. The caller must hold the queue lock.
356 */
357 void blk_run_queue_async(struct request_queue *q)
358 {
359 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
360 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
361 }
362 EXPORT_SYMBOL(blk_run_queue_async);
363
364 /**
365 * blk_run_queue - run a single device queue
366 * @q: The queue to run
367 *
368 * Description:
369 * Invoke request handling on this queue, if it has pending work to do.
370 * May be used to restart queueing when a request has completed.
371 */
372 void blk_run_queue(struct request_queue *q)
373 {
374 unsigned long flags;
375
376 spin_lock_irqsave(q->queue_lock, flags);
377 __blk_run_queue(q);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL(blk_run_queue);
381
382 void blk_put_queue(struct request_queue *q)
383 {
384 kobject_put(&q->kobj);
385 }
386 EXPORT_SYMBOL(blk_put_queue);
387
388 /**
389 * __blk_drain_queue - drain requests from request_queue
390 * @q: queue to drain
391 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
392 *
393 * Drain requests from @q. If @drain_all is set, all requests are drained.
394 * If not, only ELVPRIV requests are drained. The caller is responsible
395 * for ensuring that no new requests which need to be drained are queued.
396 */
397 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
398 __releases(q->queue_lock)
399 __acquires(q->queue_lock)
400 {
401 int i;
402
403 lockdep_assert_held(q->queue_lock);
404
405 while (true) {
406 bool drain = false;
407
408 /*
409 * The caller might be trying to drain @q before its
410 * elevator is initialized.
411 */
412 if (q->elevator)
413 elv_drain_elevator(q);
414
415 blkcg_drain_queue(q);
416
417 /*
418 * This function might be called on a queue which failed
419 * driver init after queue creation or is not yet fully
420 * active yet. Some drivers (e.g. fd and loop) get unhappy
421 * in such cases. Kick queue iff dispatch queue has
422 * something on it and @q has request_fn set.
423 */
424 if (!list_empty(&q->queue_head) && q->request_fn)
425 __blk_run_queue(q);
426
427 drain |= q->nr_rqs_elvpriv;
428 drain |= q->request_fn_active;
429
430 /*
431 * Unfortunately, requests are queued at and tracked from
432 * multiple places and there's no single counter which can
433 * be drained. Check all the queues and counters.
434 */
435 if (drain_all) {
436 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
437 drain |= !list_empty(&q->queue_head);
438 for (i = 0; i < 2; i++) {
439 drain |= q->nr_rqs[i];
440 drain |= q->in_flight[i];
441 if (fq)
442 drain |= !list_empty(&fq->flush_queue[i]);
443 }
444 }
445
446 if (!drain)
447 break;
448
449 spin_unlock_irq(q->queue_lock);
450
451 msleep(10);
452
453 spin_lock_irq(q->queue_lock);
454 }
455
456 /*
457 * With queue marked dead, any woken up waiter will fail the
458 * allocation path, so the wakeup chaining is lost and we're
459 * left with hung waiters. We need to wake up those waiters.
460 */
461 if (q->request_fn) {
462 struct request_list *rl;
463
464 blk_queue_for_each_rl(rl, q)
465 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
466 wake_up_all(&rl->wait[i]);
467 }
468 }
469
470 /**
471 * blk_queue_bypass_start - enter queue bypass mode
472 * @q: queue of interest
473 *
474 * In bypass mode, only the dispatch FIFO queue of @q is used. This
475 * function makes @q enter bypass mode and drains all requests which were
476 * throttled or issued before. On return, it's guaranteed that no request
477 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
478 * inside queue or RCU read lock.
479 */
480 void blk_queue_bypass_start(struct request_queue *q)
481 {
482 spin_lock_irq(q->queue_lock);
483 q->bypass_depth++;
484 queue_flag_set(QUEUE_FLAG_BYPASS, q);
485 spin_unlock_irq(q->queue_lock);
486
487 /*
488 * Queues start drained. Skip actual draining till init is
489 * complete. This avoids lenghty delays during queue init which
490 * can happen many times during boot.
491 */
492 if (blk_queue_init_done(q)) {
493 spin_lock_irq(q->queue_lock);
494 __blk_drain_queue(q, false);
495 spin_unlock_irq(q->queue_lock);
496
497 /* ensure blk_queue_bypass() is %true inside RCU read lock */
498 synchronize_rcu();
499 }
500 }
501 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
502
503 /**
504 * blk_queue_bypass_end - leave queue bypass mode
505 * @q: queue of interest
506 *
507 * Leave bypass mode and restore the normal queueing behavior.
508 */
509 void blk_queue_bypass_end(struct request_queue *q)
510 {
511 spin_lock_irq(q->queue_lock);
512 if (!--q->bypass_depth)
513 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
514 WARN_ON_ONCE(q->bypass_depth < 0);
515 spin_unlock_irq(q->queue_lock);
516 }
517 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
518
519 void blk_set_queue_dying(struct request_queue *q)
520 {
521 spin_lock_irq(q->queue_lock);
522 queue_flag_set(QUEUE_FLAG_DYING, q);
523 spin_unlock_irq(q->queue_lock);
524
525 if (q->mq_ops)
526 blk_mq_wake_waiters(q);
527 else {
528 struct request_list *rl;
529
530 blk_queue_for_each_rl(rl, q) {
531 if (rl->rq_pool) {
532 wake_up(&rl->wait[BLK_RW_SYNC]);
533 wake_up(&rl->wait[BLK_RW_ASYNC]);
534 }
535 }
536 }
537 }
538 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
539
540 /**
541 * blk_cleanup_queue - shutdown a request queue
542 * @q: request queue to shutdown
543 *
544 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
545 * put it. All future requests will be failed immediately with -ENODEV.
546 */
547 void blk_cleanup_queue(struct request_queue *q)
548 {
549 spinlock_t *lock = q->queue_lock;
550
551 /* mark @q DYING, no new request or merges will be allowed afterwards */
552 mutex_lock(&q->sysfs_lock);
553 blk_set_queue_dying(q);
554 spin_lock_irq(lock);
555
556 /*
557 * A dying queue is permanently in bypass mode till released. Note
558 * that, unlike blk_queue_bypass_start(), we aren't performing
559 * synchronize_rcu() after entering bypass mode to avoid the delay
560 * as some drivers create and destroy a lot of queues while
561 * probing. This is still safe because blk_release_queue() will be
562 * called only after the queue refcnt drops to zero and nothing,
563 * RCU or not, would be traversing the queue by then.
564 */
565 q->bypass_depth++;
566 queue_flag_set(QUEUE_FLAG_BYPASS, q);
567
568 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
569 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
570 queue_flag_set(QUEUE_FLAG_DYING, q);
571 spin_unlock_irq(lock);
572 mutex_unlock(&q->sysfs_lock);
573
574 /*
575 * Drain all requests queued before DYING marking. Set DEAD flag to
576 * prevent that q->request_fn() gets invoked after draining finished.
577 */
578 blk_freeze_queue(q);
579 spin_lock_irq(lock);
580 if (!q->mq_ops)
581 __blk_drain_queue(q, true);
582 queue_flag_set(QUEUE_FLAG_DEAD, q);
583 spin_unlock_irq(lock);
584
585 /* for synchronous bio-based driver finish in-flight integrity i/o */
586 blk_flush_integrity();
587
588 /* @q won't process any more request, flush async actions */
589 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
590 blk_sync_queue(q);
591
592 if (q->mq_ops)
593 blk_mq_free_queue(q);
594 percpu_ref_exit(&q->q_usage_counter);
595
596 spin_lock_irq(lock);
597 if (q->queue_lock != &q->__queue_lock)
598 q->queue_lock = &q->__queue_lock;
599 spin_unlock_irq(lock);
600
601 bdi_unregister(&q->backing_dev_info);
602
603 /* @q is and will stay empty, shutdown and put */
604 blk_put_queue(q);
605 }
606 EXPORT_SYMBOL(blk_cleanup_queue);
607
608 /* Allocate memory local to the request queue */
609 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
610 {
611 int nid = (int)(long)data;
612 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
613 }
614
615 static void free_request_struct(void *element, void *unused)
616 {
617 kmem_cache_free(request_cachep, element);
618 }
619
620 int blk_init_rl(struct request_list *rl, struct request_queue *q,
621 gfp_t gfp_mask)
622 {
623 if (unlikely(rl->rq_pool))
624 return 0;
625
626 rl->q = q;
627 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
628 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
629 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
630 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
631
632 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
633 free_request_struct,
634 (void *)(long)q->node, gfp_mask,
635 q->node);
636 if (!rl->rq_pool)
637 return -ENOMEM;
638
639 return 0;
640 }
641
642 void blk_exit_rl(struct request_list *rl)
643 {
644 if (rl->rq_pool)
645 mempool_destroy(rl->rq_pool);
646 }
647
648 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
649 {
650 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
651 }
652 EXPORT_SYMBOL(blk_alloc_queue);
653
654 int blk_queue_enter(struct request_queue *q, bool nowait)
655 {
656 while (true) {
657 int ret;
658
659 if (percpu_ref_tryget_live(&q->q_usage_counter))
660 return 0;
661
662 if (nowait)
663 return -EBUSY;
664
665 ret = wait_event_interruptible(q->mq_freeze_wq,
666 !atomic_read(&q->mq_freeze_depth) ||
667 blk_queue_dying(q));
668 if (blk_queue_dying(q))
669 return -ENODEV;
670 if (ret)
671 return ret;
672 }
673 }
674
675 void blk_queue_exit(struct request_queue *q)
676 {
677 percpu_ref_put(&q->q_usage_counter);
678 }
679
680 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
681 {
682 struct request_queue *q =
683 container_of(ref, struct request_queue, q_usage_counter);
684
685 wake_up_all(&q->mq_freeze_wq);
686 }
687
688 static void blk_rq_timed_out_timer(unsigned long data)
689 {
690 struct request_queue *q = (struct request_queue *)data;
691
692 kblockd_schedule_work(&q->timeout_work);
693 }
694
695 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
696 {
697 struct request_queue *q;
698 int err;
699
700 q = kmem_cache_alloc_node(blk_requestq_cachep,
701 gfp_mask | __GFP_ZERO, node_id);
702 if (!q)
703 return NULL;
704
705 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
706 if (q->id < 0)
707 goto fail_q;
708
709 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
710 if (!q->bio_split)
711 goto fail_id;
712
713 q->backing_dev_info.ra_pages =
714 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
715 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
716 q->backing_dev_info.name = "block";
717 q->node = node_id;
718
719 err = bdi_init(&q->backing_dev_info);
720 if (err)
721 goto fail_split;
722
723 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
724 laptop_mode_timer_fn, (unsigned long) q);
725 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
726 INIT_LIST_HEAD(&q->queue_head);
727 INIT_LIST_HEAD(&q->timeout_list);
728 INIT_LIST_HEAD(&q->icq_list);
729 #ifdef CONFIG_BLK_CGROUP
730 INIT_LIST_HEAD(&q->blkg_list);
731 #endif
732 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
733
734 kobject_init(&q->kobj, &blk_queue_ktype);
735
736 mutex_init(&q->sysfs_lock);
737 spin_lock_init(&q->__queue_lock);
738
739 /*
740 * By default initialize queue_lock to internal lock and driver can
741 * override it later if need be.
742 */
743 q->queue_lock = &q->__queue_lock;
744
745 /*
746 * A queue starts its life with bypass turned on to avoid
747 * unnecessary bypass on/off overhead and nasty surprises during
748 * init. The initial bypass will be finished when the queue is
749 * registered by blk_register_queue().
750 */
751 q->bypass_depth = 1;
752 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
753
754 init_waitqueue_head(&q->mq_freeze_wq);
755
756 /*
757 * Init percpu_ref in atomic mode so that it's faster to shutdown.
758 * See blk_register_queue() for details.
759 */
760 if (percpu_ref_init(&q->q_usage_counter,
761 blk_queue_usage_counter_release,
762 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
763 goto fail_bdi;
764
765 if (blkcg_init_queue(q))
766 goto fail_ref;
767
768 return q;
769
770 fail_ref:
771 percpu_ref_exit(&q->q_usage_counter);
772 fail_bdi:
773 bdi_destroy(&q->backing_dev_info);
774 fail_split:
775 bioset_free(q->bio_split);
776 fail_id:
777 ida_simple_remove(&blk_queue_ida, q->id);
778 fail_q:
779 kmem_cache_free(blk_requestq_cachep, q);
780 return NULL;
781 }
782 EXPORT_SYMBOL(blk_alloc_queue_node);
783
784 /**
785 * blk_init_queue - prepare a request queue for use with a block device
786 * @rfn: The function to be called to process requests that have been
787 * placed on the queue.
788 * @lock: Request queue spin lock
789 *
790 * Description:
791 * If a block device wishes to use the standard request handling procedures,
792 * which sorts requests and coalesces adjacent requests, then it must
793 * call blk_init_queue(). The function @rfn will be called when there
794 * are requests on the queue that need to be processed. If the device
795 * supports plugging, then @rfn may not be called immediately when requests
796 * are available on the queue, but may be called at some time later instead.
797 * Plugged queues are generally unplugged when a buffer belonging to one
798 * of the requests on the queue is needed, or due to memory pressure.
799 *
800 * @rfn is not required, or even expected, to remove all requests off the
801 * queue, but only as many as it can handle at a time. If it does leave
802 * requests on the queue, it is responsible for arranging that the requests
803 * get dealt with eventually.
804 *
805 * The queue spin lock must be held while manipulating the requests on the
806 * request queue; this lock will be taken also from interrupt context, so irq
807 * disabling is needed for it.
808 *
809 * Function returns a pointer to the initialized request queue, or %NULL if
810 * it didn't succeed.
811 *
812 * Note:
813 * blk_init_queue() must be paired with a blk_cleanup_queue() call
814 * when the block device is deactivated (such as at module unload).
815 **/
816
817 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
818 {
819 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
820 }
821 EXPORT_SYMBOL(blk_init_queue);
822
823 struct request_queue *
824 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
825 {
826 struct request_queue *uninit_q, *q;
827
828 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
829 if (!uninit_q)
830 return NULL;
831
832 q = blk_init_allocated_queue(uninit_q, rfn, lock);
833 if (!q)
834 blk_cleanup_queue(uninit_q);
835
836 return q;
837 }
838 EXPORT_SYMBOL(blk_init_queue_node);
839
840 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
841
842 struct request_queue *
843 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
844 spinlock_t *lock)
845 {
846 if (!q)
847 return NULL;
848
849 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
850 if (!q->fq)
851 return NULL;
852
853 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
854 goto fail;
855
856 INIT_WORK(&q->timeout_work, blk_timeout_work);
857 q->request_fn = rfn;
858 q->prep_rq_fn = NULL;
859 q->unprep_rq_fn = NULL;
860 q->queue_flags |= QUEUE_FLAG_DEFAULT;
861
862 /* Override internal queue lock with supplied lock pointer */
863 if (lock)
864 q->queue_lock = lock;
865
866 /*
867 * This also sets hw/phys segments, boundary and size
868 */
869 blk_queue_make_request(q, blk_queue_bio);
870
871 q->sg_reserved_size = INT_MAX;
872
873 /* Protect q->elevator from elevator_change */
874 mutex_lock(&q->sysfs_lock);
875
876 /* init elevator */
877 if (elevator_init(q, NULL)) {
878 mutex_unlock(&q->sysfs_lock);
879 goto fail;
880 }
881
882 mutex_unlock(&q->sysfs_lock);
883
884 return q;
885
886 fail:
887 blk_free_flush_queue(q->fq);
888 wbt_exit(q);
889 return NULL;
890 }
891 EXPORT_SYMBOL(blk_init_allocated_queue);
892
893 bool blk_get_queue(struct request_queue *q)
894 {
895 if (likely(!blk_queue_dying(q))) {
896 __blk_get_queue(q);
897 return true;
898 }
899
900 return false;
901 }
902 EXPORT_SYMBOL(blk_get_queue);
903
904 static inline void blk_free_request(struct request_list *rl, struct request *rq)
905 {
906 if (rq->rq_flags & RQF_ELVPRIV) {
907 elv_put_request(rl->q, rq);
908 if (rq->elv.icq)
909 put_io_context(rq->elv.icq->ioc);
910 }
911
912 mempool_free(rq, rl->rq_pool);
913 }
914
915 /*
916 * ioc_batching returns true if the ioc is a valid batching request and
917 * should be given priority access to a request.
918 */
919 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
920 {
921 if (!ioc)
922 return 0;
923
924 /*
925 * Make sure the process is able to allocate at least 1 request
926 * even if the batch times out, otherwise we could theoretically
927 * lose wakeups.
928 */
929 return ioc->nr_batch_requests == q->nr_batching ||
930 (ioc->nr_batch_requests > 0
931 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
932 }
933
934 /*
935 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
936 * will cause the process to be a "batcher" on all queues in the system. This
937 * is the behaviour we want though - once it gets a wakeup it should be given
938 * a nice run.
939 */
940 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
941 {
942 if (!ioc || ioc_batching(q, ioc))
943 return;
944
945 ioc->nr_batch_requests = q->nr_batching;
946 ioc->last_waited = jiffies;
947 }
948
949 static void __freed_request(struct request_list *rl, int sync)
950 {
951 struct request_queue *q = rl->q;
952
953 if (rl->count[sync] < queue_congestion_off_threshold(q))
954 blk_clear_congested(rl, sync);
955
956 if (rl->count[sync] + 1 <= q->nr_requests) {
957 if (waitqueue_active(&rl->wait[sync]))
958 wake_up(&rl->wait[sync]);
959
960 blk_clear_rl_full(rl, sync);
961 }
962 }
963
964 /*
965 * A request has just been released. Account for it, update the full and
966 * congestion status, wake up any waiters. Called under q->queue_lock.
967 */
968 static void freed_request(struct request_list *rl, bool sync,
969 req_flags_t rq_flags)
970 {
971 struct request_queue *q = rl->q;
972
973 q->nr_rqs[sync]--;
974 rl->count[sync]--;
975 if (rq_flags & RQF_ELVPRIV)
976 q->nr_rqs_elvpriv--;
977
978 __freed_request(rl, sync);
979
980 if (unlikely(rl->starved[sync ^ 1]))
981 __freed_request(rl, sync ^ 1);
982 }
983
984 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
985 {
986 struct request_list *rl;
987 int on_thresh, off_thresh;
988
989 spin_lock_irq(q->queue_lock);
990 q->nr_requests = nr;
991 blk_queue_congestion_threshold(q);
992 on_thresh = queue_congestion_on_threshold(q);
993 off_thresh = queue_congestion_off_threshold(q);
994
995 blk_queue_for_each_rl(rl, q) {
996 if (rl->count[BLK_RW_SYNC] >= on_thresh)
997 blk_set_congested(rl, BLK_RW_SYNC);
998 else if (rl->count[BLK_RW_SYNC] < off_thresh)
999 blk_clear_congested(rl, BLK_RW_SYNC);
1000
1001 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1002 blk_set_congested(rl, BLK_RW_ASYNC);
1003 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1004 blk_clear_congested(rl, BLK_RW_ASYNC);
1005
1006 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1007 blk_set_rl_full(rl, BLK_RW_SYNC);
1008 } else {
1009 blk_clear_rl_full(rl, BLK_RW_SYNC);
1010 wake_up(&rl->wait[BLK_RW_SYNC]);
1011 }
1012
1013 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1014 blk_set_rl_full(rl, BLK_RW_ASYNC);
1015 } else {
1016 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1017 wake_up(&rl->wait[BLK_RW_ASYNC]);
1018 }
1019 }
1020
1021 spin_unlock_irq(q->queue_lock);
1022 return 0;
1023 }
1024
1025 /*
1026 * Determine if elevator data should be initialized when allocating the
1027 * request associated with @bio.
1028 */
1029 static bool blk_rq_should_init_elevator(struct bio *bio)
1030 {
1031 if (!bio)
1032 return true;
1033
1034 /*
1035 * Flush requests do not use the elevator so skip initialization.
1036 * This allows a request to share the flush and elevator data.
1037 */
1038 if (op_is_flush(bio->bi_opf))
1039 return false;
1040
1041 return true;
1042 }
1043
1044 /**
1045 * __get_request - get a free request
1046 * @rl: request list to allocate from
1047 * @op: operation and flags
1048 * @bio: bio to allocate request for (can be %NULL)
1049 * @gfp_mask: allocation mask
1050 *
1051 * Get a free request from @q. This function may fail under memory
1052 * pressure or if @q is dead.
1053 *
1054 * Must be called with @q->queue_lock held and,
1055 * Returns ERR_PTR on failure, with @q->queue_lock held.
1056 * Returns request pointer on success, with @q->queue_lock *not held*.
1057 */
1058 static struct request *__get_request(struct request_list *rl, unsigned int op,
1059 struct bio *bio, gfp_t gfp_mask)
1060 {
1061 struct request_queue *q = rl->q;
1062 struct request *rq;
1063 struct elevator_type *et = q->elevator->type;
1064 struct io_context *ioc = rq_ioc(bio);
1065 struct io_cq *icq = NULL;
1066 const bool is_sync = op_is_sync(op);
1067 int may_queue;
1068 req_flags_t rq_flags = RQF_ALLOCED;
1069
1070 if (unlikely(blk_queue_dying(q)))
1071 return ERR_PTR(-ENODEV);
1072
1073 may_queue = elv_may_queue(q, op);
1074 if (may_queue == ELV_MQUEUE_NO)
1075 goto rq_starved;
1076
1077 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1078 if (rl->count[is_sync]+1 >= q->nr_requests) {
1079 /*
1080 * The queue will fill after this allocation, so set
1081 * it as full, and mark this process as "batching".
1082 * This process will be allowed to complete a batch of
1083 * requests, others will be blocked.
1084 */
1085 if (!blk_rl_full(rl, is_sync)) {
1086 ioc_set_batching(q, ioc);
1087 blk_set_rl_full(rl, is_sync);
1088 } else {
1089 if (may_queue != ELV_MQUEUE_MUST
1090 && !ioc_batching(q, ioc)) {
1091 /*
1092 * The queue is full and the allocating
1093 * process is not a "batcher", and not
1094 * exempted by the IO scheduler
1095 */
1096 return ERR_PTR(-ENOMEM);
1097 }
1098 }
1099 }
1100 blk_set_congested(rl, is_sync);
1101 }
1102
1103 /*
1104 * Only allow batching queuers to allocate up to 50% over the defined
1105 * limit of requests, otherwise we could have thousands of requests
1106 * allocated with any setting of ->nr_requests
1107 */
1108 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1109 return ERR_PTR(-ENOMEM);
1110
1111 q->nr_rqs[is_sync]++;
1112 rl->count[is_sync]++;
1113 rl->starved[is_sync] = 0;
1114
1115 /*
1116 * Decide whether the new request will be managed by elevator. If
1117 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1118 * prevent the current elevator from being destroyed until the new
1119 * request is freed. This guarantees icq's won't be destroyed and
1120 * makes creating new ones safe.
1121 *
1122 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1123 * it will be created after releasing queue_lock.
1124 */
1125 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1126 rq_flags |= RQF_ELVPRIV;
1127 q->nr_rqs_elvpriv++;
1128 if (et->icq_cache && ioc)
1129 icq = ioc_lookup_icq(ioc, q);
1130 }
1131
1132 if (blk_queue_io_stat(q))
1133 rq_flags |= RQF_IO_STAT;
1134 spin_unlock_irq(q->queue_lock);
1135
1136 /* allocate and init request */
1137 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1138 if (!rq)
1139 goto fail_alloc;
1140
1141 blk_rq_init(q, rq);
1142 blk_rq_set_rl(rq, rl);
1143 blk_rq_set_prio(rq, ioc);
1144 rq->cmd_flags = op;
1145 rq->rq_flags = rq_flags;
1146
1147 /* init elvpriv */
1148 if (rq_flags & RQF_ELVPRIV) {
1149 if (unlikely(et->icq_cache && !icq)) {
1150 if (ioc)
1151 icq = ioc_create_icq(ioc, q, gfp_mask);
1152 if (!icq)
1153 goto fail_elvpriv;
1154 }
1155
1156 rq->elv.icq = icq;
1157 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1158 goto fail_elvpriv;
1159
1160 /* @rq->elv.icq holds io_context until @rq is freed */
1161 if (icq)
1162 get_io_context(icq->ioc);
1163 }
1164 out:
1165 /*
1166 * ioc may be NULL here, and ioc_batching will be false. That's
1167 * OK, if the queue is under the request limit then requests need
1168 * not count toward the nr_batch_requests limit. There will always
1169 * be some limit enforced by BLK_BATCH_TIME.
1170 */
1171 if (ioc_batching(q, ioc))
1172 ioc->nr_batch_requests--;
1173
1174 trace_block_getrq(q, bio, op);
1175 return rq;
1176
1177 fail_elvpriv:
1178 /*
1179 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1180 * and may fail indefinitely under memory pressure and thus
1181 * shouldn't stall IO. Treat this request as !elvpriv. This will
1182 * disturb iosched and blkcg but weird is bettern than dead.
1183 */
1184 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1185 __func__, dev_name(q->backing_dev_info.dev));
1186
1187 rq->rq_flags &= ~RQF_ELVPRIV;
1188 rq->elv.icq = NULL;
1189
1190 spin_lock_irq(q->queue_lock);
1191 q->nr_rqs_elvpriv--;
1192 spin_unlock_irq(q->queue_lock);
1193 goto out;
1194
1195 fail_alloc:
1196 /*
1197 * Allocation failed presumably due to memory. Undo anything we
1198 * might have messed up.
1199 *
1200 * Allocating task should really be put onto the front of the wait
1201 * queue, but this is pretty rare.
1202 */
1203 spin_lock_irq(q->queue_lock);
1204 freed_request(rl, is_sync, rq_flags);
1205
1206 /*
1207 * in the very unlikely event that allocation failed and no
1208 * requests for this direction was pending, mark us starved so that
1209 * freeing of a request in the other direction will notice
1210 * us. another possible fix would be to split the rq mempool into
1211 * READ and WRITE
1212 */
1213 rq_starved:
1214 if (unlikely(rl->count[is_sync] == 0))
1215 rl->starved[is_sync] = 1;
1216 return ERR_PTR(-ENOMEM);
1217 }
1218
1219 /**
1220 * get_request - get a free request
1221 * @q: request_queue to allocate request from
1222 * @op: operation and flags
1223 * @bio: bio to allocate request for (can be %NULL)
1224 * @gfp_mask: allocation mask
1225 *
1226 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1227 * this function keeps retrying under memory pressure and fails iff @q is dead.
1228 *
1229 * Must be called with @q->queue_lock held and,
1230 * Returns ERR_PTR on failure, with @q->queue_lock held.
1231 * Returns request pointer on success, with @q->queue_lock *not held*.
1232 */
1233 static struct request *get_request(struct request_queue *q, unsigned int op,
1234 struct bio *bio, gfp_t gfp_mask)
1235 {
1236 const bool is_sync = op_is_sync(op);
1237 DEFINE_WAIT(wait);
1238 struct request_list *rl;
1239 struct request *rq;
1240
1241 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1242 retry:
1243 rq = __get_request(rl, op, bio, gfp_mask);
1244 if (!IS_ERR(rq))
1245 return rq;
1246
1247 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1248 blk_put_rl(rl);
1249 return rq;
1250 }
1251
1252 /* wait on @rl and retry */
1253 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1254 TASK_UNINTERRUPTIBLE);
1255
1256 trace_block_sleeprq(q, bio, op);
1257
1258 spin_unlock_irq(q->queue_lock);
1259 io_schedule();
1260
1261 /*
1262 * After sleeping, we become a "batching" process and will be able
1263 * to allocate at least one request, and up to a big batch of them
1264 * for a small period time. See ioc_batching, ioc_set_batching
1265 */
1266 ioc_set_batching(q, current->io_context);
1267
1268 spin_lock_irq(q->queue_lock);
1269 finish_wait(&rl->wait[is_sync], &wait);
1270
1271 goto retry;
1272 }
1273
1274 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1275 gfp_t gfp_mask)
1276 {
1277 struct request *rq;
1278
1279 BUG_ON(rw != READ && rw != WRITE);
1280
1281 /* create ioc upfront */
1282 create_io_context(gfp_mask, q->node);
1283
1284 spin_lock_irq(q->queue_lock);
1285 rq = get_request(q, rw, NULL, gfp_mask);
1286 if (IS_ERR(rq)) {
1287 spin_unlock_irq(q->queue_lock);
1288 return rq;
1289 }
1290
1291 /* q->queue_lock is unlocked at this point */
1292 rq->__data_len = 0;
1293 rq->__sector = (sector_t) -1;
1294 rq->bio = rq->biotail = NULL;
1295 return rq;
1296 }
1297
1298 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1299 {
1300 if (q->mq_ops)
1301 return blk_mq_alloc_request(q, rw,
1302 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1303 0 : BLK_MQ_REQ_NOWAIT);
1304 else
1305 return blk_old_get_request(q, rw, gfp_mask);
1306 }
1307 EXPORT_SYMBOL(blk_get_request);
1308
1309 /**
1310 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1311 * @rq: request to be initialized
1312 *
1313 */
1314 void blk_rq_set_block_pc(struct request *rq)
1315 {
1316 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1317 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1318 }
1319 EXPORT_SYMBOL(blk_rq_set_block_pc);
1320
1321 /**
1322 * blk_requeue_request - put a request back on queue
1323 * @q: request queue where request should be inserted
1324 * @rq: request to be inserted
1325 *
1326 * Description:
1327 * Drivers often keep queueing requests until the hardware cannot accept
1328 * more, when that condition happens we need to put the request back
1329 * on the queue. Must be called with queue lock held.
1330 */
1331 void blk_requeue_request(struct request_queue *q, struct request *rq)
1332 {
1333 blk_delete_timer(rq);
1334 blk_clear_rq_complete(rq);
1335 trace_block_rq_requeue(q, rq);
1336 wbt_requeue(q->rq_wb, &rq->issue_stat);
1337
1338 if (rq->rq_flags & RQF_QUEUED)
1339 blk_queue_end_tag(q, rq);
1340
1341 BUG_ON(blk_queued_rq(rq));
1342
1343 elv_requeue_request(q, rq);
1344 }
1345 EXPORT_SYMBOL(blk_requeue_request);
1346
1347 static void add_acct_request(struct request_queue *q, struct request *rq,
1348 int where)
1349 {
1350 blk_account_io_start(rq, true);
1351 __elv_add_request(q, rq, where);
1352 }
1353
1354 static void part_round_stats_single(int cpu, struct hd_struct *part,
1355 unsigned long now)
1356 {
1357 int inflight;
1358
1359 if (now == part->stamp)
1360 return;
1361
1362 inflight = part_in_flight(part);
1363 if (inflight) {
1364 __part_stat_add(cpu, part, time_in_queue,
1365 inflight * (now - part->stamp));
1366 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1367 }
1368 part->stamp = now;
1369 }
1370
1371 /**
1372 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1373 * @cpu: cpu number for stats access
1374 * @part: target partition
1375 *
1376 * The average IO queue length and utilisation statistics are maintained
1377 * by observing the current state of the queue length and the amount of
1378 * time it has been in this state for.
1379 *
1380 * Normally, that accounting is done on IO completion, but that can result
1381 * in more than a second's worth of IO being accounted for within any one
1382 * second, leading to >100% utilisation. To deal with that, we call this
1383 * function to do a round-off before returning the results when reading
1384 * /proc/diskstats. This accounts immediately for all queue usage up to
1385 * the current jiffies and restarts the counters again.
1386 */
1387 void part_round_stats(int cpu, struct hd_struct *part)
1388 {
1389 unsigned long now = jiffies;
1390
1391 if (part->partno)
1392 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1393 part_round_stats_single(cpu, part, now);
1394 }
1395 EXPORT_SYMBOL_GPL(part_round_stats);
1396
1397 #ifdef CONFIG_PM
1398 static void blk_pm_put_request(struct request *rq)
1399 {
1400 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1401 pm_runtime_mark_last_busy(rq->q->dev);
1402 }
1403 #else
1404 static inline void blk_pm_put_request(struct request *rq) {}
1405 #endif
1406
1407 /*
1408 * queue lock must be held
1409 */
1410 void __blk_put_request(struct request_queue *q, struct request *req)
1411 {
1412 req_flags_t rq_flags = req->rq_flags;
1413
1414 if (unlikely(!q))
1415 return;
1416
1417 if (q->mq_ops) {
1418 blk_mq_free_request(req);
1419 return;
1420 }
1421
1422 blk_pm_put_request(req);
1423
1424 elv_completed_request(q, req);
1425
1426 /* this is a bio leak */
1427 WARN_ON(req->bio != NULL);
1428
1429 wbt_done(q->rq_wb, &req->issue_stat);
1430
1431 /*
1432 * Request may not have originated from ll_rw_blk. if not,
1433 * it didn't come out of our reserved rq pools
1434 */
1435 if (rq_flags & RQF_ALLOCED) {
1436 struct request_list *rl = blk_rq_rl(req);
1437 bool sync = op_is_sync(req->cmd_flags);
1438
1439 BUG_ON(!list_empty(&req->queuelist));
1440 BUG_ON(ELV_ON_HASH(req));
1441
1442 blk_free_request(rl, req);
1443 freed_request(rl, sync, rq_flags);
1444 blk_put_rl(rl);
1445 }
1446 }
1447 EXPORT_SYMBOL_GPL(__blk_put_request);
1448
1449 void blk_put_request(struct request *req)
1450 {
1451 struct request_queue *q = req->q;
1452
1453 if (q->mq_ops)
1454 blk_mq_free_request(req);
1455 else {
1456 unsigned long flags;
1457
1458 spin_lock_irqsave(q->queue_lock, flags);
1459 __blk_put_request(q, req);
1460 spin_unlock_irqrestore(q->queue_lock, flags);
1461 }
1462 }
1463 EXPORT_SYMBOL(blk_put_request);
1464
1465 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1466 struct bio *bio)
1467 {
1468 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1469
1470 if (!ll_back_merge_fn(q, req, bio))
1471 return false;
1472
1473 trace_block_bio_backmerge(q, req, bio);
1474
1475 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1476 blk_rq_set_mixed_merge(req);
1477
1478 req->biotail->bi_next = bio;
1479 req->biotail = bio;
1480 req->__data_len += bio->bi_iter.bi_size;
1481 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1482
1483 blk_account_io_start(req, false);
1484 return true;
1485 }
1486
1487 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1488 struct bio *bio)
1489 {
1490 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1491
1492 if (!ll_front_merge_fn(q, req, bio))
1493 return false;
1494
1495 trace_block_bio_frontmerge(q, req, bio);
1496
1497 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1498 blk_rq_set_mixed_merge(req);
1499
1500 bio->bi_next = req->bio;
1501 req->bio = bio;
1502
1503 req->__sector = bio->bi_iter.bi_sector;
1504 req->__data_len += bio->bi_iter.bi_size;
1505 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1506
1507 blk_account_io_start(req, false);
1508 return true;
1509 }
1510
1511 /**
1512 * blk_attempt_plug_merge - try to merge with %current's plugged list
1513 * @q: request_queue new bio is being queued at
1514 * @bio: new bio being queued
1515 * @request_count: out parameter for number of traversed plugged requests
1516 * @same_queue_rq: pointer to &struct request that gets filled in when
1517 * another request associated with @q is found on the plug list
1518 * (optional, may be %NULL)
1519 *
1520 * Determine whether @bio being queued on @q can be merged with a request
1521 * on %current's plugged list. Returns %true if merge was successful,
1522 * otherwise %false.
1523 *
1524 * Plugging coalesces IOs from the same issuer for the same purpose without
1525 * going through @q->queue_lock. As such it's more of an issuing mechanism
1526 * than scheduling, and the request, while may have elvpriv data, is not
1527 * added on the elevator at this point. In addition, we don't have
1528 * reliable access to the elevator outside queue lock. Only check basic
1529 * merging parameters without querying the elevator.
1530 *
1531 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1532 */
1533 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1534 unsigned int *request_count,
1535 struct request **same_queue_rq)
1536 {
1537 struct blk_plug *plug;
1538 struct request *rq;
1539 bool ret = false;
1540 struct list_head *plug_list;
1541
1542 plug = current->plug;
1543 if (!plug)
1544 goto out;
1545 *request_count = 0;
1546
1547 if (q->mq_ops)
1548 plug_list = &plug->mq_list;
1549 else
1550 plug_list = &plug->list;
1551
1552 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1553 int el_ret;
1554
1555 if (rq->q == q) {
1556 (*request_count)++;
1557 /*
1558 * Only blk-mq multiple hardware queues case checks the
1559 * rq in the same queue, there should be only one such
1560 * rq in a queue
1561 **/
1562 if (same_queue_rq)
1563 *same_queue_rq = rq;
1564 }
1565
1566 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1567 continue;
1568
1569 el_ret = blk_try_merge(rq, bio);
1570 if (el_ret == ELEVATOR_BACK_MERGE) {
1571 ret = bio_attempt_back_merge(q, rq, bio);
1572 if (ret)
1573 break;
1574 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1575 ret = bio_attempt_front_merge(q, rq, bio);
1576 if (ret)
1577 break;
1578 }
1579 }
1580 out:
1581 return ret;
1582 }
1583
1584 unsigned int blk_plug_queued_count(struct request_queue *q)
1585 {
1586 struct blk_plug *plug;
1587 struct request *rq;
1588 struct list_head *plug_list;
1589 unsigned int ret = 0;
1590
1591 plug = current->plug;
1592 if (!plug)
1593 goto out;
1594
1595 if (q->mq_ops)
1596 plug_list = &plug->mq_list;
1597 else
1598 plug_list = &plug->list;
1599
1600 list_for_each_entry(rq, plug_list, queuelist) {
1601 if (rq->q == q)
1602 ret++;
1603 }
1604 out:
1605 return ret;
1606 }
1607
1608 void init_request_from_bio(struct request *req, struct bio *bio)
1609 {
1610 req->cmd_type = REQ_TYPE_FS;
1611 if (bio->bi_opf & REQ_RAHEAD)
1612 req->cmd_flags |= REQ_FAILFAST_MASK;
1613
1614 req->errors = 0;
1615 req->__sector = bio->bi_iter.bi_sector;
1616 if (ioprio_valid(bio_prio(bio)))
1617 req->ioprio = bio_prio(bio);
1618 blk_rq_bio_prep(req->q, req, bio);
1619 }
1620
1621 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1622 {
1623 struct blk_plug *plug;
1624 int el_ret, where = ELEVATOR_INSERT_SORT;
1625 struct request *req;
1626 unsigned int request_count = 0;
1627 unsigned int wb_acct;
1628
1629 /*
1630 * low level driver can indicate that it wants pages above a
1631 * certain limit bounced to low memory (ie for highmem, or even
1632 * ISA dma in theory)
1633 */
1634 blk_queue_bounce(q, &bio);
1635
1636 blk_queue_split(q, &bio, q->bio_split);
1637
1638 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1639 bio->bi_error = -EIO;
1640 bio_endio(bio);
1641 return BLK_QC_T_NONE;
1642 }
1643
1644 if (op_is_flush(bio->bi_opf)) {
1645 spin_lock_irq(q->queue_lock);
1646 where = ELEVATOR_INSERT_FLUSH;
1647 goto get_rq;
1648 }
1649
1650 /*
1651 * Check if we can merge with the plugged list before grabbing
1652 * any locks.
1653 */
1654 if (!blk_queue_nomerges(q)) {
1655 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1656 return BLK_QC_T_NONE;
1657 } else
1658 request_count = blk_plug_queued_count(q);
1659
1660 spin_lock_irq(q->queue_lock);
1661
1662 el_ret = elv_merge(q, &req, bio);
1663 if (el_ret == ELEVATOR_BACK_MERGE) {
1664 if (bio_attempt_back_merge(q, req, bio)) {
1665 elv_bio_merged(q, req, bio);
1666 if (!attempt_back_merge(q, req))
1667 elv_merged_request(q, req, el_ret);
1668 goto out_unlock;
1669 }
1670 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1671 if (bio_attempt_front_merge(q, req, bio)) {
1672 elv_bio_merged(q, req, bio);
1673 if (!attempt_front_merge(q, req))
1674 elv_merged_request(q, req, el_ret);
1675 goto out_unlock;
1676 }
1677 }
1678
1679 get_rq:
1680 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1681
1682 /*
1683 * Grab a free request. This is might sleep but can not fail.
1684 * Returns with the queue unlocked.
1685 */
1686 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1687 if (IS_ERR(req)) {
1688 __wbt_done(q->rq_wb, wb_acct);
1689 bio->bi_error = PTR_ERR(req);
1690 bio_endio(bio);
1691 goto out_unlock;
1692 }
1693
1694 wbt_track(&req->issue_stat, wb_acct);
1695
1696 /*
1697 * After dropping the lock and possibly sleeping here, our request
1698 * may now be mergeable after it had proven unmergeable (above).
1699 * We don't worry about that case for efficiency. It won't happen
1700 * often, and the elevators are able to handle it.
1701 */
1702 init_request_from_bio(req, bio);
1703
1704 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1705 req->cpu = raw_smp_processor_id();
1706
1707 plug = current->plug;
1708 if (plug) {
1709 /*
1710 * If this is the first request added after a plug, fire
1711 * of a plug trace.
1712 *
1713 * @request_count may become stale because of schedule
1714 * out, so check plug list again.
1715 */
1716 if (!request_count || list_empty(&plug->list))
1717 trace_block_plug(q);
1718 else {
1719 struct request *last = list_entry_rq(plug->list.prev);
1720 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1721 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1722 blk_flush_plug_list(plug, false);
1723 trace_block_plug(q);
1724 }
1725 }
1726 list_add_tail(&req->queuelist, &plug->list);
1727 blk_account_io_start(req, true);
1728 } else {
1729 spin_lock_irq(q->queue_lock);
1730 add_acct_request(q, req, where);
1731 __blk_run_queue(q);
1732 out_unlock:
1733 spin_unlock_irq(q->queue_lock);
1734 }
1735
1736 return BLK_QC_T_NONE;
1737 }
1738
1739 /*
1740 * If bio->bi_dev is a partition, remap the location
1741 */
1742 static inline void blk_partition_remap(struct bio *bio)
1743 {
1744 struct block_device *bdev = bio->bi_bdev;
1745
1746 /*
1747 * Zone reset does not include bi_size so bio_sectors() is always 0.
1748 * Include a test for the reset op code and perform the remap if needed.
1749 */
1750 if (bdev != bdev->bd_contains &&
1751 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1752 struct hd_struct *p = bdev->bd_part;
1753
1754 bio->bi_iter.bi_sector += p->start_sect;
1755 bio->bi_bdev = bdev->bd_contains;
1756
1757 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1758 bdev->bd_dev,
1759 bio->bi_iter.bi_sector - p->start_sect);
1760 }
1761 }
1762
1763 static void handle_bad_sector(struct bio *bio)
1764 {
1765 char b[BDEVNAME_SIZE];
1766
1767 printk(KERN_INFO "attempt to access beyond end of device\n");
1768 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1769 bdevname(bio->bi_bdev, b),
1770 bio->bi_opf,
1771 (unsigned long long)bio_end_sector(bio),
1772 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1773 }
1774
1775 #ifdef CONFIG_FAIL_MAKE_REQUEST
1776
1777 static DECLARE_FAULT_ATTR(fail_make_request);
1778
1779 static int __init setup_fail_make_request(char *str)
1780 {
1781 return setup_fault_attr(&fail_make_request, str);
1782 }
1783 __setup("fail_make_request=", setup_fail_make_request);
1784
1785 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1786 {
1787 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1788 }
1789
1790 static int __init fail_make_request_debugfs(void)
1791 {
1792 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1793 NULL, &fail_make_request);
1794
1795 return PTR_ERR_OR_ZERO(dir);
1796 }
1797
1798 late_initcall(fail_make_request_debugfs);
1799
1800 #else /* CONFIG_FAIL_MAKE_REQUEST */
1801
1802 static inline bool should_fail_request(struct hd_struct *part,
1803 unsigned int bytes)
1804 {
1805 return false;
1806 }
1807
1808 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1809
1810 /*
1811 * Check whether this bio extends beyond the end of the device.
1812 */
1813 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1814 {
1815 sector_t maxsector;
1816
1817 if (!nr_sectors)
1818 return 0;
1819
1820 /* Test device or partition size, when known. */
1821 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1822 if (maxsector) {
1823 sector_t sector = bio->bi_iter.bi_sector;
1824
1825 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1826 /*
1827 * This may well happen - the kernel calls bread()
1828 * without checking the size of the device, e.g., when
1829 * mounting a device.
1830 */
1831 handle_bad_sector(bio);
1832 return 1;
1833 }
1834 }
1835
1836 return 0;
1837 }
1838
1839 static noinline_for_stack bool
1840 generic_make_request_checks(struct bio *bio)
1841 {
1842 struct request_queue *q;
1843 int nr_sectors = bio_sectors(bio);
1844 int err = -EIO;
1845 char b[BDEVNAME_SIZE];
1846 struct hd_struct *part;
1847
1848 might_sleep();
1849
1850 if (bio_check_eod(bio, nr_sectors))
1851 goto end_io;
1852
1853 q = bdev_get_queue(bio->bi_bdev);
1854 if (unlikely(!q)) {
1855 printk(KERN_ERR
1856 "generic_make_request: Trying to access "
1857 "nonexistent block-device %s (%Lu)\n",
1858 bdevname(bio->bi_bdev, b),
1859 (long long) bio->bi_iter.bi_sector);
1860 goto end_io;
1861 }
1862
1863 part = bio->bi_bdev->bd_part;
1864 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1865 should_fail_request(&part_to_disk(part)->part0,
1866 bio->bi_iter.bi_size))
1867 goto end_io;
1868
1869 /*
1870 * If this device has partitions, remap block n
1871 * of partition p to block n+start(p) of the disk.
1872 */
1873 blk_partition_remap(bio);
1874
1875 if (bio_check_eod(bio, nr_sectors))
1876 goto end_io;
1877
1878 /*
1879 * Filter flush bio's early so that make_request based
1880 * drivers without flush support don't have to worry
1881 * about them.
1882 */
1883 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1884 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1885 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1886 if (!nr_sectors) {
1887 err = 0;
1888 goto end_io;
1889 }
1890 }
1891
1892 switch (bio_op(bio)) {
1893 case REQ_OP_DISCARD:
1894 if (!blk_queue_discard(q))
1895 goto not_supported;
1896 break;
1897 case REQ_OP_SECURE_ERASE:
1898 if (!blk_queue_secure_erase(q))
1899 goto not_supported;
1900 break;
1901 case REQ_OP_WRITE_SAME:
1902 if (!bdev_write_same(bio->bi_bdev))
1903 goto not_supported;
1904 break;
1905 case REQ_OP_ZONE_REPORT:
1906 case REQ_OP_ZONE_RESET:
1907 if (!bdev_is_zoned(bio->bi_bdev))
1908 goto not_supported;
1909 break;
1910 case REQ_OP_WRITE_ZEROES:
1911 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1912 goto not_supported;
1913 break;
1914 default:
1915 break;
1916 }
1917
1918 /*
1919 * Various block parts want %current->io_context and lazy ioc
1920 * allocation ends up trading a lot of pain for a small amount of
1921 * memory. Just allocate it upfront. This may fail and block
1922 * layer knows how to live with it.
1923 */
1924 create_io_context(GFP_ATOMIC, q->node);
1925
1926 if (!blkcg_bio_issue_check(q, bio))
1927 return false;
1928
1929 trace_block_bio_queue(q, bio);
1930 return true;
1931
1932 not_supported:
1933 err = -EOPNOTSUPP;
1934 end_io:
1935 bio->bi_error = err;
1936 bio_endio(bio);
1937 return false;
1938 }
1939
1940 /**
1941 * generic_make_request - hand a buffer to its device driver for I/O
1942 * @bio: The bio describing the location in memory and on the device.
1943 *
1944 * generic_make_request() is used to make I/O requests of block
1945 * devices. It is passed a &struct bio, which describes the I/O that needs
1946 * to be done.
1947 *
1948 * generic_make_request() does not return any status. The
1949 * success/failure status of the request, along with notification of
1950 * completion, is delivered asynchronously through the bio->bi_end_io
1951 * function described (one day) else where.
1952 *
1953 * The caller of generic_make_request must make sure that bi_io_vec
1954 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1955 * set to describe the device address, and the
1956 * bi_end_io and optionally bi_private are set to describe how
1957 * completion notification should be signaled.
1958 *
1959 * generic_make_request and the drivers it calls may use bi_next if this
1960 * bio happens to be merged with someone else, and may resubmit the bio to
1961 * a lower device by calling into generic_make_request recursively, which
1962 * means the bio should NOT be touched after the call to ->make_request_fn.
1963 */
1964 blk_qc_t generic_make_request(struct bio *bio)
1965 {
1966 struct bio_list bio_list_on_stack;
1967 blk_qc_t ret = BLK_QC_T_NONE;
1968
1969 if (!generic_make_request_checks(bio))
1970 goto out;
1971
1972 /*
1973 * We only want one ->make_request_fn to be active at a time, else
1974 * stack usage with stacked devices could be a problem. So use
1975 * current->bio_list to keep a list of requests submited by a
1976 * make_request_fn function. current->bio_list is also used as a
1977 * flag to say if generic_make_request is currently active in this
1978 * task or not. If it is NULL, then no make_request is active. If
1979 * it is non-NULL, then a make_request is active, and new requests
1980 * should be added at the tail
1981 */
1982 if (current->bio_list) {
1983 bio_list_add(current->bio_list, bio);
1984 goto out;
1985 }
1986
1987 /* following loop may be a bit non-obvious, and so deserves some
1988 * explanation.
1989 * Before entering the loop, bio->bi_next is NULL (as all callers
1990 * ensure that) so we have a list with a single bio.
1991 * We pretend that we have just taken it off a longer list, so
1992 * we assign bio_list to a pointer to the bio_list_on_stack,
1993 * thus initialising the bio_list of new bios to be
1994 * added. ->make_request() may indeed add some more bios
1995 * through a recursive call to generic_make_request. If it
1996 * did, we find a non-NULL value in bio_list and re-enter the loop
1997 * from the top. In this case we really did just take the bio
1998 * of the top of the list (no pretending) and so remove it from
1999 * bio_list, and call into ->make_request() again.
2000 */
2001 BUG_ON(bio->bi_next);
2002 bio_list_init(&bio_list_on_stack);
2003 current->bio_list = &bio_list_on_stack;
2004 do {
2005 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2006
2007 if (likely(blk_queue_enter(q, false) == 0)) {
2008 ret = q->make_request_fn(q, bio);
2009
2010 blk_queue_exit(q);
2011
2012 bio = bio_list_pop(current->bio_list);
2013 } else {
2014 struct bio *bio_next = bio_list_pop(current->bio_list);
2015
2016 bio_io_error(bio);
2017 bio = bio_next;
2018 }
2019 } while (bio);
2020 current->bio_list = NULL; /* deactivate */
2021
2022 out:
2023 return ret;
2024 }
2025 EXPORT_SYMBOL(generic_make_request);
2026
2027 /**
2028 * submit_bio - submit a bio to the block device layer for I/O
2029 * @bio: The &struct bio which describes the I/O
2030 *
2031 * submit_bio() is very similar in purpose to generic_make_request(), and
2032 * uses that function to do most of the work. Both are fairly rough
2033 * interfaces; @bio must be presetup and ready for I/O.
2034 *
2035 */
2036 blk_qc_t submit_bio(struct bio *bio)
2037 {
2038 /*
2039 * If it's a regular read/write or a barrier with data attached,
2040 * go through the normal accounting stuff before submission.
2041 */
2042 if (bio_has_data(bio)) {
2043 unsigned int count;
2044
2045 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2046 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2047 else
2048 count = bio_sectors(bio);
2049
2050 if (op_is_write(bio_op(bio))) {
2051 count_vm_events(PGPGOUT, count);
2052 } else {
2053 task_io_account_read(bio->bi_iter.bi_size);
2054 count_vm_events(PGPGIN, count);
2055 }
2056
2057 if (unlikely(block_dump)) {
2058 char b[BDEVNAME_SIZE];
2059 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2060 current->comm, task_pid_nr(current),
2061 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2062 (unsigned long long)bio->bi_iter.bi_sector,
2063 bdevname(bio->bi_bdev, b),
2064 count);
2065 }
2066 }
2067
2068 return generic_make_request(bio);
2069 }
2070 EXPORT_SYMBOL(submit_bio);
2071
2072 /**
2073 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2074 * for new the queue limits
2075 * @q: the queue
2076 * @rq: the request being checked
2077 *
2078 * Description:
2079 * @rq may have been made based on weaker limitations of upper-level queues
2080 * in request stacking drivers, and it may violate the limitation of @q.
2081 * Since the block layer and the underlying device driver trust @rq
2082 * after it is inserted to @q, it should be checked against @q before
2083 * the insertion using this generic function.
2084 *
2085 * Request stacking drivers like request-based dm may change the queue
2086 * limits when retrying requests on other queues. Those requests need
2087 * to be checked against the new queue limits again during dispatch.
2088 */
2089 static int blk_cloned_rq_check_limits(struct request_queue *q,
2090 struct request *rq)
2091 {
2092 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2093 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2094 return -EIO;
2095 }
2096
2097 /*
2098 * queue's settings related to segment counting like q->bounce_pfn
2099 * may differ from that of other stacking queues.
2100 * Recalculate it to check the request correctly on this queue's
2101 * limitation.
2102 */
2103 blk_recalc_rq_segments(rq);
2104 if (rq->nr_phys_segments > queue_max_segments(q)) {
2105 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2106 return -EIO;
2107 }
2108
2109 return 0;
2110 }
2111
2112 /**
2113 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2114 * @q: the queue to submit the request
2115 * @rq: the request being queued
2116 */
2117 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2118 {
2119 unsigned long flags;
2120 int where = ELEVATOR_INSERT_BACK;
2121
2122 if (blk_cloned_rq_check_limits(q, rq))
2123 return -EIO;
2124
2125 if (rq->rq_disk &&
2126 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2127 return -EIO;
2128
2129 if (q->mq_ops) {
2130 if (blk_queue_io_stat(q))
2131 blk_account_io_start(rq, true);
2132 blk_mq_sched_insert_request(rq, false, true, false);
2133 return 0;
2134 }
2135
2136 spin_lock_irqsave(q->queue_lock, flags);
2137 if (unlikely(blk_queue_dying(q))) {
2138 spin_unlock_irqrestore(q->queue_lock, flags);
2139 return -ENODEV;
2140 }
2141
2142 /*
2143 * Submitting request must be dequeued before calling this function
2144 * because it will be linked to another request_queue
2145 */
2146 BUG_ON(blk_queued_rq(rq));
2147
2148 if (op_is_flush(rq->cmd_flags))
2149 where = ELEVATOR_INSERT_FLUSH;
2150
2151 add_acct_request(q, rq, where);
2152 if (where == ELEVATOR_INSERT_FLUSH)
2153 __blk_run_queue(q);
2154 spin_unlock_irqrestore(q->queue_lock, flags);
2155
2156 return 0;
2157 }
2158 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2159
2160 /**
2161 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2162 * @rq: request to examine
2163 *
2164 * Description:
2165 * A request could be merge of IOs which require different failure
2166 * handling. This function determines the number of bytes which
2167 * can be failed from the beginning of the request without
2168 * crossing into area which need to be retried further.
2169 *
2170 * Return:
2171 * The number of bytes to fail.
2172 *
2173 * Context:
2174 * queue_lock must be held.
2175 */
2176 unsigned int blk_rq_err_bytes(const struct request *rq)
2177 {
2178 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2179 unsigned int bytes = 0;
2180 struct bio *bio;
2181
2182 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2183 return blk_rq_bytes(rq);
2184
2185 /*
2186 * Currently the only 'mixing' which can happen is between
2187 * different fastfail types. We can safely fail portions
2188 * which have all the failfast bits that the first one has -
2189 * the ones which are at least as eager to fail as the first
2190 * one.
2191 */
2192 for (bio = rq->bio; bio; bio = bio->bi_next) {
2193 if ((bio->bi_opf & ff) != ff)
2194 break;
2195 bytes += bio->bi_iter.bi_size;
2196 }
2197
2198 /* this could lead to infinite loop */
2199 BUG_ON(blk_rq_bytes(rq) && !bytes);
2200 return bytes;
2201 }
2202 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2203
2204 void blk_account_io_completion(struct request *req, unsigned int bytes)
2205 {
2206 if (blk_do_io_stat(req)) {
2207 const int rw = rq_data_dir(req);
2208 struct hd_struct *part;
2209 int cpu;
2210
2211 cpu = part_stat_lock();
2212 part = req->part;
2213 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2214 part_stat_unlock();
2215 }
2216 }
2217
2218 void blk_account_io_done(struct request *req)
2219 {
2220 /*
2221 * Account IO completion. flush_rq isn't accounted as a
2222 * normal IO on queueing nor completion. Accounting the
2223 * containing request is enough.
2224 */
2225 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2226 unsigned long duration = jiffies - req->start_time;
2227 const int rw = rq_data_dir(req);
2228 struct hd_struct *part;
2229 int cpu;
2230
2231 cpu = part_stat_lock();
2232 part = req->part;
2233
2234 part_stat_inc(cpu, part, ios[rw]);
2235 part_stat_add(cpu, part, ticks[rw], duration);
2236 part_round_stats(cpu, part);
2237 part_dec_in_flight(part, rw);
2238
2239 hd_struct_put(part);
2240 part_stat_unlock();
2241 }
2242 }
2243
2244 #ifdef CONFIG_PM
2245 /*
2246 * Don't process normal requests when queue is suspended
2247 * or in the process of suspending/resuming
2248 */
2249 static struct request *blk_pm_peek_request(struct request_queue *q,
2250 struct request *rq)
2251 {
2252 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2253 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2254 return NULL;
2255 else
2256 return rq;
2257 }
2258 #else
2259 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2260 struct request *rq)
2261 {
2262 return rq;
2263 }
2264 #endif
2265
2266 void blk_account_io_start(struct request *rq, bool new_io)
2267 {
2268 struct hd_struct *part;
2269 int rw = rq_data_dir(rq);
2270 int cpu;
2271
2272 if (!blk_do_io_stat(rq))
2273 return;
2274
2275 cpu = part_stat_lock();
2276
2277 if (!new_io) {
2278 part = rq->part;
2279 part_stat_inc(cpu, part, merges[rw]);
2280 } else {
2281 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2282 if (!hd_struct_try_get(part)) {
2283 /*
2284 * The partition is already being removed,
2285 * the request will be accounted on the disk only
2286 *
2287 * We take a reference on disk->part0 although that
2288 * partition will never be deleted, so we can treat
2289 * it as any other partition.
2290 */
2291 part = &rq->rq_disk->part0;
2292 hd_struct_get(part);
2293 }
2294 part_round_stats(cpu, part);
2295 part_inc_in_flight(part, rw);
2296 rq->part = part;
2297 }
2298
2299 part_stat_unlock();
2300 }
2301
2302 /**
2303 * blk_peek_request - peek at the top of a request queue
2304 * @q: request queue to peek at
2305 *
2306 * Description:
2307 * Return the request at the top of @q. The returned request
2308 * should be started using blk_start_request() before LLD starts
2309 * processing it.
2310 *
2311 * Return:
2312 * Pointer to the request at the top of @q if available. Null
2313 * otherwise.
2314 *
2315 * Context:
2316 * queue_lock must be held.
2317 */
2318 struct request *blk_peek_request(struct request_queue *q)
2319 {
2320 struct request *rq;
2321 int ret;
2322
2323 while ((rq = __elv_next_request(q)) != NULL) {
2324
2325 rq = blk_pm_peek_request(q, rq);
2326 if (!rq)
2327 break;
2328
2329 if (!(rq->rq_flags & RQF_STARTED)) {
2330 /*
2331 * This is the first time the device driver
2332 * sees this request (possibly after
2333 * requeueing). Notify IO scheduler.
2334 */
2335 if (rq->rq_flags & RQF_SORTED)
2336 elv_activate_rq(q, rq);
2337
2338 /*
2339 * just mark as started even if we don't start
2340 * it, a request that has been delayed should
2341 * not be passed by new incoming requests
2342 */
2343 rq->rq_flags |= RQF_STARTED;
2344 trace_block_rq_issue(q, rq);
2345 }
2346
2347 if (!q->boundary_rq || q->boundary_rq == rq) {
2348 q->end_sector = rq_end_sector(rq);
2349 q->boundary_rq = NULL;
2350 }
2351
2352 if (rq->rq_flags & RQF_DONTPREP)
2353 break;
2354
2355 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2356 /*
2357 * make sure space for the drain appears we
2358 * know we can do this because max_hw_segments
2359 * has been adjusted to be one fewer than the
2360 * device can handle
2361 */
2362 rq->nr_phys_segments++;
2363 }
2364
2365 if (!q->prep_rq_fn)
2366 break;
2367
2368 ret = q->prep_rq_fn(q, rq);
2369 if (ret == BLKPREP_OK) {
2370 break;
2371 } else if (ret == BLKPREP_DEFER) {
2372 /*
2373 * the request may have been (partially) prepped.
2374 * we need to keep this request in the front to
2375 * avoid resource deadlock. RQF_STARTED will
2376 * prevent other fs requests from passing this one.
2377 */
2378 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2379 !(rq->rq_flags & RQF_DONTPREP)) {
2380 /*
2381 * remove the space for the drain we added
2382 * so that we don't add it again
2383 */
2384 --rq->nr_phys_segments;
2385 }
2386
2387 rq = NULL;
2388 break;
2389 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2390 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2391
2392 rq->rq_flags |= RQF_QUIET;
2393 /*
2394 * Mark this request as started so we don't trigger
2395 * any debug logic in the end I/O path.
2396 */
2397 blk_start_request(rq);
2398 __blk_end_request_all(rq, err);
2399 } else {
2400 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2401 break;
2402 }
2403 }
2404
2405 return rq;
2406 }
2407 EXPORT_SYMBOL(blk_peek_request);
2408
2409 void blk_dequeue_request(struct request *rq)
2410 {
2411 struct request_queue *q = rq->q;
2412
2413 BUG_ON(list_empty(&rq->queuelist));
2414 BUG_ON(ELV_ON_HASH(rq));
2415
2416 list_del_init(&rq->queuelist);
2417
2418 /*
2419 * the time frame between a request being removed from the lists
2420 * and to it is freed is accounted as io that is in progress at
2421 * the driver side.
2422 */
2423 if (blk_account_rq(rq)) {
2424 q->in_flight[rq_is_sync(rq)]++;
2425 set_io_start_time_ns(rq);
2426 }
2427 }
2428
2429 /**
2430 * blk_start_request - start request processing on the driver
2431 * @req: request to dequeue
2432 *
2433 * Description:
2434 * Dequeue @req and start timeout timer on it. This hands off the
2435 * request to the driver.
2436 *
2437 * Block internal functions which don't want to start timer should
2438 * call blk_dequeue_request().
2439 *
2440 * Context:
2441 * queue_lock must be held.
2442 */
2443 void blk_start_request(struct request *req)
2444 {
2445 blk_dequeue_request(req);
2446
2447 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2448 blk_stat_set_issue_time(&req->issue_stat);
2449 req->rq_flags |= RQF_STATS;
2450 wbt_issue(req->q->rq_wb, &req->issue_stat);
2451 }
2452
2453 /*
2454 * We are now handing the request to the hardware, initialize
2455 * resid_len to full count and add the timeout handler.
2456 */
2457 req->resid_len = blk_rq_bytes(req);
2458 if (unlikely(blk_bidi_rq(req)))
2459 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2460
2461 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2462 blk_add_timer(req);
2463 }
2464 EXPORT_SYMBOL(blk_start_request);
2465
2466 /**
2467 * blk_fetch_request - fetch a request from a request queue
2468 * @q: request queue to fetch a request from
2469 *
2470 * Description:
2471 * Return the request at the top of @q. The request is started on
2472 * return and LLD can start processing it immediately.
2473 *
2474 * Return:
2475 * Pointer to the request at the top of @q if available. Null
2476 * otherwise.
2477 *
2478 * Context:
2479 * queue_lock must be held.
2480 */
2481 struct request *blk_fetch_request(struct request_queue *q)
2482 {
2483 struct request *rq;
2484
2485 rq = blk_peek_request(q);
2486 if (rq)
2487 blk_start_request(rq);
2488 return rq;
2489 }
2490 EXPORT_SYMBOL(blk_fetch_request);
2491
2492 /**
2493 * blk_update_request - Special helper function for request stacking drivers
2494 * @req: the request being processed
2495 * @error: %0 for success, < %0 for error
2496 * @nr_bytes: number of bytes to complete @req
2497 *
2498 * Description:
2499 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2500 * the request structure even if @req doesn't have leftover.
2501 * If @req has leftover, sets it up for the next range of segments.
2502 *
2503 * This special helper function is only for request stacking drivers
2504 * (e.g. request-based dm) so that they can handle partial completion.
2505 * Actual device drivers should use blk_end_request instead.
2506 *
2507 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2508 * %false return from this function.
2509 *
2510 * Return:
2511 * %false - this request doesn't have any more data
2512 * %true - this request has more data
2513 **/
2514 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2515 {
2516 int total_bytes;
2517
2518 trace_block_rq_complete(req->q, req, nr_bytes);
2519
2520 if (!req->bio)
2521 return false;
2522
2523 /*
2524 * For fs requests, rq is just carrier of independent bio's
2525 * and each partial completion should be handled separately.
2526 * Reset per-request error on each partial completion.
2527 *
2528 * TODO: tj: This is too subtle. It would be better to let
2529 * low level drivers do what they see fit.
2530 */
2531 if (req->cmd_type == REQ_TYPE_FS)
2532 req->errors = 0;
2533
2534 if (error && req->cmd_type == REQ_TYPE_FS &&
2535 !(req->rq_flags & RQF_QUIET)) {
2536 char *error_type;
2537
2538 switch (error) {
2539 case -ENOLINK:
2540 error_type = "recoverable transport";
2541 break;
2542 case -EREMOTEIO:
2543 error_type = "critical target";
2544 break;
2545 case -EBADE:
2546 error_type = "critical nexus";
2547 break;
2548 case -ETIMEDOUT:
2549 error_type = "timeout";
2550 break;
2551 case -ENOSPC:
2552 error_type = "critical space allocation";
2553 break;
2554 case -ENODATA:
2555 error_type = "critical medium";
2556 break;
2557 case -EIO:
2558 default:
2559 error_type = "I/O";
2560 break;
2561 }
2562 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2563 __func__, error_type, req->rq_disk ?
2564 req->rq_disk->disk_name : "?",
2565 (unsigned long long)blk_rq_pos(req));
2566
2567 }
2568
2569 blk_account_io_completion(req, nr_bytes);
2570
2571 total_bytes = 0;
2572 while (req->bio) {
2573 struct bio *bio = req->bio;
2574 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2575
2576 if (bio_bytes == bio->bi_iter.bi_size)
2577 req->bio = bio->bi_next;
2578
2579 req_bio_endio(req, bio, bio_bytes, error);
2580
2581 total_bytes += bio_bytes;
2582 nr_bytes -= bio_bytes;
2583
2584 if (!nr_bytes)
2585 break;
2586 }
2587
2588 /*
2589 * completely done
2590 */
2591 if (!req->bio) {
2592 /*
2593 * Reset counters so that the request stacking driver
2594 * can find how many bytes remain in the request
2595 * later.
2596 */
2597 req->__data_len = 0;
2598 return false;
2599 }
2600
2601 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2602
2603 req->__data_len -= total_bytes;
2604
2605 /* update sector only for requests with clear definition of sector */
2606 if (req->cmd_type == REQ_TYPE_FS)
2607 req->__sector += total_bytes >> 9;
2608
2609 /* mixed attributes always follow the first bio */
2610 if (req->rq_flags & RQF_MIXED_MERGE) {
2611 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2612 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2613 }
2614
2615 /*
2616 * If total number of sectors is less than the first segment
2617 * size, something has gone terribly wrong.
2618 */
2619 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2620 blk_dump_rq_flags(req, "request botched");
2621 req->__data_len = blk_rq_cur_bytes(req);
2622 }
2623
2624 /* recalculate the number of segments */
2625 blk_recalc_rq_segments(req);
2626
2627 return true;
2628 }
2629 EXPORT_SYMBOL_GPL(blk_update_request);
2630
2631 static bool blk_update_bidi_request(struct request *rq, int error,
2632 unsigned int nr_bytes,
2633 unsigned int bidi_bytes)
2634 {
2635 if (blk_update_request(rq, error, nr_bytes))
2636 return true;
2637
2638 /* Bidi request must be completed as a whole */
2639 if (unlikely(blk_bidi_rq(rq)) &&
2640 blk_update_request(rq->next_rq, error, bidi_bytes))
2641 return true;
2642
2643 if (blk_queue_add_random(rq->q))
2644 add_disk_randomness(rq->rq_disk);
2645
2646 return false;
2647 }
2648
2649 /**
2650 * blk_unprep_request - unprepare a request
2651 * @req: the request
2652 *
2653 * This function makes a request ready for complete resubmission (or
2654 * completion). It happens only after all error handling is complete,
2655 * so represents the appropriate moment to deallocate any resources
2656 * that were allocated to the request in the prep_rq_fn. The queue
2657 * lock is held when calling this.
2658 */
2659 void blk_unprep_request(struct request *req)
2660 {
2661 struct request_queue *q = req->q;
2662
2663 req->rq_flags &= ~RQF_DONTPREP;
2664 if (q->unprep_rq_fn)
2665 q->unprep_rq_fn(q, req);
2666 }
2667 EXPORT_SYMBOL_GPL(blk_unprep_request);
2668
2669 /*
2670 * queue lock must be held
2671 */
2672 void blk_finish_request(struct request *req, int error)
2673 {
2674 struct request_queue *q = req->q;
2675
2676 if (req->rq_flags & RQF_STATS)
2677 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2678
2679 if (req->rq_flags & RQF_QUEUED)
2680 blk_queue_end_tag(q, req);
2681
2682 BUG_ON(blk_queued_rq(req));
2683
2684 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2685 laptop_io_completion(&req->q->backing_dev_info);
2686
2687 blk_delete_timer(req);
2688
2689 if (req->rq_flags & RQF_DONTPREP)
2690 blk_unprep_request(req);
2691
2692 blk_account_io_done(req);
2693
2694 if (req->end_io) {
2695 wbt_done(req->q->rq_wb, &req->issue_stat);
2696 req->end_io(req, error);
2697 } else {
2698 if (blk_bidi_rq(req))
2699 __blk_put_request(req->next_rq->q, req->next_rq);
2700
2701 __blk_put_request(q, req);
2702 }
2703 }
2704 EXPORT_SYMBOL(blk_finish_request);
2705
2706 /**
2707 * blk_end_bidi_request - Complete a bidi request
2708 * @rq: the request to complete
2709 * @error: %0 for success, < %0 for error
2710 * @nr_bytes: number of bytes to complete @rq
2711 * @bidi_bytes: number of bytes to complete @rq->next_rq
2712 *
2713 * Description:
2714 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2715 * Drivers that supports bidi can safely call this member for any
2716 * type of request, bidi or uni. In the later case @bidi_bytes is
2717 * just ignored.
2718 *
2719 * Return:
2720 * %false - we are done with this request
2721 * %true - still buffers pending for this request
2722 **/
2723 static bool blk_end_bidi_request(struct request *rq, int error,
2724 unsigned int nr_bytes, unsigned int bidi_bytes)
2725 {
2726 struct request_queue *q = rq->q;
2727 unsigned long flags;
2728
2729 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2730 return true;
2731
2732 spin_lock_irqsave(q->queue_lock, flags);
2733 blk_finish_request(rq, error);
2734 spin_unlock_irqrestore(q->queue_lock, flags);
2735
2736 return false;
2737 }
2738
2739 /**
2740 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2741 * @rq: the request to complete
2742 * @error: %0 for success, < %0 for error
2743 * @nr_bytes: number of bytes to complete @rq
2744 * @bidi_bytes: number of bytes to complete @rq->next_rq
2745 *
2746 * Description:
2747 * Identical to blk_end_bidi_request() except that queue lock is
2748 * assumed to be locked on entry and remains so on return.
2749 *
2750 * Return:
2751 * %false - we are done with this request
2752 * %true - still buffers pending for this request
2753 **/
2754 bool __blk_end_bidi_request(struct request *rq, int error,
2755 unsigned int nr_bytes, unsigned int bidi_bytes)
2756 {
2757 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2758 return true;
2759
2760 blk_finish_request(rq, error);
2761
2762 return false;
2763 }
2764
2765 /**
2766 * blk_end_request - Helper function for drivers to complete the request.
2767 * @rq: the request being processed
2768 * @error: %0 for success, < %0 for error
2769 * @nr_bytes: number of bytes to complete
2770 *
2771 * Description:
2772 * Ends I/O on a number of bytes attached to @rq.
2773 * If @rq has leftover, sets it up for the next range of segments.
2774 *
2775 * Return:
2776 * %false - we are done with this request
2777 * %true - still buffers pending for this request
2778 **/
2779 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2780 {
2781 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2782 }
2783 EXPORT_SYMBOL(blk_end_request);
2784
2785 /**
2786 * blk_end_request_all - Helper function for drives to finish the request.
2787 * @rq: the request to finish
2788 * @error: %0 for success, < %0 for error
2789 *
2790 * Description:
2791 * Completely finish @rq.
2792 */
2793 void blk_end_request_all(struct request *rq, int error)
2794 {
2795 bool pending;
2796 unsigned int bidi_bytes = 0;
2797
2798 if (unlikely(blk_bidi_rq(rq)))
2799 bidi_bytes = blk_rq_bytes(rq->next_rq);
2800
2801 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2802 BUG_ON(pending);
2803 }
2804 EXPORT_SYMBOL(blk_end_request_all);
2805
2806 /**
2807 * blk_end_request_cur - Helper function to finish the current request chunk.
2808 * @rq: the request to finish the current chunk for
2809 * @error: %0 for success, < %0 for error
2810 *
2811 * Description:
2812 * Complete the current consecutively mapped chunk from @rq.
2813 *
2814 * Return:
2815 * %false - we are done with this request
2816 * %true - still buffers pending for this request
2817 */
2818 bool blk_end_request_cur(struct request *rq, int error)
2819 {
2820 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2821 }
2822 EXPORT_SYMBOL(blk_end_request_cur);
2823
2824 /**
2825 * blk_end_request_err - Finish a request till the next failure boundary.
2826 * @rq: the request to finish till the next failure boundary for
2827 * @error: must be negative errno
2828 *
2829 * Description:
2830 * Complete @rq till the next failure boundary.
2831 *
2832 * Return:
2833 * %false - we are done with this request
2834 * %true - still buffers pending for this request
2835 */
2836 bool blk_end_request_err(struct request *rq, int error)
2837 {
2838 WARN_ON(error >= 0);
2839 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2840 }
2841 EXPORT_SYMBOL_GPL(blk_end_request_err);
2842
2843 /**
2844 * __blk_end_request - Helper function for drivers to complete the request.
2845 * @rq: the request being processed
2846 * @error: %0 for success, < %0 for error
2847 * @nr_bytes: number of bytes to complete
2848 *
2849 * Description:
2850 * Must be called with queue lock held unlike blk_end_request().
2851 *
2852 * Return:
2853 * %false - we are done with this request
2854 * %true - still buffers pending for this request
2855 **/
2856 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2857 {
2858 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2859 }
2860 EXPORT_SYMBOL(__blk_end_request);
2861
2862 /**
2863 * __blk_end_request_all - Helper function for drives to finish the request.
2864 * @rq: the request to finish
2865 * @error: %0 for success, < %0 for error
2866 *
2867 * Description:
2868 * Completely finish @rq. Must be called with queue lock held.
2869 */
2870 void __blk_end_request_all(struct request *rq, int error)
2871 {
2872 bool pending;
2873 unsigned int bidi_bytes = 0;
2874
2875 if (unlikely(blk_bidi_rq(rq)))
2876 bidi_bytes = blk_rq_bytes(rq->next_rq);
2877
2878 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2879 BUG_ON(pending);
2880 }
2881 EXPORT_SYMBOL(__blk_end_request_all);
2882
2883 /**
2884 * __blk_end_request_cur - Helper function to finish the current request chunk.
2885 * @rq: the request to finish the current chunk for
2886 * @error: %0 for success, < %0 for error
2887 *
2888 * Description:
2889 * Complete the current consecutively mapped chunk from @rq. Must
2890 * be called with queue lock held.
2891 *
2892 * Return:
2893 * %false - we are done with this request
2894 * %true - still buffers pending for this request
2895 */
2896 bool __blk_end_request_cur(struct request *rq, int error)
2897 {
2898 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2899 }
2900 EXPORT_SYMBOL(__blk_end_request_cur);
2901
2902 /**
2903 * __blk_end_request_err - Finish a request till the next failure boundary.
2904 * @rq: the request to finish till the next failure boundary for
2905 * @error: must be negative errno
2906 *
2907 * Description:
2908 * Complete @rq till the next failure boundary. Must be called
2909 * with queue lock held.
2910 *
2911 * Return:
2912 * %false - we are done with this request
2913 * %true - still buffers pending for this request
2914 */
2915 bool __blk_end_request_err(struct request *rq, int error)
2916 {
2917 WARN_ON(error >= 0);
2918 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2919 }
2920 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2921
2922 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2923 struct bio *bio)
2924 {
2925 if (bio_has_data(bio))
2926 rq->nr_phys_segments = bio_phys_segments(q, bio);
2927
2928 rq->__data_len = bio->bi_iter.bi_size;
2929 rq->bio = rq->biotail = bio;
2930
2931 if (bio->bi_bdev)
2932 rq->rq_disk = bio->bi_bdev->bd_disk;
2933 }
2934
2935 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2936 /**
2937 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2938 * @rq: the request to be flushed
2939 *
2940 * Description:
2941 * Flush all pages in @rq.
2942 */
2943 void rq_flush_dcache_pages(struct request *rq)
2944 {
2945 struct req_iterator iter;
2946 struct bio_vec bvec;
2947
2948 rq_for_each_segment(bvec, rq, iter)
2949 flush_dcache_page(bvec.bv_page);
2950 }
2951 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2952 #endif
2953
2954 /**
2955 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2956 * @q : the queue of the device being checked
2957 *
2958 * Description:
2959 * Check if underlying low-level drivers of a device are busy.
2960 * If the drivers want to export their busy state, they must set own
2961 * exporting function using blk_queue_lld_busy() first.
2962 *
2963 * Basically, this function is used only by request stacking drivers
2964 * to stop dispatching requests to underlying devices when underlying
2965 * devices are busy. This behavior helps more I/O merging on the queue
2966 * of the request stacking driver and prevents I/O throughput regression
2967 * on burst I/O load.
2968 *
2969 * Return:
2970 * 0 - Not busy (The request stacking driver should dispatch request)
2971 * 1 - Busy (The request stacking driver should stop dispatching request)
2972 */
2973 int blk_lld_busy(struct request_queue *q)
2974 {
2975 if (q->lld_busy_fn)
2976 return q->lld_busy_fn(q);
2977
2978 return 0;
2979 }
2980 EXPORT_SYMBOL_GPL(blk_lld_busy);
2981
2982 /**
2983 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2984 * @rq: the clone request to be cleaned up
2985 *
2986 * Description:
2987 * Free all bios in @rq for a cloned request.
2988 */
2989 void blk_rq_unprep_clone(struct request *rq)
2990 {
2991 struct bio *bio;
2992
2993 while ((bio = rq->bio) != NULL) {
2994 rq->bio = bio->bi_next;
2995
2996 bio_put(bio);
2997 }
2998 }
2999 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3000
3001 /*
3002 * Copy attributes of the original request to the clone request.
3003 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3004 */
3005 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3006 {
3007 dst->cpu = src->cpu;
3008 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
3009 dst->cmd_type = src->cmd_type;
3010 dst->__sector = blk_rq_pos(src);
3011 dst->__data_len = blk_rq_bytes(src);
3012 dst->nr_phys_segments = src->nr_phys_segments;
3013 dst->ioprio = src->ioprio;
3014 dst->extra_len = src->extra_len;
3015 }
3016
3017 /**
3018 * blk_rq_prep_clone - Helper function to setup clone request
3019 * @rq: the request to be setup
3020 * @rq_src: original request to be cloned
3021 * @bs: bio_set that bios for clone are allocated from
3022 * @gfp_mask: memory allocation mask for bio
3023 * @bio_ctr: setup function to be called for each clone bio.
3024 * Returns %0 for success, non %0 for failure.
3025 * @data: private data to be passed to @bio_ctr
3026 *
3027 * Description:
3028 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3029 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3030 * are not copied, and copying such parts is the caller's responsibility.
3031 * Also, pages which the original bios are pointing to are not copied
3032 * and the cloned bios just point same pages.
3033 * So cloned bios must be completed before original bios, which means
3034 * the caller must complete @rq before @rq_src.
3035 */
3036 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3037 struct bio_set *bs, gfp_t gfp_mask,
3038 int (*bio_ctr)(struct bio *, struct bio *, void *),
3039 void *data)
3040 {
3041 struct bio *bio, *bio_src;
3042
3043 if (!bs)
3044 bs = fs_bio_set;
3045
3046 __rq_for_each_bio(bio_src, rq_src) {
3047 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3048 if (!bio)
3049 goto free_and_out;
3050
3051 if (bio_ctr && bio_ctr(bio, bio_src, data))
3052 goto free_and_out;
3053
3054 if (rq->bio) {
3055 rq->biotail->bi_next = bio;
3056 rq->biotail = bio;
3057 } else
3058 rq->bio = rq->biotail = bio;
3059 }
3060
3061 __blk_rq_prep_clone(rq, rq_src);
3062
3063 return 0;
3064
3065 free_and_out:
3066 if (bio)
3067 bio_put(bio);
3068 blk_rq_unprep_clone(rq);
3069
3070 return -ENOMEM;
3071 }
3072 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3073
3074 int kblockd_schedule_work(struct work_struct *work)
3075 {
3076 return queue_work(kblockd_workqueue, work);
3077 }
3078 EXPORT_SYMBOL(kblockd_schedule_work);
3079
3080 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3081 {
3082 return queue_work_on(cpu, kblockd_workqueue, work);
3083 }
3084 EXPORT_SYMBOL(kblockd_schedule_work_on);
3085
3086 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3087 unsigned long delay)
3088 {
3089 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3090 }
3091 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3092
3093 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3094 unsigned long delay)
3095 {
3096 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3097 }
3098 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3099
3100 /**
3101 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3102 * @plug: The &struct blk_plug that needs to be initialized
3103 *
3104 * Description:
3105 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3106 * pending I/O should the task end up blocking between blk_start_plug() and
3107 * blk_finish_plug(). This is important from a performance perspective, but
3108 * also ensures that we don't deadlock. For instance, if the task is blocking
3109 * for a memory allocation, memory reclaim could end up wanting to free a
3110 * page belonging to that request that is currently residing in our private
3111 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3112 * this kind of deadlock.
3113 */
3114 void blk_start_plug(struct blk_plug *plug)
3115 {
3116 struct task_struct *tsk = current;
3117
3118 /*
3119 * If this is a nested plug, don't actually assign it.
3120 */
3121 if (tsk->plug)
3122 return;
3123
3124 INIT_LIST_HEAD(&plug->list);
3125 INIT_LIST_HEAD(&plug->mq_list);
3126 INIT_LIST_HEAD(&plug->cb_list);
3127 /*
3128 * Store ordering should not be needed here, since a potential
3129 * preempt will imply a full memory barrier
3130 */
3131 tsk->plug = plug;
3132 }
3133 EXPORT_SYMBOL(blk_start_plug);
3134
3135 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3136 {
3137 struct request *rqa = container_of(a, struct request, queuelist);
3138 struct request *rqb = container_of(b, struct request, queuelist);
3139
3140 return !(rqa->q < rqb->q ||
3141 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3142 }
3143
3144 /*
3145 * If 'from_schedule' is true, then postpone the dispatch of requests
3146 * until a safe kblockd context. We due this to avoid accidental big
3147 * additional stack usage in driver dispatch, in places where the originally
3148 * plugger did not intend it.
3149 */
3150 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3151 bool from_schedule)
3152 __releases(q->queue_lock)
3153 {
3154 trace_block_unplug(q, depth, !from_schedule);
3155
3156 if (from_schedule)
3157 blk_run_queue_async(q);
3158 else
3159 __blk_run_queue(q);
3160 spin_unlock(q->queue_lock);
3161 }
3162
3163 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3164 {
3165 LIST_HEAD(callbacks);
3166
3167 while (!list_empty(&plug->cb_list)) {
3168 list_splice_init(&plug->cb_list, &callbacks);
3169
3170 while (!list_empty(&callbacks)) {
3171 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3172 struct blk_plug_cb,
3173 list);
3174 list_del(&cb->list);
3175 cb->callback(cb, from_schedule);
3176 }
3177 }
3178 }
3179
3180 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3181 int size)
3182 {
3183 struct blk_plug *plug = current->plug;
3184 struct blk_plug_cb *cb;
3185
3186 if (!plug)
3187 return NULL;
3188
3189 list_for_each_entry(cb, &plug->cb_list, list)
3190 if (cb->callback == unplug && cb->data == data)
3191 return cb;
3192
3193 /* Not currently on the callback list */
3194 BUG_ON(size < sizeof(*cb));
3195 cb = kzalloc(size, GFP_ATOMIC);
3196 if (cb) {
3197 cb->data = data;
3198 cb->callback = unplug;
3199 list_add(&cb->list, &plug->cb_list);
3200 }
3201 return cb;
3202 }
3203 EXPORT_SYMBOL(blk_check_plugged);
3204
3205 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3206 {
3207 struct request_queue *q;
3208 unsigned long flags;
3209 struct request *rq;
3210 LIST_HEAD(list);
3211 unsigned int depth;
3212
3213 flush_plug_callbacks(plug, from_schedule);
3214
3215 if (!list_empty(&plug->mq_list))
3216 blk_mq_flush_plug_list(plug, from_schedule);
3217
3218 if (list_empty(&plug->list))
3219 return;
3220
3221 list_splice_init(&plug->list, &list);
3222
3223 list_sort(NULL, &list, plug_rq_cmp);
3224
3225 q = NULL;
3226 depth = 0;
3227
3228 /*
3229 * Save and disable interrupts here, to avoid doing it for every
3230 * queue lock we have to take.
3231 */
3232 local_irq_save(flags);
3233 while (!list_empty(&list)) {
3234 rq = list_entry_rq(list.next);
3235 list_del_init(&rq->queuelist);
3236 BUG_ON(!rq->q);
3237 if (rq->q != q) {
3238 /*
3239 * This drops the queue lock
3240 */
3241 if (q)
3242 queue_unplugged(q, depth, from_schedule);
3243 q = rq->q;
3244 depth = 0;
3245 spin_lock(q->queue_lock);
3246 }
3247
3248 /*
3249 * Short-circuit if @q is dead
3250 */
3251 if (unlikely(blk_queue_dying(q))) {
3252 __blk_end_request_all(rq, -ENODEV);
3253 continue;
3254 }
3255
3256 /*
3257 * rq is already accounted, so use raw insert
3258 */
3259 if (op_is_flush(rq->cmd_flags))
3260 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3261 else
3262 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3263
3264 depth++;
3265 }
3266
3267 /*
3268 * This drops the queue lock
3269 */
3270 if (q)
3271 queue_unplugged(q, depth, from_schedule);
3272
3273 local_irq_restore(flags);
3274 }
3275
3276 void blk_finish_plug(struct blk_plug *plug)
3277 {
3278 if (plug != current->plug)
3279 return;
3280 blk_flush_plug_list(plug, false);
3281
3282 current->plug = NULL;
3283 }
3284 EXPORT_SYMBOL(blk_finish_plug);
3285
3286 #ifdef CONFIG_PM
3287 /**
3288 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3289 * @q: the queue of the device
3290 * @dev: the device the queue belongs to
3291 *
3292 * Description:
3293 * Initialize runtime-PM-related fields for @q and start auto suspend for
3294 * @dev. Drivers that want to take advantage of request-based runtime PM
3295 * should call this function after @dev has been initialized, and its
3296 * request queue @q has been allocated, and runtime PM for it can not happen
3297 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3298 * cases, driver should call this function before any I/O has taken place.
3299 *
3300 * This function takes care of setting up using auto suspend for the device,
3301 * the autosuspend delay is set to -1 to make runtime suspend impossible
3302 * until an updated value is either set by user or by driver. Drivers do
3303 * not need to touch other autosuspend settings.
3304 *
3305 * The block layer runtime PM is request based, so only works for drivers
3306 * that use request as their IO unit instead of those directly use bio's.
3307 */
3308 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3309 {
3310 q->dev = dev;
3311 q->rpm_status = RPM_ACTIVE;
3312 pm_runtime_set_autosuspend_delay(q->dev, -1);
3313 pm_runtime_use_autosuspend(q->dev);
3314 }
3315 EXPORT_SYMBOL(blk_pm_runtime_init);
3316
3317 /**
3318 * blk_pre_runtime_suspend - Pre runtime suspend check
3319 * @q: the queue of the device
3320 *
3321 * Description:
3322 * This function will check if runtime suspend is allowed for the device
3323 * by examining if there are any requests pending in the queue. If there
3324 * are requests pending, the device can not be runtime suspended; otherwise,
3325 * the queue's status will be updated to SUSPENDING and the driver can
3326 * proceed to suspend the device.
3327 *
3328 * For the not allowed case, we mark last busy for the device so that
3329 * runtime PM core will try to autosuspend it some time later.
3330 *
3331 * This function should be called near the start of the device's
3332 * runtime_suspend callback.
3333 *
3334 * Return:
3335 * 0 - OK to runtime suspend the device
3336 * -EBUSY - Device should not be runtime suspended
3337 */
3338 int blk_pre_runtime_suspend(struct request_queue *q)
3339 {
3340 int ret = 0;
3341
3342 if (!q->dev)
3343 return ret;
3344
3345 spin_lock_irq(q->queue_lock);
3346 if (q->nr_pending) {
3347 ret = -EBUSY;
3348 pm_runtime_mark_last_busy(q->dev);
3349 } else {
3350 q->rpm_status = RPM_SUSPENDING;
3351 }
3352 spin_unlock_irq(q->queue_lock);
3353 return ret;
3354 }
3355 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3356
3357 /**
3358 * blk_post_runtime_suspend - Post runtime suspend processing
3359 * @q: the queue of the device
3360 * @err: return value of the device's runtime_suspend function
3361 *
3362 * Description:
3363 * Update the queue's runtime status according to the return value of the
3364 * device's runtime suspend function and mark last busy for the device so
3365 * that PM core will try to auto suspend the device at a later time.
3366 *
3367 * This function should be called near the end of the device's
3368 * runtime_suspend callback.
3369 */
3370 void blk_post_runtime_suspend(struct request_queue *q, int err)
3371 {
3372 if (!q->dev)
3373 return;
3374
3375 spin_lock_irq(q->queue_lock);
3376 if (!err) {
3377 q->rpm_status = RPM_SUSPENDED;
3378 } else {
3379 q->rpm_status = RPM_ACTIVE;
3380 pm_runtime_mark_last_busy(q->dev);
3381 }
3382 spin_unlock_irq(q->queue_lock);
3383 }
3384 EXPORT_SYMBOL(blk_post_runtime_suspend);
3385
3386 /**
3387 * blk_pre_runtime_resume - Pre runtime resume processing
3388 * @q: the queue of the device
3389 *
3390 * Description:
3391 * Update the queue's runtime status to RESUMING in preparation for the
3392 * runtime resume of the device.
3393 *
3394 * This function should be called near the start of the device's
3395 * runtime_resume callback.
3396 */
3397 void blk_pre_runtime_resume(struct request_queue *q)
3398 {
3399 if (!q->dev)
3400 return;
3401
3402 spin_lock_irq(q->queue_lock);
3403 q->rpm_status = RPM_RESUMING;
3404 spin_unlock_irq(q->queue_lock);
3405 }
3406 EXPORT_SYMBOL(blk_pre_runtime_resume);
3407
3408 /**
3409 * blk_post_runtime_resume - Post runtime resume processing
3410 * @q: the queue of the device
3411 * @err: return value of the device's runtime_resume function
3412 *
3413 * Description:
3414 * Update the queue's runtime status according to the return value of the
3415 * device's runtime_resume function. If it is successfully resumed, process
3416 * the requests that are queued into the device's queue when it is resuming
3417 * and then mark last busy and initiate autosuspend for it.
3418 *
3419 * This function should be called near the end of the device's
3420 * runtime_resume callback.
3421 */
3422 void blk_post_runtime_resume(struct request_queue *q, int err)
3423 {
3424 if (!q->dev)
3425 return;
3426
3427 spin_lock_irq(q->queue_lock);
3428 if (!err) {
3429 q->rpm_status = RPM_ACTIVE;
3430 __blk_run_queue(q);
3431 pm_runtime_mark_last_busy(q->dev);
3432 pm_request_autosuspend(q->dev);
3433 } else {
3434 q->rpm_status = RPM_SUSPENDED;
3435 }
3436 spin_unlock_irq(q->queue_lock);
3437 }
3438 EXPORT_SYMBOL(blk_post_runtime_resume);
3439
3440 /**
3441 * blk_set_runtime_active - Force runtime status of the queue to be active
3442 * @q: the queue of the device
3443 *
3444 * If the device is left runtime suspended during system suspend the resume
3445 * hook typically resumes the device and corrects runtime status
3446 * accordingly. However, that does not affect the queue runtime PM status
3447 * which is still "suspended". This prevents processing requests from the
3448 * queue.
3449 *
3450 * This function can be used in driver's resume hook to correct queue
3451 * runtime PM status and re-enable peeking requests from the queue. It
3452 * should be called before first request is added to the queue.
3453 */
3454 void blk_set_runtime_active(struct request_queue *q)
3455 {
3456 spin_lock_irq(q->queue_lock);
3457 q->rpm_status = RPM_ACTIVE;
3458 pm_runtime_mark_last_busy(q->dev);
3459 pm_request_autosuspend(q->dev);
3460 spin_unlock_irq(q->queue_lock);
3461 }
3462 EXPORT_SYMBOL(blk_set_runtime_active);
3463 #endif
3464
3465 int __init blk_dev_init(void)
3466 {
3467 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3468 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3469 FIELD_SIZEOF(struct request, cmd_flags));
3470 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3471 FIELD_SIZEOF(struct bio, bi_opf));
3472
3473 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3474 kblockd_workqueue = alloc_workqueue("kblockd",
3475 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3476 if (!kblockd_workqueue)
3477 panic("Failed to create kblockd\n");
3478
3479 request_cachep = kmem_cache_create("blkdev_requests",
3480 sizeof(struct request), 0, SLAB_PANIC, NULL);
3481
3482 blk_requestq_cachep = kmem_cache_create("request_queue",
3483 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3484
3485 return 0;
3486 }