]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-crypto.c
netfilter: nft_exthdr: check for IPv6 packet before further processing
[mirror_ubuntu-jammy-kernel.git] / block / blk-crypto.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2019 Google LLC
4 */
5
6 /*
7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8 */
9
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/keyslot-manager.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #include "blk-crypto-internal.h"
19
20 const struct blk_crypto_mode blk_crypto_modes[] = {
21 [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
22 .cipher_str = "xts(aes)",
23 .keysize = 64,
24 .ivsize = 16,
25 },
26 [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
27 .cipher_str = "essiv(cbc(aes),sha256)",
28 .keysize = 16,
29 .ivsize = 16,
30 },
31 [BLK_ENCRYPTION_MODE_ADIANTUM] = {
32 .cipher_str = "adiantum(xchacha12,aes)",
33 .keysize = 32,
34 .ivsize = 32,
35 },
36 };
37
38 /*
39 * This number needs to be at least (the number of threads doing IO
40 * concurrently) * (maximum recursive depth of a bio), so that we don't
41 * deadlock on crypt_ctx allocations. The default is chosen to be the same
42 * as the default number of post read contexts in both EXT4 and F2FS.
43 */
44 static int num_prealloc_crypt_ctxs = 128;
45
46 module_param(num_prealloc_crypt_ctxs, int, 0444);
47 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
48 "Number of bio crypto contexts to preallocate");
49
50 static struct kmem_cache *bio_crypt_ctx_cache;
51 static mempool_t *bio_crypt_ctx_pool;
52
53 static int __init bio_crypt_ctx_init(void)
54 {
55 size_t i;
56
57 bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
58 if (!bio_crypt_ctx_cache)
59 goto out_no_mem;
60
61 bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
62 bio_crypt_ctx_cache);
63 if (!bio_crypt_ctx_pool)
64 goto out_no_mem;
65
66 /* This is assumed in various places. */
67 BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
68
69 /* Sanity check that no algorithm exceeds the defined limits. */
70 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
71 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
72 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
73 }
74
75 return 0;
76 out_no_mem:
77 panic("Failed to allocate mem for bio crypt ctxs\n");
78 }
79 subsys_initcall(bio_crypt_ctx_init);
80
81 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
82 const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
83 {
84 struct bio_crypt_ctx *bc;
85
86 /*
87 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
88 * that the mempool_alloc() can't fail.
89 */
90 WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
91
92 bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
93
94 bc->bc_key = key;
95 memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
96
97 bio->bi_crypt_context = bc;
98 }
99
100 void __bio_crypt_free_ctx(struct bio *bio)
101 {
102 mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
103 bio->bi_crypt_context = NULL;
104 }
105
106 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
107 {
108 dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
109 if (!dst->bi_crypt_context)
110 return -ENOMEM;
111 *dst->bi_crypt_context = *src->bi_crypt_context;
112 return 0;
113 }
114 EXPORT_SYMBOL_GPL(__bio_crypt_clone);
115
116 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
117 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
118 unsigned int inc)
119 {
120 int i;
121
122 for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
123 dun[i] += inc;
124 /*
125 * If the addition in this limb overflowed, then we need to
126 * carry 1 into the next limb. Else the carry is 0.
127 */
128 if (dun[i] < inc)
129 inc = 1;
130 else
131 inc = 0;
132 }
133 }
134
135 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
136 {
137 struct bio_crypt_ctx *bc = bio->bi_crypt_context;
138
139 bio_crypt_dun_increment(bc->bc_dun,
140 bytes >> bc->bc_key->data_unit_size_bits);
141 }
142
143 /*
144 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
145 * @next_dun, treating the DUNs as multi-limb integers.
146 */
147 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
148 unsigned int bytes,
149 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
150 {
151 int i;
152 unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
153
154 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
155 if (bc->bc_dun[i] + carry != next_dun[i])
156 return false;
157 /*
158 * If the addition in this limb overflowed, then we need to
159 * carry 1 into the next limb. Else the carry is 0.
160 */
161 if ((bc->bc_dun[i] + carry) < carry)
162 carry = 1;
163 else
164 carry = 0;
165 }
166
167 /* If the DUN wrapped through 0, don't treat it as contiguous. */
168 return carry == 0;
169 }
170
171 /*
172 * Checks that two bio crypt contexts are compatible - i.e. that
173 * they are mergeable except for data_unit_num continuity.
174 */
175 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
176 struct bio_crypt_ctx *bc2)
177 {
178 if (!bc1)
179 return !bc2;
180
181 return bc2 && bc1->bc_key == bc2->bc_key;
182 }
183
184 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
185 {
186 return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
187 }
188
189 /*
190 * Checks that two bio crypt contexts are compatible, and also
191 * that their data_unit_nums are continuous (and can hence be merged)
192 * in the order @bc1 followed by @bc2.
193 */
194 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
195 struct bio_crypt_ctx *bc2)
196 {
197 if (!bio_crypt_ctx_compatible(bc1, bc2))
198 return false;
199
200 return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
201 }
202
203 /* Check that all I/O segments are data unit aligned. */
204 static bool bio_crypt_check_alignment(struct bio *bio)
205 {
206 const unsigned int data_unit_size =
207 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
208 struct bvec_iter iter;
209 struct bio_vec bv;
210
211 bio_for_each_segment(bv, bio, iter) {
212 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
213 return false;
214 }
215
216 return true;
217 }
218
219 blk_status_t __blk_crypto_init_request(struct request *rq)
220 {
221 return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key,
222 &rq->crypt_keyslot);
223 }
224
225 /**
226 * __blk_crypto_free_request - Uninitialize the crypto fields of a request.
227 *
228 * @rq: The request whose crypto fields to uninitialize.
229 *
230 * Completely uninitializes the crypto fields of a request. If a keyslot has
231 * been programmed into some inline encryption hardware, that keyslot is
232 * released. The rq->crypt_ctx is also freed.
233 */
234 void __blk_crypto_free_request(struct request *rq)
235 {
236 blk_ksm_put_slot(rq->crypt_keyslot);
237 mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
238 blk_crypto_rq_set_defaults(rq);
239 }
240
241 /**
242 * __blk_crypto_bio_prep - Prepare bio for inline encryption
243 *
244 * @bio_ptr: pointer to original bio pointer
245 *
246 * If the bio crypt context provided for the bio is supported by the underlying
247 * device's inline encryption hardware, do nothing.
248 *
249 * Otherwise, try to perform en/decryption for this bio by falling back to the
250 * kernel crypto API. When the crypto API fallback is used for encryption,
251 * blk-crypto may choose to split the bio into 2 - the first one that will
252 * continue to be processed and the second one that will be resubmitted via
253 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
254 * of the aforementioned "first one", and *bio_ptr will be updated to this
255 * bounce bio.
256 *
257 * Caller must ensure bio has bio_crypt_ctx.
258 *
259 * Return: true on success; false on error (and bio->bi_status will be set
260 * appropriately, and bio_endio() will have been called so bio
261 * submission should abort).
262 */
263 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
264 {
265 struct bio *bio = *bio_ptr;
266 const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
267
268 /* Error if bio has no data. */
269 if (WARN_ON_ONCE(!bio_has_data(bio))) {
270 bio->bi_status = BLK_STS_IOERR;
271 goto fail;
272 }
273
274 if (!bio_crypt_check_alignment(bio)) {
275 bio->bi_status = BLK_STS_IOERR;
276 goto fail;
277 }
278
279 /*
280 * Success if device supports the encryption context, or if we succeeded
281 * in falling back to the crypto API.
282 */
283 if (blk_ksm_crypto_cfg_supported(bio->bi_bdev->bd_disk->queue->ksm,
284 &bc_key->crypto_cfg))
285 return true;
286
287 if (blk_crypto_fallback_bio_prep(bio_ptr))
288 return true;
289 fail:
290 bio_endio(*bio_ptr);
291 return false;
292 }
293
294 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
295 gfp_t gfp_mask)
296 {
297 if (!rq->crypt_ctx) {
298 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
299 if (!rq->crypt_ctx)
300 return -ENOMEM;
301 }
302 *rq->crypt_ctx = *bio->bi_crypt_context;
303 return 0;
304 }
305
306 /**
307 * blk_crypto_init_key() - Prepare a key for use with blk-crypto
308 * @blk_key: Pointer to the blk_crypto_key to initialize.
309 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen
310 * @crypto_mode; see blk_crypto_modes[].
311 * @crypto_mode: identifier for the encryption algorithm to use
312 * @dun_bytes: number of bytes that will be used to specify the DUN when this
313 * key is used
314 * @data_unit_size: the data unit size to use for en/decryption
315 *
316 * Return: 0 on success, -errno on failure. The caller is responsible for
317 * zeroizing both blk_key and raw_key when done with them.
318 */
319 int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key,
320 enum blk_crypto_mode_num crypto_mode,
321 unsigned int dun_bytes,
322 unsigned int data_unit_size)
323 {
324 const struct blk_crypto_mode *mode;
325
326 memset(blk_key, 0, sizeof(*blk_key));
327
328 if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
329 return -EINVAL;
330
331 mode = &blk_crypto_modes[crypto_mode];
332 if (mode->keysize == 0)
333 return -EINVAL;
334
335 if (dun_bytes == 0 || dun_bytes > BLK_CRYPTO_MAX_IV_SIZE)
336 return -EINVAL;
337
338 if (!is_power_of_2(data_unit_size))
339 return -EINVAL;
340
341 blk_key->crypto_cfg.crypto_mode = crypto_mode;
342 blk_key->crypto_cfg.dun_bytes = dun_bytes;
343 blk_key->crypto_cfg.data_unit_size = data_unit_size;
344 blk_key->data_unit_size_bits = ilog2(data_unit_size);
345 blk_key->size = mode->keysize;
346 memcpy(blk_key->raw, raw_key, mode->keysize);
347
348 return 0;
349 }
350
351 /*
352 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
353 * request queue it's submitted to supports inline crypto, or the
354 * blk-crypto-fallback is enabled and supports the cfg).
355 */
356 bool blk_crypto_config_supported(struct request_queue *q,
357 const struct blk_crypto_config *cfg)
358 {
359 return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
360 blk_ksm_crypto_cfg_supported(q->ksm, cfg);
361 }
362
363 /**
364 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
365 * @key: A key to use on the device
366 * @q: the request queue for the device
367 *
368 * Upper layers must call this function to ensure that either the hardware
369 * supports the key's crypto settings, or the crypto API fallback has transforms
370 * for the needed mode allocated and ready to go. This function may allocate
371 * an skcipher, and *should not* be called from the data path, since that might
372 * cause a deadlock
373 *
374 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
375 * blk-crypto-fallback is either disabled or the needed algorithm
376 * is disabled in the crypto API; or another -errno code.
377 */
378 int blk_crypto_start_using_key(const struct blk_crypto_key *key,
379 struct request_queue *q)
380 {
381 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
382 return 0;
383 return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
384 }
385
386 /**
387 * blk_crypto_evict_key() - Evict a key from any inline encryption hardware
388 * it may have been programmed into
389 * @q: The request queue who's associated inline encryption hardware this key
390 * might have been programmed into
391 * @key: The key to evict
392 *
393 * Upper layers (filesystems) must call this function to ensure that a key is
394 * evicted from any hardware that it might have been programmed into. The key
395 * must not be in use by any in-flight IO when this function is called.
396 *
397 * Return: 0 on success or if key is not present in the q's ksm, -err on error.
398 */
399 int blk_crypto_evict_key(struct request_queue *q,
400 const struct blk_crypto_key *key)
401 {
402 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
403 return blk_ksm_evict_key(q->ksm, key);
404
405 /*
406 * If the request queue's associated inline encryption hardware didn't
407 * have support for the key, then the key might have been programmed
408 * into the fallback keyslot manager, so try to evict from there.
409 */
410 return blk_crypto_fallback_evict_key(key);
411 }
412 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);