]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-iocost.c
a3889a8b0a33e4d8ffce7156bfca3ea00281d5b6
[mirror_ubuntu-hirsute-kernel.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
173 */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
211
212 enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
220 * A cgroup's vtime can run 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
224 MARGIN_MIN_PCT = 10,
225 MARGIN_MAX_PCT = 50,
226
227 /* Have some play in timer operations */
228 TIMER_SLACK_PCT = 1,
229
230 /*
231 * vtime can wrap well within a reasonable uptime when vrate is
232 * consistently raised. Don't trust recorded cgroup vtime if the
233 * period counter indicates that it's older than 5mins.
234 */
235 VTIME_VALID_DUR = 300 * USEC_PER_SEC,
236
237 /*
238 * Remember the past three non-zero usages and use the max for
239 * surplus calculation. Three slots guarantee that we remember one
240 * full period usage from the last active stretch even after
241 * partial deactivation and re-activation periods. Don't start
242 * giving away weight before collecting two data points to prevent
243 * hweight adjustments based on one partial activation period.
244 */
245 NR_USAGE_SLOTS = 3,
246 MIN_VALID_USAGES = 2,
247
248 /* 1/64k is granular enough and can easily be handled w/ u32 */
249 WEIGHT_ONE = 1 << 16,
250
251 /*
252 * As vtime is used to calculate the cost of each IO, it needs to
253 * be fairly high precision. For example, it should be able to
254 * represent the cost of a single page worth of discard with
255 * suffificient accuracy. At the same time, it should be able to
256 * represent reasonably long enough durations to be useful and
257 * convenient during operation.
258 *
259 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
260 * granularity and days of wrap-around time even at extreme vrates.
261 */
262 VTIME_PER_SEC_SHIFT = 37,
263 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
264 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
265 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
266
267 /* bound vrate adjustments within two orders of magnitude */
268 VRATE_MIN_PPM = 10000, /* 1% */
269 VRATE_MAX_PPM = 100000000, /* 10000% */
270
271 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272 VRATE_CLAMP_ADJ_PCT = 4,
273
274 /* if IOs end up waiting for requests, issue less */
275 RQ_WAIT_BUSY_PCT = 5,
276
277 /* unbusy hysterisis */
278 UNBUSY_THR_PCT = 75,
279
280 /* don't let cmds which take a very long time pin lagging for too long */
281 MAX_LAGGING_PERIODS = 10,
282
283 /*
284 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285 * donate the surplus.
286 */
287 SURPLUS_SCALE_PCT = 125, /* * 125% */
288 SURPLUS_SCALE_ABS = WEIGHT_ONE / 50, /* + 2% */
289 SURPLUS_MIN_ADJ_DELTA = WEIGHT_ONE / 33, /* 3% */
290
291 /* switch iff the conditions are met for longer than this */
292 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
293
294 /*
295 * Count IO size in 4k pages. The 12bit shift helps keeping
296 * size-proportional components of cost calculation in closer
297 * numbers of digits to per-IO cost components.
298 */
299 IOC_PAGE_SHIFT = 12,
300 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
301 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
302
303 /* if apart further than 16M, consider randio for linear model */
304 LCOEF_RANDIO_PAGES = 4096,
305 };
306
307 enum ioc_running {
308 IOC_IDLE,
309 IOC_RUNNING,
310 IOC_STOP,
311 };
312
313 /* io.cost.qos controls including per-dev enable of the whole controller */
314 enum {
315 QOS_ENABLE,
316 QOS_CTRL,
317 NR_QOS_CTRL_PARAMS,
318 };
319
320 /* io.cost.qos params */
321 enum {
322 QOS_RPPM,
323 QOS_RLAT,
324 QOS_WPPM,
325 QOS_WLAT,
326 QOS_MIN,
327 QOS_MAX,
328 NR_QOS_PARAMS,
329 };
330
331 /* io.cost.model controls */
332 enum {
333 COST_CTRL,
334 COST_MODEL,
335 NR_COST_CTRL_PARAMS,
336 };
337
338 /* builtin linear cost model coefficients */
339 enum {
340 I_LCOEF_RBPS,
341 I_LCOEF_RSEQIOPS,
342 I_LCOEF_RRANDIOPS,
343 I_LCOEF_WBPS,
344 I_LCOEF_WSEQIOPS,
345 I_LCOEF_WRANDIOPS,
346 NR_I_LCOEFS,
347 };
348
349 enum {
350 LCOEF_RPAGE,
351 LCOEF_RSEQIO,
352 LCOEF_RRANDIO,
353 LCOEF_WPAGE,
354 LCOEF_WSEQIO,
355 LCOEF_WRANDIO,
356 NR_LCOEFS,
357 };
358
359 enum {
360 AUTOP_INVALID,
361 AUTOP_HDD,
362 AUTOP_SSD_QD1,
363 AUTOP_SSD_DFL,
364 AUTOP_SSD_FAST,
365 };
366
367 struct ioc_gq;
368
369 struct ioc_params {
370 u32 qos[NR_QOS_PARAMS];
371 u64 i_lcoefs[NR_I_LCOEFS];
372 u64 lcoefs[NR_LCOEFS];
373 u32 too_fast_vrate_pct;
374 u32 too_slow_vrate_pct;
375 };
376
377 struct ioc_margins {
378 s64 min;
379 s64 max;
380 };
381
382 struct ioc_missed {
383 local_t nr_met;
384 local_t nr_missed;
385 u32 last_met;
386 u32 last_missed;
387 };
388
389 struct ioc_pcpu_stat {
390 struct ioc_missed missed[2];
391
392 local64_t rq_wait_ns;
393 u64 last_rq_wait_ns;
394 };
395
396 /* per device */
397 struct ioc {
398 struct rq_qos rqos;
399
400 bool enabled;
401
402 struct ioc_params params;
403 struct ioc_margins margins;
404 u32 period_us;
405 u32 timer_slack_ns;
406 u64 vrate_min;
407 u64 vrate_max;
408
409 spinlock_t lock;
410 struct timer_list timer;
411 struct list_head active_iocgs; /* active cgroups */
412 struct ioc_pcpu_stat __percpu *pcpu_stat;
413
414 enum ioc_running running;
415 atomic64_t vtime_rate;
416
417 seqcount_spinlock_t period_seqcount;
418 u64 period_at; /* wallclock starttime */
419 u64 period_at_vtime; /* vtime starttime */
420
421 atomic64_t cur_period; /* inc'd each period */
422 int busy_level; /* saturation history */
423
424 bool weights_updated;
425 atomic_t hweight_gen; /* for lazy hweights */
426
427 u64 autop_too_fast_at;
428 u64 autop_too_slow_at;
429 int autop_idx;
430 bool user_qos_params:1;
431 bool user_cost_model:1;
432 };
433
434 struct iocg_pcpu_stat {
435 local64_t abs_vusage;
436 };
437
438 struct iocg_stat {
439 u64 usage_us;
440 };
441
442 /* per device-cgroup pair */
443 struct ioc_gq {
444 struct blkg_policy_data pd;
445 struct ioc *ioc;
446
447 /*
448 * A iocg can get its weight from two sources - an explicit
449 * per-device-cgroup configuration or the default weight of the
450 * cgroup. `cfg_weight` is the explicit per-device-cgroup
451 * configuration. `weight` is the effective considering both
452 * sources.
453 *
454 * When an idle cgroup becomes active its `active` goes from 0 to
455 * `weight`. `inuse` is the surplus adjusted active weight.
456 * `active` and `inuse` are used to calculate `hweight_active` and
457 * `hweight_inuse`.
458 *
459 * `last_inuse` remembers `inuse` while an iocg is idle to persist
460 * surplus adjustments.
461 */
462 u32 cfg_weight;
463 u32 weight;
464 u32 active;
465 u32 inuse;
466 u32 last_inuse;
467
468 sector_t cursor; /* to detect randio */
469
470 /*
471 * `vtime` is this iocg's vtime cursor which progresses as IOs are
472 * issued. If lagging behind device vtime, the delta represents
473 * the currently available IO budget. If runnning ahead, the
474 * overage.
475 *
476 * `vtime_done` is the same but progressed on completion rather
477 * than issue. The delta behind `vtime` represents the cost of
478 * currently in-flight IOs.
479 */
480 atomic64_t vtime;
481 atomic64_t done_vtime;
482 u64 abs_vdebt;
483
484 /*
485 * The period this iocg was last active in. Used for deactivation
486 * and invalidating `vtime`.
487 */
488 atomic64_t active_period;
489 struct list_head active_list;
490
491 /* see __propagate_weights() and current_hweight() for details */
492 u64 child_active_sum;
493 u64 child_inuse_sum;
494 int hweight_gen;
495 u32 hweight_active;
496 u32 hweight_inuse;
497
498 struct list_head walk_list;
499 struct list_head surplus_list;
500
501 struct wait_queue_head waitq;
502 struct hrtimer waitq_timer;
503 struct hrtimer delay_timer;
504
505 /* timestamp at the latest activation */
506 u64 activated_at;
507
508 /* statistics */
509 struct iocg_pcpu_stat __percpu *pcpu_stat;
510 struct iocg_stat local_stat;
511 struct iocg_stat desc_stat;
512 struct iocg_stat last_stat;
513 u64 last_stat_abs_vusage;
514
515 /* usage is recorded as fractions of WEIGHT_ONE */
516 u32 usage_delta_us;
517 int usage_idx;
518 u32 usages[NR_USAGE_SLOTS];
519
520 /* this iocg's depth in the hierarchy and ancestors including self */
521 int level;
522 struct ioc_gq *ancestors[];
523 };
524
525 /* per cgroup */
526 struct ioc_cgrp {
527 struct blkcg_policy_data cpd;
528 unsigned int dfl_weight;
529 };
530
531 struct ioc_now {
532 u64 now_ns;
533 u64 now;
534 u64 vnow;
535 u64 vrate;
536 };
537
538 struct iocg_wait {
539 struct wait_queue_entry wait;
540 struct bio *bio;
541 u64 abs_cost;
542 bool committed;
543 };
544
545 struct iocg_wake_ctx {
546 struct ioc_gq *iocg;
547 u32 hw_inuse;
548 s64 vbudget;
549 };
550
551 static const struct ioc_params autop[] = {
552 [AUTOP_HDD] = {
553 .qos = {
554 [QOS_RLAT] = 250000, /* 250ms */
555 [QOS_WLAT] = 250000,
556 [QOS_MIN] = VRATE_MIN_PPM,
557 [QOS_MAX] = VRATE_MAX_PPM,
558 },
559 .i_lcoefs = {
560 [I_LCOEF_RBPS] = 174019176,
561 [I_LCOEF_RSEQIOPS] = 41708,
562 [I_LCOEF_RRANDIOPS] = 370,
563 [I_LCOEF_WBPS] = 178075866,
564 [I_LCOEF_WSEQIOPS] = 42705,
565 [I_LCOEF_WRANDIOPS] = 378,
566 },
567 },
568 [AUTOP_SSD_QD1] = {
569 .qos = {
570 [QOS_RLAT] = 25000, /* 25ms */
571 [QOS_WLAT] = 25000,
572 [QOS_MIN] = VRATE_MIN_PPM,
573 [QOS_MAX] = VRATE_MAX_PPM,
574 },
575 .i_lcoefs = {
576 [I_LCOEF_RBPS] = 245855193,
577 [I_LCOEF_RSEQIOPS] = 61575,
578 [I_LCOEF_RRANDIOPS] = 6946,
579 [I_LCOEF_WBPS] = 141365009,
580 [I_LCOEF_WSEQIOPS] = 33716,
581 [I_LCOEF_WRANDIOPS] = 26796,
582 },
583 },
584 [AUTOP_SSD_DFL] = {
585 .qos = {
586 [QOS_RLAT] = 25000, /* 25ms */
587 [QOS_WLAT] = 25000,
588 [QOS_MIN] = VRATE_MIN_PPM,
589 [QOS_MAX] = VRATE_MAX_PPM,
590 },
591 .i_lcoefs = {
592 [I_LCOEF_RBPS] = 488636629,
593 [I_LCOEF_RSEQIOPS] = 8932,
594 [I_LCOEF_RRANDIOPS] = 8518,
595 [I_LCOEF_WBPS] = 427891549,
596 [I_LCOEF_WSEQIOPS] = 28755,
597 [I_LCOEF_WRANDIOPS] = 21940,
598 },
599 .too_fast_vrate_pct = 500,
600 },
601 [AUTOP_SSD_FAST] = {
602 .qos = {
603 [QOS_RLAT] = 5000, /* 5ms */
604 [QOS_WLAT] = 5000,
605 [QOS_MIN] = VRATE_MIN_PPM,
606 [QOS_MAX] = VRATE_MAX_PPM,
607 },
608 .i_lcoefs = {
609 [I_LCOEF_RBPS] = 3102524156LLU,
610 [I_LCOEF_RSEQIOPS] = 724816,
611 [I_LCOEF_RRANDIOPS] = 778122,
612 [I_LCOEF_WBPS] = 1742780862LLU,
613 [I_LCOEF_WSEQIOPS] = 425702,
614 [I_LCOEF_WRANDIOPS] = 443193,
615 },
616 .too_slow_vrate_pct = 10,
617 },
618 };
619
620 /*
621 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
622 * vtime credit shortage and down on device saturation.
623 */
624 static u32 vrate_adj_pct[] =
625 { 0, 0, 0, 0,
626 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
627 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
628 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
629
630 static struct blkcg_policy blkcg_policy_iocost;
631
632 /* accessors and helpers */
633 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
634 {
635 return container_of(rqos, struct ioc, rqos);
636 }
637
638 static struct ioc *q_to_ioc(struct request_queue *q)
639 {
640 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
641 }
642
643 static const char *q_name(struct request_queue *q)
644 {
645 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
646 return kobject_name(q->kobj.parent);
647 else
648 return "<unknown>";
649 }
650
651 static const char __maybe_unused *ioc_name(struct ioc *ioc)
652 {
653 return q_name(ioc->rqos.q);
654 }
655
656 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
657 {
658 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
659 }
660
661 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
662 {
663 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
664 }
665
666 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
667 {
668 return pd_to_blkg(&iocg->pd);
669 }
670
671 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
672 {
673 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
674 struct ioc_cgrp, cpd);
675 }
676
677 /*
678 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
679 * weight, the more expensive each IO. Must round up.
680 */
681 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
682 {
683 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
684 }
685
686 /*
687 * The inverse of abs_cost_to_cost(). Must round up.
688 */
689 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
690 {
691 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
692 }
693
694 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
695 u64 abs_cost, u64 cost)
696 {
697 struct iocg_pcpu_stat *gcs;
698
699 bio->bi_iocost_cost = cost;
700 atomic64_add(cost, &iocg->vtime);
701
702 gcs = get_cpu_ptr(iocg->pcpu_stat);
703 local64_add(abs_cost, &gcs->abs_vusage);
704 put_cpu_ptr(gcs);
705 }
706
707 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
708 {
709 if (lock_ioc) {
710 spin_lock_irqsave(&iocg->ioc->lock, *flags);
711 spin_lock(&iocg->waitq.lock);
712 } else {
713 spin_lock_irqsave(&iocg->waitq.lock, *flags);
714 }
715 }
716
717 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
718 {
719 if (unlock_ioc) {
720 spin_unlock(&iocg->waitq.lock);
721 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
722 } else {
723 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
724 }
725 }
726
727 #define CREATE_TRACE_POINTS
728 #include <trace/events/iocost.h>
729
730 static void ioc_refresh_margins(struct ioc *ioc)
731 {
732 struct ioc_margins *margins = &ioc->margins;
733 u32 period_us = ioc->period_us;
734 u64 vrate = atomic64_read(&ioc->vtime_rate);
735
736 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
737 margins->max = (period_us * MARGIN_MAX_PCT / 100) * vrate;
738 }
739
740 /* latency Qos params changed, update period_us and all the dependent params */
741 static void ioc_refresh_period_us(struct ioc *ioc)
742 {
743 u32 ppm, lat, multi, period_us;
744
745 lockdep_assert_held(&ioc->lock);
746
747 /* pick the higher latency target */
748 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
749 ppm = ioc->params.qos[QOS_RPPM];
750 lat = ioc->params.qos[QOS_RLAT];
751 } else {
752 ppm = ioc->params.qos[QOS_WPPM];
753 lat = ioc->params.qos[QOS_WLAT];
754 }
755
756 /*
757 * We want the period to be long enough to contain a healthy number
758 * of IOs while short enough for granular control. Define it as a
759 * multiple of the latency target. Ideally, the multiplier should
760 * be scaled according to the percentile so that it would nominally
761 * contain a certain number of requests. Let's be simpler and
762 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
763 */
764 if (ppm)
765 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
766 else
767 multi = 2;
768 period_us = multi * lat;
769 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
770
771 /* calculate dependent params */
772 ioc->period_us = period_us;
773 ioc->timer_slack_ns = div64_u64(
774 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
775 100);
776 ioc_refresh_margins(ioc);
777 }
778
779 static int ioc_autop_idx(struct ioc *ioc)
780 {
781 int idx = ioc->autop_idx;
782 const struct ioc_params *p = &autop[idx];
783 u32 vrate_pct;
784 u64 now_ns;
785
786 /* rotational? */
787 if (!blk_queue_nonrot(ioc->rqos.q))
788 return AUTOP_HDD;
789
790 /* handle SATA SSDs w/ broken NCQ */
791 if (blk_queue_depth(ioc->rqos.q) == 1)
792 return AUTOP_SSD_QD1;
793
794 /* use one of the normal ssd sets */
795 if (idx < AUTOP_SSD_DFL)
796 return AUTOP_SSD_DFL;
797
798 /* if user is overriding anything, maintain what was there */
799 if (ioc->user_qos_params || ioc->user_cost_model)
800 return idx;
801
802 /* step up/down based on the vrate */
803 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
804 VTIME_PER_USEC);
805 now_ns = ktime_get_ns();
806
807 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
808 if (!ioc->autop_too_fast_at)
809 ioc->autop_too_fast_at = now_ns;
810 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
811 return idx + 1;
812 } else {
813 ioc->autop_too_fast_at = 0;
814 }
815
816 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
817 if (!ioc->autop_too_slow_at)
818 ioc->autop_too_slow_at = now_ns;
819 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
820 return idx - 1;
821 } else {
822 ioc->autop_too_slow_at = 0;
823 }
824
825 return idx;
826 }
827
828 /*
829 * Take the followings as input
830 *
831 * @bps maximum sequential throughput
832 * @seqiops maximum sequential 4k iops
833 * @randiops maximum random 4k iops
834 *
835 * and calculate the linear model cost coefficients.
836 *
837 * *@page per-page cost 1s / (@bps / 4096)
838 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
839 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
840 */
841 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
842 u64 *page, u64 *seqio, u64 *randio)
843 {
844 u64 v;
845
846 *page = *seqio = *randio = 0;
847
848 if (bps)
849 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
850 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
851
852 if (seqiops) {
853 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
854 if (v > *page)
855 *seqio = v - *page;
856 }
857
858 if (randiops) {
859 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
860 if (v > *page)
861 *randio = v - *page;
862 }
863 }
864
865 static void ioc_refresh_lcoefs(struct ioc *ioc)
866 {
867 u64 *u = ioc->params.i_lcoefs;
868 u64 *c = ioc->params.lcoefs;
869
870 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
871 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
872 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
873 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
874 }
875
876 static bool ioc_refresh_params(struct ioc *ioc, bool force)
877 {
878 const struct ioc_params *p;
879 int idx;
880
881 lockdep_assert_held(&ioc->lock);
882
883 idx = ioc_autop_idx(ioc);
884 p = &autop[idx];
885
886 if (idx == ioc->autop_idx && !force)
887 return false;
888
889 if (idx != ioc->autop_idx)
890 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
891
892 ioc->autop_idx = idx;
893 ioc->autop_too_fast_at = 0;
894 ioc->autop_too_slow_at = 0;
895
896 if (!ioc->user_qos_params)
897 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
898 if (!ioc->user_cost_model)
899 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
900
901 ioc_refresh_period_us(ioc);
902 ioc_refresh_lcoefs(ioc);
903
904 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
905 VTIME_PER_USEC, MILLION);
906 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
907 VTIME_PER_USEC, MILLION);
908
909 return true;
910 }
911
912 /* take a snapshot of the current [v]time and vrate */
913 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
914 {
915 unsigned seq;
916
917 now->now_ns = ktime_get();
918 now->now = ktime_to_us(now->now_ns);
919 now->vrate = atomic64_read(&ioc->vtime_rate);
920
921 /*
922 * The current vtime is
923 *
924 * vtime at period start + (wallclock time since the start) * vrate
925 *
926 * As a consistent snapshot of `period_at_vtime` and `period_at` is
927 * needed, they're seqcount protected.
928 */
929 do {
930 seq = read_seqcount_begin(&ioc->period_seqcount);
931 now->vnow = ioc->period_at_vtime +
932 (now->now - ioc->period_at) * now->vrate;
933 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
934 }
935
936 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
937 {
938 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
939
940 write_seqcount_begin(&ioc->period_seqcount);
941 ioc->period_at = now->now;
942 ioc->period_at_vtime = now->vnow;
943 write_seqcount_end(&ioc->period_seqcount);
944
945 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
946 add_timer(&ioc->timer);
947 }
948
949 /*
950 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
951 * weight sums and propagate upwards accordingly.
952 */
953 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse)
954 {
955 struct ioc *ioc = iocg->ioc;
956 int lvl;
957
958 lockdep_assert_held(&ioc->lock);
959
960 inuse = clamp_t(u32, inuse, 1, active);
961
962 if (active == iocg->active && inuse == iocg->inuse)
963 return;
964
965 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
966 struct ioc_gq *parent = iocg->ancestors[lvl];
967 struct ioc_gq *child = iocg->ancestors[lvl + 1];
968 u32 parent_active = 0, parent_inuse = 0;
969
970 /* update the level sums */
971 parent->child_active_sum += (s32)(active - child->active);
972 parent->child_inuse_sum += (s32)(inuse - child->inuse);
973 /* apply the udpates */
974 child->active = active;
975 child->inuse = inuse;
976
977 /*
978 * The delta between inuse and active sums indicates that
979 * that much of weight is being given away. Parent's inuse
980 * and active should reflect the ratio.
981 */
982 if (parent->child_active_sum) {
983 parent_active = parent->weight;
984 parent_inuse = DIV64_U64_ROUND_UP(
985 parent_active * parent->child_inuse_sum,
986 parent->child_active_sum);
987 }
988
989 /* do we need to keep walking up? */
990 if (parent_active == parent->active &&
991 parent_inuse == parent->inuse)
992 break;
993
994 active = parent_active;
995 inuse = parent_inuse;
996 }
997
998 ioc->weights_updated = true;
999 }
1000
1001 static void commit_weights(struct ioc *ioc)
1002 {
1003 lockdep_assert_held(&ioc->lock);
1004
1005 if (ioc->weights_updated) {
1006 /* paired with rmb in current_hweight(), see there */
1007 smp_wmb();
1008 atomic_inc(&ioc->hweight_gen);
1009 ioc->weights_updated = false;
1010 }
1011 }
1012
1013 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse)
1014 {
1015 __propagate_weights(iocg, active, inuse);
1016 commit_weights(iocg->ioc);
1017 }
1018
1019 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1020 {
1021 struct ioc *ioc = iocg->ioc;
1022 int lvl;
1023 u32 hwa, hwi;
1024 int ioc_gen;
1025
1026 /* hot path - if uptodate, use cached */
1027 ioc_gen = atomic_read(&ioc->hweight_gen);
1028 if (ioc_gen == iocg->hweight_gen)
1029 goto out;
1030
1031 /*
1032 * Paired with wmb in commit_weights(). If we saw the updated
1033 * hweight_gen, all the weight updates from __propagate_weights() are
1034 * visible too.
1035 *
1036 * We can race with weight updates during calculation and get it
1037 * wrong. However, hweight_gen would have changed and a future
1038 * reader will recalculate and we're guaranteed to discard the
1039 * wrong result soon.
1040 */
1041 smp_rmb();
1042
1043 hwa = hwi = WEIGHT_ONE;
1044 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1045 struct ioc_gq *parent = iocg->ancestors[lvl];
1046 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1047 u64 active_sum = READ_ONCE(parent->child_active_sum);
1048 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1049 u32 active = READ_ONCE(child->active);
1050 u32 inuse = READ_ONCE(child->inuse);
1051
1052 /* we can race with deactivations and either may read as zero */
1053 if (!active_sum || !inuse_sum)
1054 continue;
1055
1056 active_sum = max_t(u64, active, active_sum);
1057 hwa = div64_u64((u64)hwa * active, active_sum);
1058
1059 inuse_sum = max_t(u64, inuse, inuse_sum);
1060 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1061 }
1062
1063 iocg->hweight_active = max_t(u32, hwa, 1);
1064 iocg->hweight_inuse = max_t(u32, hwi, 1);
1065 iocg->hweight_gen = ioc_gen;
1066 out:
1067 if (hw_activep)
1068 *hw_activep = iocg->hweight_active;
1069 if (hw_inusep)
1070 *hw_inusep = iocg->hweight_inuse;
1071 }
1072
1073 static void weight_updated(struct ioc_gq *iocg)
1074 {
1075 struct ioc *ioc = iocg->ioc;
1076 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1077 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1078 u32 weight;
1079
1080 lockdep_assert_held(&ioc->lock);
1081
1082 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1083 if (weight != iocg->weight && iocg->active)
1084 propagate_weights(iocg, weight,
1085 DIV64_U64_ROUND_UP((u64)iocg->inuse * weight,
1086 iocg->weight));
1087 iocg->weight = weight;
1088 }
1089
1090 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1091 {
1092 struct ioc *ioc = iocg->ioc;
1093 u64 last_period, cur_period, max_period_delta;
1094 u64 vtime, vmin;
1095 int i;
1096
1097 /*
1098 * If seem to be already active, just update the stamp to tell the
1099 * timer that we're still active. We don't mind occassional races.
1100 */
1101 if (!list_empty(&iocg->active_list)) {
1102 ioc_now(ioc, now);
1103 cur_period = atomic64_read(&ioc->cur_period);
1104 if (atomic64_read(&iocg->active_period) != cur_period)
1105 atomic64_set(&iocg->active_period, cur_period);
1106 return true;
1107 }
1108
1109 /* racy check on internal node IOs, treat as root level IOs */
1110 if (iocg->child_active_sum)
1111 return false;
1112
1113 spin_lock_irq(&ioc->lock);
1114
1115 ioc_now(ioc, now);
1116
1117 /* update period */
1118 cur_period = atomic64_read(&ioc->cur_period);
1119 last_period = atomic64_read(&iocg->active_period);
1120 atomic64_set(&iocg->active_period, cur_period);
1121
1122 /* already activated or breaking leaf-only constraint? */
1123 if (!list_empty(&iocg->active_list))
1124 goto succeed_unlock;
1125 for (i = iocg->level - 1; i > 0; i--)
1126 if (!list_empty(&iocg->ancestors[i]->active_list))
1127 goto fail_unlock;
1128
1129 if (iocg->child_active_sum)
1130 goto fail_unlock;
1131
1132 /*
1133 * vtime may wrap when vrate is raised substantially due to
1134 * underestimated IO costs. Look at the period and ignore its
1135 * vtime if the iocg has been idle for too long. Also, cap the
1136 * budget it can start with to the margin.
1137 */
1138 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1139 vtime = atomic64_read(&iocg->vtime);
1140 vmin = now->vnow - ioc->margins.max;
1141
1142 if (last_period + max_period_delta < cur_period ||
1143 time_before64(vtime, vmin)) {
1144 atomic64_add(vmin - vtime, &iocg->vtime);
1145 atomic64_add(vmin - vtime, &iocg->done_vtime);
1146 vtime = vmin;
1147 }
1148
1149 /*
1150 * Activate, propagate weight and start period timer if not
1151 * running. Reset hweight_gen to avoid accidental match from
1152 * wrapping.
1153 */
1154 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1155 list_add(&iocg->active_list, &ioc->active_iocgs);
1156 propagate_weights(iocg, iocg->weight,
1157 iocg->last_inuse ?: iocg->weight);
1158
1159 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1160 last_period, cur_period, vtime);
1161
1162 iocg->activated_at = now->now;
1163
1164 if (ioc->running == IOC_IDLE) {
1165 ioc->running = IOC_RUNNING;
1166 ioc_start_period(ioc, now);
1167 }
1168
1169 succeed_unlock:
1170 spin_unlock_irq(&ioc->lock);
1171 return true;
1172
1173 fail_unlock:
1174 spin_unlock_irq(&ioc->lock);
1175 return false;
1176 }
1177
1178 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1179 {
1180 struct ioc *ioc = iocg->ioc;
1181 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1182 u64 vtime = atomic64_read(&iocg->vtime);
1183 u64 delta_ns, expires, oexpires;
1184 u32 hw_inuse;
1185
1186 lockdep_assert_held(&iocg->waitq.lock);
1187
1188 /* debt-adjust vtime */
1189 current_hweight(iocg, NULL, &hw_inuse);
1190 vtime += abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1191
1192 /*
1193 * Clear or maintain depending on the overage. Non-zero vdebt is what
1194 * guarantees that @iocg is online and future iocg_kick_delay() will
1195 * clear use_delay. Don't leave it on when there's no vdebt.
1196 */
1197 if (!iocg->abs_vdebt || time_before_eq64(vtime, now->vnow)) {
1198 blkcg_clear_delay(blkg);
1199 return false;
1200 }
1201 if (!atomic_read(&blkg->use_delay) &&
1202 time_before_eq64(vtime, now->vnow + ioc->margins.max))
1203 return false;
1204
1205 /* use delay */
1206 delta_ns = DIV64_U64_ROUND_UP(vtime - now->vnow,
1207 now->vrate) * NSEC_PER_USEC;
1208 blkcg_set_delay(blkg, delta_ns);
1209 expires = now->now_ns + delta_ns;
1210
1211 /* if already active and close enough, don't bother */
1212 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1213 if (hrtimer_is_queued(&iocg->delay_timer) &&
1214 abs(oexpires - expires) <= ioc->timer_slack_ns)
1215 return true;
1216
1217 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1218 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1219 return true;
1220 }
1221
1222 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1223 {
1224 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1225 struct ioc_now now;
1226 unsigned long flags;
1227
1228 spin_lock_irqsave(&iocg->waitq.lock, flags);
1229 ioc_now(iocg->ioc, &now);
1230 iocg_kick_delay(iocg, &now);
1231 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1232
1233 return HRTIMER_NORESTART;
1234 }
1235
1236 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1237 int flags, void *key)
1238 {
1239 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1240 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1241 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1242
1243 ctx->vbudget -= cost;
1244
1245 if (ctx->vbudget < 0)
1246 return -1;
1247
1248 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1249
1250 /*
1251 * autoremove_wake_function() removes the wait entry only when it
1252 * actually changed the task state. We want the wait always
1253 * removed. Remove explicitly and use default_wake_function().
1254 */
1255 list_del_init(&wq_entry->entry);
1256 wait->committed = true;
1257
1258 default_wake_function(wq_entry, mode, flags, key);
1259 return 0;
1260 }
1261
1262 /*
1263 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1264 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1265 * addition to iocg->waitq.lock.
1266 */
1267 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1268 struct ioc_now *now)
1269 {
1270 struct ioc *ioc = iocg->ioc;
1271 struct iocg_wake_ctx ctx = { .iocg = iocg };
1272 u64 vshortage, expires, oexpires;
1273 s64 vbudget;
1274 u32 hw_inuse;
1275
1276 lockdep_assert_held(&iocg->waitq.lock);
1277
1278 current_hweight(iocg, NULL, &hw_inuse);
1279 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1280
1281 /* pay off debt */
1282 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1283 u64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1284 u64 delta = min_t(u64, vbudget, vdebt);
1285 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1286 iocg->abs_vdebt);
1287
1288 lockdep_assert_held(&ioc->lock);
1289
1290 atomic64_add(delta, &iocg->vtime);
1291 atomic64_add(delta, &iocg->done_vtime);
1292 iocg->abs_vdebt -= abs_delta;
1293 vbudget -= vdebt;
1294
1295 iocg_kick_delay(iocg, now);
1296 }
1297
1298 /*
1299 * Debt can still be outstanding if we haven't paid all yet or the
1300 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1301 * under debt. Make sure @vbudget reflects the outstanding amount and is
1302 * not positive.
1303 */
1304 if (iocg->abs_vdebt) {
1305 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1306 vbudget = min_t(s64, 0, vbudget - vdebt);
1307 }
1308
1309 /*
1310 * Wake up the ones which are due and see how much vtime we'll need
1311 * for the next one.
1312 */
1313 ctx.hw_inuse = hw_inuse;
1314 ctx.vbudget = vbudget;
1315 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1316 if (!waitqueue_active(&iocg->waitq))
1317 return;
1318 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1319 return;
1320
1321 /* determine next wakeup, add a timer margin to guarantee chunking */
1322 vshortage = -ctx.vbudget;
1323 expires = now->now_ns +
1324 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1325 expires += ioc->timer_slack_ns;
1326
1327 /* if already active and close enough, don't bother */
1328 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1329 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1330 abs(oexpires - expires) <= ioc->timer_slack_ns)
1331 return;
1332
1333 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1334 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1335 }
1336
1337 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1338 {
1339 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1340 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1341 struct ioc_now now;
1342 unsigned long flags;
1343
1344 ioc_now(iocg->ioc, &now);
1345
1346 iocg_lock(iocg, pay_debt, &flags);
1347 iocg_kick_waitq(iocg, pay_debt, &now);
1348 iocg_unlock(iocg, pay_debt, &flags);
1349
1350 return HRTIMER_NORESTART;
1351 }
1352
1353 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1354 {
1355 u32 nr_met[2] = { };
1356 u32 nr_missed[2] = { };
1357 u64 rq_wait_ns = 0;
1358 int cpu, rw;
1359
1360 for_each_online_cpu(cpu) {
1361 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1362 u64 this_rq_wait_ns;
1363
1364 for (rw = READ; rw <= WRITE; rw++) {
1365 u32 this_met = local_read(&stat->missed[rw].nr_met);
1366 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1367
1368 nr_met[rw] += this_met - stat->missed[rw].last_met;
1369 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1370 stat->missed[rw].last_met = this_met;
1371 stat->missed[rw].last_missed = this_missed;
1372 }
1373
1374 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1375 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1376 stat->last_rq_wait_ns = this_rq_wait_ns;
1377 }
1378
1379 for (rw = READ; rw <= WRITE; rw++) {
1380 if (nr_met[rw] + nr_missed[rw])
1381 missed_ppm_ar[rw] =
1382 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1383 nr_met[rw] + nr_missed[rw]);
1384 else
1385 missed_ppm_ar[rw] = 0;
1386 }
1387
1388 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1389 ioc->period_us * NSEC_PER_USEC);
1390 }
1391
1392 /* was iocg idle this period? */
1393 static bool iocg_is_idle(struct ioc_gq *iocg)
1394 {
1395 struct ioc *ioc = iocg->ioc;
1396
1397 /* did something get issued this period? */
1398 if (atomic64_read(&iocg->active_period) ==
1399 atomic64_read(&ioc->cur_period))
1400 return false;
1401
1402 /* is something in flight? */
1403 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1404 return false;
1405
1406 return true;
1407 }
1408
1409 /*
1410 * Call this function on the target leaf @iocg's to build pre-order traversal
1411 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1412 * ->walk_list and the caller is responsible for dissolving the list after use.
1413 */
1414 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1415 struct list_head *inner_walk)
1416 {
1417 int lvl;
1418
1419 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1420
1421 /* find the first ancestor which hasn't been visited yet */
1422 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1423 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1424 break;
1425 }
1426
1427 /* walk down and visit the inner nodes to get pre-order traversal */
1428 while (++lvl <= iocg->level - 1) {
1429 struct ioc_gq *inner = iocg->ancestors[lvl];
1430
1431 /* record traversal order */
1432 list_add_tail(&inner->walk_list, inner_walk);
1433 }
1434 }
1435
1436 /* collect per-cpu counters and propagate the deltas to the parent */
1437 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1438 {
1439 struct iocg_stat new_stat;
1440 u64 abs_vusage = 0;
1441 u64 vusage_delta;
1442 int cpu;
1443
1444 lockdep_assert_held(&iocg->ioc->lock);
1445
1446 /* collect per-cpu counters */
1447 for_each_possible_cpu(cpu) {
1448 abs_vusage += local64_read(
1449 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1450 }
1451 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1452 iocg->last_stat_abs_vusage = abs_vusage;
1453
1454 iocg->usage_delta_us = div64_u64(vusage_delta, now->vrate);
1455 iocg->local_stat.usage_us += iocg->usage_delta_us;
1456
1457 new_stat.usage_us =
1458 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1459
1460 /* propagate the deltas to the parent */
1461 if (iocg->level > 0) {
1462 struct iocg_stat *parent_stat =
1463 &iocg->ancestors[iocg->level - 1]->desc_stat;
1464
1465 parent_stat->usage_us +=
1466 new_stat.usage_us - iocg->last_stat.usage_us;
1467 }
1468
1469 iocg->last_stat = new_stat;
1470 }
1471
1472 /* get stat counters ready for reading on all active iocgs */
1473 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1474 {
1475 LIST_HEAD(inner_walk);
1476 struct ioc_gq *iocg, *tiocg;
1477
1478 /* flush leaves and build inner node walk list */
1479 list_for_each_entry(iocg, target_iocgs, active_list) {
1480 iocg_flush_stat_one(iocg, now);
1481 iocg_build_inner_walk(iocg, &inner_walk);
1482 }
1483
1484 /* keep flushing upwards by walking the inner list backwards */
1485 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1486 iocg_flush_stat_one(iocg, now);
1487 list_del_init(&iocg->walk_list);
1488 }
1489 }
1490
1491 /* returns usage with margin added if surplus is large enough */
1492 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1493 {
1494 /* add margin */
1495 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1496 usage += SURPLUS_SCALE_ABS;
1497
1498 /* don't bother if the surplus is too small */
1499 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1500 return 0;
1501
1502 return usage;
1503 }
1504
1505 static void ioc_timer_fn(struct timer_list *timer)
1506 {
1507 struct ioc *ioc = container_of(timer, struct ioc, timer);
1508 struct ioc_gq *iocg, *tiocg;
1509 struct ioc_now now;
1510 LIST_HEAD(surpluses);
1511 int nr_shortages = 0, nr_lagging = 0;
1512 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1513 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1514 u32 missed_ppm[2], rq_wait_pct;
1515 u64 period_vtime;
1516 int prev_busy_level, i;
1517
1518 /* how were the latencies during the period? */
1519 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1520
1521 /* take care of active iocgs */
1522 spin_lock_irq(&ioc->lock);
1523
1524 ioc_now(ioc, &now);
1525
1526 period_vtime = now.vnow - ioc->period_at_vtime;
1527 if (WARN_ON_ONCE(!period_vtime)) {
1528 spin_unlock_irq(&ioc->lock);
1529 return;
1530 }
1531
1532 iocg_flush_stat(&ioc->active_iocgs, &now);
1533
1534 /*
1535 * Waiters determine the sleep durations based on the vrate they
1536 * saw at the time of sleep. If vrate has increased, some waiters
1537 * could be sleeping for too long. Wake up tardy waiters which
1538 * should have woken up in the last period and expire idle iocgs.
1539 */
1540 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1541 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
1542 !iocg_is_idle(iocg))
1543 continue;
1544
1545 spin_lock(&iocg->waitq.lock);
1546
1547 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt) {
1548 /* might be oversleeping vtime / hweight changes, kick */
1549 iocg_kick_waitq(iocg, true, &now);
1550 } else if (iocg_is_idle(iocg)) {
1551 /* no waiter and idle, deactivate */
1552 iocg->last_inuse = iocg->inuse;
1553 __propagate_weights(iocg, 0, 0);
1554 list_del_init(&iocg->active_list);
1555 }
1556
1557 spin_unlock(&iocg->waitq.lock);
1558 }
1559 commit_weights(ioc);
1560
1561 /* calc usages and see whether some weights need to be moved around */
1562 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1563 u64 vdone, vtime, usage_us, vmin;
1564 u32 hw_active, hw_inuse, usage;
1565 int uidx;
1566
1567 /*
1568 * Collect unused and wind vtime closer to vnow to prevent
1569 * iocgs from accumulating a large amount of budget.
1570 */
1571 vdone = atomic64_read(&iocg->done_vtime);
1572 vtime = atomic64_read(&iocg->vtime);
1573 current_hweight(iocg, &hw_active, &hw_inuse);
1574
1575 /*
1576 * Latency QoS detection doesn't account for IOs which are
1577 * in-flight for longer than a period. Detect them by
1578 * comparing vdone against period start. If lagging behind
1579 * IOs from past periods, don't increase vrate.
1580 */
1581 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1582 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1583 time_after64(vtime, vdone) &&
1584 time_after64(vtime, now.vnow -
1585 MAX_LAGGING_PERIODS * period_vtime) &&
1586 time_before64(vdone, now.vnow - period_vtime))
1587 nr_lagging++;
1588
1589 /*
1590 * Determine absolute usage factoring in pending and in-flight
1591 * IOs to avoid stalls and high-latency completions appearing as
1592 * idle.
1593 */
1594 usage_us = iocg->usage_delta_us;
1595 if (waitqueue_active(&iocg->waitq) && time_before64(vtime, now.vnow))
1596 usage_us += DIV64_U64_ROUND_UP(
1597 cost_to_abs_cost(now.vnow - vtime, hw_inuse),
1598 now.vrate);
1599 if (vdone != vtime) {
1600 u64 inflight_us = DIV64_U64_ROUND_UP(
1601 cost_to_abs_cost(vtime - vdone, hw_inuse),
1602 now.vrate);
1603 usage_us = max(usage_us, inflight_us);
1604 }
1605
1606 /* convert to hweight based usage ratio and record */
1607 uidx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1608
1609 if (time_after64(vtime, now.vnow - ioc->margins.min)) {
1610 iocg->usage_idx = uidx;
1611 iocg->usages[uidx] = WEIGHT_ONE;
1612 } else if (usage_us) {
1613 u64 started_at, dur;
1614
1615 if (time_after64(iocg->activated_at, ioc->period_at))
1616 started_at = iocg->activated_at;
1617 else
1618 started_at = ioc->period_at;
1619
1620 dur = max_t(u64, now.now - started_at, 1);
1621 usage = clamp_t(u32,
1622 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, dur),
1623 1, WEIGHT_ONE);
1624
1625 iocg->usage_idx = uidx;
1626 iocg->usages[uidx] = usage;
1627 } else {
1628 usage = 0;
1629 }
1630
1631 /* see whether there's surplus vtime */
1632 vmin = now.vnow - ioc->margins.max;
1633
1634 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
1635 if (!waitqueue_active(&iocg->waitq) &&
1636 time_before64(vtime, vmin)) {
1637 u64 delta = vmin - vtime;
1638
1639 /* throw away surplus vtime */
1640 atomic64_add(delta, &iocg->vtime);
1641 atomic64_add(delta, &iocg->done_vtime);
1642 /* if usage is sufficiently low, maybe it can donate */
1643 if (surplus_adjusted_hweight_inuse(usage, hw_inuse))
1644 list_add(&iocg->surplus_list, &surpluses);
1645 } else if (hw_inuse < hw_active) {
1646 u32 new_hwi, new_inuse;
1647
1648 /* was donating but might need to take back some */
1649 if (waitqueue_active(&iocg->waitq)) {
1650 new_hwi = hw_active;
1651 } else {
1652 new_hwi = max(hw_inuse,
1653 usage * SURPLUS_SCALE_PCT / 100 +
1654 SURPLUS_SCALE_ABS);
1655 }
1656
1657 new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1658 hw_inuse);
1659 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1660
1661 if (new_inuse > iocg->inuse) {
1662 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1663 iocg->inuse, new_inuse,
1664 hw_inuse, new_hwi);
1665 __propagate_weights(iocg, iocg->weight,
1666 new_inuse);
1667 }
1668 } else {
1669 /* genuninely out of vtime */
1670 nr_shortages++;
1671 }
1672 }
1673
1674 if (!nr_shortages || list_empty(&surpluses))
1675 goto skip_surplus_transfers;
1676
1677 /* there are both shortages and surpluses, transfer surpluses */
1678 list_for_each_entry(iocg, &surpluses, surplus_list) {
1679 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1680 int nr_valid = 0;
1681
1682 /* base the decision on max historical usage */
1683 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1684 if (iocg->usages[i]) {
1685 usage = max(usage, iocg->usages[i]);
1686 nr_valid++;
1687 }
1688 }
1689 if (nr_valid < MIN_VALID_USAGES)
1690 continue;
1691
1692 current_hweight(iocg, &hw_active, &hw_inuse);
1693 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1694 if (!new_hwi)
1695 continue;
1696
1697 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1698 hw_inuse);
1699 if (new_inuse < iocg->inuse) {
1700 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1701 iocg->inuse, new_inuse,
1702 hw_inuse, new_hwi);
1703 __propagate_weights(iocg, iocg->weight, new_inuse);
1704 }
1705 }
1706 skip_surplus_transfers:
1707 commit_weights(ioc);
1708
1709 /* surplus list should be dissolved after use */
1710 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
1711 list_del_init(&iocg->surplus_list);
1712
1713 /*
1714 * If q is getting clogged or we're missing too much, we're issuing
1715 * too much IO and should lower vtime rate. If we're not missing
1716 * and experiencing shortages but not surpluses, we're too stingy
1717 * and should increase vtime rate.
1718 */
1719 prev_busy_level = ioc->busy_level;
1720 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1721 missed_ppm[READ] > ppm_rthr ||
1722 missed_ppm[WRITE] > ppm_wthr) {
1723 /* clearly missing QoS targets, slow down vrate */
1724 ioc->busy_level = max(ioc->busy_level, 0);
1725 ioc->busy_level++;
1726 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1727 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1728 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1729 /* QoS targets are being met with >25% margin */
1730 if (nr_shortages) {
1731 /*
1732 * We're throttling while the device has spare
1733 * capacity. If vrate was being slowed down, stop.
1734 */
1735 ioc->busy_level = min(ioc->busy_level, 0);
1736
1737 /*
1738 * If there are IOs spanning multiple periods, wait
1739 * them out before pushing the device harder.
1740 */
1741 if (!nr_lagging)
1742 ioc->busy_level--;
1743 } else {
1744 /*
1745 * Nobody is being throttled and the users aren't
1746 * issuing enough IOs to saturate the device. We
1747 * simply don't know how close the device is to
1748 * saturation. Coast.
1749 */
1750 ioc->busy_level = 0;
1751 }
1752 } else {
1753 /* inside the hysterisis margin, we're good */
1754 ioc->busy_level = 0;
1755 }
1756
1757 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1758
1759 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1760 u64 vrate = atomic64_read(&ioc->vtime_rate);
1761 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1762
1763 /* rq_wait signal is always reliable, ignore user vrate_min */
1764 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1765 vrate_min = VRATE_MIN;
1766
1767 /*
1768 * If vrate is out of bounds, apply clamp gradually as the
1769 * bounds can change abruptly. Otherwise, apply busy_level
1770 * based adjustment.
1771 */
1772 if (vrate < vrate_min) {
1773 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1774 100);
1775 vrate = min(vrate, vrate_min);
1776 } else if (vrate > vrate_max) {
1777 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1778 100);
1779 vrate = max(vrate, vrate_max);
1780 } else {
1781 int idx = min_t(int, abs(ioc->busy_level),
1782 ARRAY_SIZE(vrate_adj_pct) - 1);
1783 u32 adj_pct = vrate_adj_pct[idx];
1784
1785 if (ioc->busy_level > 0)
1786 adj_pct = 100 - adj_pct;
1787 else
1788 adj_pct = 100 + adj_pct;
1789
1790 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1791 vrate_min, vrate_max);
1792 }
1793
1794 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1795 nr_lagging, nr_shortages);
1796
1797 atomic64_set(&ioc->vtime_rate, vrate);
1798 ioc_refresh_margins(ioc);
1799 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1800 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1801 missed_ppm, rq_wait_pct, nr_lagging,
1802 nr_shortages);
1803 }
1804
1805 ioc_refresh_params(ioc, false);
1806
1807 /*
1808 * This period is done. Move onto the next one. If nothing's
1809 * going on with the device, stop the timer.
1810 */
1811 atomic64_inc(&ioc->cur_period);
1812
1813 if (ioc->running != IOC_STOP) {
1814 if (!list_empty(&ioc->active_iocgs)) {
1815 ioc_start_period(ioc, &now);
1816 } else {
1817 ioc->busy_level = 0;
1818 ioc->running = IOC_IDLE;
1819 }
1820 }
1821
1822 spin_unlock_irq(&ioc->lock);
1823 }
1824
1825 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1826 bool is_merge, u64 *costp)
1827 {
1828 struct ioc *ioc = iocg->ioc;
1829 u64 coef_seqio, coef_randio, coef_page;
1830 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1831 u64 seek_pages = 0;
1832 u64 cost = 0;
1833
1834 switch (bio_op(bio)) {
1835 case REQ_OP_READ:
1836 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
1837 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
1838 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
1839 break;
1840 case REQ_OP_WRITE:
1841 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
1842 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
1843 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
1844 break;
1845 default:
1846 goto out;
1847 }
1848
1849 if (iocg->cursor) {
1850 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1851 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1852 }
1853
1854 if (!is_merge) {
1855 if (seek_pages > LCOEF_RANDIO_PAGES) {
1856 cost += coef_randio;
1857 } else {
1858 cost += coef_seqio;
1859 }
1860 }
1861 cost += pages * coef_page;
1862 out:
1863 *costp = cost;
1864 }
1865
1866 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1867 {
1868 u64 cost;
1869
1870 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1871 return cost;
1872 }
1873
1874 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
1875 u64 *costp)
1876 {
1877 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
1878
1879 switch (req_op(rq)) {
1880 case REQ_OP_READ:
1881 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
1882 break;
1883 case REQ_OP_WRITE:
1884 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
1885 break;
1886 default:
1887 *costp = 0;
1888 }
1889 }
1890
1891 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
1892 {
1893 u64 cost;
1894
1895 calc_size_vtime_cost_builtin(rq, ioc, &cost);
1896 return cost;
1897 }
1898
1899 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1900 {
1901 struct blkcg_gq *blkg = bio->bi_blkg;
1902 struct ioc *ioc = rqos_to_ioc(rqos);
1903 struct ioc_gq *iocg = blkg_to_iocg(blkg);
1904 struct ioc_now now;
1905 struct iocg_wait wait;
1906 u32 hw_active, hw_inuse;
1907 u64 abs_cost, cost, vtime;
1908 bool use_debt, ioc_locked;
1909 unsigned long flags;
1910
1911 /* bypass IOs if disabled or for root cgroup */
1912 if (!ioc->enabled || !iocg->level)
1913 return;
1914
1915 /* always activate so that even 0 cost IOs get protected to some level */
1916 if (!iocg_activate(iocg, &now))
1917 return;
1918
1919 /* calculate the absolute vtime cost */
1920 abs_cost = calc_vtime_cost(bio, iocg, false);
1921 if (!abs_cost)
1922 return;
1923
1924 iocg->cursor = bio_end_sector(bio);
1925
1926 vtime = atomic64_read(&iocg->vtime);
1927 current_hweight(iocg, &hw_active, &hw_inuse);
1928
1929 if (hw_inuse < hw_active &&
1930 time_after_eq64(vtime + ioc->margins.min, now.vnow)) {
1931 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1932 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1933 spin_lock_irq(&ioc->lock);
1934 propagate_weights(iocg, iocg->weight, iocg->weight);
1935 spin_unlock_irq(&ioc->lock);
1936 current_hweight(iocg, &hw_active, &hw_inuse);
1937 }
1938
1939 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1940
1941 /*
1942 * If no one's waiting and within budget, issue right away. The
1943 * tests are racy but the races aren't systemic - we only miss once
1944 * in a while which is fine.
1945 */
1946 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
1947 time_before_eq64(vtime + cost, now.vnow)) {
1948 iocg_commit_bio(iocg, bio, abs_cost, cost);
1949 return;
1950 }
1951
1952 /*
1953 * We're over budget. This can be handled in two ways. IOs which may
1954 * cause priority inversions are punted to @ioc->aux_iocg and charged as
1955 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
1956 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
1957 * whether debt handling is needed and acquire locks accordingly.
1958 */
1959 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
1960 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
1961
1962 iocg_lock(iocg, ioc_locked, &flags);
1963
1964 /*
1965 * @iocg must stay activated for debt and waitq handling. Deactivation
1966 * is synchronized against both ioc->lock and waitq.lock and we won't
1967 * get deactivated as long as we're waiting or has debt, so we're good
1968 * if we're activated here. In the unlikely cases that we aren't, just
1969 * issue the IO.
1970 */
1971 if (unlikely(list_empty(&iocg->active_list))) {
1972 iocg_unlock(iocg, ioc_locked, &flags);
1973 iocg_commit_bio(iocg, bio, abs_cost, cost);
1974 return;
1975 }
1976
1977 /*
1978 * We're over budget. If @bio has to be issued regardless, remember
1979 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
1980 * off the debt before waking more IOs.
1981 *
1982 * This way, the debt is continuously paid off each period with the
1983 * actual budget available to the cgroup. If we just wound vtime, we
1984 * would incorrectly use the current hw_inuse for the entire amount
1985 * which, for example, can lead to the cgroup staying blocked for a
1986 * long time even with substantially raised hw_inuse.
1987 *
1988 * An iocg with vdebt should stay online so that the timer can keep
1989 * deducting its vdebt and [de]activate use_delay mechanism
1990 * accordingly. We don't want to race against the timer trying to
1991 * clear them and leave @iocg inactive w/ dangling use_delay heavily
1992 * penalizing the cgroup and its descendants.
1993 */
1994 if (use_debt) {
1995 iocg->abs_vdebt += abs_cost;
1996 if (iocg_kick_delay(iocg, &now))
1997 blkcg_schedule_throttle(rqos->q,
1998 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
1999 iocg_unlock(iocg, ioc_locked, &flags);
2000 return;
2001 }
2002
2003 /*
2004 * Append self to the waitq and schedule the wakeup timer if we're
2005 * the first waiter. The timer duration is calculated based on the
2006 * current vrate. vtime and hweight changes can make it too short
2007 * or too long. Each wait entry records the absolute cost it's
2008 * waiting for to allow re-evaluation using a custom wait entry.
2009 *
2010 * If too short, the timer simply reschedules itself. If too long,
2011 * the period timer will notice and trigger wakeups.
2012 *
2013 * All waiters are on iocg->waitq and the wait states are
2014 * synchronized using waitq.lock.
2015 */
2016 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2017 wait.wait.private = current;
2018 wait.bio = bio;
2019 wait.abs_cost = abs_cost;
2020 wait.committed = false; /* will be set true by waker */
2021
2022 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2023 iocg_kick_waitq(iocg, ioc_locked, &now);
2024
2025 iocg_unlock(iocg, ioc_locked, &flags);
2026
2027 while (true) {
2028 set_current_state(TASK_UNINTERRUPTIBLE);
2029 if (wait.committed)
2030 break;
2031 io_schedule();
2032 }
2033
2034 /* waker already committed us, proceed */
2035 finish_wait(&iocg->waitq, &wait.wait);
2036 }
2037
2038 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2039 struct bio *bio)
2040 {
2041 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2042 struct ioc *ioc = iocg->ioc;
2043 sector_t bio_end = bio_end_sector(bio);
2044 struct ioc_now now;
2045 u32 hw_inuse;
2046 u64 abs_cost, cost;
2047 unsigned long flags;
2048
2049 /* bypass if disabled or for root cgroup */
2050 if (!ioc->enabled || !iocg->level)
2051 return;
2052
2053 abs_cost = calc_vtime_cost(bio, iocg, true);
2054 if (!abs_cost)
2055 return;
2056
2057 ioc_now(ioc, &now);
2058 current_hweight(iocg, NULL, &hw_inuse);
2059 cost = abs_cost_to_cost(abs_cost, hw_inuse);
2060
2061 /* update cursor if backmerging into the request at the cursor */
2062 if (blk_rq_pos(rq) < bio_end &&
2063 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2064 iocg->cursor = bio_end;
2065
2066 /*
2067 * Charge if there's enough vtime budget and the existing request has
2068 * cost assigned.
2069 */
2070 if (rq->bio && rq->bio->bi_iocost_cost &&
2071 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2072 iocg_commit_bio(iocg, bio, abs_cost, cost);
2073 return;
2074 }
2075
2076 /*
2077 * Otherwise, account it as debt if @iocg is online, which it should
2078 * be for the vast majority of cases. See debt handling in
2079 * ioc_rqos_throttle() for details.
2080 */
2081 spin_lock_irqsave(&iocg->waitq.lock, flags);
2082 if (likely(!list_empty(&iocg->active_list))) {
2083 iocg->abs_vdebt += abs_cost;
2084 iocg_kick_delay(iocg, &now);
2085 } else {
2086 iocg_commit_bio(iocg, bio, abs_cost, cost);
2087 }
2088 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
2089 }
2090
2091 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2092 {
2093 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2094
2095 if (iocg && bio->bi_iocost_cost)
2096 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2097 }
2098
2099 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2100 {
2101 struct ioc *ioc = rqos_to_ioc(rqos);
2102 struct ioc_pcpu_stat *ccs;
2103 u64 on_q_ns, rq_wait_ns, size_nsec;
2104 int pidx, rw;
2105
2106 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2107 return;
2108
2109 switch (req_op(rq) & REQ_OP_MASK) {
2110 case REQ_OP_READ:
2111 pidx = QOS_RLAT;
2112 rw = READ;
2113 break;
2114 case REQ_OP_WRITE:
2115 pidx = QOS_WLAT;
2116 rw = WRITE;
2117 break;
2118 default:
2119 return;
2120 }
2121
2122 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2123 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2124 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2125
2126 ccs = get_cpu_ptr(ioc->pcpu_stat);
2127
2128 if (on_q_ns <= size_nsec ||
2129 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2130 local_inc(&ccs->missed[rw].nr_met);
2131 else
2132 local_inc(&ccs->missed[rw].nr_missed);
2133
2134 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2135
2136 put_cpu_ptr(ccs);
2137 }
2138
2139 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2140 {
2141 struct ioc *ioc = rqos_to_ioc(rqos);
2142
2143 spin_lock_irq(&ioc->lock);
2144 ioc_refresh_params(ioc, false);
2145 spin_unlock_irq(&ioc->lock);
2146 }
2147
2148 static void ioc_rqos_exit(struct rq_qos *rqos)
2149 {
2150 struct ioc *ioc = rqos_to_ioc(rqos);
2151
2152 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2153
2154 spin_lock_irq(&ioc->lock);
2155 ioc->running = IOC_STOP;
2156 spin_unlock_irq(&ioc->lock);
2157
2158 del_timer_sync(&ioc->timer);
2159 free_percpu(ioc->pcpu_stat);
2160 kfree(ioc);
2161 }
2162
2163 static struct rq_qos_ops ioc_rqos_ops = {
2164 .throttle = ioc_rqos_throttle,
2165 .merge = ioc_rqos_merge,
2166 .done_bio = ioc_rqos_done_bio,
2167 .done = ioc_rqos_done,
2168 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2169 .exit = ioc_rqos_exit,
2170 };
2171
2172 static int blk_iocost_init(struct request_queue *q)
2173 {
2174 struct ioc *ioc;
2175 struct rq_qos *rqos;
2176 int i, cpu, ret;
2177
2178 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2179 if (!ioc)
2180 return -ENOMEM;
2181
2182 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2183 if (!ioc->pcpu_stat) {
2184 kfree(ioc);
2185 return -ENOMEM;
2186 }
2187
2188 for_each_possible_cpu(cpu) {
2189 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2190
2191 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2192 local_set(&ccs->missed[i].nr_met, 0);
2193 local_set(&ccs->missed[i].nr_missed, 0);
2194 }
2195 local64_set(&ccs->rq_wait_ns, 0);
2196 }
2197
2198 rqos = &ioc->rqos;
2199 rqos->id = RQ_QOS_COST;
2200 rqos->ops = &ioc_rqos_ops;
2201 rqos->q = q;
2202
2203 spin_lock_init(&ioc->lock);
2204 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2205 INIT_LIST_HEAD(&ioc->active_iocgs);
2206
2207 ioc->running = IOC_IDLE;
2208 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2209 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2210 ioc->period_at = ktime_to_us(ktime_get());
2211 atomic64_set(&ioc->cur_period, 0);
2212 atomic_set(&ioc->hweight_gen, 0);
2213
2214 spin_lock_irq(&ioc->lock);
2215 ioc->autop_idx = AUTOP_INVALID;
2216 ioc_refresh_params(ioc, true);
2217 spin_unlock_irq(&ioc->lock);
2218
2219 rq_qos_add(q, rqos);
2220 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2221 if (ret) {
2222 rq_qos_del(q, rqos);
2223 free_percpu(ioc->pcpu_stat);
2224 kfree(ioc);
2225 return ret;
2226 }
2227 return 0;
2228 }
2229
2230 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2231 {
2232 struct ioc_cgrp *iocc;
2233
2234 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2235 if (!iocc)
2236 return NULL;
2237
2238 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2239 return &iocc->cpd;
2240 }
2241
2242 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2243 {
2244 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2245 }
2246
2247 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2248 struct blkcg *blkcg)
2249 {
2250 int levels = blkcg->css.cgroup->level + 1;
2251 struct ioc_gq *iocg;
2252
2253 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2254 if (!iocg)
2255 return NULL;
2256
2257 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2258 if (!iocg->pcpu_stat) {
2259 kfree(iocg);
2260 return NULL;
2261 }
2262
2263 return &iocg->pd;
2264 }
2265
2266 static void ioc_pd_init(struct blkg_policy_data *pd)
2267 {
2268 struct ioc_gq *iocg = pd_to_iocg(pd);
2269 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2270 struct ioc *ioc = q_to_ioc(blkg->q);
2271 struct ioc_now now;
2272 struct blkcg_gq *tblkg;
2273 unsigned long flags;
2274
2275 ioc_now(ioc, &now);
2276
2277 iocg->ioc = ioc;
2278 atomic64_set(&iocg->vtime, now.vnow);
2279 atomic64_set(&iocg->done_vtime, now.vnow);
2280 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2281 INIT_LIST_HEAD(&iocg->active_list);
2282 INIT_LIST_HEAD(&iocg->walk_list);
2283 INIT_LIST_HEAD(&iocg->surplus_list);
2284 iocg->hweight_active = WEIGHT_ONE;
2285 iocg->hweight_inuse = WEIGHT_ONE;
2286
2287 init_waitqueue_head(&iocg->waitq);
2288 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2289 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2290 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2291 iocg->delay_timer.function = iocg_delay_timer_fn;
2292
2293 iocg->level = blkg->blkcg->css.cgroup->level;
2294
2295 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2296 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2297 iocg->ancestors[tiocg->level] = tiocg;
2298 }
2299
2300 spin_lock_irqsave(&ioc->lock, flags);
2301 weight_updated(iocg);
2302 spin_unlock_irqrestore(&ioc->lock, flags);
2303 }
2304
2305 static void ioc_pd_free(struct blkg_policy_data *pd)
2306 {
2307 struct ioc_gq *iocg = pd_to_iocg(pd);
2308 struct ioc *ioc = iocg->ioc;
2309 unsigned long flags;
2310
2311 if (ioc) {
2312 spin_lock_irqsave(&ioc->lock, flags);
2313
2314 if (!list_empty(&iocg->active_list)) {
2315 propagate_weights(iocg, 0, 0);
2316 list_del_init(&iocg->active_list);
2317 }
2318
2319 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2320 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2321
2322 spin_unlock_irqrestore(&ioc->lock, flags);
2323
2324 hrtimer_cancel(&iocg->waitq_timer);
2325 hrtimer_cancel(&iocg->delay_timer);
2326 }
2327 free_percpu(iocg->pcpu_stat);
2328 kfree(iocg);
2329 }
2330
2331 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2332 {
2333 struct ioc_gq *iocg = pd_to_iocg(pd);
2334 struct ioc *ioc = iocg->ioc;
2335 size_t pos = 0;
2336
2337 if (!ioc->enabled)
2338 return 0;
2339
2340 if (iocg->level == 0) {
2341 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
2342 atomic64_read(&ioc->vtime_rate) * 10000,
2343 VTIME_PER_USEC);
2344 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2345 vp10k / 100, vp10k % 100);
2346 }
2347
2348 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
2349 iocg->last_stat.usage_us);
2350
2351 return pos;
2352 }
2353
2354 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2355 int off)
2356 {
2357 const char *dname = blkg_dev_name(pd->blkg);
2358 struct ioc_gq *iocg = pd_to_iocg(pd);
2359
2360 if (dname && iocg->cfg_weight)
2361 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
2362 return 0;
2363 }
2364
2365
2366 static int ioc_weight_show(struct seq_file *sf, void *v)
2367 {
2368 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2369 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2370
2371 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
2372 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2373 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2374 return 0;
2375 }
2376
2377 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2378 size_t nbytes, loff_t off)
2379 {
2380 struct blkcg *blkcg = css_to_blkcg(of_css(of));
2381 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2382 struct blkg_conf_ctx ctx;
2383 struct ioc_gq *iocg;
2384 u32 v;
2385 int ret;
2386
2387 if (!strchr(buf, ':')) {
2388 struct blkcg_gq *blkg;
2389
2390 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2391 return -EINVAL;
2392
2393 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2394 return -EINVAL;
2395
2396 spin_lock(&blkcg->lock);
2397 iocc->dfl_weight = v * WEIGHT_ONE;
2398 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2399 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2400
2401 if (iocg) {
2402 spin_lock_irq(&iocg->ioc->lock);
2403 weight_updated(iocg);
2404 spin_unlock_irq(&iocg->ioc->lock);
2405 }
2406 }
2407 spin_unlock(&blkcg->lock);
2408
2409 return nbytes;
2410 }
2411
2412 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2413 if (ret)
2414 return ret;
2415
2416 iocg = blkg_to_iocg(ctx.blkg);
2417
2418 if (!strncmp(ctx.body, "default", 7)) {
2419 v = 0;
2420 } else {
2421 if (!sscanf(ctx.body, "%u", &v))
2422 goto einval;
2423 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2424 goto einval;
2425 }
2426
2427 spin_lock(&iocg->ioc->lock);
2428 iocg->cfg_weight = v * WEIGHT_ONE;
2429 weight_updated(iocg);
2430 spin_unlock(&iocg->ioc->lock);
2431
2432 blkg_conf_finish(&ctx);
2433 return nbytes;
2434
2435 einval:
2436 blkg_conf_finish(&ctx);
2437 return -EINVAL;
2438 }
2439
2440 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2441 int off)
2442 {
2443 const char *dname = blkg_dev_name(pd->blkg);
2444 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2445
2446 if (!dname)
2447 return 0;
2448
2449 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2450 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2451 ioc->params.qos[QOS_RPPM] / 10000,
2452 ioc->params.qos[QOS_RPPM] % 10000 / 100,
2453 ioc->params.qos[QOS_RLAT],
2454 ioc->params.qos[QOS_WPPM] / 10000,
2455 ioc->params.qos[QOS_WPPM] % 10000 / 100,
2456 ioc->params.qos[QOS_WLAT],
2457 ioc->params.qos[QOS_MIN] / 10000,
2458 ioc->params.qos[QOS_MIN] % 10000 / 100,
2459 ioc->params.qos[QOS_MAX] / 10000,
2460 ioc->params.qos[QOS_MAX] % 10000 / 100);
2461 return 0;
2462 }
2463
2464 static int ioc_qos_show(struct seq_file *sf, void *v)
2465 {
2466 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2467
2468 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2469 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2470 return 0;
2471 }
2472
2473 static const match_table_t qos_ctrl_tokens = {
2474 { QOS_ENABLE, "enable=%u" },
2475 { QOS_CTRL, "ctrl=%s" },
2476 { NR_QOS_CTRL_PARAMS, NULL },
2477 };
2478
2479 static const match_table_t qos_tokens = {
2480 { QOS_RPPM, "rpct=%s" },
2481 { QOS_RLAT, "rlat=%u" },
2482 { QOS_WPPM, "wpct=%s" },
2483 { QOS_WLAT, "wlat=%u" },
2484 { QOS_MIN, "min=%s" },
2485 { QOS_MAX, "max=%s" },
2486 { NR_QOS_PARAMS, NULL },
2487 };
2488
2489 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2490 size_t nbytes, loff_t off)
2491 {
2492 struct gendisk *disk;
2493 struct ioc *ioc;
2494 u32 qos[NR_QOS_PARAMS];
2495 bool enable, user;
2496 char *p;
2497 int ret;
2498
2499 disk = blkcg_conf_get_disk(&input);
2500 if (IS_ERR(disk))
2501 return PTR_ERR(disk);
2502
2503 ioc = q_to_ioc(disk->queue);
2504 if (!ioc) {
2505 ret = blk_iocost_init(disk->queue);
2506 if (ret)
2507 goto err;
2508 ioc = q_to_ioc(disk->queue);
2509 }
2510
2511 spin_lock_irq(&ioc->lock);
2512 memcpy(qos, ioc->params.qos, sizeof(qos));
2513 enable = ioc->enabled;
2514 user = ioc->user_qos_params;
2515 spin_unlock_irq(&ioc->lock);
2516
2517 while ((p = strsep(&input, " \t\n"))) {
2518 substring_t args[MAX_OPT_ARGS];
2519 char buf[32];
2520 int tok;
2521 s64 v;
2522
2523 if (!*p)
2524 continue;
2525
2526 switch (match_token(p, qos_ctrl_tokens, args)) {
2527 case QOS_ENABLE:
2528 match_u64(&args[0], &v);
2529 enable = v;
2530 continue;
2531 case QOS_CTRL:
2532 match_strlcpy(buf, &args[0], sizeof(buf));
2533 if (!strcmp(buf, "auto"))
2534 user = false;
2535 else if (!strcmp(buf, "user"))
2536 user = true;
2537 else
2538 goto einval;
2539 continue;
2540 }
2541
2542 tok = match_token(p, qos_tokens, args);
2543 switch (tok) {
2544 case QOS_RPPM:
2545 case QOS_WPPM:
2546 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2547 sizeof(buf))
2548 goto einval;
2549 if (cgroup_parse_float(buf, 2, &v))
2550 goto einval;
2551 if (v < 0 || v > 10000)
2552 goto einval;
2553 qos[tok] = v * 100;
2554 break;
2555 case QOS_RLAT:
2556 case QOS_WLAT:
2557 if (match_u64(&args[0], &v))
2558 goto einval;
2559 qos[tok] = v;
2560 break;
2561 case QOS_MIN:
2562 case QOS_MAX:
2563 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2564 sizeof(buf))
2565 goto einval;
2566 if (cgroup_parse_float(buf, 2, &v))
2567 goto einval;
2568 if (v < 0)
2569 goto einval;
2570 qos[tok] = clamp_t(s64, v * 100,
2571 VRATE_MIN_PPM, VRATE_MAX_PPM);
2572 break;
2573 default:
2574 goto einval;
2575 }
2576 user = true;
2577 }
2578
2579 if (qos[QOS_MIN] > qos[QOS_MAX])
2580 goto einval;
2581
2582 spin_lock_irq(&ioc->lock);
2583
2584 if (enable) {
2585 blk_stat_enable_accounting(ioc->rqos.q);
2586 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2587 ioc->enabled = true;
2588 } else {
2589 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2590 ioc->enabled = false;
2591 }
2592
2593 if (user) {
2594 memcpy(ioc->params.qos, qos, sizeof(qos));
2595 ioc->user_qos_params = true;
2596 } else {
2597 ioc->user_qos_params = false;
2598 }
2599
2600 ioc_refresh_params(ioc, true);
2601 spin_unlock_irq(&ioc->lock);
2602
2603 put_disk_and_module(disk);
2604 return nbytes;
2605 einval:
2606 ret = -EINVAL;
2607 err:
2608 put_disk_and_module(disk);
2609 return ret;
2610 }
2611
2612 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2613 struct blkg_policy_data *pd, int off)
2614 {
2615 const char *dname = blkg_dev_name(pd->blkg);
2616 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2617 u64 *u = ioc->params.i_lcoefs;
2618
2619 if (!dname)
2620 return 0;
2621
2622 seq_printf(sf, "%s ctrl=%s model=linear "
2623 "rbps=%llu rseqiops=%llu rrandiops=%llu "
2624 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2625 dname, ioc->user_cost_model ? "user" : "auto",
2626 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2627 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2628 return 0;
2629 }
2630
2631 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2632 {
2633 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2634
2635 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2636 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2637 return 0;
2638 }
2639
2640 static const match_table_t cost_ctrl_tokens = {
2641 { COST_CTRL, "ctrl=%s" },
2642 { COST_MODEL, "model=%s" },
2643 { NR_COST_CTRL_PARAMS, NULL },
2644 };
2645
2646 static const match_table_t i_lcoef_tokens = {
2647 { I_LCOEF_RBPS, "rbps=%u" },
2648 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
2649 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
2650 { I_LCOEF_WBPS, "wbps=%u" },
2651 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
2652 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
2653 { NR_I_LCOEFS, NULL },
2654 };
2655
2656 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2657 size_t nbytes, loff_t off)
2658 {
2659 struct gendisk *disk;
2660 struct ioc *ioc;
2661 u64 u[NR_I_LCOEFS];
2662 bool user;
2663 char *p;
2664 int ret;
2665
2666 disk = blkcg_conf_get_disk(&input);
2667 if (IS_ERR(disk))
2668 return PTR_ERR(disk);
2669
2670 ioc = q_to_ioc(disk->queue);
2671 if (!ioc) {
2672 ret = blk_iocost_init(disk->queue);
2673 if (ret)
2674 goto err;
2675 ioc = q_to_ioc(disk->queue);
2676 }
2677
2678 spin_lock_irq(&ioc->lock);
2679 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2680 user = ioc->user_cost_model;
2681 spin_unlock_irq(&ioc->lock);
2682
2683 while ((p = strsep(&input, " \t\n"))) {
2684 substring_t args[MAX_OPT_ARGS];
2685 char buf[32];
2686 int tok;
2687 u64 v;
2688
2689 if (!*p)
2690 continue;
2691
2692 switch (match_token(p, cost_ctrl_tokens, args)) {
2693 case COST_CTRL:
2694 match_strlcpy(buf, &args[0], sizeof(buf));
2695 if (!strcmp(buf, "auto"))
2696 user = false;
2697 else if (!strcmp(buf, "user"))
2698 user = true;
2699 else
2700 goto einval;
2701 continue;
2702 case COST_MODEL:
2703 match_strlcpy(buf, &args[0], sizeof(buf));
2704 if (strcmp(buf, "linear"))
2705 goto einval;
2706 continue;
2707 }
2708
2709 tok = match_token(p, i_lcoef_tokens, args);
2710 if (tok == NR_I_LCOEFS)
2711 goto einval;
2712 if (match_u64(&args[0], &v))
2713 goto einval;
2714 u[tok] = v;
2715 user = true;
2716 }
2717
2718 spin_lock_irq(&ioc->lock);
2719 if (user) {
2720 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2721 ioc->user_cost_model = true;
2722 } else {
2723 ioc->user_cost_model = false;
2724 }
2725 ioc_refresh_params(ioc, true);
2726 spin_unlock_irq(&ioc->lock);
2727
2728 put_disk_and_module(disk);
2729 return nbytes;
2730
2731 einval:
2732 ret = -EINVAL;
2733 err:
2734 put_disk_and_module(disk);
2735 return ret;
2736 }
2737
2738 static struct cftype ioc_files[] = {
2739 {
2740 .name = "weight",
2741 .flags = CFTYPE_NOT_ON_ROOT,
2742 .seq_show = ioc_weight_show,
2743 .write = ioc_weight_write,
2744 },
2745 {
2746 .name = "cost.qos",
2747 .flags = CFTYPE_ONLY_ON_ROOT,
2748 .seq_show = ioc_qos_show,
2749 .write = ioc_qos_write,
2750 },
2751 {
2752 .name = "cost.model",
2753 .flags = CFTYPE_ONLY_ON_ROOT,
2754 .seq_show = ioc_cost_model_show,
2755 .write = ioc_cost_model_write,
2756 },
2757 {}
2758 };
2759
2760 static struct blkcg_policy blkcg_policy_iocost = {
2761 .dfl_cftypes = ioc_files,
2762 .cpd_alloc_fn = ioc_cpd_alloc,
2763 .cpd_free_fn = ioc_cpd_free,
2764 .pd_alloc_fn = ioc_pd_alloc,
2765 .pd_init_fn = ioc_pd_init,
2766 .pd_free_fn = ioc_pd_free,
2767 .pd_stat_fn = ioc_pd_stat,
2768 };
2769
2770 static int __init ioc_init(void)
2771 {
2772 return blkcg_policy_register(&blkcg_policy_iocost);
2773 }
2774
2775 static void __exit ioc_exit(void)
2776 {
2777 return blkcg_policy_unregister(&blkcg_policy_iocost);
2778 }
2779
2780 module_init(ioc_init);
2781 module_exit(ioc_exit);