]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blk-mq: Rename blk_mq_request_direct_issue() into blk_mq_request_issue_directly()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
147 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
148
149 /* device mapper special case, should not leak out: */
150 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
151
152 /* everything else not covered above: */
153 [BLK_STS_IOERR] = { -EIO, "I/O" },
154 };
155
156 blk_status_t errno_to_blk_status(int errno)
157 {
158 int i;
159
160 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
161 if (blk_errors[i].errno == errno)
162 return (__force blk_status_t)i;
163 }
164
165 return BLK_STS_IOERR;
166 }
167 EXPORT_SYMBOL_GPL(errno_to_blk_status);
168
169 int blk_status_to_errno(blk_status_t status)
170 {
171 int idx = (__force int)status;
172
173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
174 return -EIO;
175 return blk_errors[idx].errno;
176 }
177 EXPORT_SYMBOL_GPL(blk_status_to_errno);
178
179 static void print_req_error(struct request *req, blk_status_t status)
180 {
181 int idx = (__force int)status;
182
183 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
184 return;
185
186 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
187 __func__, blk_errors[idx].name, req->rq_disk ?
188 req->rq_disk->disk_name : "?",
189 (unsigned long long)blk_rq_pos(req));
190 }
191
192 static void req_bio_endio(struct request *rq, struct bio *bio,
193 unsigned int nbytes, blk_status_t error)
194 {
195 if (error)
196 bio->bi_status = error;
197
198 if (unlikely(rq->rq_flags & RQF_QUIET))
199 bio_set_flag(bio, BIO_QUIET);
200
201 bio_advance(bio, nbytes);
202
203 /* don't actually finish bio if it's part of flush sequence */
204 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
205 bio_endio(bio);
206 }
207
208 void blk_dump_rq_flags(struct request *rq, char *msg)
209 {
210 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
211 rq->rq_disk ? rq->rq_disk->disk_name : "?",
212 (unsigned long long) rq->cmd_flags);
213
214 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
215 (unsigned long long)blk_rq_pos(rq),
216 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
217 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
218 rq->bio, rq->biotail, blk_rq_bytes(rq));
219 }
220 EXPORT_SYMBOL(blk_dump_rq_flags);
221
222 static void blk_delay_work(struct work_struct *work)
223 {
224 struct request_queue *q;
225
226 q = container_of(work, struct request_queue, delay_work.work);
227 spin_lock_irq(q->queue_lock);
228 __blk_run_queue(q);
229 spin_unlock_irq(q->queue_lock);
230 }
231
232 /**
233 * blk_delay_queue - restart queueing after defined interval
234 * @q: The &struct request_queue in question
235 * @msecs: Delay in msecs
236 *
237 * Description:
238 * Sometimes queueing needs to be postponed for a little while, to allow
239 * resources to come back. This function will make sure that queueing is
240 * restarted around the specified time.
241 */
242 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
243 {
244 lockdep_assert_held(q->queue_lock);
245 WARN_ON_ONCE(q->mq_ops);
246
247 if (likely(!blk_queue_dead(q)))
248 queue_delayed_work(kblockd_workqueue, &q->delay_work,
249 msecs_to_jiffies(msecs));
250 }
251 EXPORT_SYMBOL(blk_delay_queue);
252
253 /**
254 * blk_start_queue_async - asynchronously restart a previously stopped queue
255 * @q: The &struct request_queue in question
256 *
257 * Description:
258 * blk_start_queue_async() will clear the stop flag on the queue, and
259 * ensure that the request_fn for the queue is run from an async
260 * context.
261 **/
262 void blk_start_queue_async(struct request_queue *q)
263 {
264 lockdep_assert_held(q->queue_lock);
265 WARN_ON_ONCE(q->mq_ops);
266
267 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
268 blk_run_queue_async(q);
269 }
270 EXPORT_SYMBOL(blk_start_queue_async);
271
272 /**
273 * blk_start_queue - restart a previously stopped queue
274 * @q: The &struct request_queue in question
275 *
276 * Description:
277 * blk_start_queue() will clear the stop flag on the queue, and call
278 * the request_fn for the queue if it was in a stopped state when
279 * entered. Also see blk_stop_queue().
280 **/
281 void blk_start_queue(struct request_queue *q)
282 {
283 lockdep_assert_held(q->queue_lock);
284 WARN_ON(!in_interrupt() && !irqs_disabled());
285 WARN_ON_ONCE(q->mq_ops);
286
287 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
288 __blk_run_queue(q);
289 }
290 EXPORT_SYMBOL(blk_start_queue);
291
292 /**
293 * blk_stop_queue - stop a queue
294 * @q: The &struct request_queue in question
295 *
296 * Description:
297 * The Linux block layer assumes that a block driver will consume all
298 * entries on the request queue when the request_fn strategy is called.
299 * Often this will not happen, because of hardware limitations (queue
300 * depth settings). If a device driver gets a 'queue full' response,
301 * or if it simply chooses not to queue more I/O at one point, it can
302 * call this function to prevent the request_fn from being called until
303 * the driver has signalled it's ready to go again. This happens by calling
304 * blk_start_queue() to restart queue operations.
305 **/
306 void blk_stop_queue(struct request_queue *q)
307 {
308 lockdep_assert_held(q->queue_lock);
309 WARN_ON_ONCE(q->mq_ops);
310
311 cancel_delayed_work(&q->delay_work);
312 queue_flag_set(QUEUE_FLAG_STOPPED, q);
313 }
314 EXPORT_SYMBOL(blk_stop_queue);
315
316 /**
317 * blk_sync_queue - cancel any pending callbacks on a queue
318 * @q: the queue
319 *
320 * Description:
321 * The block layer may perform asynchronous callback activity
322 * on a queue, such as calling the unplug function after a timeout.
323 * A block device may call blk_sync_queue to ensure that any
324 * such activity is cancelled, thus allowing it to release resources
325 * that the callbacks might use. The caller must already have made sure
326 * that its ->make_request_fn will not re-add plugging prior to calling
327 * this function.
328 *
329 * This function does not cancel any asynchronous activity arising
330 * out of elevator or throttling code. That would require elevator_exit()
331 * and blkcg_exit_queue() to be called with queue lock initialized.
332 *
333 */
334 void blk_sync_queue(struct request_queue *q)
335 {
336 del_timer_sync(&q->timeout);
337 cancel_work_sync(&q->timeout_work);
338
339 if (q->mq_ops) {
340 struct blk_mq_hw_ctx *hctx;
341 int i;
342
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 wake_up_all(&q->mq_freeze_wq);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
382 /**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 lockdep_assert_held(q->queue_lock);
396 WARN_ON_ONCE(q->mq_ops);
397
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
409 q->request_fn(q);
410 q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue.
420 */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 lockdep_assert_held(q->queue_lock);
424 WARN_ON_ONCE(q->mq_ops);
425
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
429 __blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432
433 /**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
445 */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 lockdep_assert_held(q->queue_lock);
449 WARN_ON_ONCE(q->mq_ops);
450
451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455
456 /**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
462 * May be used to restart queueing when a request has completed.
463 */
464 void blk_run_queue(struct request_queue *q)
465 {
466 unsigned long flags;
467
468 WARN_ON_ONCE(q->mq_ops);
469
470 spin_lock_irqsave(q->queue_lock, flags);
471 __blk_run_queue(q);
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475
476 void blk_put_queue(struct request_queue *q)
477 {
478 kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481
482 /**
483 * __blk_drain_queue - drain requests from request_queue
484 * @q: queue to drain
485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486 *
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
490 */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
494 {
495 int i;
496
497 lockdep_assert_held(q->queue_lock);
498 WARN_ON_ONCE(q->mq_ops);
499
500 while (true) {
501 bool drain = false;
502
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
510 blkcg_drain_queue(q);
511
512 /*
513 * This function might be called on a queue which failed
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
518 */
519 if (!list_empty(&q->queue_head) && q->request_fn)
520 __blk_run_queue(q);
521
522 drain |= q->nr_rqs_elvpriv;
523 drain |= q->request_fn_active;
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
534 drain |= q->nr_rqs[i];
535 drain |= q->in_flight[i];
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
538 }
539 }
540
541 if (!drain)
542 break;
543
544 spin_unlock_irq(q->queue_lock);
545
546 msleep(10);
547
548 spin_lock_irq(q->queue_lock);
549 }
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
557 struct request_list *rl;
558
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
562 }
563 }
564
565 void blk_drain_queue(struct request_queue *q)
566 {
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570 }
571
572 /**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
578 * throttled or issued before. On return, it's guaranteed that no request
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
581 */
582 void blk_queue_bypass_start(struct request_queue *q)
583 {
584 WARN_ON_ONCE(q->mq_ops);
585
586 spin_lock_irq(q->queue_lock);
587 q->bypass_depth++;
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
604 }
605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607 /**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
615 */
616 void blk_queue_bypass_end(struct request_queue *q)
617 {
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623 }
624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
626 void blk_set_queue_dying(struct request_queue *q)
627 {
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
631
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
644 spin_lock_irq(q->queue_lock);
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
649 }
650 }
651 spin_unlock_irq(q->queue_lock);
652 }
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
656 }
657 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
659 /**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
665 */
666 void blk_cleanup_queue(struct request_queue *q)
667 {
668 spinlock_t *lock = q->queue_lock;
669
670 /* mark @q DYING, no new request or merges will be allowed afterwards */
671 mutex_lock(&q->sysfs_lock);
672 blk_set_queue_dying(q);
673 spin_lock_irq(lock);
674
675 /*
676 * A dying queue is permanently in bypass mode till released. Note
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
689 queue_flag_set(QUEUE_FLAG_DYING, q);
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
697 blk_freeze_queue(q);
698 spin_lock_irq(lock);
699 queue_flag_set(QUEUE_FLAG_DEAD, q);
700 spin_unlock_irq(lock);
701
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
706 * from more than one contexts.
707 *
708 * We rely on driver to deal with the race in case that queue
709 * initialization isn't done.
710 */
711 if (q->mq_ops && blk_queue_init_done(q))
712 blk_mq_quiesce_queue(q);
713
714 /* for synchronous bio-based driver finish in-flight integrity i/o */
715 blk_flush_integrity();
716
717 /* @q won't process any more request, flush async actions */
718 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
719 blk_sync_queue(q);
720
721 if (q->mq_ops)
722 blk_mq_exit_queue(q);
723
724 percpu_ref_exit(&q->q_usage_counter);
725
726 spin_lock_irq(lock);
727 if (q->queue_lock != &q->__queue_lock)
728 q->queue_lock = &q->__queue_lock;
729 spin_unlock_irq(lock);
730
731 /* @q is and will stay empty, shutdown and put */
732 blk_put_queue(q);
733 }
734 EXPORT_SYMBOL(blk_cleanup_queue);
735
736 /* Allocate memory local to the request queue */
737 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
738 {
739 struct request_queue *q = data;
740
741 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
742 }
743
744 static void free_request_simple(void *element, void *data)
745 {
746 kmem_cache_free(request_cachep, element);
747 }
748
749 static void *alloc_request_size(gfp_t gfp_mask, void *data)
750 {
751 struct request_queue *q = data;
752 struct request *rq;
753
754 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
755 q->node);
756 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
757 kfree(rq);
758 rq = NULL;
759 }
760 return rq;
761 }
762
763 static void free_request_size(void *element, void *data)
764 {
765 struct request_queue *q = data;
766
767 if (q->exit_rq_fn)
768 q->exit_rq_fn(q, element);
769 kfree(element);
770 }
771
772 int blk_init_rl(struct request_list *rl, struct request_queue *q,
773 gfp_t gfp_mask)
774 {
775 if (unlikely(rl->rq_pool) || q->mq_ops)
776 return 0;
777
778 rl->q = q;
779 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
780 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
781 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
782 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
783
784 if (q->cmd_size) {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_size, free_request_size,
787 q, gfp_mask, q->node);
788 } else {
789 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
790 alloc_request_simple, free_request_simple,
791 q, gfp_mask, q->node);
792 }
793 if (!rl->rq_pool)
794 return -ENOMEM;
795
796 if (rl != &q->root_rl)
797 WARN_ON_ONCE(!blk_get_queue(q));
798
799 return 0;
800 }
801
802 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
803 {
804 if (rl->rq_pool) {
805 mempool_destroy(rl->rq_pool);
806 if (rl != &q->root_rl)
807 blk_put_queue(q);
808 }
809 }
810
811 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
812 {
813 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
814 }
815 EXPORT_SYMBOL(blk_alloc_queue);
816
817 /**
818 * blk_queue_enter() - try to increase q->q_usage_counter
819 * @q: request queue pointer
820 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
821 */
822 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
823 {
824 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
825
826 while (true) {
827 bool success = false;
828
829 rcu_read_lock();
830 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
831 /*
832 * The code that sets the PREEMPT_ONLY flag is
833 * responsible for ensuring that that flag is globally
834 * visible before the queue is unfrozen.
835 */
836 if (preempt || !blk_queue_preempt_only(q)) {
837 success = true;
838 } else {
839 percpu_ref_put(&q->q_usage_counter);
840 }
841 }
842 rcu_read_unlock();
843
844 if (success)
845 return 0;
846
847 if (flags & BLK_MQ_REQ_NOWAIT)
848 return -EBUSY;
849
850 /*
851 * read pair of barrier in blk_freeze_queue_start(),
852 * we need to order reading __PERCPU_REF_DEAD flag of
853 * .q_usage_counter and reading .mq_freeze_depth or
854 * queue dying flag, otherwise the following wait may
855 * never return if the two reads are reordered.
856 */
857 smp_rmb();
858
859 wait_event(q->mq_freeze_wq,
860 (atomic_read(&q->mq_freeze_depth) == 0 &&
861 (preempt || !blk_queue_preempt_only(q))) ||
862 blk_queue_dying(q));
863 if (blk_queue_dying(q))
864 return -ENODEV;
865 }
866 }
867
868 void blk_queue_exit(struct request_queue *q)
869 {
870 percpu_ref_put(&q->q_usage_counter);
871 }
872
873 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
874 {
875 struct request_queue *q =
876 container_of(ref, struct request_queue, q_usage_counter);
877
878 wake_up_all(&q->mq_freeze_wq);
879 }
880
881 static void blk_rq_timed_out_timer(struct timer_list *t)
882 {
883 struct request_queue *q = from_timer(q, t, timeout);
884
885 kblockd_schedule_work(&q->timeout_work);
886 }
887
888 static void blk_timeout_work_dummy(struct work_struct *work)
889 {
890 }
891
892 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
893 {
894 struct request_queue *q;
895
896 q = kmem_cache_alloc_node(blk_requestq_cachep,
897 gfp_mask | __GFP_ZERO, node_id);
898 if (!q)
899 return NULL;
900
901 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
902 if (q->id < 0)
903 goto fail_q;
904
905 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
906 if (!q->bio_split)
907 goto fail_id;
908
909 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
910 if (!q->backing_dev_info)
911 goto fail_split;
912
913 q->stats = blk_alloc_queue_stats();
914 if (!q->stats)
915 goto fail_stats;
916
917 q->backing_dev_info->ra_pages =
918 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
919 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
920 q->backing_dev_info->name = "block";
921 q->node = node_id;
922
923 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
924 laptop_mode_timer_fn, 0);
925 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
926 INIT_WORK(&q->timeout_work, blk_timeout_work_dummy);
927 INIT_LIST_HEAD(&q->queue_head);
928 INIT_LIST_HEAD(&q->timeout_list);
929 INIT_LIST_HEAD(&q->icq_list);
930 #ifdef CONFIG_BLK_CGROUP
931 INIT_LIST_HEAD(&q->blkg_list);
932 #endif
933 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
934
935 kobject_init(&q->kobj, &blk_queue_ktype);
936
937 #ifdef CONFIG_BLK_DEV_IO_TRACE
938 mutex_init(&q->blk_trace_mutex);
939 #endif
940 mutex_init(&q->sysfs_lock);
941 spin_lock_init(&q->__queue_lock);
942
943 /*
944 * By default initialize queue_lock to internal lock and driver can
945 * override it later if need be.
946 */
947 q->queue_lock = &q->__queue_lock;
948
949 /*
950 * A queue starts its life with bypass turned on to avoid
951 * unnecessary bypass on/off overhead and nasty surprises during
952 * init. The initial bypass will be finished when the queue is
953 * registered by blk_register_queue().
954 */
955 q->bypass_depth = 1;
956 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
957
958 init_waitqueue_head(&q->mq_freeze_wq);
959
960 /*
961 * Init percpu_ref in atomic mode so that it's faster to shutdown.
962 * See blk_register_queue() for details.
963 */
964 if (percpu_ref_init(&q->q_usage_counter,
965 blk_queue_usage_counter_release,
966 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
967 goto fail_bdi;
968
969 if (blkcg_init_queue(q))
970 goto fail_ref;
971
972 return q;
973
974 fail_ref:
975 percpu_ref_exit(&q->q_usage_counter);
976 fail_bdi:
977 blk_free_queue_stats(q->stats);
978 fail_stats:
979 bdi_put(q->backing_dev_info);
980 fail_split:
981 bioset_free(q->bio_split);
982 fail_id:
983 ida_simple_remove(&blk_queue_ida, q->id);
984 fail_q:
985 kmem_cache_free(blk_requestq_cachep, q);
986 return NULL;
987 }
988 EXPORT_SYMBOL(blk_alloc_queue_node);
989
990 /**
991 * blk_init_queue - prepare a request queue for use with a block device
992 * @rfn: The function to be called to process requests that have been
993 * placed on the queue.
994 * @lock: Request queue spin lock
995 *
996 * Description:
997 * If a block device wishes to use the standard request handling procedures,
998 * which sorts requests and coalesces adjacent requests, then it must
999 * call blk_init_queue(). The function @rfn will be called when there
1000 * are requests on the queue that need to be processed. If the device
1001 * supports plugging, then @rfn may not be called immediately when requests
1002 * are available on the queue, but may be called at some time later instead.
1003 * Plugged queues are generally unplugged when a buffer belonging to one
1004 * of the requests on the queue is needed, or due to memory pressure.
1005 *
1006 * @rfn is not required, or even expected, to remove all requests off the
1007 * queue, but only as many as it can handle at a time. If it does leave
1008 * requests on the queue, it is responsible for arranging that the requests
1009 * get dealt with eventually.
1010 *
1011 * The queue spin lock must be held while manipulating the requests on the
1012 * request queue; this lock will be taken also from interrupt context, so irq
1013 * disabling is needed for it.
1014 *
1015 * Function returns a pointer to the initialized request queue, or %NULL if
1016 * it didn't succeed.
1017 *
1018 * Note:
1019 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1020 * when the block device is deactivated (such as at module unload).
1021 **/
1022
1023 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1024 {
1025 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1026 }
1027 EXPORT_SYMBOL(blk_init_queue);
1028
1029 struct request_queue *
1030 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1031 {
1032 struct request_queue *q;
1033
1034 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1035 if (!q)
1036 return NULL;
1037
1038 q->request_fn = rfn;
1039 if (lock)
1040 q->queue_lock = lock;
1041 if (blk_init_allocated_queue(q) < 0) {
1042 blk_cleanup_queue(q);
1043 return NULL;
1044 }
1045
1046 return q;
1047 }
1048 EXPORT_SYMBOL(blk_init_queue_node);
1049
1050 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1051
1052
1053 int blk_init_allocated_queue(struct request_queue *q)
1054 {
1055 WARN_ON_ONCE(q->mq_ops);
1056
1057 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1058 if (!q->fq)
1059 return -ENOMEM;
1060
1061 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1062 goto out_free_flush_queue;
1063
1064 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1065 goto out_exit_flush_rq;
1066
1067 INIT_WORK(&q->timeout_work, blk_timeout_work);
1068 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1069
1070 /*
1071 * This also sets hw/phys segments, boundary and size
1072 */
1073 blk_queue_make_request(q, blk_queue_bio);
1074
1075 q->sg_reserved_size = INT_MAX;
1076
1077 /* Protect q->elevator from elevator_change */
1078 mutex_lock(&q->sysfs_lock);
1079
1080 /* init elevator */
1081 if (elevator_init(q, NULL)) {
1082 mutex_unlock(&q->sysfs_lock);
1083 goto out_exit_flush_rq;
1084 }
1085
1086 mutex_unlock(&q->sysfs_lock);
1087 return 0;
1088
1089 out_exit_flush_rq:
1090 if (q->exit_rq_fn)
1091 q->exit_rq_fn(q, q->fq->flush_rq);
1092 out_free_flush_queue:
1093 blk_free_flush_queue(q->fq);
1094 q->fq = NULL;
1095 return -ENOMEM;
1096 }
1097 EXPORT_SYMBOL(blk_init_allocated_queue);
1098
1099 bool blk_get_queue(struct request_queue *q)
1100 {
1101 if (likely(!blk_queue_dying(q))) {
1102 __blk_get_queue(q);
1103 return true;
1104 }
1105
1106 return false;
1107 }
1108 EXPORT_SYMBOL(blk_get_queue);
1109
1110 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1111 {
1112 if (rq->rq_flags & RQF_ELVPRIV) {
1113 elv_put_request(rl->q, rq);
1114 if (rq->elv.icq)
1115 put_io_context(rq->elv.icq->ioc);
1116 }
1117
1118 mempool_free(rq, rl->rq_pool);
1119 }
1120
1121 /*
1122 * ioc_batching returns true if the ioc is a valid batching request and
1123 * should be given priority access to a request.
1124 */
1125 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1126 {
1127 if (!ioc)
1128 return 0;
1129
1130 /*
1131 * Make sure the process is able to allocate at least 1 request
1132 * even if the batch times out, otherwise we could theoretically
1133 * lose wakeups.
1134 */
1135 return ioc->nr_batch_requests == q->nr_batching ||
1136 (ioc->nr_batch_requests > 0
1137 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1138 }
1139
1140 /*
1141 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1142 * will cause the process to be a "batcher" on all queues in the system. This
1143 * is the behaviour we want though - once it gets a wakeup it should be given
1144 * a nice run.
1145 */
1146 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1147 {
1148 if (!ioc || ioc_batching(q, ioc))
1149 return;
1150
1151 ioc->nr_batch_requests = q->nr_batching;
1152 ioc->last_waited = jiffies;
1153 }
1154
1155 static void __freed_request(struct request_list *rl, int sync)
1156 {
1157 struct request_queue *q = rl->q;
1158
1159 if (rl->count[sync] < queue_congestion_off_threshold(q))
1160 blk_clear_congested(rl, sync);
1161
1162 if (rl->count[sync] + 1 <= q->nr_requests) {
1163 if (waitqueue_active(&rl->wait[sync]))
1164 wake_up(&rl->wait[sync]);
1165
1166 blk_clear_rl_full(rl, sync);
1167 }
1168 }
1169
1170 /*
1171 * A request has just been released. Account for it, update the full and
1172 * congestion status, wake up any waiters. Called under q->queue_lock.
1173 */
1174 static void freed_request(struct request_list *rl, bool sync,
1175 req_flags_t rq_flags)
1176 {
1177 struct request_queue *q = rl->q;
1178
1179 q->nr_rqs[sync]--;
1180 rl->count[sync]--;
1181 if (rq_flags & RQF_ELVPRIV)
1182 q->nr_rqs_elvpriv--;
1183
1184 __freed_request(rl, sync);
1185
1186 if (unlikely(rl->starved[sync ^ 1]))
1187 __freed_request(rl, sync ^ 1);
1188 }
1189
1190 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1191 {
1192 struct request_list *rl;
1193 int on_thresh, off_thresh;
1194
1195 WARN_ON_ONCE(q->mq_ops);
1196
1197 spin_lock_irq(q->queue_lock);
1198 q->nr_requests = nr;
1199 blk_queue_congestion_threshold(q);
1200 on_thresh = queue_congestion_on_threshold(q);
1201 off_thresh = queue_congestion_off_threshold(q);
1202
1203 blk_queue_for_each_rl(rl, q) {
1204 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1205 blk_set_congested(rl, BLK_RW_SYNC);
1206 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1207 blk_clear_congested(rl, BLK_RW_SYNC);
1208
1209 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1210 blk_set_congested(rl, BLK_RW_ASYNC);
1211 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1212 blk_clear_congested(rl, BLK_RW_ASYNC);
1213
1214 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1215 blk_set_rl_full(rl, BLK_RW_SYNC);
1216 } else {
1217 blk_clear_rl_full(rl, BLK_RW_SYNC);
1218 wake_up(&rl->wait[BLK_RW_SYNC]);
1219 }
1220
1221 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1222 blk_set_rl_full(rl, BLK_RW_ASYNC);
1223 } else {
1224 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1225 wake_up(&rl->wait[BLK_RW_ASYNC]);
1226 }
1227 }
1228
1229 spin_unlock_irq(q->queue_lock);
1230 return 0;
1231 }
1232
1233 /**
1234 * __get_request - get a free request
1235 * @rl: request list to allocate from
1236 * @op: operation and flags
1237 * @bio: bio to allocate request for (can be %NULL)
1238 * @flags: BLQ_MQ_REQ_* flags
1239 *
1240 * Get a free request from @q. This function may fail under memory
1241 * pressure or if @q is dead.
1242 *
1243 * Must be called with @q->queue_lock held and,
1244 * Returns ERR_PTR on failure, with @q->queue_lock held.
1245 * Returns request pointer on success, with @q->queue_lock *not held*.
1246 */
1247 static struct request *__get_request(struct request_list *rl, unsigned int op,
1248 struct bio *bio, blk_mq_req_flags_t flags)
1249 {
1250 struct request_queue *q = rl->q;
1251 struct request *rq;
1252 struct elevator_type *et = q->elevator->type;
1253 struct io_context *ioc = rq_ioc(bio);
1254 struct io_cq *icq = NULL;
1255 const bool is_sync = op_is_sync(op);
1256 int may_queue;
1257 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1258 __GFP_DIRECT_RECLAIM;
1259 req_flags_t rq_flags = RQF_ALLOCED;
1260
1261 lockdep_assert_held(q->queue_lock);
1262
1263 if (unlikely(blk_queue_dying(q)))
1264 return ERR_PTR(-ENODEV);
1265
1266 may_queue = elv_may_queue(q, op);
1267 if (may_queue == ELV_MQUEUE_NO)
1268 goto rq_starved;
1269
1270 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1271 if (rl->count[is_sync]+1 >= q->nr_requests) {
1272 /*
1273 * The queue will fill after this allocation, so set
1274 * it as full, and mark this process as "batching".
1275 * This process will be allowed to complete a batch of
1276 * requests, others will be blocked.
1277 */
1278 if (!blk_rl_full(rl, is_sync)) {
1279 ioc_set_batching(q, ioc);
1280 blk_set_rl_full(rl, is_sync);
1281 } else {
1282 if (may_queue != ELV_MQUEUE_MUST
1283 && !ioc_batching(q, ioc)) {
1284 /*
1285 * The queue is full and the allocating
1286 * process is not a "batcher", and not
1287 * exempted by the IO scheduler
1288 */
1289 return ERR_PTR(-ENOMEM);
1290 }
1291 }
1292 }
1293 blk_set_congested(rl, is_sync);
1294 }
1295
1296 /*
1297 * Only allow batching queuers to allocate up to 50% over the defined
1298 * limit of requests, otherwise we could have thousands of requests
1299 * allocated with any setting of ->nr_requests
1300 */
1301 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1302 return ERR_PTR(-ENOMEM);
1303
1304 q->nr_rqs[is_sync]++;
1305 rl->count[is_sync]++;
1306 rl->starved[is_sync] = 0;
1307
1308 /*
1309 * Decide whether the new request will be managed by elevator. If
1310 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1311 * prevent the current elevator from being destroyed until the new
1312 * request is freed. This guarantees icq's won't be destroyed and
1313 * makes creating new ones safe.
1314 *
1315 * Flush requests do not use the elevator so skip initialization.
1316 * This allows a request to share the flush and elevator data.
1317 *
1318 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1319 * it will be created after releasing queue_lock.
1320 */
1321 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1322 rq_flags |= RQF_ELVPRIV;
1323 q->nr_rqs_elvpriv++;
1324 if (et->icq_cache && ioc)
1325 icq = ioc_lookup_icq(ioc, q);
1326 }
1327
1328 if (blk_queue_io_stat(q))
1329 rq_flags |= RQF_IO_STAT;
1330 spin_unlock_irq(q->queue_lock);
1331
1332 /* allocate and init request */
1333 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1334 if (!rq)
1335 goto fail_alloc;
1336
1337 blk_rq_init(q, rq);
1338 blk_rq_set_rl(rq, rl);
1339 rq->cmd_flags = op;
1340 rq->rq_flags = rq_flags;
1341 if (flags & BLK_MQ_REQ_PREEMPT)
1342 rq->rq_flags |= RQF_PREEMPT;
1343
1344 /* init elvpriv */
1345 if (rq_flags & RQF_ELVPRIV) {
1346 if (unlikely(et->icq_cache && !icq)) {
1347 if (ioc)
1348 icq = ioc_create_icq(ioc, q, gfp_mask);
1349 if (!icq)
1350 goto fail_elvpriv;
1351 }
1352
1353 rq->elv.icq = icq;
1354 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1355 goto fail_elvpriv;
1356
1357 /* @rq->elv.icq holds io_context until @rq is freed */
1358 if (icq)
1359 get_io_context(icq->ioc);
1360 }
1361 out:
1362 /*
1363 * ioc may be NULL here, and ioc_batching will be false. That's
1364 * OK, if the queue is under the request limit then requests need
1365 * not count toward the nr_batch_requests limit. There will always
1366 * be some limit enforced by BLK_BATCH_TIME.
1367 */
1368 if (ioc_batching(q, ioc))
1369 ioc->nr_batch_requests--;
1370
1371 trace_block_getrq(q, bio, op);
1372 return rq;
1373
1374 fail_elvpriv:
1375 /*
1376 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1377 * and may fail indefinitely under memory pressure and thus
1378 * shouldn't stall IO. Treat this request as !elvpriv. This will
1379 * disturb iosched and blkcg but weird is bettern than dead.
1380 */
1381 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1382 __func__, dev_name(q->backing_dev_info->dev));
1383
1384 rq->rq_flags &= ~RQF_ELVPRIV;
1385 rq->elv.icq = NULL;
1386
1387 spin_lock_irq(q->queue_lock);
1388 q->nr_rqs_elvpriv--;
1389 spin_unlock_irq(q->queue_lock);
1390 goto out;
1391
1392 fail_alloc:
1393 /*
1394 * Allocation failed presumably due to memory. Undo anything we
1395 * might have messed up.
1396 *
1397 * Allocating task should really be put onto the front of the wait
1398 * queue, but this is pretty rare.
1399 */
1400 spin_lock_irq(q->queue_lock);
1401 freed_request(rl, is_sync, rq_flags);
1402
1403 /*
1404 * in the very unlikely event that allocation failed and no
1405 * requests for this direction was pending, mark us starved so that
1406 * freeing of a request in the other direction will notice
1407 * us. another possible fix would be to split the rq mempool into
1408 * READ and WRITE
1409 */
1410 rq_starved:
1411 if (unlikely(rl->count[is_sync] == 0))
1412 rl->starved[is_sync] = 1;
1413 return ERR_PTR(-ENOMEM);
1414 }
1415
1416 /**
1417 * get_request - get a free request
1418 * @q: request_queue to allocate request from
1419 * @op: operation and flags
1420 * @bio: bio to allocate request for (can be %NULL)
1421 * @flags: BLK_MQ_REQ_* flags.
1422 *
1423 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1424 * this function keeps retrying under memory pressure and fails iff @q is dead.
1425 *
1426 * Must be called with @q->queue_lock held and,
1427 * Returns ERR_PTR on failure, with @q->queue_lock held.
1428 * Returns request pointer on success, with @q->queue_lock *not held*.
1429 */
1430 static struct request *get_request(struct request_queue *q, unsigned int op,
1431 struct bio *bio, blk_mq_req_flags_t flags)
1432 {
1433 const bool is_sync = op_is_sync(op);
1434 DEFINE_WAIT(wait);
1435 struct request_list *rl;
1436 struct request *rq;
1437
1438 lockdep_assert_held(q->queue_lock);
1439 WARN_ON_ONCE(q->mq_ops);
1440
1441 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1442 retry:
1443 rq = __get_request(rl, op, bio, flags);
1444 if (!IS_ERR(rq))
1445 return rq;
1446
1447 if (op & REQ_NOWAIT) {
1448 blk_put_rl(rl);
1449 return ERR_PTR(-EAGAIN);
1450 }
1451
1452 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1453 blk_put_rl(rl);
1454 return rq;
1455 }
1456
1457 /* wait on @rl and retry */
1458 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1459 TASK_UNINTERRUPTIBLE);
1460
1461 trace_block_sleeprq(q, bio, op);
1462
1463 spin_unlock_irq(q->queue_lock);
1464 io_schedule();
1465
1466 /*
1467 * After sleeping, we become a "batching" process and will be able
1468 * to allocate at least one request, and up to a big batch of them
1469 * for a small period time. See ioc_batching, ioc_set_batching
1470 */
1471 ioc_set_batching(q, current->io_context);
1472
1473 spin_lock_irq(q->queue_lock);
1474 finish_wait(&rl->wait[is_sync], &wait);
1475
1476 goto retry;
1477 }
1478
1479 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1480 static struct request *blk_old_get_request(struct request_queue *q,
1481 unsigned int op, blk_mq_req_flags_t flags)
1482 {
1483 struct request *rq;
1484 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1485 __GFP_DIRECT_RECLAIM;
1486 int ret = 0;
1487
1488 WARN_ON_ONCE(q->mq_ops);
1489
1490 /* create ioc upfront */
1491 create_io_context(gfp_mask, q->node);
1492
1493 ret = blk_queue_enter(q, flags);
1494 if (ret)
1495 return ERR_PTR(ret);
1496 spin_lock_irq(q->queue_lock);
1497 rq = get_request(q, op, NULL, flags);
1498 if (IS_ERR(rq)) {
1499 spin_unlock_irq(q->queue_lock);
1500 blk_queue_exit(q);
1501 return rq;
1502 }
1503
1504 /* q->queue_lock is unlocked at this point */
1505 rq->__data_len = 0;
1506 rq->__sector = (sector_t) -1;
1507 rq->bio = rq->biotail = NULL;
1508 return rq;
1509 }
1510
1511 /**
1512 * blk_get_request_flags - allocate a request
1513 * @q: request queue to allocate a request for
1514 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1515 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1516 */
1517 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1518 blk_mq_req_flags_t flags)
1519 {
1520 struct request *req;
1521
1522 WARN_ON_ONCE(op & REQ_NOWAIT);
1523 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1524
1525 if (q->mq_ops) {
1526 req = blk_mq_alloc_request(q, op, flags);
1527 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1528 q->mq_ops->initialize_rq_fn(req);
1529 } else {
1530 req = blk_old_get_request(q, op, flags);
1531 if (!IS_ERR(req) && q->initialize_rq_fn)
1532 q->initialize_rq_fn(req);
1533 }
1534
1535 return req;
1536 }
1537 EXPORT_SYMBOL(blk_get_request_flags);
1538
1539 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1540 gfp_t gfp_mask)
1541 {
1542 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1543 0 : BLK_MQ_REQ_NOWAIT);
1544 }
1545 EXPORT_SYMBOL(blk_get_request);
1546
1547 /**
1548 * blk_requeue_request - put a request back on queue
1549 * @q: request queue where request should be inserted
1550 * @rq: request to be inserted
1551 *
1552 * Description:
1553 * Drivers often keep queueing requests until the hardware cannot accept
1554 * more, when that condition happens we need to put the request back
1555 * on the queue. Must be called with queue lock held.
1556 */
1557 void blk_requeue_request(struct request_queue *q, struct request *rq)
1558 {
1559 lockdep_assert_held(q->queue_lock);
1560 WARN_ON_ONCE(q->mq_ops);
1561
1562 blk_delete_timer(rq);
1563 blk_clear_rq_complete(rq);
1564 trace_block_rq_requeue(q, rq);
1565 wbt_requeue(q->rq_wb, &rq->issue_stat);
1566
1567 if (rq->rq_flags & RQF_QUEUED)
1568 blk_queue_end_tag(q, rq);
1569
1570 BUG_ON(blk_queued_rq(rq));
1571
1572 elv_requeue_request(q, rq);
1573 }
1574 EXPORT_SYMBOL(blk_requeue_request);
1575
1576 static void add_acct_request(struct request_queue *q, struct request *rq,
1577 int where)
1578 {
1579 blk_account_io_start(rq, true);
1580 __elv_add_request(q, rq, where);
1581 }
1582
1583 static void part_round_stats_single(struct request_queue *q, int cpu,
1584 struct hd_struct *part, unsigned long now,
1585 unsigned int inflight)
1586 {
1587 if (inflight) {
1588 __part_stat_add(cpu, part, time_in_queue,
1589 inflight * (now - part->stamp));
1590 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1591 }
1592 part->stamp = now;
1593 }
1594
1595 /**
1596 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1597 * @q: target block queue
1598 * @cpu: cpu number for stats access
1599 * @part: target partition
1600 *
1601 * The average IO queue length and utilisation statistics are maintained
1602 * by observing the current state of the queue length and the amount of
1603 * time it has been in this state for.
1604 *
1605 * Normally, that accounting is done on IO completion, but that can result
1606 * in more than a second's worth of IO being accounted for within any one
1607 * second, leading to >100% utilisation. To deal with that, we call this
1608 * function to do a round-off before returning the results when reading
1609 * /proc/diskstats. This accounts immediately for all queue usage up to
1610 * the current jiffies and restarts the counters again.
1611 */
1612 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1613 {
1614 struct hd_struct *part2 = NULL;
1615 unsigned long now = jiffies;
1616 unsigned int inflight[2];
1617 int stats = 0;
1618
1619 if (part->stamp != now)
1620 stats |= 1;
1621
1622 if (part->partno) {
1623 part2 = &part_to_disk(part)->part0;
1624 if (part2->stamp != now)
1625 stats |= 2;
1626 }
1627
1628 if (!stats)
1629 return;
1630
1631 part_in_flight(q, part, inflight);
1632
1633 if (stats & 2)
1634 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1635 if (stats & 1)
1636 part_round_stats_single(q, cpu, part, now, inflight[0]);
1637 }
1638 EXPORT_SYMBOL_GPL(part_round_stats);
1639
1640 #ifdef CONFIG_PM
1641 static void blk_pm_put_request(struct request *rq)
1642 {
1643 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1644 pm_runtime_mark_last_busy(rq->q->dev);
1645 }
1646 #else
1647 static inline void blk_pm_put_request(struct request *rq) {}
1648 #endif
1649
1650 void __blk_put_request(struct request_queue *q, struct request *req)
1651 {
1652 req_flags_t rq_flags = req->rq_flags;
1653
1654 if (unlikely(!q))
1655 return;
1656
1657 if (q->mq_ops) {
1658 blk_mq_free_request(req);
1659 return;
1660 }
1661
1662 lockdep_assert_held(q->queue_lock);
1663
1664 blk_pm_put_request(req);
1665
1666 elv_completed_request(q, req);
1667
1668 /* this is a bio leak */
1669 WARN_ON(req->bio != NULL);
1670
1671 wbt_done(q->rq_wb, &req->issue_stat);
1672
1673 /*
1674 * Request may not have originated from ll_rw_blk. if not,
1675 * it didn't come out of our reserved rq pools
1676 */
1677 if (rq_flags & RQF_ALLOCED) {
1678 struct request_list *rl = blk_rq_rl(req);
1679 bool sync = op_is_sync(req->cmd_flags);
1680
1681 BUG_ON(!list_empty(&req->queuelist));
1682 BUG_ON(ELV_ON_HASH(req));
1683
1684 blk_free_request(rl, req);
1685 freed_request(rl, sync, rq_flags);
1686 blk_put_rl(rl);
1687 blk_queue_exit(q);
1688 }
1689 }
1690 EXPORT_SYMBOL_GPL(__blk_put_request);
1691
1692 void blk_put_request(struct request *req)
1693 {
1694 struct request_queue *q = req->q;
1695
1696 if (q->mq_ops)
1697 blk_mq_free_request(req);
1698 else {
1699 unsigned long flags;
1700
1701 spin_lock_irqsave(q->queue_lock, flags);
1702 __blk_put_request(q, req);
1703 spin_unlock_irqrestore(q->queue_lock, flags);
1704 }
1705 }
1706 EXPORT_SYMBOL(blk_put_request);
1707
1708 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1709 struct bio *bio)
1710 {
1711 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1712
1713 if (!ll_back_merge_fn(q, req, bio))
1714 return false;
1715
1716 trace_block_bio_backmerge(q, req, bio);
1717
1718 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1719 blk_rq_set_mixed_merge(req);
1720
1721 req->biotail->bi_next = bio;
1722 req->biotail = bio;
1723 req->__data_len += bio->bi_iter.bi_size;
1724 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1725
1726 blk_account_io_start(req, false);
1727 return true;
1728 }
1729
1730 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1731 struct bio *bio)
1732 {
1733 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1734
1735 if (!ll_front_merge_fn(q, req, bio))
1736 return false;
1737
1738 trace_block_bio_frontmerge(q, req, bio);
1739
1740 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1741 blk_rq_set_mixed_merge(req);
1742
1743 bio->bi_next = req->bio;
1744 req->bio = bio;
1745
1746 req->__sector = bio->bi_iter.bi_sector;
1747 req->__data_len += bio->bi_iter.bi_size;
1748 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1749
1750 blk_account_io_start(req, false);
1751 return true;
1752 }
1753
1754 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1755 struct bio *bio)
1756 {
1757 unsigned short segments = blk_rq_nr_discard_segments(req);
1758
1759 if (segments >= queue_max_discard_segments(q))
1760 goto no_merge;
1761 if (blk_rq_sectors(req) + bio_sectors(bio) >
1762 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1763 goto no_merge;
1764
1765 req->biotail->bi_next = bio;
1766 req->biotail = bio;
1767 req->__data_len += bio->bi_iter.bi_size;
1768 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1769 req->nr_phys_segments = segments + 1;
1770
1771 blk_account_io_start(req, false);
1772 return true;
1773 no_merge:
1774 req_set_nomerge(q, req);
1775 return false;
1776 }
1777
1778 /**
1779 * blk_attempt_plug_merge - try to merge with %current's plugged list
1780 * @q: request_queue new bio is being queued at
1781 * @bio: new bio being queued
1782 * @request_count: out parameter for number of traversed plugged requests
1783 * @same_queue_rq: pointer to &struct request that gets filled in when
1784 * another request associated with @q is found on the plug list
1785 * (optional, may be %NULL)
1786 *
1787 * Determine whether @bio being queued on @q can be merged with a request
1788 * on %current's plugged list. Returns %true if merge was successful,
1789 * otherwise %false.
1790 *
1791 * Plugging coalesces IOs from the same issuer for the same purpose without
1792 * going through @q->queue_lock. As such it's more of an issuing mechanism
1793 * than scheduling, and the request, while may have elvpriv data, is not
1794 * added on the elevator at this point. In addition, we don't have
1795 * reliable access to the elevator outside queue lock. Only check basic
1796 * merging parameters without querying the elevator.
1797 *
1798 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1799 */
1800 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1801 unsigned int *request_count,
1802 struct request **same_queue_rq)
1803 {
1804 struct blk_plug *plug;
1805 struct request *rq;
1806 struct list_head *plug_list;
1807
1808 plug = current->plug;
1809 if (!plug)
1810 return false;
1811 *request_count = 0;
1812
1813 if (q->mq_ops)
1814 plug_list = &plug->mq_list;
1815 else
1816 plug_list = &plug->list;
1817
1818 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1819 bool merged = false;
1820
1821 if (rq->q == q) {
1822 (*request_count)++;
1823 /*
1824 * Only blk-mq multiple hardware queues case checks the
1825 * rq in the same queue, there should be only one such
1826 * rq in a queue
1827 **/
1828 if (same_queue_rq)
1829 *same_queue_rq = rq;
1830 }
1831
1832 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1833 continue;
1834
1835 switch (blk_try_merge(rq, bio)) {
1836 case ELEVATOR_BACK_MERGE:
1837 merged = bio_attempt_back_merge(q, rq, bio);
1838 break;
1839 case ELEVATOR_FRONT_MERGE:
1840 merged = bio_attempt_front_merge(q, rq, bio);
1841 break;
1842 case ELEVATOR_DISCARD_MERGE:
1843 merged = bio_attempt_discard_merge(q, rq, bio);
1844 break;
1845 default:
1846 break;
1847 }
1848
1849 if (merged)
1850 return true;
1851 }
1852
1853 return false;
1854 }
1855
1856 unsigned int blk_plug_queued_count(struct request_queue *q)
1857 {
1858 struct blk_plug *plug;
1859 struct request *rq;
1860 struct list_head *plug_list;
1861 unsigned int ret = 0;
1862
1863 plug = current->plug;
1864 if (!plug)
1865 goto out;
1866
1867 if (q->mq_ops)
1868 plug_list = &plug->mq_list;
1869 else
1870 plug_list = &plug->list;
1871
1872 list_for_each_entry(rq, plug_list, queuelist) {
1873 if (rq->q == q)
1874 ret++;
1875 }
1876 out:
1877 return ret;
1878 }
1879
1880 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1881 {
1882 struct io_context *ioc = rq_ioc(bio);
1883
1884 if (bio->bi_opf & REQ_RAHEAD)
1885 req->cmd_flags |= REQ_FAILFAST_MASK;
1886
1887 req->__sector = bio->bi_iter.bi_sector;
1888 if (ioprio_valid(bio_prio(bio)))
1889 req->ioprio = bio_prio(bio);
1890 else if (ioc)
1891 req->ioprio = ioc->ioprio;
1892 else
1893 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1894 req->write_hint = bio->bi_write_hint;
1895 blk_rq_bio_prep(req->q, req, bio);
1896 }
1897 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1898
1899 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1900 {
1901 struct blk_plug *plug;
1902 int where = ELEVATOR_INSERT_SORT;
1903 struct request *req, *free;
1904 unsigned int request_count = 0;
1905 unsigned int wb_acct;
1906
1907 /*
1908 * low level driver can indicate that it wants pages above a
1909 * certain limit bounced to low memory (ie for highmem, or even
1910 * ISA dma in theory)
1911 */
1912 blk_queue_bounce(q, &bio);
1913
1914 blk_queue_split(q, &bio);
1915
1916 if (!bio_integrity_prep(bio))
1917 return BLK_QC_T_NONE;
1918
1919 if (op_is_flush(bio->bi_opf)) {
1920 spin_lock_irq(q->queue_lock);
1921 where = ELEVATOR_INSERT_FLUSH;
1922 goto get_rq;
1923 }
1924
1925 /*
1926 * Check if we can merge with the plugged list before grabbing
1927 * any locks.
1928 */
1929 if (!blk_queue_nomerges(q)) {
1930 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1931 return BLK_QC_T_NONE;
1932 } else
1933 request_count = blk_plug_queued_count(q);
1934
1935 spin_lock_irq(q->queue_lock);
1936
1937 switch (elv_merge(q, &req, bio)) {
1938 case ELEVATOR_BACK_MERGE:
1939 if (!bio_attempt_back_merge(q, req, bio))
1940 break;
1941 elv_bio_merged(q, req, bio);
1942 free = attempt_back_merge(q, req);
1943 if (free)
1944 __blk_put_request(q, free);
1945 else
1946 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1947 goto out_unlock;
1948 case ELEVATOR_FRONT_MERGE:
1949 if (!bio_attempt_front_merge(q, req, bio))
1950 break;
1951 elv_bio_merged(q, req, bio);
1952 free = attempt_front_merge(q, req);
1953 if (free)
1954 __blk_put_request(q, free);
1955 else
1956 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1957 goto out_unlock;
1958 default:
1959 break;
1960 }
1961
1962 get_rq:
1963 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1964
1965 /*
1966 * Grab a free request. This is might sleep but can not fail.
1967 * Returns with the queue unlocked.
1968 */
1969 blk_queue_enter_live(q);
1970 req = get_request(q, bio->bi_opf, bio, 0);
1971 if (IS_ERR(req)) {
1972 blk_queue_exit(q);
1973 __wbt_done(q->rq_wb, wb_acct);
1974 if (PTR_ERR(req) == -ENOMEM)
1975 bio->bi_status = BLK_STS_RESOURCE;
1976 else
1977 bio->bi_status = BLK_STS_IOERR;
1978 bio_endio(bio);
1979 goto out_unlock;
1980 }
1981
1982 wbt_track(&req->issue_stat, wb_acct);
1983
1984 /*
1985 * After dropping the lock and possibly sleeping here, our request
1986 * may now be mergeable after it had proven unmergeable (above).
1987 * We don't worry about that case for efficiency. It won't happen
1988 * often, and the elevators are able to handle it.
1989 */
1990 blk_init_request_from_bio(req, bio);
1991
1992 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1993 req->cpu = raw_smp_processor_id();
1994
1995 plug = current->plug;
1996 if (plug) {
1997 /*
1998 * If this is the first request added after a plug, fire
1999 * of a plug trace.
2000 *
2001 * @request_count may become stale because of schedule
2002 * out, so check plug list again.
2003 */
2004 if (!request_count || list_empty(&plug->list))
2005 trace_block_plug(q);
2006 else {
2007 struct request *last = list_entry_rq(plug->list.prev);
2008 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2009 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2010 blk_flush_plug_list(plug, false);
2011 trace_block_plug(q);
2012 }
2013 }
2014 list_add_tail(&req->queuelist, &plug->list);
2015 blk_account_io_start(req, true);
2016 } else {
2017 spin_lock_irq(q->queue_lock);
2018 add_acct_request(q, req, where);
2019 __blk_run_queue(q);
2020 out_unlock:
2021 spin_unlock_irq(q->queue_lock);
2022 }
2023
2024 return BLK_QC_T_NONE;
2025 }
2026
2027 static void handle_bad_sector(struct bio *bio)
2028 {
2029 char b[BDEVNAME_SIZE];
2030
2031 printk(KERN_INFO "attempt to access beyond end of device\n");
2032 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2033 bio_devname(bio, b), bio->bi_opf,
2034 (unsigned long long)bio_end_sector(bio),
2035 (long long)get_capacity(bio->bi_disk));
2036 }
2037
2038 #ifdef CONFIG_FAIL_MAKE_REQUEST
2039
2040 static DECLARE_FAULT_ATTR(fail_make_request);
2041
2042 static int __init setup_fail_make_request(char *str)
2043 {
2044 return setup_fault_attr(&fail_make_request, str);
2045 }
2046 __setup("fail_make_request=", setup_fail_make_request);
2047
2048 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2049 {
2050 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2051 }
2052
2053 static int __init fail_make_request_debugfs(void)
2054 {
2055 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2056 NULL, &fail_make_request);
2057
2058 return PTR_ERR_OR_ZERO(dir);
2059 }
2060
2061 late_initcall(fail_make_request_debugfs);
2062
2063 #else /* CONFIG_FAIL_MAKE_REQUEST */
2064
2065 static inline bool should_fail_request(struct hd_struct *part,
2066 unsigned int bytes)
2067 {
2068 return false;
2069 }
2070
2071 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2072
2073 /*
2074 * Remap block n of partition p to block n+start(p) of the disk.
2075 */
2076 static inline int blk_partition_remap(struct bio *bio)
2077 {
2078 struct hd_struct *p;
2079 int ret = 0;
2080
2081 /*
2082 * Zone reset does not include bi_size so bio_sectors() is always 0.
2083 * Include a test for the reset op code and perform the remap if needed.
2084 */
2085 if (!bio->bi_partno ||
2086 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2087 return 0;
2088
2089 rcu_read_lock();
2090 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2091 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2092 bio->bi_iter.bi_sector += p->start_sect;
2093 bio->bi_partno = 0;
2094 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2095 bio->bi_iter.bi_sector - p->start_sect);
2096 } else {
2097 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2098 ret = -EIO;
2099 }
2100 rcu_read_unlock();
2101
2102 return ret;
2103 }
2104
2105 /*
2106 * Check whether this bio extends beyond the end of the device.
2107 */
2108 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2109 {
2110 sector_t maxsector;
2111
2112 if (!nr_sectors)
2113 return 0;
2114
2115 /* Test device or partition size, when known. */
2116 maxsector = get_capacity(bio->bi_disk);
2117 if (maxsector) {
2118 sector_t sector = bio->bi_iter.bi_sector;
2119
2120 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2121 /*
2122 * This may well happen - the kernel calls bread()
2123 * without checking the size of the device, e.g., when
2124 * mounting a device.
2125 */
2126 handle_bad_sector(bio);
2127 return 1;
2128 }
2129 }
2130
2131 return 0;
2132 }
2133
2134 static noinline_for_stack bool
2135 generic_make_request_checks(struct bio *bio)
2136 {
2137 struct request_queue *q;
2138 int nr_sectors = bio_sectors(bio);
2139 blk_status_t status = BLK_STS_IOERR;
2140 char b[BDEVNAME_SIZE];
2141
2142 might_sleep();
2143
2144 if (bio_check_eod(bio, nr_sectors))
2145 goto end_io;
2146
2147 q = bio->bi_disk->queue;
2148 if (unlikely(!q)) {
2149 printk(KERN_ERR
2150 "generic_make_request: Trying to access "
2151 "nonexistent block-device %s (%Lu)\n",
2152 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2153 goto end_io;
2154 }
2155
2156 /*
2157 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2158 * if queue is not a request based queue.
2159 */
2160
2161 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2162 goto not_supported;
2163
2164 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2165 goto end_io;
2166
2167 if (blk_partition_remap(bio))
2168 goto end_io;
2169
2170 if (bio_check_eod(bio, nr_sectors))
2171 goto end_io;
2172
2173 /*
2174 * Filter flush bio's early so that make_request based
2175 * drivers without flush support don't have to worry
2176 * about them.
2177 */
2178 if (op_is_flush(bio->bi_opf) &&
2179 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2180 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2181 if (!nr_sectors) {
2182 status = BLK_STS_OK;
2183 goto end_io;
2184 }
2185 }
2186
2187 switch (bio_op(bio)) {
2188 case REQ_OP_DISCARD:
2189 if (!blk_queue_discard(q))
2190 goto not_supported;
2191 break;
2192 case REQ_OP_SECURE_ERASE:
2193 if (!blk_queue_secure_erase(q))
2194 goto not_supported;
2195 break;
2196 case REQ_OP_WRITE_SAME:
2197 if (!q->limits.max_write_same_sectors)
2198 goto not_supported;
2199 break;
2200 case REQ_OP_ZONE_REPORT:
2201 case REQ_OP_ZONE_RESET:
2202 if (!blk_queue_is_zoned(q))
2203 goto not_supported;
2204 break;
2205 case REQ_OP_WRITE_ZEROES:
2206 if (!q->limits.max_write_zeroes_sectors)
2207 goto not_supported;
2208 break;
2209 default:
2210 break;
2211 }
2212
2213 /*
2214 * Various block parts want %current->io_context and lazy ioc
2215 * allocation ends up trading a lot of pain for a small amount of
2216 * memory. Just allocate it upfront. This may fail and block
2217 * layer knows how to live with it.
2218 */
2219 create_io_context(GFP_ATOMIC, q->node);
2220
2221 if (!blkcg_bio_issue_check(q, bio))
2222 return false;
2223
2224 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2225 trace_block_bio_queue(q, bio);
2226 /* Now that enqueuing has been traced, we need to trace
2227 * completion as well.
2228 */
2229 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2230 }
2231 return true;
2232
2233 not_supported:
2234 status = BLK_STS_NOTSUPP;
2235 end_io:
2236 bio->bi_status = status;
2237 bio_endio(bio);
2238 return false;
2239 }
2240
2241 /**
2242 * generic_make_request - hand a buffer to its device driver for I/O
2243 * @bio: The bio describing the location in memory and on the device.
2244 *
2245 * generic_make_request() is used to make I/O requests of block
2246 * devices. It is passed a &struct bio, which describes the I/O that needs
2247 * to be done.
2248 *
2249 * generic_make_request() does not return any status. The
2250 * success/failure status of the request, along with notification of
2251 * completion, is delivered asynchronously through the bio->bi_end_io
2252 * function described (one day) else where.
2253 *
2254 * The caller of generic_make_request must make sure that bi_io_vec
2255 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2256 * set to describe the device address, and the
2257 * bi_end_io and optionally bi_private are set to describe how
2258 * completion notification should be signaled.
2259 *
2260 * generic_make_request and the drivers it calls may use bi_next if this
2261 * bio happens to be merged with someone else, and may resubmit the bio to
2262 * a lower device by calling into generic_make_request recursively, which
2263 * means the bio should NOT be touched after the call to ->make_request_fn.
2264 */
2265 blk_qc_t generic_make_request(struct bio *bio)
2266 {
2267 /*
2268 * bio_list_on_stack[0] contains bios submitted by the current
2269 * make_request_fn.
2270 * bio_list_on_stack[1] contains bios that were submitted before
2271 * the current make_request_fn, but that haven't been processed
2272 * yet.
2273 */
2274 struct bio_list bio_list_on_stack[2];
2275 blk_qc_t ret = BLK_QC_T_NONE;
2276
2277 if (!generic_make_request_checks(bio))
2278 goto out;
2279
2280 /*
2281 * We only want one ->make_request_fn to be active at a time, else
2282 * stack usage with stacked devices could be a problem. So use
2283 * current->bio_list to keep a list of requests submited by a
2284 * make_request_fn function. current->bio_list is also used as a
2285 * flag to say if generic_make_request is currently active in this
2286 * task or not. If it is NULL, then no make_request is active. If
2287 * it is non-NULL, then a make_request is active, and new requests
2288 * should be added at the tail
2289 */
2290 if (current->bio_list) {
2291 bio_list_add(&current->bio_list[0], bio);
2292 goto out;
2293 }
2294
2295 /* following loop may be a bit non-obvious, and so deserves some
2296 * explanation.
2297 * Before entering the loop, bio->bi_next is NULL (as all callers
2298 * ensure that) so we have a list with a single bio.
2299 * We pretend that we have just taken it off a longer list, so
2300 * we assign bio_list to a pointer to the bio_list_on_stack,
2301 * thus initialising the bio_list of new bios to be
2302 * added. ->make_request() may indeed add some more bios
2303 * through a recursive call to generic_make_request. If it
2304 * did, we find a non-NULL value in bio_list and re-enter the loop
2305 * from the top. In this case we really did just take the bio
2306 * of the top of the list (no pretending) and so remove it from
2307 * bio_list, and call into ->make_request() again.
2308 */
2309 BUG_ON(bio->bi_next);
2310 bio_list_init(&bio_list_on_stack[0]);
2311 current->bio_list = bio_list_on_stack;
2312 do {
2313 struct request_queue *q = bio->bi_disk->queue;
2314 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2315 BLK_MQ_REQ_NOWAIT : 0;
2316
2317 if (likely(blk_queue_enter(q, flags) == 0)) {
2318 struct bio_list lower, same;
2319
2320 /* Create a fresh bio_list for all subordinate requests */
2321 bio_list_on_stack[1] = bio_list_on_stack[0];
2322 bio_list_init(&bio_list_on_stack[0]);
2323 ret = q->make_request_fn(q, bio);
2324
2325 blk_queue_exit(q);
2326
2327 /* sort new bios into those for a lower level
2328 * and those for the same level
2329 */
2330 bio_list_init(&lower);
2331 bio_list_init(&same);
2332 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2333 if (q == bio->bi_disk->queue)
2334 bio_list_add(&same, bio);
2335 else
2336 bio_list_add(&lower, bio);
2337 /* now assemble so we handle the lowest level first */
2338 bio_list_merge(&bio_list_on_stack[0], &lower);
2339 bio_list_merge(&bio_list_on_stack[0], &same);
2340 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2341 } else {
2342 if (unlikely(!blk_queue_dying(q) &&
2343 (bio->bi_opf & REQ_NOWAIT)))
2344 bio_wouldblock_error(bio);
2345 else
2346 bio_io_error(bio);
2347 }
2348 bio = bio_list_pop(&bio_list_on_stack[0]);
2349 } while (bio);
2350 current->bio_list = NULL; /* deactivate */
2351
2352 out:
2353 return ret;
2354 }
2355 EXPORT_SYMBOL(generic_make_request);
2356
2357 /**
2358 * direct_make_request - hand a buffer directly to its device driver for I/O
2359 * @bio: The bio describing the location in memory and on the device.
2360 *
2361 * This function behaves like generic_make_request(), but does not protect
2362 * against recursion. Must only be used if the called driver is known
2363 * to not call generic_make_request (or direct_make_request) again from
2364 * its make_request function. (Calling direct_make_request again from
2365 * a workqueue is perfectly fine as that doesn't recurse).
2366 */
2367 blk_qc_t direct_make_request(struct bio *bio)
2368 {
2369 struct request_queue *q = bio->bi_disk->queue;
2370 bool nowait = bio->bi_opf & REQ_NOWAIT;
2371 blk_qc_t ret;
2372
2373 if (!generic_make_request_checks(bio))
2374 return BLK_QC_T_NONE;
2375
2376 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2377 if (nowait && !blk_queue_dying(q))
2378 bio->bi_status = BLK_STS_AGAIN;
2379 else
2380 bio->bi_status = BLK_STS_IOERR;
2381 bio_endio(bio);
2382 return BLK_QC_T_NONE;
2383 }
2384
2385 ret = q->make_request_fn(q, bio);
2386 blk_queue_exit(q);
2387 return ret;
2388 }
2389 EXPORT_SYMBOL_GPL(direct_make_request);
2390
2391 /**
2392 * submit_bio - submit a bio to the block device layer for I/O
2393 * @bio: The &struct bio which describes the I/O
2394 *
2395 * submit_bio() is very similar in purpose to generic_make_request(), and
2396 * uses that function to do most of the work. Both are fairly rough
2397 * interfaces; @bio must be presetup and ready for I/O.
2398 *
2399 */
2400 blk_qc_t submit_bio(struct bio *bio)
2401 {
2402 /*
2403 * If it's a regular read/write or a barrier with data attached,
2404 * go through the normal accounting stuff before submission.
2405 */
2406 if (bio_has_data(bio)) {
2407 unsigned int count;
2408
2409 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2410 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2411 else
2412 count = bio_sectors(bio);
2413
2414 if (op_is_write(bio_op(bio))) {
2415 count_vm_events(PGPGOUT, count);
2416 } else {
2417 task_io_account_read(bio->bi_iter.bi_size);
2418 count_vm_events(PGPGIN, count);
2419 }
2420
2421 if (unlikely(block_dump)) {
2422 char b[BDEVNAME_SIZE];
2423 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2424 current->comm, task_pid_nr(current),
2425 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2426 (unsigned long long)bio->bi_iter.bi_sector,
2427 bio_devname(bio, b), count);
2428 }
2429 }
2430
2431 return generic_make_request(bio);
2432 }
2433 EXPORT_SYMBOL(submit_bio);
2434
2435 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2436 {
2437 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2438 return false;
2439
2440 if (current->plug)
2441 blk_flush_plug_list(current->plug, false);
2442 return q->poll_fn(q, cookie);
2443 }
2444 EXPORT_SYMBOL_GPL(blk_poll);
2445
2446 /**
2447 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2448 * for new the queue limits
2449 * @q: the queue
2450 * @rq: the request being checked
2451 *
2452 * Description:
2453 * @rq may have been made based on weaker limitations of upper-level queues
2454 * in request stacking drivers, and it may violate the limitation of @q.
2455 * Since the block layer and the underlying device driver trust @rq
2456 * after it is inserted to @q, it should be checked against @q before
2457 * the insertion using this generic function.
2458 *
2459 * Request stacking drivers like request-based dm may change the queue
2460 * limits when retrying requests on other queues. Those requests need
2461 * to be checked against the new queue limits again during dispatch.
2462 */
2463 static int blk_cloned_rq_check_limits(struct request_queue *q,
2464 struct request *rq)
2465 {
2466 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2467 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2468 return -EIO;
2469 }
2470
2471 /*
2472 * queue's settings related to segment counting like q->bounce_pfn
2473 * may differ from that of other stacking queues.
2474 * Recalculate it to check the request correctly on this queue's
2475 * limitation.
2476 */
2477 blk_recalc_rq_segments(rq);
2478 if (rq->nr_phys_segments > queue_max_segments(q)) {
2479 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2480 return -EIO;
2481 }
2482
2483 return 0;
2484 }
2485
2486 /**
2487 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2488 * @q: the queue to submit the request
2489 * @rq: the request being queued
2490 */
2491 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2492 {
2493 unsigned long flags;
2494 int where = ELEVATOR_INSERT_BACK;
2495
2496 if (blk_cloned_rq_check_limits(q, rq))
2497 return BLK_STS_IOERR;
2498
2499 if (rq->rq_disk &&
2500 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2501 return BLK_STS_IOERR;
2502
2503 if (q->mq_ops) {
2504 if (blk_queue_io_stat(q))
2505 blk_account_io_start(rq, true);
2506 /*
2507 * Since we have a scheduler attached on the top device,
2508 * bypass a potential scheduler on the bottom device for
2509 * insert.
2510 */
2511 return blk_mq_request_issue_directly(rq);
2512 }
2513
2514 spin_lock_irqsave(q->queue_lock, flags);
2515 if (unlikely(blk_queue_dying(q))) {
2516 spin_unlock_irqrestore(q->queue_lock, flags);
2517 return BLK_STS_IOERR;
2518 }
2519
2520 /*
2521 * Submitting request must be dequeued before calling this function
2522 * because it will be linked to another request_queue
2523 */
2524 BUG_ON(blk_queued_rq(rq));
2525
2526 if (op_is_flush(rq->cmd_flags))
2527 where = ELEVATOR_INSERT_FLUSH;
2528
2529 add_acct_request(q, rq, where);
2530 if (where == ELEVATOR_INSERT_FLUSH)
2531 __blk_run_queue(q);
2532 spin_unlock_irqrestore(q->queue_lock, flags);
2533
2534 return BLK_STS_OK;
2535 }
2536 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2537
2538 /**
2539 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2540 * @rq: request to examine
2541 *
2542 * Description:
2543 * A request could be merge of IOs which require different failure
2544 * handling. This function determines the number of bytes which
2545 * can be failed from the beginning of the request without
2546 * crossing into area which need to be retried further.
2547 *
2548 * Return:
2549 * The number of bytes to fail.
2550 */
2551 unsigned int blk_rq_err_bytes(const struct request *rq)
2552 {
2553 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2554 unsigned int bytes = 0;
2555 struct bio *bio;
2556
2557 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2558 return blk_rq_bytes(rq);
2559
2560 /*
2561 * Currently the only 'mixing' which can happen is between
2562 * different fastfail types. We can safely fail portions
2563 * which have all the failfast bits that the first one has -
2564 * the ones which are at least as eager to fail as the first
2565 * one.
2566 */
2567 for (bio = rq->bio; bio; bio = bio->bi_next) {
2568 if ((bio->bi_opf & ff) != ff)
2569 break;
2570 bytes += bio->bi_iter.bi_size;
2571 }
2572
2573 /* this could lead to infinite loop */
2574 BUG_ON(blk_rq_bytes(rq) && !bytes);
2575 return bytes;
2576 }
2577 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2578
2579 void blk_account_io_completion(struct request *req, unsigned int bytes)
2580 {
2581 if (blk_do_io_stat(req)) {
2582 const int rw = rq_data_dir(req);
2583 struct hd_struct *part;
2584 int cpu;
2585
2586 cpu = part_stat_lock();
2587 part = req->part;
2588 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2589 part_stat_unlock();
2590 }
2591 }
2592
2593 void blk_account_io_done(struct request *req)
2594 {
2595 /*
2596 * Account IO completion. flush_rq isn't accounted as a
2597 * normal IO on queueing nor completion. Accounting the
2598 * containing request is enough.
2599 */
2600 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2601 unsigned long duration = jiffies - req->start_time;
2602 const int rw = rq_data_dir(req);
2603 struct hd_struct *part;
2604 int cpu;
2605
2606 cpu = part_stat_lock();
2607 part = req->part;
2608
2609 part_stat_inc(cpu, part, ios[rw]);
2610 part_stat_add(cpu, part, ticks[rw], duration);
2611 part_round_stats(req->q, cpu, part);
2612 part_dec_in_flight(req->q, part, rw);
2613
2614 hd_struct_put(part);
2615 part_stat_unlock();
2616 }
2617 }
2618
2619 #ifdef CONFIG_PM
2620 /*
2621 * Don't process normal requests when queue is suspended
2622 * or in the process of suspending/resuming
2623 */
2624 static bool blk_pm_allow_request(struct request *rq)
2625 {
2626 switch (rq->q->rpm_status) {
2627 case RPM_RESUMING:
2628 case RPM_SUSPENDING:
2629 return rq->rq_flags & RQF_PM;
2630 case RPM_SUSPENDED:
2631 return false;
2632 }
2633
2634 return true;
2635 }
2636 #else
2637 static bool blk_pm_allow_request(struct request *rq)
2638 {
2639 return true;
2640 }
2641 #endif
2642
2643 void blk_account_io_start(struct request *rq, bool new_io)
2644 {
2645 struct hd_struct *part;
2646 int rw = rq_data_dir(rq);
2647 int cpu;
2648
2649 if (!blk_do_io_stat(rq))
2650 return;
2651
2652 cpu = part_stat_lock();
2653
2654 if (!new_io) {
2655 part = rq->part;
2656 part_stat_inc(cpu, part, merges[rw]);
2657 } else {
2658 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2659 if (!hd_struct_try_get(part)) {
2660 /*
2661 * The partition is already being removed,
2662 * the request will be accounted on the disk only
2663 *
2664 * We take a reference on disk->part0 although that
2665 * partition will never be deleted, so we can treat
2666 * it as any other partition.
2667 */
2668 part = &rq->rq_disk->part0;
2669 hd_struct_get(part);
2670 }
2671 part_round_stats(rq->q, cpu, part);
2672 part_inc_in_flight(rq->q, part, rw);
2673 rq->part = part;
2674 }
2675
2676 part_stat_unlock();
2677 }
2678
2679 static struct request *elv_next_request(struct request_queue *q)
2680 {
2681 struct request *rq;
2682 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2683
2684 WARN_ON_ONCE(q->mq_ops);
2685
2686 while (1) {
2687 list_for_each_entry(rq, &q->queue_head, queuelist) {
2688 if (blk_pm_allow_request(rq))
2689 return rq;
2690
2691 if (rq->rq_flags & RQF_SOFTBARRIER)
2692 break;
2693 }
2694
2695 /*
2696 * Flush request is running and flush request isn't queueable
2697 * in the drive, we can hold the queue till flush request is
2698 * finished. Even we don't do this, driver can't dispatch next
2699 * requests and will requeue them. And this can improve
2700 * throughput too. For example, we have request flush1, write1,
2701 * flush 2. flush1 is dispatched, then queue is hold, write1
2702 * isn't inserted to queue. After flush1 is finished, flush2
2703 * will be dispatched. Since disk cache is already clean,
2704 * flush2 will be finished very soon, so looks like flush2 is
2705 * folded to flush1.
2706 * Since the queue is hold, a flag is set to indicate the queue
2707 * should be restarted later. Please see flush_end_io() for
2708 * details.
2709 */
2710 if (fq->flush_pending_idx != fq->flush_running_idx &&
2711 !queue_flush_queueable(q)) {
2712 fq->flush_queue_delayed = 1;
2713 return NULL;
2714 }
2715 if (unlikely(blk_queue_bypass(q)) ||
2716 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2717 return NULL;
2718 }
2719 }
2720
2721 /**
2722 * blk_peek_request - peek at the top of a request queue
2723 * @q: request queue to peek at
2724 *
2725 * Description:
2726 * Return the request at the top of @q. The returned request
2727 * should be started using blk_start_request() before LLD starts
2728 * processing it.
2729 *
2730 * Return:
2731 * Pointer to the request at the top of @q if available. Null
2732 * otherwise.
2733 */
2734 struct request *blk_peek_request(struct request_queue *q)
2735 {
2736 struct request *rq;
2737 int ret;
2738
2739 lockdep_assert_held(q->queue_lock);
2740 WARN_ON_ONCE(q->mq_ops);
2741
2742 while ((rq = elv_next_request(q)) != NULL) {
2743 if (!(rq->rq_flags & RQF_STARTED)) {
2744 /*
2745 * This is the first time the device driver
2746 * sees this request (possibly after
2747 * requeueing). Notify IO scheduler.
2748 */
2749 if (rq->rq_flags & RQF_SORTED)
2750 elv_activate_rq(q, rq);
2751
2752 /*
2753 * just mark as started even if we don't start
2754 * it, a request that has been delayed should
2755 * not be passed by new incoming requests
2756 */
2757 rq->rq_flags |= RQF_STARTED;
2758 trace_block_rq_issue(q, rq);
2759 }
2760
2761 if (!q->boundary_rq || q->boundary_rq == rq) {
2762 q->end_sector = rq_end_sector(rq);
2763 q->boundary_rq = NULL;
2764 }
2765
2766 if (rq->rq_flags & RQF_DONTPREP)
2767 break;
2768
2769 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2770 /*
2771 * make sure space for the drain appears we
2772 * know we can do this because max_hw_segments
2773 * has been adjusted to be one fewer than the
2774 * device can handle
2775 */
2776 rq->nr_phys_segments++;
2777 }
2778
2779 if (!q->prep_rq_fn)
2780 break;
2781
2782 ret = q->prep_rq_fn(q, rq);
2783 if (ret == BLKPREP_OK) {
2784 break;
2785 } else if (ret == BLKPREP_DEFER) {
2786 /*
2787 * the request may have been (partially) prepped.
2788 * we need to keep this request in the front to
2789 * avoid resource deadlock. RQF_STARTED will
2790 * prevent other fs requests from passing this one.
2791 */
2792 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2793 !(rq->rq_flags & RQF_DONTPREP)) {
2794 /*
2795 * remove the space for the drain we added
2796 * so that we don't add it again
2797 */
2798 --rq->nr_phys_segments;
2799 }
2800
2801 rq = NULL;
2802 break;
2803 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2804 rq->rq_flags |= RQF_QUIET;
2805 /*
2806 * Mark this request as started so we don't trigger
2807 * any debug logic in the end I/O path.
2808 */
2809 blk_start_request(rq);
2810 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2811 BLK_STS_TARGET : BLK_STS_IOERR);
2812 } else {
2813 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2814 break;
2815 }
2816 }
2817
2818 return rq;
2819 }
2820 EXPORT_SYMBOL(blk_peek_request);
2821
2822 static void blk_dequeue_request(struct request *rq)
2823 {
2824 struct request_queue *q = rq->q;
2825
2826 BUG_ON(list_empty(&rq->queuelist));
2827 BUG_ON(ELV_ON_HASH(rq));
2828
2829 list_del_init(&rq->queuelist);
2830
2831 /*
2832 * the time frame between a request being removed from the lists
2833 * and to it is freed is accounted as io that is in progress at
2834 * the driver side.
2835 */
2836 if (blk_account_rq(rq)) {
2837 q->in_flight[rq_is_sync(rq)]++;
2838 set_io_start_time_ns(rq);
2839 }
2840 }
2841
2842 /**
2843 * blk_start_request - start request processing on the driver
2844 * @req: request to dequeue
2845 *
2846 * Description:
2847 * Dequeue @req and start timeout timer on it. This hands off the
2848 * request to the driver.
2849 */
2850 void blk_start_request(struct request *req)
2851 {
2852 lockdep_assert_held(req->q->queue_lock);
2853 WARN_ON_ONCE(req->q->mq_ops);
2854
2855 blk_dequeue_request(req);
2856
2857 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2858 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2859 req->rq_flags |= RQF_STATS;
2860 wbt_issue(req->q->rq_wb, &req->issue_stat);
2861 }
2862
2863 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2864 blk_add_timer(req);
2865 }
2866 EXPORT_SYMBOL(blk_start_request);
2867
2868 /**
2869 * blk_fetch_request - fetch a request from a request queue
2870 * @q: request queue to fetch a request from
2871 *
2872 * Description:
2873 * Return the request at the top of @q. The request is started on
2874 * return and LLD can start processing it immediately.
2875 *
2876 * Return:
2877 * Pointer to the request at the top of @q if available. Null
2878 * otherwise.
2879 */
2880 struct request *blk_fetch_request(struct request_queue *q)
2881 {
2882 struct request *rq;
2883
2884 lockdep_assert_held(q->queue_lock);
2885 WARN_ON_ONCE(q->mq_ops);
2886
2887 rq = blk_peek_request(q);
2888 if (rq)
2889 blk_start_request(rq);
2890 return rq;
2891 }
2892 EXPORT_SYMBOL(blk_fetch_request);
2893
2894 /*
2895 * Steal bios from a request and add them to a bio list.
2896 * The request must not have been partially completed before.
2897 */
2898 void blk_steal_bios(struct bio_list *list, struct request *rq)
2899 {
2900 if (rq->bio) {
2901 if (list->tail)
2902 list->tail->bi_next = rq->bio;
2903 else
2904 list->head = rq->bio;
2905 list->tail = rq->biotail;
2906
2907 rq->bio = NULL;
2908 rq->biotail = NULL;
2909 }
2910
2911 rq->__data_len = 0;
2912 }
2913 EXPORT_SYMBOL_GPL(blk_steal_bios);
2914
2915 /**
2916 * blk_update_request - Special helper function for request stacking drivers
2917 * @req: the request being processed
2918 * @error: block status code
2919 * @nr_bytes: number of bytes to complete @req
2920 *
2921 * Description:
2922 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2923 * the request structure even if @req doesn't have leftover.
2924 * If @req has leftover, sets it up for the next range of segments.
2925 *
2926 * This special helper function is only for request stacking drivers
2927 * (e.g. request-based dm) so that they can handle partial completion.
2928 * Actual device drivers should use blk_end_request instead.
2929 *
2930 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2931 * %false return from this function.
2932 *
2933 * Return:
2934 * %false - this request doesn't have any more data
2935 * %true - this request has more data
2936 **/
2937 bool blk_update_request(struct request *req, blk_status_t error,
2938 unsigned int nr_bytes)
2939 {
2940 int total_bytes;
2941
2942 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2943
2944 if (!req->bio)
2945 return false;
2946
2947 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2948 !(req->rq_flags & RQF_QUIET)))
2949 print_req_error(req, error);
2950
2951 blk_account_io_completion(req, nr_bytes);
2952
2953 total_bytes = 0;
2954 while (req->bio) {
2955 struct bio *bio = req->bio;
2956 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2957
2958 if (bio_bytes == bio->bi_iter.bi_size)
2959 req->bio = bio->bi_next;
2960
2961 /* Completion has already been traced */
2962 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2963 req_bio_endio(req, bio, bio_bytes, error);
2964
2965 total_bytes += bio_bytes;
2966 nr_bytes -= bio_bytes;
2967
2968 if (!nr_bytes)
2969 break;
2970 }
2971
2972 /*
2973 * completely done
2974 */
2975 if (!req->bio) {
2976 /*
2977 * Reset counters so that the request stacking driver
2978 * can find how many bytes remain in the request
2979 * later.
2980 */
2981 req->__data_len = 0;
2982 return false;
2983 }
2984
2985 req->__data_len -= total_bytes;
2986
2987 /* update sector only for requests with clear definition of sector */
2988 if (!blk_rq_is_passthrough(req))
2989 req->__sector += total_bytes >> 9;
2990
2991 /* mixed attributes always follow the first bio */
2992 if (req->rq_flags & RQF_MIXED_MERGE) {
2993 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2994 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2995 }
2996
2997 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2998 /*
2999 * If total number of sectors is less than the first segment
3000 * size, something has gone terribly wrong.
3001 */
3002 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3003 blk_dump_rq_flags(req, "request botched");
3004 req->__data_len = blk_rq_cur_bytes(req);
3005 }
3006
3007 /* recalculate the number of segments */
3008 blk_recalc_rq_segments(req);
3009 }
3010
3011 return true;
3012 }
3013 EXPORT_SYMBOL_GPL(blk_update_request);
3014
3015 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3016 unsigned int nr_bytes,
3017 unsigned int bidi_bytes)
3018 {
3019 if (blk_update_request(rq, error, nr_bytes))
3020 return true;
3021
3022 /* Bidi request must be completed as a whole */
3023 if (unlikely(blk_bidi_rq(rq)) &&
3024 blk_update_request(rq->next_rq, error, bidi_bytes))
3025 return true;
3026
3027 if (blk_queue_add_random(rq->q))
3028 add_disk_randomness(rq->rq_disk);
3029
3030 return false;
3031 }
3032
3033 /**
3034 * blk_unprep_request - unprepare a request
3035 * @req: the request
3036 *
3037 * This function makes a request ready for complete resubmission (or
3038 * completion). It happens only after all error handling is complete,
3039 * so represents the appropriate moment to deallocate any resources
3040 * that were allocated to the request in the prep_rq_fn. The queue
3041 * lock is held when calling this.
3042 */
3043 void blk_unprep_request(struct request *req)
3044 {
3045 struct request_queue *q = req->q;
3046
3047 req->rq_flags &= ~RQF_DONTPREP;
3048 if (q->unprep_rq_fn)
3049 q->unprep_rq_fn(q, req);
3050 }
3051 EXPORT_SYMBOL_GPL(blk_unprep_request);
3052
3053 void blk_finish_request(struct request *req, blk_status_t error)
3054 {
3055 struct request_queue *q = req->q;
3056
3057 lockdep_assert_held(req->q->queue_lock);
3058 WARN_ON_ONCE(q->mq_ops);
3059
3060 if (req->rq_flags & RQF_STATS)
3061 blk_stat_add(req);
3062
3063 if (req->rq_flags & RQF_QUEUED)
3064 blk_queue_end_tag(q, req);
3065
3066 BUG_ON(blk_queued_rq(req));
3067
3068 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3069 laptop_io_completion(req->q->backing_dev_info);
3070
3071 blk_delete_timer(req);
3072
3073 if (req->rq_flags & RQF_DONTPREP)
3074 blk_unprep_request(req);
3075
3076 blk_account_io_done(req);
3077
3078 if (req->end_io) {
3079 wbt_done(req->q->rq_wb, &req->issue_stat);
3080 req->end_io(req, error);
3081 } else {
3082 if (blk_bidi_rq(req))
3083 __blk_put_request(req->next_rq->q, req->next_rq);
3084
3085 __blk_put_request(q, req);
3086 }
3087 }
3088 EXPORT_SYMBOL(blk_finish_request);
3089
3090 /**
3091 * blk_end_bidi_request - Complete a bidi request
3092 * @rq: the request to complete
3093 * @error: block status code
3094 * @nr_bytes: number of bytes to complete @rq
3095 * @bidi_bytes: number of bytes to complete @rq->next_rq
3096 *
3097 * Description:
3098 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3099 * Drivers that supports bidi can safely call this member for any
3100 * type of request, bidi or uni. In the later case @bidi_bytes is
3101 * just ignored.
3102 *
3103 * Return:
3104 * %false - we are done with this request
3105 * %true - still buffers pending for this request
3106 **/
3107 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3108 unsigned int nr_bytes, unsigned int bidi_bytes)
3109 {
3110 struct request_queue *q = rq->q;
3111 unsigned long flags;
3112
3113 WARN_ON_ONCE(q->mq_ops);
3114
3115 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3116 return true;
3117
3118 spin_lock_irqsave(q->queue_lock, flags);
3119 blk_finish_request(rq, error);
3120 spin_unlock_irqrestore(q->queue_lock, flags);
3121
3122 return false;
3123 }
3124
3125 /**
3126 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3127 * @rq: the request to complete
3128 * @error: block status code
3129 * @nr_bytes: number of bytes to complete @rq
3130 * @bidi_bytes: number of bytes to complete @rq->next_rq
3131 *
3132 * Description:
3133 * Identical to blk_end_bidi_request() except that queue lock is
3134 * assumed to be locked on entry and remains so on return.
3135 *
3136 * Return:
3137 * %false - we are done with this request
3138 * %true - still buffers pending for this request
3139 **/
3140 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3141 unsigned int nr_bytes, unsigned int bidi_bytes)
3142 {
3143 lockdep_assert_held(rq->q->queue_lock);
3144 WARN_ON_ONCE(rq->q->mq_ops);
3145
3146 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3147 return true;
3148
3149 blk_finish_request(rq, error);
3150
3151 return false;
3152 }
3153
3154 /**
3155 * blk_end_request - Helper function for drivers to complete the request.
3156 * @rq: the request being processed
3157 * @error: block status code
3158 * @nr_bytes: number of bytes to complete
3159 *
3160 * Description:
3161 * Ends I/O on a number of bytes attached to @rq.
3162 * If @rq has leftover, sets it up for the next range of segments.
3163 *
3164 * Return:
3165 * %false - we are done with this request
3166 * %true - still buffers pending for this request
3167 **/
3168 bool blk_end_request(struct request *rq, blk_status_t error,
3169 unsigned int nr_bytes)
3170 {
3171 WARN_ON_ONCE(rq->q->mq_ops);
3172 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3173 }
3174 EXPORT_SYMBOL(blk_end_request);
3175
3176 /**
3177 * blk_end_request_all - Helper function for drives to finish the request.
3178 * @rq: the request to finish
3179 * @error: block status code
3180 *
3181 * Description:
3182 * Completely finish @rq.
3183 */
3184 void blk_end_request_all(struct request *rq, blk_status_t error)
3185 {
3186 bool pending;
3187 unsigned int bidi_bytes = 0;
3188
3189 if (unlikely(blk_bidi_rq(rq)))
3190 bidi_bytes = blk_rq_bytes(rq->next_rq);
3191
3192 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3193 BUG_ON(pending);
3194 }
3195 EXPORT_SYMBOL(blk_end_request_all);
3196
3197 /**
3198 * __blk_end_request - Helper function for drivers to complete the request.
3199 * @rq: the request being processed
3200 * @error: block status code
3201 * @nr_bytes: number of bytes to complete
3202 *
3203 * Description:
3204 * Must be called with queue lock held unlike blk_end_request().
3205 *
3206 * Return:
3207 * %false - we are done with this request
3208 * %true - still buffers pending for this request
3209 **/
3210 bool __blk_end_request(struct request *rq, blk_status_t error,
3211 unsigned int nr_bytes)
3212 {
3213 lockdep_assert_held(rq->q->queue_lock);
3214 WARN_ON_ONCE(rq->q->mq_ops);
3215
3216 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3217 }
3218 EXPORT_SYMBOL(__blk_end_request);
3219
3220 /**
3221 * __blk_end_request_all - Helper function for drives to finish the request.
3222 * @rq: the request to finish
3223 * @error: block status code
3224 *
3225 * Description:
3226 * Completely finish @rq. Must be called with queue lock held.
3227 */
3228 void __blk_end_request_all(struct request *rq, blk_status_t error)
3229 {
3230 bool pending;
3231 unsigned int bidi_bytes = 0;
3232
3233 lockdep_assert_held(rq->q->queue_lock);
3234 WARN_ON_ONCE(rq->q->mq_ops);
3235
3236 if (unlikely(blk_bidi_rq(rq)))
3237 bidi_bytes = blk_rq_bytes(rq->next_rq);
3238
3239 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3240 BUG_ON(pending);
3241 }
3242 EXPORT_SYMBOL(__blk_end_request_all);
3243
3244 /**
3245 * __blk_end_request_cur - Helper function to finish the current request chunk.
3246 * @rq: the request to finish the current chunk for
3247 * @error: block status code
3248 *
3249 * Description:
3250 * Complete the current consecutively mapped chunk from @rq. Must
3251 * be called with queue lock held.
3252 *
3253 * Return:
3254 * %false - we are done with this request
3255 * %true - still buffers pending for this request
3256 */
3257 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3258 {
3259 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3260 }
3261 EXPORT_SYMBOL(__blk_end_request_cur);
3262
3263 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3264 struct bio *bio)
3265 {
3266 if (bio_has_data(bio))
3267 rq->nr_phys_segments = bio_phys_segments(q, bio);
3268 else if (bio_op(bio) == REQ_OP_DISCARD)
3269 rq->nr_phys_segments = 1;
3270
3271 rq->__data_len = bio->bi_iter.bi_size;
3272 rq->bio = rq->biotail = bio;
3273
3274 if (bio->bi_disk)
3275 rq->rq_disk = bio->bi_disk;
3276 }
3277
3278 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3279 /**
3280 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3281 * @rq: the request to be flushed
3282 *
3283 * Description:
3284 * Flush all pages in @rq.
3285 */
3286 void rq_flush_dcache_pages(struct request *rq)
3287 {
3288 struct req_iterator iter;
3289 struct bio_vec bvec;
3290
3291 rq_for_each_segment(bvec, rq, iter)
3292 flush_dcache_page(bvec.bv_page);
3293 }
3294 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3295 #endif
3296
3297 /**
3298 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3299 * @q : the queue of the device being checked
3300 *
3301 * Description:
3302 * Check if underlying low-level drivers of a device are busy.
3303 * If the drivers want to export their busy state, they must set own
3304 * exporting function using blk_queue_lld_busy() first.
3305 *
3306 * Basically, this function is used only by request stacking drivers
3307 * to stop dispatching requests to underlying devices when underlying
3308 * devices are busy. This behavior helps more I/O merging on the queue
3309 * of the request stacking driver and prevents I/O throughput regression
3310 * on burst I/O load.
3311 *
3312 * Return:
3313 * 0 - Not busy (The request stacking driver should dispatch request)
3314 * 1 - Busy (The request stacking driver should stop dispatching request)
3315 */
3316 int blk_lld_busy(struct request_queue *q)
3317 {
3318 if (q->lld_busy_fn)
3319 return q->lld_busy_fn(q);
3320
3321 return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(blk_lld_busy);
3324
3325 /**
3326 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3327 * @rq: the clone request to be cleaned up
3328 *
3329 * Description:
3330 * Free all bios in @rq for a cloned request.
3331 */
3332 void blk_rq_unprep_clone(struct request *rq)
3333 {
3334 struct bio *bio;
3335
3336 while ((bio = rq->bio) != NULL) {
3337 rq->bio = bio->bi_next;
3338
3339 bio_put(bio);
3340 }
3341 }
3342 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3343
3344 /*
3345 * Copy attributes of the original request to the clone request.
3346 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3347 */
3348 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3349 {
3350 dst->cpu = src->cpu;
3351 dst->__sector = blk_rq_pos(src);
3352 dst->__data_len = blk_rq_bytes(src);
3353 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3354 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3355 dst->special_vec = src->special_vec;
3356 }
3357 dst->nr_phys_segments = src->nr_phys_segments;
3358 dst->ioprio = src->ioprio;
3359 dst->extra_len = src->extra_len;
3360 }
3361
3362 /**
3363 * blk_rq_prep_clone - Helper function to setup clone request
3364 * @rq: the request to be setup
3365 * @rq_src: original request to be cloned
3366 * @bs: bio_set that bios for clone are allocated from
3367 * @gfp_mask: memory allocation mask for bio
3368 * @bio_ctr: setup function to be called for each clone bio.
3369 * Returns %0 for success, non %0 for failure.
3370 * @data: private data to be passed to @bio_ctr
3371 *
3372 * Description:
3373 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3374 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3375 * are not copied, and copying such parts is the caller's responsibility.
3376 * Also, pages which the original bios are pointing to are not copied
3377 * and the cloned bios just point same pages.
3378 * So cloned bios must be completed before original bios, which means
3379 * the caller must complete @rq before @rq_src.
3380 */
3381 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3382 struct bio_set *bs, gfp_t gfp_mask,
3383 int (*bio_ctr)(struct bio *, struct bio *, void *),
3384 void *data)
3385 {
3386 struct bio *bio, *bio_src;
3387
3388 if (!bs)
3389 bs = fs_bio_set;
3390
3391 __rq_for_each_bio(bio_src, rq_src) {
3392 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3393 if (!bio)
3394 goto free_and_out;
3395
3396 if (bio_ctr && bio_ctr(bio, bio_src, data))
3397 goto free_and_out;
3398
3399 if (rq->bio) {
3400 rq->biotail->bi_next = bio;
3401 rq->biotail = bio;
3402 } else
3403 rq->bio = rq->biotail = bio;
3404 }
3405
3406 __blk_rq_prep_clone(rq, rq_src);
3407
3408 return 0;
3409
3410 free_and_out:
3411 if (bio)
3412 bio_put(bio);
3413 blk_rq_unprep_clone(rq);
3414
3415 return -ENOMEM;
3416 }
3417 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3418
3419 int kblockd_schedule_work(struct work_struct *work)
3420 {
3421 return queue_work(kblockd_workqueue, work);
3422 }
3423 EXPORT_SYMBOL(kblockd_schedule_work);
3424
3425 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3426 {
3427 return queue_work_on(cpu, kblockd_workqueue, work);
3428 }
3429 EXPORT_SYMBOL(kblockd_schedule_work_on);
3430
3431 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3432 unsigned long delay)
3433 {
3434 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3435 }
3436 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3437
3438 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3439 unsigned long delay)
3440 {
3441 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3442 }
3443 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3444
3445 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3446 unsigned long delay)
3447 {
3448 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3449 }
3450 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3451
3452 /**
3453 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3454 * @plug: The &struct blk_plug that needs to be initialized
3455 *
3456 * Description:
3457 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3458 * pending I/O should the task end up blocking between blk_start_plug() and
3459 * blk_finish_plug(). This is important from a performance perspective, but
3460 * also ensures that we don't deadlock. For instance, if the task is blocking
3461 * for a memory allocation, memory reclaim could end up wanting to free a
3462 * page belonging to that request that is currently residing in our private
3463 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3464 * this kind of deadlock.
3465 */
3466 void blk_start_plug(struct blk_plug *plug)
3467 {
3468 struct task_struct *tsk = current;
3469
3470 /*
3471 * If this is a nested plug, don't actually assign it.
3472 */
3473 if (tsk->plug)
3474 return;
3475
3476 INIT_LIST_HEAD(&plug->list);
3477 INIT_LIST_HEAD(&plug->mq_list);
3478 INIT_LIST_HEAD(&plug->cb_list);
3479 /*
3480 * Store ordering should not be needed here, since a potential
3481 * preempt will imply a full memory barrier
3482 */
3483 tsk->plug = plug;
3484 }
3485 EXPORT_SYMBOL(blk_start_plug);
3486
3487 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3488 {
3489 struct request *rqa = container_of(a, struct request, queuelist);
3490 struct request *rqb = container_of(b, struct request, queuelist);
3491
3492 return !(rqa->q < rqb->q ||
3493 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3494 }
3495
3496 /*
3497 * If 'from_schedule' is true, then postpone the dispatch of requests
3498 * until a safe kblockd context. We due this to avoid accidental big
3499 * additional stack usage in driver dispatch, in places where the originally
3500 * plugger did not intend it.
3501 */
3502 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3503 bool from_schedule)
3504 __releases(q->queue_lock)
3505 {
3506 lockdep_assert_held(q->queue_lock);
3507
3508 trace_block_unplug(q, depth, !from_schedule);
3509
3510 if (from_schedule)
3511 blk_run_queue_async(q);
3512 else
3513 __blk_run_queue(q);
3514 spin_unlock(q->queue_lock);
3515 }
3516
3517 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3518 {
3519 LIST_HEAD(callbacks);
3520
3521 while (!list_empty(&plug->cb_list)) {
3522 list_splice_init(&plug->cb_list, &callbacks);
3523
3524 while (!list_empty(&callbacks)) {
3525 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3526 struct blk_plug_cb,
3527 list);
3528 list_del(&cb->list);
3529 cb->callback(cb, from_schedule);
3530 }
3531 }
3532 }
3533
3534 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3535 int size)
3536 {
3537 struct blk_plug *plug = current->plug;
3538 struct blk_plug_cb *cb;
3539
3540 if (!plug)
3541 return NULL;
3542
3543 list_for_each_entry(cb, &plug->cb_list, list)
3544 if (cb->callback == unplug && cb->data == data)
3545 return cb;
3546
3547 /* Not currently on the callback list */
3548 BUG_ON(size < sizeof(*cb));
3549 cb = kzalloc(size, GFP_ATOMIC);
3550 if (cb) {
3551 cb->data = data;
3552 cb->callback = unplug;
3553 list_add(&cb->list, &plug->cb_list);
3554 }
3555 return cb;
3556 }
3557 EXPORT_SYMBOL(blk_check_plugged);
3558
3559 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3560 {
3561 struct request_queue *q;
3562 unsigned long flags;
3563 struct request *rq;
3564 LIST_HEAD(list);
3565 unsigned int depth;
3566
3567 flush_plug_callbacks(plug, from_schedule);
3568
3569 if (!list_empty(&plug->mq_list))
3570 blk_mq_flush_plug_list(plug, from_schedule);
3571
3572 if (list_empty(&plug->list))
3573 return;
3574
3575 list_splice_init(&plug->list, &list);
3576
3577 list_sort(NULL, &list, plug_rq_cmp);
3578
3579 q = NULL;
3580 depth = 0;
3581
3582 /*
3583 * Save and disable interrupts here, to avoid doing it for every
3584 * queue lock we have to take.
3585 */
3586 local_irq_save(flags);
3587 while (!list_empty(&list)) {
3588 rq = list_entry_rq(list.next);
3589 list_del_init(&rq->queuelist);
3590 BUG_ON(!rq->q);
3591 if (rq->q != q) {
3592 /*
3593 * This drops the queue lock
3594 */
3595 if (q)
3596 queue_unplugged(q, depth, from_schedule);
3597 q = rq->q;
3598 depth = 0;
3599 spin_lock(q->queue_lock);
3600 }
3601
3602 /*
3603 * Short-circuit if @q is dead
3604 */
3605 if (unlikely(blk_queue_dying(q))) {
3606 __blk_end_request_all(rq, BLK_STS_IOERR);
3607 continue;
3608 }
3609
3610 /*
3611 * rq is already accounted, so use raw insert
3612 */
3613 if (op_is_flush(rq->cmd_flags))
3614 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3615 else
3616 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3617
3618 depth++;
3619 }
3620
3621 /*
3622 * This drops the queue lock
3623 */
3624 if (q)
3625 queue_unplugged(q, depth, from_schedule);
3626
3627 local_irq_restore(flags);
3628 }
3629
3630 void blk_finish_plug(struct blk_plug *plug)
3631 {
3632 if (plug != current->plug)
3633 return;
3634 blk_flush_plug_list(plug, false);
3635
3636 current->plug = NULL;
3637 }
3638 EXPORT_SYMBOL(blk_finish_plug);
3639
3640 #ifdef CONFIG_PM
3641 /**
3642 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3643 * @q: the queue of the device
3644 * @dev: the device the queue belongs to
3645 *
3646 * Description:
3647 * Initialize runtime-PM-related fields for @q and start auto suspend for
3648 * @dev. Drivers that want to take advantage of request-based runtime PM
3649 * should call this function after @dev has been initialized, and its
3650 * request queue @q has been allocated, and runtime PM for it can not happen
3651 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3652 * cases, driver should call this function before any I/O has taken place.
3653 *
3654 * This function takes care of setting up using auto suspend for the device,
3655 * the autosuspend delay is set to -1 to make runtime suspend impossible
3656 * until an updated value is either set by user or by driver. Drivers do
3657 * not need to touch other autosuspend settings.
3658 *
3659 * The block layer runtime PM is request based, so only works for drivers
3660 * that use request as their IO unit instead of those directly use bio's.
3661 */
3662 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3663 {
3664 /* Don't enable runtime PM for blk-mq until it is ready */
3665 if (q->mq_ops) {
3666 pm_runtime_disable(dev);
3667 return;
3668 }
3669
3670 q->dev = dev;
3671 q->rpm_status = RPM_ACTIVE;
3672 pm_runtime_set_autosuspend_delay(q->dev, -1);
3673 pm_runtime_use_autosuspend(q->dev);
3674 }
3675 EXPORT_SYMBOL(blk_pm_runtime_init);
3676
3677 /**
3678 * blk_pre_runtime_suspend - Pre runtime suspend check
3679 * @q: the queue of the device
3680 *
3681 * Description:
3682 * This function will check if runtime suspend is allowed for the device
3683 * by examining if there are any requests pending in the queue. If there
3684 * are requests pending, the device can not be runtime suspended; otherwise,
3685 * the queue's status will be updated to SUSPENDING and the driver can
3686 * proceed to suspend the device.
3687 *
3688 * For the not allowed case, we mark last busy for the device so that
3689 * runtime PM core will try to autosuspend it some time later.
3690 *
3691 * This function should be called near the start of the device's
3692 * runtime_suspend callback.
3693 *
3694 * Return:
3695 * 0 - OK to runtime suspend the device
3696 * -EBUSY - Device should not be runtime suspended
3697 */
3698 int blk_pre_runtime_suspend(struct request_queue *q)
3699 {
3700 int ret = 0;
3701
3702 if (!q->dev)
3703 return ret;
3704
3705 spin_lock_irq(q->queue_lock);
3706 if (q->nr_pending) {
3707 ret = -EBUSY;
3708 pm_runtime_mark_last_busy(q->dev);
3709 } else {
3710 q->rpm_status = RPM_SUSPENDING;
3711 }
3712 spin_unlock_irq(q->queue_lock);
3713 return ret;
3714 }
3715 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3716
3717 /**
3718 * blk_post_runtime_suspend - Post runtime suspend processing
3719 * @q: the queue of the device
3720 * @err: return value of the device's runtime_suspend function
3721 *
3722 * Description:
3723 * Update the queue's runtime status according to the return value of the
3724 * device's runtime suspend function and mark last busy for the device so
3725 * that PM core will try to auto suspend the device at a later time.
3726 *
3727 * This function should be called near the end of the device's
3728 * runtime_suspend callback.
3729 */
3730 void blk_post_runtime_suspend(struct request_queue *q, int err)
3731 {
3732 if (!q->dev)
3733 return;
3734
3735 spin_lock_irq(q->queue_lock);
3736 if (!err) {
3737 q->rpm_status = RPM_SUSPENDED;
3738 } else {
3739 q->rpm_status = RPM_ACTIVE;
3740 pm_runtime_mark_last_busy(q->dev);
3741 }
3742 spin_unlock_irq(q->queue_lock);
3743 }
3744 EXPORT_SYMBOL(blk_post_runtime_suspend);
3745
3746 /**
3747 * blk_pre_runtime_resume - Pre runtime resume processing
3748 * @q: the queue of the device
3749 *
3750 * Description:
3751 * Update the queue's runtime status to RESUMING in preparation for the
3752 * runtime resume of the device.
3753 *
3754 * This function should be called near the start of the device's
3755 * runtime_resume callback.
3756 */
3757 void blk_pre_runtime_resume(struct request_queue *q)
3758 {
3759 if (!q->dev)
3760 return;
3761
3762 spin_lock_irq(q->queue_lock);
3763 q->rpm_status = RPM_RESUMING;
3764 spin_unlock_irq(q->queue_lock);
3765 }
3766 EXPORT_SYMBOL(blk_pre_runtime_resume);
3767
3768 /**
3769 * blk_post_runtime_resume - Post runtime resume processing
3770 * @q: the queue of the device
3771 * @err: return value of the device's runtime_resume function
3772 *
3773 * Description:
3774 * Update the queue's runtime status according to the return value of the
3775 * device's runtime_resume function. If it is successfully resumed, process
3776 * the requests that are queued into the device's queue when it is resuming
3777 * and then mark last busy and initiate autosuspend for it.
3778 *
3779 * This function should be called near the end of the device's
3780 * runtime_resume callback.
3781 */
3782 void blk_post_runtime_resume(struct request_queue *q, int err)
3783 {
3784 if (!q->dev)
3785 return;
3786
3787 spin_lock_irq(q->queue_lock);
3788 if (!err) {
3789 q->rpm_status = RPM_ACTIVE;
3790 __blk_run_queue(q);
3791 pm_runtime_mark_last_busy(q->dev);
3792 pm_request_autosuspend(q->dev);
3793 } else {
3794 q->rpm_status = RPM_SUSPENDED;
3795 }
3796 spin_unlock_irq(q->queue_lock);
3797 }
3798 EXPORT_SYMBOL(blk_post_runtime_resume);
3799
3800 /**
3801 * blk_set_runtime_active - Force runtime status of the queue to be active
3802 * @q: the queue of the device
3803 *
3804 * If the device is left runtime suspended during system suspend the resume
3805 * hook typically resumes the device and corrects runtime status
3806 * accordingly. However, that does not affect the queue runtime PM status
3807 * which is still "suspended". This prevents processing requests from the
3808 * queue.
3809 *
3810 * This function can be used in driver's resume hook to correct queue
3811 * runtime PM status and re-enable peeking requests from the queue. It
3812 * should be called before first request is added to the queue.
3813 */
3814 void blk_set_runtime_active(struct request_queue *q)
3815 {
3816 spin_lock_irq(q->queue_lock);
3817 q->rpm_status = RPM_ACTIVE;
3818 pm_runtime_mark_last_busy(q->dev);
3819 pm_request_autosuspend(q->dev);
3820 spin_unlock_irq(q->queue_lock);
3821 }
3822 EXPORT_SYMBOL(blk_set_runtime_active);
3823 #endif
3824
3825 int __init blk_dev_init(void)
3826 {
3827 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3828 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3829 FIELD_SIZEOF(struct request, cmd_flags));
3830 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3831 FIELD_SIZEOF(struct bio, bi_opf));
3832
3833 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3834 kblockd_workqueue = alloc_workqueue("kblockd",
3835 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3836 if (!kblockd_workqueue)
3837 panic("Failed to create kblockd\n");
3838
3839 request_cachep = kmem_cache_create("blkdev_requests",
3840 sizeof(struct request), 0, SLAB_PANIC, NULL);
3841
3842 blk_requestq_cachep = kmem_cache_create("request_queue",
3843 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3844
3845 #ifdef CONFIG_DEBUG_FS
3846 blk_debugfs_root = debugfs_create_dir("block", NULL);
3847 #endif
3848
3849 return 0;
3850 }