]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-iocost.c
blk-iocost: use local[64]_t for percpu stat
[mirror_ubuntu-hirsute-kernel.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (HWEIGHT_WHOLE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
173 */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
211
212 enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
220 * A cgroup's vtime can run 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
224 MARGIN_PCT = 50,
225 INUSE_MARGIN_PCT = 10,
226
227 /* Have some play in waitq timer operations */
228 WAITQ_TIMER_MARGIN_PCT = 5,
229
230 /*
231 * vtime can wrap well within a reasonable uptime when vrate is
232 * consistently raised. Don't trust recorded cgroup vtime if the
233 * period counter indicates that it's older than 5mins.
234 */
235 VTIME_VALID_DUR = 300 * USEC_PER_SEC,
236
237 /*
238 * Remember the past three non-zero usages and use the max for
239 * surplus calculation. Three slots guarantee that we remember one
240 * full period usage from the last active stretch even after
241 * partial deactivation and re-activation periods. Don't start
242 * giving away weight before collecting two data points to prevent
243 * hweight adjustments based on one partial activation period.
244 */
245 NR_USAGE_SLOTS = 3,
246 MIN_VALID_USAGES = 2,
247
248 /* 1/64k is granular enough and can easily be handled w/ u32 */
249 HWEIGHT_WHOLE = 1 << 16,
250
251 /*
252 * As vtime is used to calculate the cost of each IO, it needs to
253 * be fairly high precision. For example, it should be able to
254 * represent the cost of a single page worth of discard with
255 * suffificient accuracy. At the same time, it should be able to
256 * represent reasonably long enough durations to be useful and
257 * convenient during operation.
258 *
259 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
260 * granularity and days of wrap-around time even at extreme vrates.
261 */
262 VTIME_PER_SEC_SHIFT = 37,
263 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
264 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
265 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
266
267 /* bound vrate adjustments within two orders of magnitude */
268 VRATE_MIN_PPM = 10000, /* 1% */
269 VRATE_MAX_PPM = 100000000, /* 10000% */
270
271 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272 VRATE_CLAMP_ADJ_PCT = 4,
273
274 /* if IOs end up waiting for requests, issue less */
275 RQ_WAIT_BUSY_PCT = 5,
276
277 /* unbusy hysterisis */
278 UNBUSY_THR_PCT = 75,
279
280 /* don't let cmds which take a very long time pin lagging for too long */
281 MAX_LAGGING_PERIODS = 10,
282
283 /*
284 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285 * donate the surplus.
286 */
287 SURPLUS_SCALE_PCT = 125, /* * 125% */
288 SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */
289 SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */
290
291 /* switch iff the conditions are met for longer than this */
292 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
293
294 /*
295 * Count IO size in 4k pages. The 12bit shift helps keeping
296 * size-proportional components of cost calculation in closer
297 * numbers of digits to per-IO cost components.
298 */
299 IOC_PAGE_SHIFT = 12,
300 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
301 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
302
303 /* if apart further than 16M, consider randio for linear model */
304 LCOEF_RANDIO_PAGES = 4096,
305 };
306
307 enum ioc_running {
308 IOC_IDLE,
309 IOC_RUNNING,
310 IOC_STOP,
311 };
312
313 /* io.cost.qos controls including per-dev enable of the whole controller */
314 enum {
315 QOS_ENABLE,
316 QOS_CTRL,
317 NR_QOS_CTRL_PARAMS,
318 };
319
320 /* io.cost.qos params */
321 enum {
322 QOS_RPPM,
323 QOS_RLAT,
324 QOS_WPPM,
325 QOS_WLAT,
326 QOS_MIN,
327 QOS_MAX,
328 NR_QOS_PARAMS,
329 };
330
331 /* io.cost.model controls */
332 enum {
333 COST_CTRL,
334 COST_MODEL,
335 NR_COST_CTRL_PARAMS,
336 };
337
338 /* builtin linear cost model coefficients */
339 enum {
340 I_LCOEF_RBPS,
341 I_LCOEF_RSEQIOPS,
342 I_LCOEF_RRANDIOPS,
343 I_LCOEF_WBPS,
344 I_LCOEF_WSEQIOPS,
345 I_LCOEF_WRANDIOPS,
346 NR_I_LCOEFS,
347 };
348
349 enum {
350 LCOEF_RPAGE,
351 LCOEF_RSEQIO,
352 LCOEF_RRANDIO,
353 LCOEF_WPAGE,
354 LCOEF_WSEQIO,
355 LCOEF_WRANDIO,
356 NR_LCOEFS,
357 };
358
359 enum {
360 AUTOP_INVALID,
361 AUTOP_HDD,
362 AUTOP_SSD_QD1,
363 AUTOP_SSD_DFL,
364 AUTOP_SSD_FAST,
365 };
366
367 struct ioc_gq;
368
369 struct ioc_params {
370 u32 qos[NR_QOS_PARAMS];
371 u64 i_lcoefs[NR_I_LCOEFS];
372 u64 lcoefs[NR_LCOEFS];
373 u32 too_fast_vrate_pct;
374 u32 too_slow_vrate_pct;
375 };
376
377 struct ioc_missed {
378 local_t nr_met;
379 local_t nr_missed;
380 u32 last_met;
381 u32 last_missed;
382 };
383
384 struct ioc_pcpu_stat {
385 struct ioc_missed missed[2];
386
387 local64_t rq_wait_ns;
388 u64 last_rq_wait_ns;
389 };
390
391 /* per device */
392 struct ioc {
393 struct rq_qos rqos;
394
395 bool enabled;
396
397 struct ioc_params params;
398 u32 period_us;
399 u32 margin_us;
400 u64 vrate_min;
401 u64 vrate_max;
402
403 spinlock_t lock;
404 struct timer_list timer;
405 struct list_head active_iocgs; /* active cgroups */
406 struct ioc_pcpu_stat __percpu *pcpu_stat;
407
408 enum ioc_running running;
409 atomic64_t vtime_rate;
410
411 seqcount_spinlock_t period_seqcount;
412 u32 period_at; /* wallclock starttime */
413 u64 period_at_vtime; /* vtime starttime */
414
415 atomic64_t cur_period; /* inc'd each period */
416 int busy_level; /* saturation history */
417
418 u64 inuse_margin_vtime;
419 bool weights_updated;
420 atomic_t hweight_gen; /* for lazy hweights */
421
422 u64 autop_too_fast_at;
423 u64 autop_too_slow_at;
424 int autop_idx;
425 bool user_qos_params:1;
426 bool user_cost_model:1;
427 };
428
429 /* per device-cgroup pair */
430 struct ioc_gq {
431 struct blkg_policy_data pd;
432 struct ioc *ioc;
433
434 /*
435 * A iocg can get its weight from two sources - an explicit
436 * per-device-cgroup configuration or the default weight of the
437 * cgroup. `cfg_weight` is the explicit per-device-cgroup
438 * configuration. `weight` is the effective considering both
439 * sources.
440 *
441 * When an idle cgroup becomes active its `active` goes from 0 to
442 * `weight`. `inuse` is the surplus adjusted active weight.
443 * `active` and `inuse` are used to calculate `hweight_active` and
444 * `hweight_inuse`.
445 *
446 * `last_inuse` remembers `inuse` while an iocg is idle to persist
447 * surplus adjustments.
448 */
449 u32 cfg_weight;
450 u32 weight;
451 u32 active;
452 u32 inuse;
453 u32 last_inuse;
454
455 sector_t cursor; /* to detect randio */
456
457 /*
458 * `vtime` is this iocg's vtime cursor which progresses as IOs are
459 * issued. If lagging behind device vtime, the delta represents
460 * the currently available IO budget. If runnning ahead, the
461 * overage.
462 *
463 * `vtime_done` is the same but progressed on completion rather
464 * than issue. The delta behind `vtime` represents the cost of
465 * currently in-flight IOs.
466 *
467 * `last_vtime` is used to remember `vtime` at the end of the last
468 * period to calculate utilization.
469 */
470 atomic64_t vtime;
471 atomic64_t done_vtime;
472 u64 abs_vdebt;
473 u64 last_vtime;
474
475 /*
476 * The period this iocg was last active in. Used for deactivation
477 * and invalidating `vtime`.
478 */
479 atomic64_t active_period;
480 struct list_head active_list;
481
482 /* see __propagate_active_weight() and current_hweight() for details */
483 u64 child_active_sum;
484 u64 child_inuse_sum;
485 int hweight_gen;
486 u32 hweight_active;
487 u32 hweight_inuse;
488 bool has_surplus;
489
490 struct wait_queue_head waitq;
491 struct hrtimer waitq_timer;
492 struct hrtimer delay_timer;
493
494 /* usage is recorded as fractions of HWEIGHT_WHOLE */
495 int usage_idx;
496 u32 usages[NR_USAGE_SLOTS];
497
498 /* this iocg's depth in the hierarchy and ancestors including self */
499 int level;
500 struct ioc_gq *ancestors[];
501 };
502
503 /* per cgroup */
504 struct ioc_cgrp {
505 struct blkcg_policy_data cpd;
506 unsigned int dfl_weight;
507 };
508
509 struct ioc_now {
510 u64 now_ns;
511 u32 now;
512 u64 vnow;
513 u64 vrate;
514 };
515
516 struct iocg_wait {
517 struct wait_queue_entry wait;
518 struct bio *bio;
519 u64 abs_cost;
520 bool committed;
521 };
522
523 struct iocg_wake_ctx {
524 struct ioc_gq *iocg;
525 u32 hw_inuse;
526 s64 vbudget;
527 };
528
529 static const struct ioc_params autop[] = {
530 [AUTOP_HDD] = {
531 .qos = {
532 [QOS_RLAT] = 250000, /* 250ms */
533 [QOS_WLAT] = 250000,
534 [QOS_MIN] = VRATE_MIN_PPM,
535 [QOS_MAX] = VRATE_MAX_PPM,
536 },
537 .i_lcoefs = {
538 [I_LCOEF_RBPS] = 174019176,
539 [I_LCOEF_RSEQIOPS] = 41708,
540 [I_LCOEF_RRANDIOPS] = 370,
541 [I_LCOEF_WBPS] = 178075866,
542 [I_LCOEF_WSEQIOPS] = 42705,
543 [I_LCOEF_WRANDIOPS] = 378,
544 },
545 },
546 [AUTOP_SSD_QD1] = {
547 .qos = {
548 [QOS_RLAT] = 25000, /* 25ms */
549 [QOS_WLAT] = 25000,
550 [QOS_MIN] = VRATE_MIN_PPM,
551 [QOS_MAX] = VRATE_MAX_PPM,
552 },
553 .i_lcoefs = {
554 [I_LCOEF_RBPS] = 245855193,
555 [I_LCOEF_RSEQIOPS] = 61575,
556 [I_LCOEF_RRANDIOPS] = 6946,
557 [I_LCOEF_WBPS] = 141365009,
558 [I_LCOEF_WSEQIOPS] = 33716,
559 [I_LCOEF_WRANDIOPS] = 26796,
560 },
561 },
562 [AUTOP_SSD_DFL] = {
563 .qos = {
564 [QOS_RLAT] = 25000, /* 25ms */
565 [QOS_WLAT] = 25000,
566 [QOS_MIN] = VRATE_MIN_PPM,
567 [QOS_MAX] = VRATE_MAX_PPM,
568 },
569 .i_lcoefs = {
570 [I_LCOEF_RBPS] = 488636629,
571 [I_LCOEF_RSEQIOPS] = 8932,
572 [I_LCOEF_RRANDIOPS] = 8518,
573 [I_LCOEF_WBPS] = 427891549,
574 [I_LCOEF_WSEQIOPS] = 28755,
575 [I_LCOEF_WRANDIOPS] = 21940,
576 },
577 .too_fast_vrate_pct = 500,
578 },
579 [AUTOP_SSD_FAST] = {
580 .qos = {
581 [QOS_RLAT] = 5000, /* 5ms */
582 [QOS_WLAT] = 5000,
583 [QOS_MIN] = VRATE_MIN_PPM,
584 [QOS_MAX] = VRATE_MAX_PPM,
585 },
586 .i_lcoefs = {
587 [I_LCOEF_RBPS] = 3102524156LLU,
588 [I_LCOEF_RSEQIOPS] = 724816,
589 [I_LCOEF_RRANDIOPS] = 778122,
590 [I_LCOEF_WBPS] = 1742780862LLU,
591 [I_LCOEF_WSEQIOPS] = 425702,
592 [I_LCOEF_WRANDIOPS] = 443193,
593 },
594 .too_slow_vrate_pct = 10,
595 },
596 };
597
598 /*
599 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
600 * vtime credit shortage and down on device saturation.
601 */
602 static u32 vrate_adj_pct[] =
603 { 0, 0, 0, 0,
604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
605 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
606 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
607
608 static struct blkcg_policy blkcg_policy_iocost;
609
610 /* accessors and helpers */
611 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
612 {
613 return container_of(rqos, struct ioc, rqos);
614 }
615
616 static struct ioc *q_to_ioc(struct request_queue *q)
617 {
618 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
619 }
620
621 static const char *q_name(struct request_queue *q)
622 {
623 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
624 return kobject_name(q->kobj.parent);
625 else
626 return "<unknown>";
627 }
628
629 static const char __maybe_unused *ioc_name(struct ioc *ioc)
630 {
631 return q_name(ioc->rqos.q);
632 }
633
634 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
635 {
636 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
637 }
638
639 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
640 {
641 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
642 }
643
644 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
645 {
646 return pd_to_blkg(&iocg->pd);
647 }
648
649 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
650 {
651 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
652 struct ioc_cgrp, cpd);
653 }
654
655 /*
656 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
657 * weight, the more expensive each IO. Must round up.
658 */
659 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
660 {
661 return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
662 }
663
664 /*
665 * The inverse of abs_cost_to_cost(). Must round up.
666 */
667 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
668 {
669 return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
670 }
671
672 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
673 {
674 bio->bi_iocost_cost = cost;
675 atomic64_add(cost, &iocg->vtime);
676 }
677
678 #define CREATE_TRACE_POINTS
679 #include <trace/events/iocost.h>
680
681 /* latency Qos params changed, update period_us and all the dependent params */
682 static void ioc_refresh_period_us(struct ioc *ioc)
683 {
684 u32 ppm, lat, multi, period_us;
685
686 lockdep_assert_held(&ioc->lock);
687
688 /* pick the higher latency target */
689 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
690 ppm = ioc->params.qos[QOS_RPPM];
691 lat = ioc->params.qos[QOS_RLAT];
692 } else {
693 ppm = ioc->params.qos[QOS_WPPM];
694 lat = ioc->params.qos[QOS_WLAT];
695 }
696
697 /*
698 * We want the period to be long enough to contain a healthy number
699 * of IOs while short enough for granular control. Define it as a
700 * multiple of the latency target. Ideally, the multiplier should
701 * be scaled according to the percentile so that it would nominally
702 * contain a certain number of requests. Let's be simpler and
703 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
704 */
705 if (ppm)
706 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
707 else
708 multi = 2;
709 period_us = multi * lat;
710 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
711
712 /* calculate dependent params */
713 ioc->period_us = period_us;
714 ioc->margin_us = period_us * MARGIN_PCT / 100;
715 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
716 period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
717 }
718
719 static int ioc_autop_idx(struct ioc *ioc)
720 {
721 int idx = ioc->autop_idx;
722 const struct ioc_params *p = &autop[idx];
723 u32 vrate_pct;
724 u64 now_ns;
725
726 /* rotational? */
727 if (!blk_queue_nonrot(ioc->rqos.q))
728 return AUTOP_HDD;
729
730 /* handle SATA SSDs w/ broken NCQ */
731 if (blk_queue_depth(ioc->rqos.q) == 1)
732 return AUTOP_SSD_QD1;
733
734 /* use one of the normal ssd sets */
735 if (idx < AUTOP_SSD_DFL)
736 return AUTOP_SSD_DFL;
737
738 /* if user is overriding anything, maintain what was there */
739 if (ioc->user_qos_params || ioc->user_cost_model)
740 return idx;
741
742 /* step up/down based on the vrate */
743 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
744 VTIME_PER_USEC);
745 now_ns = ktime_get_ns();
746
747 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
748 if (!ioc->autop_too_fast_at)
749 ioc->autop_too_fast_at = now_ns;
750 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
751 return idx + 1;
752 } else {
753 ioc->autop_too_fast_at = 0;
754 }
755
756 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
757 if (!ioc->autop_too_slow_at)
758 ioc->autop_too_slow_at = now_ns;
759 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
760 return idx - 1;
761 } else {
762 ioc->autop_too_slow_at = 0;
763 }
764
765 return idx;
766 }
767
768 /*
769 * Take the followings as input
770 *
771 * @bps maximum sequential throughput
772 * @seqiops maximum sequential 4k iops
773 * @randiops maximum random 4k iops
774 *
775 * and calculate the linear model cost coefficients.
776 *
777 * *@page per-page cost 1s / (@bps / 4096)
778 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
779 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
780 */
781 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
782 u64 *page, u64 *seqio, u64 *randio)
783 {
784 u64 v;
785
786 *page = *seqio = *randio = 0;
787
788 if (bps)
789 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
790 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
791
792 if (seqiops) {
793 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
794 if (v > *page)
795 *seqio = v - *page;
796 }
797
798 if (randiops) {
799 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
800 if (v > *page)
801 *randio = v - *page;
802 }
803 }
804
805 static void ioc_refresh_lcoefs(struct ioc *ioc)
806 {
807 u64 *u = ioc->params.i_lcoefs;
808 u64 *c = ioc->params.lcoefs;
809
810 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
811 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
812 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
813 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
814 }
815
816 static bool ioc_refresh_params(struct ioc *ioc, bool force)
817 {
818 const struct ioc_params *p;
819 int idx;
820
821 lockdep_assert_held(&ioc->lock);
822
823 idx = ioc_autop_idx(ioc);
824 p = &autop[idx];
825
826 if (idx == ioc->autop_idx && !force)
827 return false;
828
829 if (idx != ioc->autop_idx)
830 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
831
832 ioc->autop_idx = idx;
833 ioc->autop_too_fast_at = 0;
834 ioc->autop_too_slow_at = 0;
835
836 if (!ioc->user_qos_params)
837 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
838 if (!ioc->user_cost_model)
839 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
840
841 ioc_refresh_period_us(ioc);
842 ioc_refresh_lcoefs(ioc);
843
844 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
845 VTIME_PER_USEC, MILLION);
846 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
847 VTIME_PER_USEC, MILLION);
848
849 return true;
850 }
851
852 /* take a snapshot of the current [v]time and vrate */
853 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
854 {
855 unsigned seq;
856
857 now->now_ns = ktime_get();
858 now->now = ktime_to_us(now->now_ns);
859 now->vrate = atomic64_read(&ioc->vtime_rate);
860
861 /*
862 * The current vtime is
863 *
864 * vtime at period start + (wallclock time since the start) * vrate
865 *
866 * As a consistent snapshot of `period_at_vtime` and `period_at` is
867 * needed, they're seqcount protected.
868 */
869 do {
870 seq = read_seqcount_begin(&ioc->period_seqcount);
871 now->vnow = ioc->period_at_vtime +
872 (now->now - ioc->period_at) * now->vrate;
873 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
874 }
875
876 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
877 {
878 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
879
880 write_seqcount_begin(&ioc->period_seqcount);
881 ioc->period_at = now->now;
882 ioc->period_at_vtime = now->vnow;
883 write_seqcount_end(&ioc->period_seqcount);
884
885 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
886 add_timer(&ioc->timer);
887 }
888
889 /*
890 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
891 * weight sums and propagate upwards accordingly.
892 */
893 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
894 {
895 struct ioc *ioc = iocg->ioc;
896 int lvl;
897
898 lockdep_assert_held(&ioc->lock);
899
900 inuse = min(active, inuse);
901
902 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
903 struct ioc_gq *parent = iocg->ancestors[lvl];
904 struct ioc_gq *child = iocg->ancestors[lvl + 1];
905 u32 parent_active = 0, parent_inuse = 0;
906
907 /* update the level sums */
908 parent->child_active_sum += (s32)(active - child->active);
909 parent->child_inuse_sum += (s32)(inuse - child->inuse);
910 /* apply the udpates */
911 child->active = active;
912 child->inuse = inuse;
913
914 /*
915 * The delta between inuse and active sums indicates that
916 * that much of weight is being given away. Parent's inuse
917 * and active should reflect the ratio.
918 */
919 if (parent->child_active_sum) {
920 parent_active = parent->weight;
921 parent_inuse = DIV64_U64_ROUND_UP(
922 parent_active * parent->child_inuse_sum,
923 parent->child_active_sum);
924 }
925
926 /* do we need to keep walking up? */
927 if (parent_active == parent->active &&
928 parent_inuse == parent->inuse)
929 break;
930
931 active = parent_active;
932 inuse = parent_inuse;
933 }
934
935 ioc->weights_updated = true;
936 }
937
938 static void commit_active_weights(struct ioc *ioc)
939 {
940 lockdep_assert_held(&ioc->lock);
941
942 if (ioc->weights_updated) {
943 /* paired with rmb in current_hweight(), see there */
944 smp_wmb();
945 atomic_inc(&ioc->hweight_gen);
946 ioc->weights_updated = false;
947 }
948 }
949
950 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
951 {
952 __propagate_active_weight(iocg, active, inuse);
953 commit_active_weights(iocg->ioc);
954 }
955
956 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
957 {
958 struct ioc *ioc = iocg->ioc;
959 int lvl;
960 u32 hwa, hwi;
961 int ioc_gen;
962
963 /* hot path - if uptodate, use cached */
964 ioc_gen = atomic_read(&ioc->hweight_gen);
965 if (ioc_gen == iocg->hweight_gen)
966 goto out;
967
968 /*
969 * Paired with wmb in commit_active_weights(). If we saw the
970 * updated hweight_gen, all the weight updates from
971 * __propagate_active_weight() are visible too.
972 *
973 * We can race with weight updates during calculation and get it
974 * wrong. However, hweight_gen would have changed and a future
975 * reader will recalculate and we're guaranteed to discard the
976 * wrong result soon.
977 */
978 smp_rmb();
979
980 hwa = hwi = HWEIGHT_WHOLE;
981 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
982 struct ioc_gq *parent = iocg->ancestors[lvl];
983 struct ioc_gq *child = iocg->ancestors[lvl + 1];
984 u32 active_sum = READ_ONCE(parent->child_active_sum);
985 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
986 u32 active = READ_ONCE(child->active);
987 u32 inuse = READ_ONCE(child->inuse);
988
989 /* we can race with deactivations and either may read as zero */
990 if (!active_sum || !inuse_sum)
991 continue;
992
993 active_sum = max(active, active_sum);
994 hwa = hwa * active / active_sum; /* max 16bits * 10000 */
995
996 inuse_sum = max(inuse, inuse_sum);
997 hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */
998 }
999
1000 iocg->hweight_active = max_t(u32, hwa, 1);
1001 iocg->hweight_inuse = max_t(u32, hwi, 1);
1002 iocg->hweight_gen = ioc_gen;
1003 out:
1004 if (hw_activep)
1005 *hw_activep = iocg->hweight_active;
1006 if (hw_inusep)
1007 *hw_inusep = iocg->hweight_inuse;
1008 }
1009
1010 static void weight_updated(struct ioc_gq *iocg)
1011 {
1012 struct ioc *ioc = iocg->ioc;
1013 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1014 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1015 u32 weight;
1016
1017 lockdep_assert_held(&ioc->lock);
1018
1019 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1020 if (weight != iocg->weight && iocg->active)
1021 propagate_active_weight(iocg, weight,
1022 DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1023 iocg->weight = weight;
1024 }
1025
1026 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1027 {
1028 struct ioc *ioc = iocg->ioc;
1029 u64 last_period, cur_period, max_period_delta;
1030 u64 vtime, vmargin, vmin;
1031 int i;
1032
1033 /*
1034 * If seem to be already active, just update the stamp to tell the
1035 * timer that we're still active. We don't mind occassional races.
1036 */
1037 if (!list_empty(&iocg->active_list)) {
1038 ioc_now(ioc, now);
1039 cur_period = atomic64_read(&ioc->cur_period);
1040 if (atomic64_read(&iocg->active_period) != cur_period)
1041 atomic64_set(&iocg->active_period, cur_period);
1042 return true;
1043 }
1044
1045 /* racy check on internal node IOs, treat as root level IOs */
1046 if (iocg->child_active_sum)
1047 return false;
1048
1049 spin_lock_irq(&ioc->lock);
1050
1051 ioc_now(ioc, now);
1052
1053 /* update period */
1054 cur_period = atomic64_read(&ioc->cur_period);
1055 last_period = atomic64_read(&iocg->active_period);
1056 atomic64_set(&iocg->active_period, cur_period);
1057
1058 /* already activated or breaking leaf-only constraint? */
1059 if (!list_empty(&iocg->active_list))
1060 goto succeed_unlock;
1061 for (i = iocg->level - 1; i > 0; i--)
1062 if (!list_empty(&iocg->ancestors[i]->active_list))
1063 goto fail_unlock;
1064
1065 if (iocg->child_active_sum)
1066 goto fail_unlock;
1067
1068 /*
1069 * vtime may wrap when vrate is raised substantially due to
1070 * underestimated IO costs. Look at the period and ignore its
1071 * vtime if the iocg has been idle for too long. Also, cap the
1072 * budget it can start with to the margin.
1073 */
1074 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1075 vtime = atomic64_read(&iocg->vtime);
1076 vmargin = ioc->margin_us * now->vrate;
1077 vmin = now->vnow - vmargin;
1078
1079 if (last_period + max_period_delta < cur_period ||
1080 time_before64(vtime, vmin)) {
1081 atomic64_add(vmin - vtime, &iocg->vtime);
1082 atomic64_add(vmin - vtime, &iocg->done_vtime);
1083 vtime = vmin;
1084 }
1085
1086 /*
1087 * Activate, propagate weight and start period timer if not
1088 * running. Reset hweight_gen to avoid accidental match from
1089 * wrapping.
1090 */
1091 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1092 list_add(&iocg->active_list, &ioc->active_iocgs);
1093 propagate_active_weight(iocg, iocg->weight,
1094 iocg->last_inuse ?: iocg->weight);
1095
1096 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1097 last_period, cur_period, vtime);
1098
1099 iocg->last_vtime = vtime;
1100
1101 if (ioc->running == IOC_IDLE) {
1102 ioc->running = IOC_RUNNING;
1103 ioc_start_period(ioc, now);
1104 }
1105
1106 succeed_unlock:
1107 spin_unlock_irq(&ioc->lock);
1108 return true;
1109
1110 fail_unlock:
1111 spin_unlock_irq(&ioc->lock);
1112 return false;
1113 }
1114
1115 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1116 int flags, void *key)
1117 {
1118 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1119 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1120 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1121
1122 ctx->vbudget -= cost;
1123
1124 if (ctx->vbudget < 0)
1125 return -1;
1126
1127 iocg_commit_bio(ctx->iocg, wait->bio, cost);
1128
1129 /*
1130 * autoremove_wake_function() removes the wait entry only when it
1131 * actually changed the task state. We want the wait always
1132 * removed. Remove explicitly and use default_wake_function().
1133 */
1134 list_del_init(&wq_entry->entry);
1135 wait->committed = true;
1136
1137 default_wake_function(wq_entry, mode, flags, key);
1138 return 0;
1139 }
1140
1141 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1142 {
1143 struct ioc *ioc = iocg->ioc;
1144 struct iocg_wake_ctx ctx = { .iocg = iocg };
1145 u64 margin_ns = (u64)(ioc->period_us *
1146 WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1147 u64 vdebt, vshortage, expires, oexpires;
1148 s64 vbudget;
1149 u32 hw_inuse;
1150
1151 lockdep_assert_held(&iocg->waitq.lock);
1152
1153 current_hweight(iocg, NULL, &hw_inuse);
1154 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1155
1156 /* pay off debt */
1157 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1158 if (vdebt && vbudget > 0) {
1159 u64 delta = min_t(u64, vbudget, vdebt);
1160 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1161 iocg->abs_vdebt);
1162
1163 atomic64_add(delta, &iocg->vtime);
1164 atomic64_add(delta, &iocg->done_vtime);
1165 iocg->abs_vdebt -= abs_delta;
1166 }
1167
1168 /*
1169 * Wake up the ones which are due and see how much vtime we'll need
1170 * for the next one.
1171 */
1172 ctx.hw_inuse = hw_inuse;
1173 ctx.vbudget = vbudget - vdebt;
1174 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1175 if (!waitqueue_active(&iocg->waitq))
1176 return;
1177 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1178 return;
1179
1180 /* determine next wakeup, add a quarter margin to guarantee chunking */
1181 vshortage = -ctx.vbudget;
1182 expires = now->now_ns +
1183 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1184 expires += margin_ns / 4;
1185
1186 /* if already active and close enough, don't bother */
1187 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1188 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1189 abs(oexpires - expires) <= margin_ns / 4)
1190 return;
1191
1192 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1193 margin_ns / 4, HRTIMER_MODE_ABS);
1194 }
1195
1196 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1197 {
1198 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1199 struct ioc_now now;
1200 unsigned long flags;
1201
1202 ioc_now(iocg->ioc, &now);
1203
1204 spin_lock_irqsave(&iocg->waitq.lock, flags);
1205 iocg_kick_waitq(iocg, &now);
1206 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1207
1208 return HRTIMER_NORESTART;
1209 }
1210
1211 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1212 {
1213 struct ioc *ioc = iocg->ioc;
1214 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1215 u64 vtime = atomic64_read(&iocg->vtime);
1216 u64 vmargin = ioc->margin_us * now->vrate;
1217 u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1218 u64 delta_ns, expires, oexpires;
1219 u32 hw_inuse;
1220
1221 lockdep_assert_held(&iocg->waitq.lock);
1222
1223 /* debt-adjust vtime */
1224 current_hweight(iocg, NULL, &hw_inuse);
1225 vtime += abs_cost_to_cost(iocg->abs_vdebt, hw_inuse);
1226
1227 /*
1228 * Clear or maintain depending on the overage. Non-zero vdebt is what
1229 * guarantees that @iocg is online and future iocg_kick_delay() will
1230 * clear use_delay. Don't leave it on when there's no vdebt.
1231 */
1232 if (!iocg->abs_vdebt || time_before_eq64(vtime, now->vnow)) {
1233 blkcg_clear_delay(blkg);
1234 return false;
1235 }
1236 if (!atomic_read(&blkg->use_delay) &&
1237 time_before_eq64(vtime, now->vnow + vmargin))
1238 return false;
1239
1240 /* use delay */
1241 delta_ns = DIV64_U64_ROUND_UP(vtime - now->vnow,
1242 now->vrate) * NSEC_PER_USEC;
1243 blkcg_set_delay(blkg, delta_ns);
1244 expires = now->now_ns + delta_ns;
1245
1246 /* if already active and close enough, don't bother */
1247 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1248 if (hrtimer_is_queued(&iocg->delay_timer) &&
1249 abs(oexpires - expires) <= margin_ns / 4)
1250 return true;
1251
1252 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1253 margin_ns / 4, HRTIMER_MODE_ABS);
1254 return true;
1255 }
1256
1257 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1258 {
1259 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1260 struct ioc_now now;
1261 unsigned long flags;
1262
1263 spin_lock_irqsave(&iocg->waitq.lock, flags);
1264 ioc_now(iocg->ioc, &now);
1265 iocg_kick_delay(iocg, &now);
1266 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1267
1268 return HRTIMER_NORESTART;
1269 }
1270
1271 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1272 {
1273 u32 nr_met[2] = { };
1274 u32 nr_missed[2] = { };
1275 u64 rq_wait_ns = 0;
1276 int cpu, rw;
1277
1278 for_each_online_cpu(cpu) {
1279 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1280 u64 this_rq_wait_ns;
1281
1282 for (rw = READ; rw <= WRITE; rw++) {
1283 u32 this_met = local_read(&stat->missed[rw].nr_met);
1284 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1285
1286 nr_met[rw] += this_met - stat->missed[rw].last_met;
1287 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1288 stat->missed[rw].last_met = this_met;
1289 stat->missed[rw].last_missed = this_missed;
1290 }
1291
1292 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1293 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1294 stat->last_rq_wait_ns = this_rq_wait_ns;
1295 }
1296
1297 for (rw = READ; rw <= WRITE; rw++) {
1298 if (nr_met[rw] + nr_missed[rw])
1299 missed_ppm_ar[rw] =
1300 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1301 nr_met[rw] + nr_missed[rw]);
1302 else
1303 missed_ppm_ar[rw] = 0;
1304 }
1305
1306 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1307 ioc->period_us * NSEC_PER_USEC);
1308 }
1309
1310 /* was iocg idle this period? */
1311 static bool iocg_is_idle(struct ioc_gq *iocg)
1312 {
1313 struct ioc *ioc = iocg->ioc;
1314
1315 /* did something get issued this period? */
1316 if (atomic64_read(&iocg->active_period) ==
1317 atomic64_read(&ioc->cur_period))
1318 return false;
1319
1320 /* is something in flight? */
1321 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1322 return false;
1323
1324 return true;
1325 }
1326
1327 /* returns usage with margin added if surplus is large enough */
1328 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1329 {
1330 /* add margin */
1331 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1332 usage += SURPLUS_SCALE_ABS;
1333
1334 /* don't bother if the surplus is too small */
1335 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1336 return 0;
1337
1338 return usage;
1339 }
1340
1341 static void ioc_timer_fn(struct timer_list *timer)
1342 {
1343 struct ioc *ioc = container_of(timer, struct ioc, timer);
1344 struct ioc_gq *iocg, *tiocg;
1345 struct ioc_now now;
1346 int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1347 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1348 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1349 u32 missed_ppm[2], rq_wait_pct;
1350 u64 period_vtime;
1351 int prev_busy_level, i;
1352
1353 /* how were the latencies during the period? */
1354 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1355
1356 /* take care of active iocgs */
1357 spin_lock_irq(&ioc->lock);
1358
1359 ioc_now(ioc, &now);
1360
1361 period_vtime = now.vnow - ioc->period_at_vtime;
1362 if (WARN_ON_ONCE(!period_vtime)) {
1363 spin_unlock_irq(&ioc->lock);
1364 return;
1365 }
1366
1367 /*
1368 * Waiters determine the sleep durations based on the vrate they
1369 * saw at the time of sleep. If vrate has increased, some waiters
1370 * could be sleeping for too long. Wake up tardy waiters which
1371 * should have woken up in the last period and expire idle iocgs.
1372 */
1373 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1374 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
1375 !iocg_is_idle(iocg))
1376 continue;
1377
1378 spin_lock(&iocg->waitq.lock);
1379
1380 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt) {
1381 /* might be oversleeping vtime / hweight changes, kick */
1382 iocg_kick_waitq(iocg, &now);
1383 iocg_kick_delay(iocg, &now);
1384 } else if (iocg_is_idle(iocg)) {
1385 /* no waiter and idle, deactivate */
1386 iocg->last_inuse = iocg->inuse;
1387 __propagate_active_weight(iocg, 0, 0);
1388 list_del_init(&iocg->active_list);
1389 }
1390
1391 spin_unlock(&iocg->waitq.lock);
1392 }
1393 commit_active_weights(ioc);
1394
1395 /* calc usages and see whether some weights need to be moved around */
1396 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1397 u64 vdone, vtime, vusage, vmargin, vmin;
1398 u32 hw_active, hw_inuse, usage;
1399
1400 /*
1401 * Collect unused and wind vtime closer to vnow to prevent
1402 * iocgs from accumulating a large amount of budget.
1403 */
1404 vdone = atomic64_read(&iocg->done_vtime);
1405 vtime = atomic64_read(&iocg->vtime);
1406 current_hweight(iocg, &hw_active, &hw_inuse);
1407
1408 /*
1409 * Latency QoS detection doesn't account for IOs which are
1410 * in-flight for longer than a period. Detect them by
1411 * comparing vdone against period start. If lagging behind
1412 * IOs from past periods, don't increase vrate.
1413 */
1414 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1415 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1416 time_after64(vtime, vdone) &&
1417 time_after64(vtime, now.vnow -
1418 MAX_LAGGING_PERIODS * period_vtime) &&
1419 time_before64(vdone, now.vnow - period_vtime))
1420 nr_lagging++;
1421
1422 if (waitqueue_active(&iocg->waitq))
1423 vusage = now.vnow - iocg->last_vtime;
1424 else if (time_before64(iocg->last_vtime, vtime))
1425 vusage = vtime - iocg->last_vtime;
1426 else
1427 vusage = 0;
1428
1429 iocg->last_vtime += vusage;
1430 /*
1431 * Factor in in-flight vtime into vusage to avoid
1432 * high-latency completions appearing as idle. This should
1433 * be done after the above ->last_time adjustment.
1434 */
1435 vusage = max(vusage, vtime - vdone);
1436
1437 /* calculate hweight based usage ratio and record */
1438 if (vusage) {
1439 usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1440 period_vtime);
1441 iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1442 iocg->usages[iocg->usage_idx] = usage;
1443 } else {
1444 usage = 0;
1445 }
1446
1447 /* see whether there's surplus vtime */
1448 vmargin = ioc->margin_us * now.vrate;
1449 vmin = now.vnow - vmargin;
1450
1451 iocg->has_surplus = false;
1452
1453 if (!waitqueue_active(&iocg->waitq) &&
1454 time_before64(vtime, vmin)) {
1455 u64 delta = vmin - vtime;
1456
1457 /* throw away surplus vtime */
1458 atomic64_add(delta, &iocg->vtime);
1459 atomic64_add(delta, &iocg->done_vtime);
1460 iocg->last_vtime += delta;
1461 /* if usage is sufficiently low, maybe it can donate */
1462 if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1463 iocg->has_surplus = true;
1464 nr_surpluses++;
1465 }
1466 } else if (hw_inuse < hw_active) {
1467 u32 new_hwi, new_inuse;
1468
1469 /* was donating but might need to take back some */
1470 if (waitqueue_active(&iocg->waitq)) {
1471 new_hwi = hw_active;
1472 } else {
1473 new_hwi = max(hw_inuse,
1474 usage * SURPLUS_SCALE_PCT / 100 +
1475 SURPLUS_SCALE_ABS);
1476 }
1477
1478 new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1479 hw_inuse);
1480 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1481
1482 if (new_inuse > iocg->inuse) {
1483 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1484 iocg->inuse, new_inuse,
1485 hw_inuse, new_hwi);
1486 __propagate_active_weight(iocg, iocg->weight,
1487 new_inuse);
1488 }
1489 } else {
1490 /* genuninely out of vtime */
1491 nr_shortages++;
1492 }
1493 }
1494
1495 if (!nr_shortages || !nr_surpluses)
1496 goto skip_surplus_transfers;
1497
1498 /* there are both shortages and surpluses, transfer surpluses */
1499 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1500 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1501 int nr_valid = 0;
1502
1503 if (!iocg->has_surplus)
1504 continue;
1505
1506 /* base the decision on max historical usage */
1507 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1508 if (iocg->usages[i]) {
1509 usage = max(usage, iocg->usages[i]);
1510 nr_valid++;
1511 }
1512 }
1513 if (nr_valid < MIN_VALID_USAGES)
1514 continue;
1515
1516 current_hweight(iocg, &hw_active, &hw_inuse);
1517 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1518 if (!new_hwi)
1519 continue;
1520
1521 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1522 hw_inuse);
1523 if (new_inuse < iocg->inuse) {
1524 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1525 iocg->inuse, new_inuse,
1526 hw_inuse, new_hwi);
1527 __propagate_active_weight(iocg, iocg->weight, new_inuse);
1528 }
1529 }
1530 skip_surplus_transfers:
1531 commit_active_weights(ioc);
1532
1533 /*
1534 * If q is getting clogged or we're missing too much, we're issuing
1535 * too much IO and should lower vtime rate. If we're not missing
1536 * and experiencing shortages but not surpluses, we're too stingy
1537 * and should increase vtime rate.
1538 */
1539 prev_busy_level = ioc->busy_level;
1540 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1541 missed_ppm[READ] > ppm_rthr ||
1542 missed_ppm[WRITE] > ppm_wthr) {
1543 /* clearly missing QoS targets, slow down vrate */
1544 ioc->busy_level = max(ioc->busy_level, 0);
1545 ioc->busy_level++;
1546 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1547 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1548 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1549 /* QoS targets are being met with >25% margin */
1550 if (nr_shortages) {
1551 /*
1552 * We're throttling while the device has spare
1553 * capacity. If vrate was being slowed down, stop.
1554 */
1555 ioc->busy_level = min(ioc->busy_level, 0);
1556
1557 /*
1558 * If there are IOs spanning multiple periods, wait
1559 * them out before pushing the device harder. If
1560 * there are surpluses, let redistribution work it
1561 * out first.
1562 */
1563 if (!nr_lagging && !nr_surpluses)
1564 ioc->busy_level--;
1565 } else {
1566 /*
1567 * Nobody is being throttled and the users aren't
1568 * issuing enough IOs to saturate the device. We
1569 * simply don't know how close the device is to
1570 * saturation. Coast.
1571 */
1572 ioc->busy_level = 0;
1573 }
1574 } else {
1575 /* inside the hysterisis margin, we're good */
1576 ioc->busy_level = 0;
1577 }
1578
1579 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1580
1581 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1582 u64 vrate = atomic64_read(&ioc->vtime_rate);
1583 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1584
1585 /* rq_wait signal is always reliable, ignore user vrate_min */
1586 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1587 vrate_min = VRATE_MIN;
1588
1589 /*
1590 * If vrate is out of bounds, apply clamp gradually as the
1591 * bounds can change abruptly. Otherwise, apply busy_level
1592 * based adjustment.
1593 */
1594 if (vrate < vrate_min) {
1595 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1596 100);
1597 vrate = min(vrate, vrate_min);
1598 } else if (vrate > vrate_max) {
1599 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1600 100);
1601 vrate = max(vrate, vrate_max);
1602 } else {
1603 int idx = min_t(int, abs(ioc->busy_level),
1604 ARRAY_SIZE(vrate_adj_pct) - 1);
1605 u32 adj_pct = vrate_adj_pct[idx];
1606
1607 if (ioc->busy_level > 0)
1608 adj_pct = 100 - adj_pct;
1609 else
1610 adj_pct = 100 + adj_pct;
1611
1612 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1613 vrate_min, vrate_max);
1614 }
1615
1616 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1617 nr_lagging, nr_shortages,
1618 nr_surpluses);
1619
1620 atomic64_set(&ioc->vtime_rate, vrate);
1621 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1622 ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1623 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1624 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1625 missed_ppm, rq_wait_pct, nr_lagging,
1626 nr_shortages, nr_surpluses);
1627 }
1628
1629 ioc_refresh_params(ioc, false);
1630
1631 /*
1632 * This period is done. Move onto the next one. If nothing's
1633 * going on with the device, stop the timer.
1634 */
1635 atomic64_inc(&ioc->cur_period);
1636
1637 if (ioc->running != IOC_STOP) {
1638 if (!list_empty(&ioc->active_iocgs)) {
1639 ioc_start_period(ioc, &now);
1640 } else {
1641 ioc->busy_level = 0;
1642 ioc->running = IOC_IDLE;
1643 }
1644 }
1645
1646 spin_unlock_irq(&ioc->lock);
1647 }
1648
1649 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1650 bool is_merge, u64 *costp)
1651 {
1652 struct ioc *ioc = iocg->ioc;
1653 u64 coef_seqio, coef_randio, coef_page;
1654 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1655 u64 seek_pages = 0;
1656 u64 cost = 0;
1657
1658 switch (bio_op(bio)) {
1659 case REQ_OP_READ:
1660 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
1661 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
1662 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
1663 break;
1664 case REQ_OP_WRITE:
1665 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
1666 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
1667 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
1668 break;
1669 default:
1670 goto out;
1671 }
1672
1673 if (iocg->cursor) {
1674 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1675 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1676 }
1677
1678 if (!is_merge) {
1679 if (seek_pages > LCOEF_RANDIO_PAGES) {
1680 cost += coef_randio;
1681 } else {
1682 cost += coef_seqio;
1683 }
1684 }
1685 cost += pages * coef_page;
1686 out:
1687 *costp = cost;
1688 }
1689
1690 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1691 {
1692 u64 cost;
1693
1694 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1695 return cost;
1696 }
1697
1698 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
1699 u64 *costp)
1700 {
1701 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
1702
1703 switch (req_op(rq)) {
1704 case REQ_OP_READ:
1705 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
1706 break;
1707 case REQ_OP_WRITE:
1708 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
1709 break;
1710 default:
1711 *costp = 0;
1712 }
1713 }
1714
1715 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
1716 {
1717 u64 cost;
1718
1719 calc_size_vtime_cost_builtin(rq, ioc, &cost);
1720 return cost;
1721 }
1722
1723 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1724 {
1725 struct blkcg_gq *blkg = bio->bi_blkg;
1726 struct ioc *ioc = rqos_to_ioc(rqos);
1727 struct ioc_gq *iocg = blkg_to_iocg(blkg);
1728 struct ioc_now now;
1729 struct iocg_wait wait;
1730 u32 hw_active, hw_inuse;
1731 u64 abs_cost, cost, vtime;
1732
1733 /* bypass IOs if disabled or for root cgroup */
1734 if (!ioc->enabled || !iocg->level)
1735 return;
1736
1737 /* always activate so that even 0 cost IOs get protected to some level */
1738 if (!iocg_activate(iocg, &now))
1739 return;
1740
1741 /* calculate the absolute vtime cost */
1742 abs_cost = calc_vtime_cost(bio, iocg, false);
1743 if (!abs_cost)
1744 return;
1745
1746 iocg->cursor = bio_end_sector(bio);
1747
1748 vtime = atomic64_read(&iocg->vtime);
1749 current_hweight(iocg, &hw_active, &hw_inuse);
1750
1751 if (hw_inuse < hw_active &&
1752 time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1753 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1754 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1755 spin_lock_irq(&ioc->lock);
1756 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1757 spin_unlock_irq(&ioc->lock);
1758 current_hweight(iocg, &hw_active, &hw_inuse);
1759 }
1760
1761 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1762
1763 /*
1764 * If no one's waiting and within budget, issue right away. The
1765 * tests are racy but the races aren't systemic - we only miss once
1766 * in a while which is fine.
1767 */
1768 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
1769 time_before_eq64(vtime + cost, now.vnow)) {
1770 iocg_commit_bio(iocg, bio, cost);
1771 return;
1772 }
1773
1774 /*
1775 * We activated above but w/o any synchronization. Deactivation is
1776 * synchronized with waitq.lock and we won't get deactivated as long
1777 * as we're waiting or has debt, so we're good if we're activated
1778 * here. In the unlikely case that we aren't, just issue the IO.
1779 */
1780 spin_lock_irq(&iocg->waitq.lock);
1781
1782 if (unlikely(list_empty(&iocg->active_list))) {
1783 spin_unlock_irq(&iocg->waitq.lock);
1784 iocg_commit_bio(iocg, bio, cost);
1785 return;
1786 }
1787
1788 /*
1789 * We're over budget. If @bio has to be issued regardless, remember
1790 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
1791 * off the debt before waking more IOs.
1792 *
1793 * This way, the debt is continuously paid off each period with the
1794 * actual budget available to the cgroup. If we just wound vtime, we
1795 * would incorrectly use the current hw_inuse for the entire amount
1796 * which, for example, can lead to the cgroup staying blocked for a
1797 * long time even with substantially raised hw_inuse.
1798 *
1799 * An iocg with vdebt should stay online so that the timer can keep
1800 * deducting its vdebt and [de]activate use_delay mechanism
1801 * accordingly. We don't want to race against the timer trying to
1802 * clear them and leave @iocg inactive w/ dangling use_delay heavily
1803 * penalizing the cgroup and its descendants.
1804 */
1805 if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1806 iocg->abs_vdebt += abs_cost;
1807 if (iocg_kick_delay(iocg, &now))
1808 blkcg_schedule_throttle(rqos->q,
1809 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
1810 spin_unlock_irq(&iocg->waitq.lock);
1811 return;
1812 }
1813
1814 /*
1815 * Append self to the waitq and schedule the wakeup timer if we're
1816 * the first waiter. The timer duration is calculated based on the
1817 * current vrate. vtime and hweight changes can make it too short
1818 * or too long. Each wait entry records the absolute cost it's
1819 * waiting for to allow re-evaluation using a custom wait entry.
1820 *
1821 * If too short, the timer simply reschedules itself. If too long,
1822 * the period timer will notice and trigger wakeups.
1823 *
1824 * All waiters are on iocg->waitq and the wait states are
1825 * synchronized using waitq.lock.
1826 */
1827 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1828 wait.wait.private = current;
1829 wait.bio = bio;
1830 wait.abs_cost = abs_cost;
1831 wait.committed = false; /* will be set true by waker */
1832
1833 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1834 iocg_kick_waitq(iocg, &now);
1835
1836 spin_unlock_irq(&iocg->waitq.lock);
1837
1838 while (true) {
1839 set_current_state(TASK_UNINTERRUPTIBLE);
1840 if (wait.committed)
1841 break;
1842 io_schedule();
1843 }
1844
1845 /* waker already committed us, proceed */
1846 finish_wait(&iocg->waitq, &wait.wait);
1847 }
1848
1849 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1850 struct bio *bio)
1851 {
1852 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1853 struct ioc *ioc = iocg->ioc;
1854 sector_t bio_end = bio_end_sector(bio);
1855 struct ioc_now now;
1856 u32 hw_inuse;
1857 u64 abs_cost, cost;
1858 unsigned long flags;
1859
1860 /* bypass if disabled or for root cgroup */
1861 if (!ioc->enabled || !iocg->level)
1862 return;
1863
1864 abs_cost = calc_vtime_cost(bio, iocg, true);
1865 if (!abs_cost)
1866 return;
1867
1868 ioc_now(ioc, &now);
1869 current_hweight(iocg, NULL, &hw_inuse);
1870 cost = abs_cost_to_cost(abs_cost, hw_inuse);
1871
1872 /* update cursor if backmerging into the request at the cursor */
1873 if (blk_rq_pos(rq) < bio_end &&
1874 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1875 iocg->cursor = bio_end;
1876
1877 /*
1878 * Charge if there's enough vtime budget and the existing request has
1879 * cost assigned.
1880 */
1881 if (rq->bio && rq->bio->bi_iocost_cost &&
1882 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
1883 iocg_commit_bio(iocg, bio, cost);
1884 return;
1885 }
1886
1887 /*
1888 * Otherwise, account it as debt if @iocg is online, which it should
1889 * be for the vast majority of cases. See debt handling in
1890 * ioc_rqos_throttle() for details.
1891 */
1892 spin_lock_irqsave(&iocg->waitq.lock, flags);
1893 if (likely(!list_empty(&iocg->active_list))) {
1894 iocg->abs_vdebt += abs_cost;
1895 iocg_kick_delay(iocg, &now);
1896 } else {
1897 iocg_commit_bio(iocg, bio, cost);
1898 }
1899 spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1900 }
1901
1902 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1903 {
1904 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1905
1906 if (iocg && bio->bi_iocost_cost)
1907 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1908 }
1909
1910 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1911 {
1912 struct ioc *ioc = rqos_to_ioc(rqos);
1913 struct ioc_pcpu_stat *ccs;
1914 u64 on_q_ns, rq_wait_ns, size_nsec;
1915 int pidx, rw;
1916
1917 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1918 return;
1919
1920 switch (req_op(rq) & REQ_OP_MASK) {
1921 case REQ_OP_READ:
1922 pidx = QOS_RLAT;
1923 rw = READ;
1924 break;
1925 case REQ_OP_WRITE:
1926 pidx = QOS_WLAT;
1927 rw = WRITE;
1928 break;
1929 default:
1930 return;
1931 }
1932
1933 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1934 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1935 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
1936
1937 ccs = get_cpu_ptr(ioc->pcpu_stat);
1938
1939 if (on_q_ns <= size_nsec ||
1940 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1941 local_inc(&ccs->missed[rw].nr_met);
1942 else
1943 local_inc(&ccs->missed[rw].nr_missed);
1944
1945 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
1946
1947 put_cpu_ptr(ccs);
1948 }
1949
1950 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1951 {
1952 struct ioc *ioc = rqos_to_ioc(rqos);
1953
1954 spin_lock_irq(&ioc->lock);
1955 ioc_refresh_params(ioc, false);
1956 spin_unlock_irq(&ioc->lock);
1957 }
1958
1959 static void ioc_rqos_exit(struct rq_qos *rqos)
1960 {
1961 struct ioc *ioc = rqos_to_ioc(rqos);
1962
1963 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1964
1965 spin_lock_irq(&ioc->lock);
1966 ioc->running = IOC_STOP;
1967 spin_unlock_irq(&ioc->lock);
1968
1969 del_timer_sync(&ioc->timer);
1970 free_percpu(ioc->pcpu_stat);
1971 kfree(ioc);
1972 }
1973
1974 static struct rq_qos_ops ioc_rqos_ops = {
1975 .throttle = ioc_rqos_throttle,
1976 .merge = ioc_rqos_merge,
1977 .done_bio = ioc_rqos_done_bio,
1978 .done = ioc_rqos_done,
1979 .queue_depth_changed = ioc_rqos_queue_depth_changed,
1980 .exit = ioc_rqos_exit,
1981 };
1982
1983 static int blk_iocost_init(struct request_queue *q)
1984 {
1985 struct ioc *ioc;
1986 struct rq_qos *rqos;
1987 int i, cpu, ret;
1988
1989 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1990 if (!ioc)
1991 return -ENOMEM;
1992
1993 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1994 if (!ioc->pcpu_stat) {
1995 kfree(ioc);
1996 return -ENOMEM;
1997 }
1998
1999 for_each_possible_cpu(cpu) {
2000 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2001
2002 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2003 local_set(&ccs->missed[i].nr_met, 0);
2004 local_set(&ccs->missed[i].nr_missed, 0);
2005 }
2006 local64_set(&ccs->rq_wait_ns, 0);
2007 }
2008
2009 rqos = &ioc->rqos;
2010 rqos->id = RQ_QOS_COST;
2011 rqos->ops = &ioc_rqos_ops;
2012 rqos->q = q;
2013
2014 spin_lock_init(&ioc->lock);
2015 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2016 INIT_LIST_HEAD(&ioc->active_iocgs);
2017
2018 ioc->running = IOC_IDLE;
2019 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2020 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2021 ioc->period_at = ktime_to_us(ktime_get());
2022 atomic64_set(&ioc->cur_period, 0);
2023 atomic_set(&ioc->hweight_gen, 0);
2024
2025 spin_lock_irq(&ioc->lock);
2026 ioc->autop_idx = AUTOP_INVALID;
2027 ioc_refresh_params(ioc, true);
2028 spin_unlock_irq(&ioc->lock);
2029
2030 rq_qos_add(q, rqos);
2031 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2032 if (ret) {
2033 rq_qos_del(q, rqos);
2034 free_percpu(ioc->pcpu_stat);
2035 kfree(ioc);
2036 return ret;
2037 }
2038 return 0;
2039 }
2040
2041 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2042 {
2043 struct ioc_cgrp *iocc;
2044
2045 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2046 if (!iocc)
2047 return NULL;
2048
2049 iocc->dfl_weight = CGROUP_WEIGHT_DFL;
2050 return &iocc->cpd;
2051 }
2052
2053 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2054 {
2055 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2056 }
2057
2058 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2059 struct blkcg *blkcg)
2060 {
2061 int levels = blkcg->css.cgroup->level + 1;
2062 struct ioc_gq *iocg;
2063
2064 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2065 if (!iocg)
2066 return NULL;
2067
2068 return &iocg->pd;
2069 }
2070
2071 static void ioc_pd_init(struct blkg_policy_data *pd)
2072 {
2073 struct ioc_gq *iocg = pd_to_iocg(pd);
2074 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2075 struct ioc *ioc = q_to_ioc(blkg->q);
2076 struct ioc_now now;
2077 struct blkcg_gq *tblkg;
2078 unsigned long flags;
2079
2080 ioc_now(ioc, &now);
2081
2082 iocg->ioc = ioc;
2083 atomic64_set(&iocg->vtime, now.vnow);
2084 atomic64_set(&iocg->done_vtime, now.vnow);
2085 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2086 INIT_LIST_HEAD(&iocg->active_list);
2087 iocg->hweight_active = HWEIGHT_WHOLE;
2088 iocg->hweight_inuse = HWEIGHT_WHOLE;
2089
2090 init_waitqueue_head(&iocg->waitq);
2091 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2092 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2093 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2094 iocg->delay_timer.function = iocg_delay_timer_fn;
2095
2096 iocg->level = blkg->blkcg->css.cgroup->level;
2097
2098 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2099 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2100 iocg->ancestors[tiocg->level] = tiocg;
2101 }
2102
2103 spin_lock_irqsave(&ioc->lock, flags);
2104 weight_updated(iocg);
2105 spin_unlock_irqrestore(&ioc->lock, flags);
2106 }
2107
2108 static void ioc_pd_free(struct blkg_policy_data *pd)
2109 {
2110 struct ioc_gq *iocg = pd_to_iocg(pd);
2111 struct ioc *ioc = iocg->ioc;
2112 unsigned long flags;
2113
2114 if (ioc) {
2115 spin_lock_irqsave(&ioc->lock, flags);
2116 if (!list_empty(&iocg->active_list)) {
2117 propagate_active_weight(iocg, 0, 0);
2118 list_del_init(&iocg->active_list);
2119 }
2120 spin_unlock_irqrestore(&ioc->lock, flags);
2121
2122 hrtimer_cancel(&iocg->waitq_timer);
2123 hrtimer_cancel(&iocg->delay_timer);
2124 }
2125 kfree(iocg);
2126 }
2127
2128 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2129 int off)
2130 {
2131 const char *dname = blkg_dev_name(pd->blkg);
2132 struct ioc_gq *iocg = pd_to_iocg(pd);
2133
2134 if (dname && iocg->cfg_weight)
2135 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2136 return 0;
2137 }
2138
2139
2140 static int ioc_weight_show(struct seq_file *sf, void *v)
2141 {
2142 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2143 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2144
2145 seq_printf(sf, "default %u\n", iocc->dfl_weight);
2146 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2147 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2148 return 0;
2149 }
2150
2151 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2152 size_t nbytes, loff_t off)
2153 {
2154 struct blkcg *blkcg = css_to_blkcg(of_css(of));
2155 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2156 struct blkg_conf_ctx ctx;
2157 struct ioc_gq *iocg;
2158 u32 v;
2159 int ret;
2160
2161 if (!strchr(buf, ':')) {
2162 struct blkcg_gq *blkg;
2163
2164 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2165 return -EINVAL;
2166
2167 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2168 return -EINVAL;
2169
2170 spin_lock(&blkcg->lock);
2171 iocc->dfl_weight = v;
2172 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2173 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2174
2175 if (iocg) {
2176 spin_lock_irq(&iocg->ioc->lock);
2177 weight_updated(iocg);
2178 spin_unlock_irq(&iocg->ioc->lock);
2179 }
2180 }
2181 spin_unlock(&blkcg->lock);
2182
2183 return nbytes;
2184 }
2185
2186 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2187 if (ret)
2188 return ret;
2189
2190 iocg = blkg_to_iocg(ctx.blkg);
2191
2192 if (!strncmp(ctx.body, "default", 7)) {
2193 v = 0;
2194 } else {
2195 if (!sscanf(ctx.body, "%u", &v))
2196 goto einval;
2197 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2198 goto einval;
2199 }
2200
2201 spin_lock(&iocg->ioc->lock);
2202 iocg->cfg_weight = v;
2203 weight_updated(iocg);
2204 spin_unlock(&iocg->ioc->lock);
2205
2206 blkg_conf_finish(&ctx);
2207 return nbytes;
2208
2209 einval:
2210 blkg_conf_finish(&ctx);
2211 return -EINVAL;
2212 }
2213
2214 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2215 int off)
2216 {
2217 const char *dname = blkg_dev_name(pd->blkg);
2218 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2219
2220 if (!dname)
2221 return 0;
2222
2223 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2224 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2225 ioc->params.qos[QOS_RPPM] / 10000,
2226 ioc->params.qos[QOS_RPPM] % 10000 / 100,
2227 ioc->params.qos[QOS_RLAT],
2228 ioc->params.qos[QOS_WPPM] / 10000,
2229 ioc->params.qos[QOS_WPPM] % 10000 / 100,
2230 ioc->params.qos[QOS_WLAT],
2231 ioc->params.qos[QOS_MIN] / 10000,
2232 ioc->params.qos[QOS_MIN] % 10000 / 100,
2233 ioc->params.qos[QOS_MAX] / 10000,
2234 ioc->params.qos[QOS_MAX] % 10000 / 100);
2235 return 0;
2236 }
2237
2238 static int ioc_qos_show(struct seq_file *sf, void *v)
2239 {
2240 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2241
2242 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2243 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2244 return 0;
2245 }
2246
2247 static const match_table_t qos_ctrl_tokens = {
2248 { QOS_ENABLE, "enable=%u" },
2249 { QOS_CTRL, "ctrl=%s" },
2250 { NR_QOS_CTRL_PARAMS, NULL },
2251 };
2252
2253 static const match_table_t qos_tokens = {
2254 { QOS_RPPM, "rpct=%s" },
2255 { QOS_RLAT, "rlat=%u" },
2256 { QOS_WPPM, "wpct=%s" },
2257 { QOS_WLAT, "wlat=%u" },
2258 { QOS_MIN, "min=%s" },
2259 { QOS_MAX, "max=%s" },
2260 { NR_QOS_PARAMS, NULL },
2261 };
2262
2263 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2264 size_t nbytes, loff_t off)
2265 {
2266 struct gendisk *disk;
2267 struct ioc *ioc;
2268 u32 qos[NR_QOS_PARAMS];
2269 bool enable, user;
2270 char *p;
2271 int ret;
2272
2273 disk = blkcg_conf_get_disk(&input);
2274 if (IS_ERR(disk))
2275 return PTR_ERR(disk);
2276
2277 ioc = q_to_ioc(disk->queue);
2278 if (!ioc) {
2279 ret = blk_iocost_init(disk->queue);
2280 if (ret)
2281 goto err;
2282 ioc = q_to_ioc(disk->queue);
2283 }
2284
2285 spin_lock_irq(&ioc->lock);
2286 memcpy(qos, ioc->params.qos, sizeof(qos));
2287 enable = ioc->enabled;
2288 user = ioc->user_qos_params;
2289 spin_unlock_irq(&ioc->lock);
2290
2291 while ((p = strsep(&input, " \t\n"))) {
2292 substring_t args[MAX_OPT_ARGS];
2293 char buf[32];
2294 int tok;
2295 s64 v;
2296
2297 if (!*p)
2298 continue;
2299
2300 switch (match_token(p, qos_ctrl_tokens, args)) {
2301 case QOS_ENABLE:
2302 match_u64(&args[0], &v);
2303 enable = v;
2304 continue;
2305 case QOS_CTRL:
2306 match_strlcpy(buf, &args[0], sizeof(buf));
2307 if (!strcmp(buf, "auto"))
2308 user = false;
2309 else if (!strcmp(buf, "user"))
2310 user = true;
2311 else
2312 goto einval;
2313 continue;
2314 }
2315
2316 tok = match_token(p, qos_tokens, args);
2317 switch (tok) {
2318 case QOS_RPPM:
2319 case QOS_WPPM:
2320 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2321 sizeof(buf))
2322 goto einval;
2323 if (cgroup_parse_float(buf, 2, &v))
2324 goto einval;
2325 if (v < 0 || v > 10000)
2326 goto einval;
2327 qos[tok] = v * 100;
2328 break;
2329 case QOS_RLAT:
2330 case QOS_WLAT:
2331 if (match_u64(&args[0], &v))
2332 goto einval;
2333 qos[tok] = v;
2334 break;
2335 case QOS_MIN:
2336 case QOS_MAX:
2337 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2338 sizeof(buf))
2339 goto einval;
2340 if (cgroup_parse_float(buf, 2, &v))
2341 goto einval;
2342 if (v < 0)
2343 goto einval;
2344 qos[tok] = clamp_t(s64, v * 100,
2345 VRATE_MIN_PPM, VRATE_MAX_PPM);
2346 break;
2347 default:
2348 goto einval;
2349 }
2350 user = true;
2351 }
2352
2353 if (qos[QOS_MIN] > qos[QOS_MAX])
2354 goto einval;
2355
2356 spin_lock_irq(&ioc->lock);
2357
2358 if (enable) {
2359 blk_stat_enable_accounting(ioc->rqos.q);
2360 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2361 ioc->enabled = true;
2362 } else {
2363 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2364 ioc->enabled = false;
2365 }
2366
2367 if (user) {
2368 memcpy(ioc->params.qos, qos, sizeof(qos));
2369 ioc->user_qos_params = true;
2370 } else {
2371 ioc->user_qos_params = false;
2372 }
2373
2374 ioc_refresh_params(ioc, true);
2375 spin_unlock_irq(&ioc->lock);
2376
2377 put_disk_and_module(disk);
2378 return nbytes;
2379 einval:
2380 ret = -EINVAL;
2381 err:
2382 put_disk_and_module(disk);
2383 return ret;
2384 }
2385
2386 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2387 struct blkg_policy_data *pd, int off)
2388 {
2389 const char *dname = blkg_dev_name(pd->blkg);
2390 struct ioc *ioc = pd_to_iocg(pd)->ioc;
2391 u64 *u = ioc->params.i_lcoefs;
2392
2393 if (!dname)
2394 return 0;
2395
2396 seq_printf(sf, "%s ctrl=%s model=linear "
2397 "rbps=%llu rseqiops=%llu rrandiops=%llu "
2398 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2399 dname, ioc->user_cost_model ? "user" : "auto",
2400 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2401 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2402 return 0;
2403 }
2404
2405 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2406 {
2407 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2408
2409 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2410 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2411 return 0;
2412 }
2413
2414 static const match_table_t cost_ctrl_tokens = {
2415 { COST_CTRL, "ctrl=%s" },
2416 { COST_MODEL, "model=%s" },
2417 { NR_COST_CTRL_PARAMS, NULL },
2418 };
2419
2420 static const match_table_t i_lcoef_tokens = {
2421 { I_LCOEF_RBPS, "rbps=%u" },
2422 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
2423 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
2424 { I_LCOEF_WBPS, "wbps=%u" },
2425 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
2426 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
2427 { NR_I_LCOEFS, NULL },
2428 };
2429
2430 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2431 size_t nbytes, loff_t off)
2432 {
2433 struct gendisk *disk;
2434 struct ioc *ioc;
2435 u64 u[NR_I_LCOEFS];
2436 bool user;
2437 char *p;
2438 int ret;
2439
2440 disk = blkcg_conf_get_disk(&input);
2441 if (IS_ERR(disk))
2442 return PTR_ERR(disk);
2443
2444 ioc = q_to_ioc(disk->queue);
2445 if (!ioc) {
2446 ret = blk_iocost_init(disk->queue);
2447 if (ret)
2448 goto err;
2449 ioc = q_to_ioc(disk->queue);
2450 }
2451
2452 spin_lock_irq(&ioc->lock);
2453 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2454 user = ioc->user_cost_model;
2455 spin_unlock_irq(&ioc->lock);
2456
2457 while ((p = strsep(&input, " \t\n"))) {
2458 substring_t args[MAX_OPT_ARGS];
2459 char buf[32];
2460 int tok;
2461 u64 v;
2462
2463 if (!*p)
2464 continue;
2465
2466 switch (match_token(p, cost_ctrl_tokens, args)) {
2467 case COST_CTRL:
2468 match_strlcpy(buf, &args[0], sizeof(buf));
2469 if (!strcmp(buf, "auto"))
2470 user = false;
2471 else if (!strcmp(buf, "user"))
2472 user = true;
2473 else
2474 goto einval;
2475 continue;
2476 case COST_MODEL:
2477 match_strlcpy(buf, &args[0], sizeof(buf));
2478 if (strcmp(buf, "linear"))
2479 goto einval;
2480 continue;
2481 }
2482
2483 tok = match_token(p, i_lcoef_tokens, args);
2484 if (tok == NR_I_LCOEFS)
2485 goto einval;
2486 if (match_u64(&args[0], &v))
2487 goto einval;
2488 u[tok] = v;
2489 user = true;
2490 }
2491
2492 spin_lock_irq(&ioc->lock);
2493 if (user) {
2494 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2495 ioc->user_cost_model = true;
2496 } else {
2497 ioc->user_cost_model = false;
2498 }
2499 ioc_refresh_params(ioc, true);
2500 spin_unlock_irq(&ioc->lock);
2501
2502 put_disk_and_module(disk);
2503 return nbytes;
2504
2505 einval:
2506 ret = -EINVAL;
2507 err:
2508 put_disk_and_module(disk);
2509 return ret;
2510 }
2511
2512 static struct cftype ioc_files[] = {
2513 {
2514 .name = "weight",
2515 .flags = CFTYPE_NOT_ON_ROOT,
2516 .seq_show = ioc_weight_show,
2517 .write = ioc_weight_write,
2518 },
2519 {
2520 .name = "cost.qos",
2521 .flags = CFTYPE_ONLY_ON_ROOT,
2522 .seq_show = ioc_qos_show,
2523 .write = ioc_qos_write,
2524 },
2525 {
2526 .name = "cost.model",
2527 .flags = CFTYPE_ONLY_ON_ROOT,
2528 .seq_show = ioc_cost_model_show,
2529 .write = ioc_cost_model_write,
2530 },
2531 {}
2532 };
2533
2534 static struct blkcg_policy blkcg_policy_iocost = {
2535 .dfl_cftypes = ioc_files,
2536 .cpd_alloc_fn = ioc_cpd_alloc,
2537 .cpd_free_fn = ioc_cpd_free,
2538 .pd_alloc_fn = ioc_pd_alloc,
2539 .pd_init_fn = ioc_pd_init,
2540 .pd_free_fn = ioc_pd_free,
2541 };
2542
2543 static int __init ioc_init(void)
2544 {
2545 return blkcg_policy_register(&blkcg_policy_iocost);
2546 }
2547
2548 static void __exit ioc_exit(void)
2549 {
2550 return blkcg_policy_unregister(&blkcg_policy_iocost);
2551 }
2552
2553 module_init(ioc_init);
2554 module_exit(ioc_exit);