]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-flush.c
Merge tag 'pwm/for-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-bionic-kernel.git] / block / blk-flush.c
1 /*
2 * Functions to sequence FLUSH and FUA writes.
3 *
4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11 * properties and hardware capability.
12 *
13 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
14 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
15 * that the device cache should be flushed before the data is executed, and
16 * REQ_FUA means that the data must be on non-volatile media on request
17 * completion.
18 *
19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20 * difference. The requests are either completed immediately if there's no
21 * data or executed as normal requests otherwise.
22 *
23 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25 *
26 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
27 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28 *
29 * The actual execution of flush is double buffered. Whenever a request
30 * needs to execute PRE or POSTFLUSH, it queues at
31 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
32 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
33 * completes, all the requests which were pending are proceeded to the next
34 * step. This allows arbitrary merging of different types of FLUSH/FUA
35 * requests.
36 *
37 * Currently, the following conditions are used to determine when to issue
38 * flush.
39 *
40 * C1. At any given time, only one flush shall be in progress. This makes
41 * double buffering sufficient.
42 *
43 * C2. Flush is deferred if any request is executing DATA of its sequence.
44 * This avoids issuing separate POSTFLUSHes for requests which shared
45 * PREFLUSH.
46 *
47 * C3. The second condition is ignored if there is a request which has
48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
49 * starvation in the unlikely case where there are continuous stream of
50 * FUA (without FLUSH) requests.
51 *
52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53 * is beneficial.
54 *
55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56 * Once while executing DATA and again after the whole sequence is
57 * complete. The first completion updates the contained bio but doesn't
58 * finish it so that the bio submitter is notified only after the whole
59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in
60 * req_bio_endio().
61 *
62 * The above peculiarity requires that each FLUSH/FUA request has only one
63 * bio attached to it, which is guaranteed as they aren't allowed to be
64 * merged in the usual way.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77
78 /* FLUSH/FUA sequences */
79 enum {
80 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
81 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
82 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
83 REQ_FSEQ_DONE = (1 << 3),
84
85 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
86 REQ_FSEQ_POSTFLUSH,
87
88 /*
89 * If flush has been pending longer than the following timeout,
90 * it's issued even if flush_data requests are still in flight.
91 */
92 FLUSH_PENDING_TIMEOUT = 5 * HZ,
93 };
94
95 static bool blk_kick_flush(struct request_queue *q,
96 struct blk_flush_queue *fq);
97
98 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
99 {
100 unsigned int policy = 0;
101
102 if (blk_rq_sectors(rq))
103 policy |= REQ_FSEQ_DATA;
104
105 if (fflags & (1UL << QUEUE_FLAG_WC)) {
106 if (rq->cmd_flags & REQ_PREFLUSH)
107 policy |= REQ_FSEQ_PREFLUSH;
108 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
109 (rq->cmd_flags & REQ_FUA))
110 policy |= REQ_FSEQ_POSTFLUSH;
111 }
112 return policy;
113 }
114
115 static unsigned int blk_flush_cur_seq(struct request *rq)
116 {
117 return 1 << ffz(rq->flush.seq);
118 }
119
120 static void blk_flush_restore_request(struct request *rq)
121 {
122 /*
123 * After flush data completion, @rq->bio is %NULL but we need to
124 * complete the bio again. @rq->biotail is guaranteed to equal the
125 * original @rq->bio. Restore it.
126 */
127 rq->bio = rq->biotail;
128
129 /* make @rq a normal request */
130 rq->cmd_flags &= ~REQ_FLUSH_SEQ;
131 rq->end_io = rq->flush.saved_end_io;
132 }
133
134 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
135 {
136 if (rq->q->mq_ops) {
137 struct request_queue *q = rq->q;
138
139 blk_mq_add_to_requeue_list(rq, add_front);
140 blk_mq_kick_requeue_list(q);
141 return false;
142 } else {
143 if (add_front)
144 list_add(&rq->queuelist, &rq->q->queue_head);
145 else
146 list_add_tail(&rq->queuelist, &rq->q->queue_head);
147 return true;
148 }
149 }
150
151 /**
152 * blk_flush_complete_seq - complete flush sequence
153 * @rq: FLUSH/FUA request being sequenced
154 * @fq: flush queue
155 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
156 * @error: whether an error occurred
157 *
158 * @rq just completed @seq part of its flush sequence, record the
159 * completion and trigger the next step.
160 *
161 * CONTEXT:
162 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
163 *
164 * RETURNS:
165 * %true if requests were added to the dispatch queue, %false otherwise.
166 */
167 static bool blk_flush_complete_seq(struct request *rq,
168 struct blk_flush_queue *fq,
169 unsigned int seq, int error)
170 {
171 struct request_queue *q = rq->q;
172 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
173 bool queued = false, kicked;
174
175 BUG_ON(rq->flush.seq & seq);
176 rq->flush.seq |= seq;
177
178 if (likely(!error))
179 seq = blk_flush_cur_seq(rq);
180 else
181 seq = REQ_FSEQ_DONE;
182
183 switch (seq) {
184 case REQ_FSEQ_PREFLUSH:
185 case REQ_FSEQ_POSTFLUSH:
186 /* queue for flush */
187 if (list_empty(pending))
188 fq->flush_pending_since = jiffies;
189 list_move_tail(&rq->flush.list, pending);
190 break;
191
192 case REQ_FSEQ_DATA:
193 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
194 queued = blk_flush_queue_rq(rq, true);
195 break;
196
197 case REQ_FSEQ_DONE:
198 /*
199 * @rq was previously adjusted by blk_flush_issue() for
200 * flush sequencing and may already have gone through the
201 * flush data request completion path. Restore @rq for
202 * normal completion and end it.
203 */
204 BUG_ON(!list_empty(&rq->queuelist));
205 list_del_init(&rq->flush.list);
206 blk_flush_restore_request(rq);
207 if (q->mq_ops)
208 blk_mq_end_request(rq, error);
209 else
210 __blk_end_request_all(rq, error);
211 break;
212
213 default:
214 BUG();
215 }
216
217 kicked = blk_kick_flush(q, fq);
218 return kicked | queued;
219 }
220
221 static void flush_end_io(struct request *flush_rq, int error)
222 {
223 struct request_queue *q = flush_rq->q;
224 struct list_head *running;
225 bool queued = false;
226 struct request *rq, *n;
227 unsigned long flags = 0;
228 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
229
230 if (q->mq_ops) {
231 struct blk_mq_hw_ctx *hctx;
232
233 /* release the tag's ownership to the req cloned from */
234 spin_lock_irqsave(&fq->mq_flush_lock, flags);
235 hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
236 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
237 flush_rq->tag = -1;
238 }
239
240 running = &fq->flush_queue[fq->flush_running_idx];
241 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
242
243 /* account completion of the flush request */
244 fq->flush_running_idx ^= 1;
245
246 if (!q->mq_ops)
247 elv_completed_request(q, flush_rq);
248
249 /* and push the waiting requests to the next stage */
250 list_for_each_entry_safe(rq, n, running, flush.list) {
251 unsigned int seq = blk_flush_cur_seq(rq);
252
253 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
254 queued |= blk_flush_complete_seq(rq, fq, seq, error);
255 }
256
257 /*
258 * Kick the queue to avoid stall for two cases:
259 * 1. Moving a request silently to empty queue_head may stall the
260 * queue.
261 * 2. When flush request is running in non-queueable queue, the
262 * queue is hold. Restart the queue after flush request is finished
263 * to avoid stall.
264 * This function is called from request completion path and calling
265 * directly into request_fn may confuse the driver. Always use
266 * kblockd.
267 */
268 if (queued || fq->flush_queue_delayed) {
269 WARN_ON(q->mq_ops);
270 blk_run_queue_async(q);
271 }
272 fq->flush_queue_delayed = 0;
273 if (q->mq_ops)
274 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
275 }
276
277 /**
278 * blk_kick_flush - consider issuing flush request
279 * @q: request_queue being kicked
280 * @fq: flush queue
281 *
282 * Flush related states of @q have changed, consider issuing flush request.
283 * Please read the comment at the top of this file for more info.
284 *
285 * CONTEXT:
286 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
287 *
288 * RETURNS:
289 * %true if flush was issued, %false otherwise.
290 */
291 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
292 {
293 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
294 struct request *first_rq =
295 list_first_entry(pending, struct request, flush.list);
296 struct request *flush_rq = fq->flush_rq;
297
298 /* C1 described at the top of this file */
299 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
300 return false;
301
302 /* C2 and C3 */
303 if (!list_empty(&fq->flush_data_in_flight) &&
304 time_before(jiffies,
305 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
306 return false;
307
308 /*
309 * Issue flush and toggle pending_idx. This makes pending_idx
310 * different from running_idx, which means flush is in flight.
311 */
312 fq->flush_pending_idx ^= 1;
313
314 blk_rq_init(q, flush_rq);
315
316 /*
317 * Borrow tag from the first request since they can't
318 * be in flight at the same time. And acquire the tag's
319 * ownership for flush req.
320 */
321 if (q->mq_ops) {
322 struct blk_mq_hw_ctx *hctx;
323
324 flush_rq->mq_ctx = first_rq->mq_ctx;
325 flush_rq->tag = first_rq->tag;
326 fq->orig_rq = first_rq;
327
328 hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
329 blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
330 }
331
332 flush_rq->cmd_type = REQ_TYPE_FS;
333 req_set_op_attrs(flush_rq, REQ_OP_FLUSH, WRITE_FLUSH | REQ_FLUSH_SEQ);
334 flush_rq->rq_disk = first_rq->rq_disk;
335 flush_rq->end_io = flush_end_io;
336
337 return blk_flush_queue_rq(flush_rq, false);
338 }
339
340 static void flush_data_end_io(struct request *rq, int error)
341 {
342 struct request_queue *q = rq->q;
343 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
344
345 /*
346 * Updating q->in_flight[] here for making this tag usable
347 * early. Because in blk_queue_start_tag(),
348 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
349 * reserve tags for sync I/O.
350 *
351 * More importantly this way can avoid the following I/O
352 * deadlock:
353 *
354 * - suppose there are 40 fua requests comming to flush queue
355 * and queue depth is 31
356 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
357 * tag for async I/O any more
358 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
359 * and flush_data_end_io() is called
360 * - the other rqs still can't go ahead if not updating
361 * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
362 * are held in flush data queue and make no progress of
363 * handling post flush rq
364 * - only after the post flush rq is handled, all these rqs
365 * can be completed
366 */
367
368 elv_completed_request(q, rq);
369
370 /* for avoiding double accounting */
371 rq->cmd_flags &= ~REQ_STARTED;
372
373 /*
374 * After populating an empty queue, kick it to avoid stall. Read
375 * the comment in flush_end_io().
376 */
377 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
378 blk_run_queue_async(q);
379 }
380
381 static void mq_flush_data_end_io(struct request *rq, int error)
382 {
383 struct request_queue *q = rq->q;
384 struct blk_mq_hw_ctx *hctx;
385 struct blk_mq_ctx *ctx = rq->mq_ctx;
386 unsigned long flags;
387 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
388
389 hctx = blk_mq_map_queue(q, ctx->cpu);
390
391 /*
392 * After populating an empty queue, kick it to avoid stall. Read
393 * the comment in flush_end_io().
394 */
395 spin_lock_irqsave(&fq->mq_flush_lock, flags);
396 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
397 blk_mq_run_hw_queue(hctx, true);
398 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
399 }
400
401 /**
402 * blk_insert_flush - insert a new FLUSH/FUA request
403 * @rq: request to insert
404 *
405 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
406 * or __blk_mq_run_hw_queue() to dispatch request.
407 * @rq is being submitted. Analyze what needs to be done and put it on the
408 * right queue.
409 *
410 * CONTEXT:
411 * spin_lock_irq(q->queue_lock) in !mq case
412 */
413 void blk_insert_flush(struct request *rq)
414 {
415 struct request_queue *q = rq->q;
416 unsigned long fflags = q->queue_flags; /* may change, cache */
417 unsigned int policy = blk_flush_policy(fflags, rq);
418 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
419
420 /*
421 * @policy now records what operations need to be done. Adjust
422 * REQ_PREFLUSH and FUA for the driver.
423 */
424 rq->cmd_flags &= ~REQ_PREFLUSH;
425 if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
426 rq->cmd_flags &= ~REQ_FUA;
427
428 /*
429 * An empty flush handed down from a stacking driver may
430 * translate into nothing if the underlying device does not
431 * advertise a write-back cache. In this case, simply
432 * complete the request.
433 */
434 if (!policy) {
435 if (q->mq_ops)
436 blk_mq_end_request(rq, 0);
437 else
438 __blk_end_bidi_request(rq, 0, 0, 0);
439 return;
440 }
441
442 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
443
444 /*
445 * If there's data but flush is not necessary, the request can be
446 * processed directly without going through flush machinery. Queue
447 * for normal execution.
448 */
449 if ((policy & REQ_FSEQ_DATA) &&
450 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
451 if (q->mq_ops) {
452 blk_mq_insert_request(rq, false, false, true);
453 } else
454 list_add_tail(&rq->queuelist, &q->queue_head);
455 return;
456 }
457
458 /*
459 * @rq should go through flush machinery. Mark it part of flush
460 * sequence and submit for further processing.
461 */
462 memset(&rq->flush, 0, sizeof(rq->flush));
463 INIT_LIST_HEAD(&rq->flush.list);
464 rq->cmd_flags |= REQ_FLUSH_SEQ;
465 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
466 if (q->mq_ops) {
467 rq->end_io = mq_flush_data_end_io;
468
469 spin_lock_irq(&fq->mq_flush_lock);
470 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
471 spin_unlock_irq(&fq->mq_flush_lock);
472 return;
473 }
474 rq->end_io = flush_data_end_io;
475
476 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
477 }
478
479 /**
480 * blkdev_issue_flush - queue a flush
481 * @bdev: blockdev to issue flush for
482 * @gfp_mask: memory allocation flags (for bio_alloc)
483 * @error_sector: error sector
484 *
485 * Description:
486 * Issue a flush for the block device in question. Caller can supply
487 * room for storing the error offset in case of a flush error, if they
488 * wish to. If WAIT flag is not passed then caller may check only what
489 * request was pushed in some internal queue for later handling.
490 */
491 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
492 sector_t *error_sector)
493 {
494 struct request_queue *q;
495 struct bio *bio;
496 int ret = 0;
497
498 if (bdev->bd_disk == NULL)
499 return -ENXIO;
500
501 q = bdev_get_queue(bdev);
502 if (!q)
503 return -ENXIO;
504
505 /*
506 * some block devices may not have their queue correctly set up here
507 * (e.g. loop device without a backing file) and so issuing a flush
508 * here will panic. Ensure there is a request function before issuing
509 * the flush.
510 */
511 if (!q->make_request_fn)
512 return -ENXIO;
513
514 bio = bio_alloc(gfp_mask, 0);
515 bio->bi_bdev = bdev;
516 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
517
518 ret = submit_bio_wait(bio);
519
520 /*
521 * The driver must store the error location in ->bi_sector, if
522 * it supports it. For non-stacked drivers, this should be
523 * copied from blk_rq_pos(rq).
524 */
525 if (error_sector)
526 *error_sector = bio->bi_iter.bi_sector;
527
528 bio_put(bio);
529 return ret;
530 }
531 EXPORT_SYMBOL(blkdev_issue_flush);
532
533 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
534 int node, int cmd_size)
535 {
536 struct blk_flush_queue *fq;
537 int rq_sz = sizeof(struct request);
538
539 fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
540 if (!fq)
541 goto fail;
542
543 if (q->mq_ops) {
544 spin_lock_init(&fq->mq_flush_lock);
545 rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
546 }
547
548 fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
549 if (!fq->flush_rq)
550 goto fail_rq;
551
552 INIT_LIST_HEAD(&fq->flush_queue[0]);
553 INIT_LIST_HEAD(&fq->flush_queue[1]);
554 INIT_LIST_HEAD(&fq->flush_data_in_flight);
555
556 return fq;
557
558 fail_rq:
559 kfree(fq);
560 fail:
561 return NULL;
562 }
563
564 void blk_free_flush_queue(struct blk_flush_queue *fq)
565 {
566 /* bio based request queue hasn't flush queue */
567 if (!fq)
568 return;
569
570 kfree(fq->flush_rq);
571 kfree(fq);
572 }