]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-merge.c
Merge tag 'nfs-for-5.1-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-jammy-kernel.git] / block / blk-merge.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10
11 #include <trace/events/block.h>
12
13 #include "blk.h"
14
15 /*
16 * Check if the two bvecs from two bios can be merged to one segment. If yes,
17 * no need to check gap between the two bios since the 1st bio and the 1st bvec
18 * in the 2nd bio can be handled in one segment.
19 */
20 static inline bool bios_segs_mergeable(struct request_queue *q,
21 struct bio *prev, struct bio_vec *prev_last_bv,
22 struct bio_vec *next_first_bv)
23 {
24 if (!biovec_phys_mergeable(q, prev_last_bv, next_first_bv))
25 return false;
26 if (prev->bi_seg_back_size + next_first_bv->bv_len >
27 queue_max_segment_size(q))
28 return false;
29 return true;
30 }
31
32 static inline bool bio_will_gap(struct request_queue *q,
33 struct request *prev_rq, struct bio *prev, struct bio *next)
34 {
35 struct bio_vec pb, nb;
36
37 if (!bio_has_data(prev) || !queue_virt_boundary(q))
38 return false;
39
40 /*
41 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
42 * is quite difficult to respect the sg gap limit. We work hard to
43 * merge a huge number of small single bios in case of mkfs.
44 */
45 if (prev_rq)
46 bio_get_first_bvec(prev_rq->bio, &pb);
47 else
48 bio_get_first_bvec(prev, &pb);
49 if (pb.bv_offset & queue_virt_boundary(q))
50 return true;
51
52 /*
53 * We don't need to worry about the situation that the merged segment
54 * ends in unaligned virt boundary:
55 *
56 * - if 'pb' ends aligned, the merged segment ends aligned
57 * - if 'pb' ends unaligned, the next bio must include
58 * one single bvec of 'nb', otherwise the 'nb' can't
59 * merge with 'pb'
60 */
61 bio_get_last_bvec(prev, &pb);
62 bio_get_first_bvec(next, &nb);
63 if (bios_segs_mergeable(q, prev, &pb, &nb))
64 return false;
65 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
66 }
67
68 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
69 {
70 return bio_will_gap(req->q, req, req->biotail, bio);
71 }
72
73 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
74 {
75 return bio_will_gap(req->q, NULL, bio, req->bio);
76 }
77
78 static struct bio *blk_bio_discard_split(struct request_queue *q,
79 struct bio *bio,
80 struct bio_set *bs,
81 unsigned *nsegs)
82 {
83 unsigned int max_discard_sectors, granularity;
84 int alignment;
85 sector_t tmp;
86 unsigned split_sectors;
87
88 *nsegs = 1;
89
90 /* Zero-sector (unknown) and one-sector granularities are the same. */
91 granularity = max(q->limits.discard_granularity >> 9, 1U);
92
93 max_discard_sectors = min(q->limits.max_discard_sectors,
94 bio_allowed_max_sectors(q));
95 max_discard_sectors -= max_discard_sectors % granularity;
96
97 if (unlikely(!max_discard_sectors)) {
98 /* XXX: warn */
99 return NULL;
100 }
101
102 if (bio_sectors(bio) <= max_discard_sectors)
103 return NULL;
104
105 split_sectors = max_discard_sectors;
106
107 /*
108 * If the next starting sector would be misaligned, stop the discard at
109 * the previous aligned sector.
110 */
111 alignment = (q->limits.discard_alignment >> 9) % granularity;
112
113 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
114 tmp = sector_div(tmp, granularity);
115
116 if (split_sectors > tmp)
117 split_sectors -= tmp;
118
119 return bio_split(bio, split_sectors, GFP_NOIO, bs);
120 }
121
122 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
123 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
124 {
125 *nsegs = 1;
126
127 if (!q->limits.max_write_zeroes_sectors)
128 return NULL;
129
130 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
131 return NULL;
132
133 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
134 }
135
136 static struct bio *blk_bio_write_same_split(struct request_queue *q,
137 struct bio *bio,
138 struct bio_set *bs,
139 unsigned *nsegs)
140 {
141 *nsegs = 1;
142
143 if (!q->limits.max_write_same_sectors)
144 return NULL;
145
146 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
147 return NULL;
148
149 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
150 }
151
152 static inline unsigned get_max_io_size(struct request_queue *q,
153 struct bio *bio)
154 {
155 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
156 unsigned mask = queue_logical_block_size(q) - 1;
157
158 /* aligned to logical block size */
159 sectors &= ~(mask >> 9);
160
161 return sectors;
162 }
163
164 static unsigned get_max_segment_size(struct request_queue *q,
165 unsigned offset)
166 {
167 unsigned long mask = queue_segment_boundary(q);
168
169 /* default segment boundary mask means no boundary limit */
170 if (mask == BLK_SEG_BOUNDARY_MASK)
171 return queue_max_segment_size(q);
172
173 return min_t(unsigned long, mask - (mask & offset) + 1,
174 queue_max_segment_size(q));
175 }
176
177 /*
178 * Split the bvec @bv into segments, and update all kinds of
179 * variables.
180 */
181 static bool bvec_split_segs(struct request_queue *q, struct bio_vec *bv,
182 unsigned *nsegs, unsigned *last_seg_size,
183 unsigned *front_seg_size, unsigned *sectors)
184 {
185 unsigned len = bv->bv_len;
186 unsigned total_len = 0;
187 unsigned new_nsegs = 0, seg_size = 0;
188
189 /*
190 * Multi-page bvec may be too big to hold in one segment, so the
191 * current bvec has to be splitted as multiple segments.
192 */
193 while (len && new_nsegs + *nsegs < queue_max_segments(q)) {
194 seg_size = get_max_segment_size(q, bv->bv_offset + total_len);
195 seg_size = min(seg_size, len);
196
197 new_nsegs++;
198 total_len += seg_size;
199 len -= seg_size;
200
201 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
202 break;
203 }
204
205 if (!new_nsegs)
206 return !!len;
207
208 /* update front segment size */
209 if (!*nsegs) {
210 unsigned first_seg_size;
211
212 if (new_nsegs == 1)
213 first_seg_size = get_max_segment_size(q, bv->bv_offset);
214 else
215 first_seg_size = queue_max_segment_size(q);
216
217 if (*front_seg_size < first_seg_size)
218 *front_seg_size = first_seg_size;
219 }
220
221 /* update other varibles */
222 *last_seg_size = seg_size;
223 *nsegs += new_nsegs;
224 if (sectors)
225 *sectors += total_len >> 9;
226
227 /* split in the middle of the bvec if len != 0 */
228 return !!len;
229 }
230
231 static struct bio *blk_bio_segment_split(struct request_queue *q,
232 struct bio *bio,
233 struct bio_set *bs,
234 unsigned *segs)
235 {
236 struct bio_vec bv, bvprv, *bvprvp = NULL;
237 struct bvec_iter iter;
238 unsigned seg_size = 0, nsegs = 0, sectors = 0;
239 unsigned front_seg_size = bio->bi_seg_front_size;
240 bool do_split = true;
241 struct bio *new = NULL;
242 const unsigned max_sectors = get_max_io_size(q, bio);
243
244 bio_for_each_bvec(bv, bio, iter) {
245 /*
246 * If the queue doesn't support SG gaps and adding this
247 * offset would create a gap, disallow it.
248 */
249 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
250 goto split;
251
252 if (sectors + (bv.bv_len >> 9) > max_sectors) {
253 /*
254 * Consider this a new segment if we're splitting in
255 * the middle of this vector.
256 */
257 if (nsegs < queue_max_segments(q) &&
258 sectors < max_sectors) {
259 /* split in the middle of bvec */
260 bv.bv_len = (max_sectors - sectors) << 9;
261 bvec_split_segs(q, &bv, &nsegs,
262 &seg_size,
263 &front_seg_size,
264 &sectors);
265 }
266 goto split;
267 }
268
269 if (bvprvp) {
270 if (seg_size + bv.bv_len > queue_max_segment_size(q))
271 goto new_segment;
272 if (!biovec_phys_mergeable(q, bvprvp, &bv))
273 goto new_segment;
274
275 seg_size += bv.bv_len;
276 bvprv = bv;
277 bvprvp = &bvprv;
278 sectors += bv.bv_len >> 9;
279
280 if (nsegs == 1 && seg_size > front_seg_size)
281 front_seg_size = seg_size;
282
283 continue;
284 }
285 new_segment:
286 if (nsegs == queue_max_segments(q))
287 goto split;
288
289 bvprv = bv;
290 bvprvp = &bvprv;
291
292 if (bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
293 nsegs++;
294 seg_size = bv.bv_len;
295 sectors += bv.bv_len >> 9;
296 if (nsegs == 1 && seg_size > front_seg_size)
297 front_seg_size = seg_size;
298 } else if (bvec_split_segs(q, &bv, &nsegs, &seg_size,
299 &front_seg_size, &sectors)) {
300 goto split;
301 }
302 }
303
304 do_split = false;
305 split:
306 *segs = nsegs;
307
308 if (do_split) {
309 new = bio_split(bio, sectors, GFP_NOIO, bs);
310 if (new)
311 bio = new;
312 }
313
314 bio->bi_seg_front_size = front_seg_size;
315 if (seg_size > bio->bi_seg_back_size)
316 bio->bi_seg_back_size = seg_size;
317
318 return do_split ? new : NULL;
319 }
320
321 void blk_queue_split(struct request_queue *q, struct bio **bio)
322 {
323 struct bio *split, *res;
324 unsigned nsegs;
325
326 switch (bio_op(*bio)) {
327 case REQ_OP_DISCARD:
328 case REQ_OP_SECURE_ERASE:
329 split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs);
330 break;
331 case REQ_OP_WRITE_ZEROES:
332 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs);
333 break;
334 case REQ_OP_WRITE_SAME:
335 split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs);
336 break;
337 default:
338 split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs);
339 break;
340 }
341
342 /* physical segments can be figured out during splitting */
343 res = split ? split : *bio;
344 res->bi_phys_segments = nsegs;
345 bio_set_flag(res, BIO_SEG_VALID);
346
347 if (split) {
348 /* there isn't chance to merge the splitted bio */
349 split->bi_opf |= REQ_NOMERGE;
350
351 /*
352 * Since we're recursing into make_request here, ensure
353 * that we mark this bio as already having entered the queue.
354 * If not, and the queue is going away, we can get stuck
355 * forever on waiting for the queue reference to drop. But
356 * that will never happen, as we're already holding a
357 * reference to it.
358 */
359 bio_set_flag(*bio, BIO_QUEUE_ENTERED);
360
361 bio_chain(split, *bio);
362 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
363 generic_make_request(*bio);
364 *bio = split;
365 }
366 }
367 EXPORT_SYMBOL(blk_queue_split);
368
369 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
370 struct bio *bio)
371 {
372 struct bio_vec bv, bvprv = { NULL };
373 int prev = 0;
374 unsigned int seg_size, nr_phys_segs;
375 unsigned front_seg_size;
376 struct bio *fbio, *bbio;
377 struct bvec_iter iter;
378
379 if (!bio)
380 return 0;
381
382 front_seg_size = bio->bi_seg_front_size;
383
384 switch (bio_op(bio)) {
385 case REQ_OP_DISCARD:
386 case REQ_OP_SECURE_ERASE:
387 case REQ_OP_WRITE_ZEROES:
388 return 0;
389 case REQ_OP_WRITE_SAME:
390 return 1;
391 }
392
393 fbio = bio;
394 seg_size = 0;
395 nr_phys_segs = 0;
396 for_each_bio(bio) {
397 bio_for_each_bvec(bv, bio, iter) {
398 if (prev) {
399 if (seg_size + bv.bv_len
400 > queue_max_segment_size(q))
401 goto new_segment;
402 if (!biovec_phys_mergeable(q, &bvprv, &bv))
403 goto new_segment;
404
405 seg_size += bv.bv_len;
406 bvprv = bv;
407
408 if (nr_phys_segs == 1 && seg_size >
409 front_seg_size)
410 front_seg_size = seg_size;
411
412 continue;
413 }
414 new_segment:
415 bvprv = bv;
416 prev = 1;
417 bvec_split_segs(q, &bv, &nr_phys_segs, &seg_size,
418 &front_seg_size, NULL);
419 }
420 bbio = bio;
421 }
422
423 fbio->bi_seg_front_size = front_seg_size;
424 if (seg_size > bbio->bi_seg_back_size)
425 bbio->bi_seg_back_size = seg_size;
426
427 return nr_phys_segs;
428 }
429
430 void blk_recalc_rq_segments(struct request *rq)
431 {
432 rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio);
433 }
434
435 void blk_recount_segments(struct request_queue *q, struct bio *bio)
436 {
437 struct bio *nxt = bio->bi_next;
438
439 bio->bi_next = NULL;
440 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio);
441 bio->bi_next = nxt;
442
443 bio_set_flag(bio, BIO_SEG_VALID);
444 }
445
446 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
447 struct bio *nxt)
448 {
449 struct bio_vec end_bv = { NULL }, nxt_bv;
450
451 if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
452 queue_max_segment_size(q))
453 return 0;
454
455 if (!bio_has_data(bio))
456 return 1;
457
458 bio_get_last_bvec(bio, &end_bv);
459 bio_get_first_bvec(nxt, &nxt_bv);
460
461 return biovec_phys_mergeable(q, &end_bv, &nxt_bv);
462 }
463
464 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
465 struct scatterlist *sglist)
466 {
467 if (!*sg)
468 return sglist;
469
470 /*
471 * If the driver previously mapped a shorter list, we could see a
472 * termination bit prematurely unless it fully inits the sg table
473 * on each mapping. We KNOW that there must be more entries here
474 * or the driver would be buggy, so force clear the termination bit
475 * to avoid doing a full sg_init_table() in drivers for each command.
476 */
477 sg_unmark_end(*sg);
478 return sg_next(*sg);
479 }
480
481 static unsigned blk_bvec_map_sg(struct request_queue *q,
482 struct bio_vec *bvec, struct scatterlist *sglist,
483 struct scatterlist **sg)
484 {
485 unsigned nbytes = bvec->bv_len;
486 unsigned nsegs = 0, total = 0, offset = 0;
487
488 while (nbytes > 0) {
489 unsigned seg_size;
490 struct page *pg;
491 unsigned idx;
492
493 *sg = blk_next_sg(sg, sglist);
494
495 seg_size = get_max_segment_size(q, bvec->bv_offset + total);
496 seg_size = min(nbytes, seg_size);
497
498 offset = (total + bvec->bv_offset) % PAGE_SIZE;
499 idx = (total + bvec->bv_offset) / PAGE_SIZE;
500 pg = bvec_nth_page(bvec->bv_page, idx);
501
502 sg_set_page(*sg, pg, seg_size, offset);
503
504 total += seg_size;
505 nbytes -= seg_size;
506 nsegs++;
507 }
508
509 return nsegs;
510 }
511
512 static inline void
513 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
514 struct scatterlist *sglist, struct bio_vec *bvprv,
515 struct scatterlist **sg, int *nsegs)
516 {
517
518 int nbytes = bvec->bv_len;
519
520 if (*sg) {
521 if ((*sg)->length + nbytes > queue_max_segment_size(q))
522 goto new_segment;
523 if (!biovec_phys_mergeable(q, bvprv, bvec))
524 goto new_segment;
525
526 (*sg)->length += nbytes;
527 } else {
528 new_segment:
529 if (bvec->bv_offset + bvec->bv_len <= PAGE_SIZE) {
530 *sg = blk_next_sg(sg, sglist);
531 sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
532 (*nsegs) += 1;
533 } else
534 (*nsegs) += blk_bvec_map_sg(q, bvec, sglist, sg);
535 }
536 *bvprv = *bvec;
537 }
538
539 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
540 struct scatterlist *sglist, struct scatterlist **sg)
541 {
542 *sg = sglist;
543 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
544 return 1;
545 }
546
547 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
548 struct scatterlist *sglist,
549 struct scatterlist **sg)
550 {
551 struct bio_vec bvec, bvprv = { NULL };
552 struct bvec_iter iter;
553 int nsegs = 0;
554
555 for_each_bio(bio)
556 bio_for_each_bvec(bvec, bio, iter)
557 __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
558 &nsegs);
559
560 return nsegs;
561 }
562
563 /*
564 * map a request to scatterlist, return number of sg entries setup. Caller
565 * must make sure sg can hold rq->nr_phys_segments entries
566 */
567 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
568 struct scatterlist *sglist)
569 {
570 struct scatterlist *sg = NULL;
571 int nsegs = 0;
572
573 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
574 nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
575 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
576 nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
577 else if (rq->bio)
578 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
579
580 if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
581 (blk_rq_bytes(rq) & q->dma_pad_mask)) {
582 unsigned int pad_len =
583 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
584
585 sg->length += pad_len;
586 rq->extra_len += pad_len;
587 }
588
589 if (q->dma_drain_size && q->dma_drain_needed(rq)) {
590 if (op_is_write(req_op(rq)))
591 memset(q->dma_drain_buffer, 0, q->dma_drain_size);
592
593 sg_unmark_end(sg);
594 sg = sg_next(sg);
595 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
596 q->dma_drain_size,
597 ((unsigned long)q->dma_drain_buffer) &
598 (PAGE_SIZE - 1));
599 nsegs++;
600 rq->extra_len += q->dma_drain_size;
601 }
602
603 if (sg)
604 sg_mark_end(sg);
605
606 /*
607 * Something must have been wrong if the figured number of
608 * segment is bigger than number of req's physical segments
609 */
610 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
611
612 return nsegs;
613 }
614 EXPORT_SYMBOL(blk_rq_map_sg);
615
616 static inline int ll_new_hw_segment(struct request_queue *q,
617 struct request *req,
618 struct bio *bio)
619 {
620 int nr_phys_segs = bio_phys_segments(q, bio);
621
622 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
623 goto no_merge;
624
625 if (blk_integrity_merge_bio(q, req, bio) == false)
626 goto no_merge;
627
628 /*
629 * This will form the start of a new hw segment. Bump both
630 * counters.
631 */
632 req->nr_phys_segments += nr_phys_segs;
633 return 1;
634
635 no_merge:
636 req_set_nomerge(q, req);
637 return 0;
638 }
639
640 int ll_back_merge_fn(struct request_queue *q, struct request *req,
641 struct bio *bio)
642 {
643 if (req_gap_back_merge(req, bio))
644 return 0;
645 if (blk_integrity_rq(req) &&
646 integrity_req_gap_back_merge(req, bio))
647 return 0;
648 if (blk_rq_sectors(req) + bio_sectors(bio) >
649 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
650 req_set_nomerge(q, req);
651 return 0;
652 }
653 if (!bio_flagged(req->biotail, BIO_SEG_VALID))
654 blk_recount_segments(q, req->biotail);
655 if (!bio_flagged(bio, BIO_SEG_VALID))
656 blk_recount_segments(q, bio);
657
658 return ll_new_hw_segment(q, req, bio);
659 }
660
661 int ll_front_merge_fn(struct request_queue *q, struct request *req,
662 struct bio *bio)
663 {
664
665 if (req_gap_front_merge(req, bio))
666 return 0;
667 if (blk_integrity_rq(req) &&
668 integrity_req_gap_front_merge(req, bio))
669 return 0;
670 if (blk_rq_sectors(req) + bio_sectors(bio) >
671 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
672 req_set_nomerge(q, req);
673 return 0;
674 }
675 if (!bio_flagged(bio, BIO_SEG_VALID))
676 blk_recount_segments(q, bio);
677 if (!bio_flagged(req->bio, BIO_SEG_VALID))
678 blk_recount_segments(q, req->bio);
679
680 return ll_new_hw_segment(q, req, bio);
681 }
682
683 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
684 struct request *next)
685 {
686 unsigned short segments = blk_rq_nr_discard_segments(req);
687
688 if (segments >= queue_max_discard_segments(q))
689 goto no_merge;
690 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
691 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
692 goto no_merge;
693
694 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
695 return true;
696 no_merge:
697 req_set_nomerge(q, req);
698 return false;
699 }
700
701 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
702 struct request *next)
703 {
704 int total_phys_segments;
705 unsigned int seg_size =
706 req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
707
708 if (req_gap_back_merge(req, next->bio))
709 return 0;
710
711 /*
712 * Will it become too large?
713 */
714 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
715 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
716 return 0;
717
718 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
719 if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
720 if (req->nr_phys_segments == 1)
721 req->bio->bi_seg_front_size = seg_size;
722 if (next->nr_phys_segments == 1)
723 next->biotail->bi_seg_back_size = seg_size;
724 total_phys_segments--;
725 }
726
727 if (total_phys_segments > queue_max_segments(q))
728 return 0;
729
730 if (blk_integrity_merge_rq(q, req, next) == false)
731 return 0;
732
733 /* Merge is OK... */
734 req->nr_phys_segments = total_phys_segments;
735 return 1;
736 }
737
738 /**
739 * blk_rq_set_mixed_merge - mark a request as mixed merge
740 * @rq: request to mark as mixed merge
741 *
742 * Description:
743 * @rq is about to be mixed merged. Make sure the attributes
744 * which can be mixed are set in each bio and mark @rq as mixed
745 * merged.
746 */
747 void blk_rq_set_mixed_merge(struct request *rq)
748 {
749 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
750 struct bio *bio;
751
752 if (rq->rq_flags & RQF_MIXED_MERGE)
753 return;
754
755 /*
756 * @rq will no longer represent mixable attributes for all the
757 * contained bios. It will just track those of the first one.
758 * Distributes the attributs to each bio.
759 */
760 for (bio = rq->bio; bio; bio = bio->bi_next) {
761 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
762 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
763 bio->bi_opf |= ff;
764 }
765 rq->rq_flags |= RQF_MIXED_MERGE;
766 }
767
768 static void blk_account_io_merge(struct request *req)
769 {
770 if (blk_do_io_stat(req)) {
771 struct hd_struct *part;
772
773 part_stat_lock();
774 part = req->part;
775
776 part_dec_in_flight(req->q, part, rq_data_dir(req));
777
778 hd_struct_put(part);
779 part_stat_unlock();
780 }
781 }
782 /*
783 * Two cases of handling DISCARD merge:
784 * If max_discard_segments > 1, the driver takes every bio
785 * as a range and send them to controller together. The ranges
786 * needn't to be contiguous.
787 * Otherwise, the bios/requests will be handled as same as
788 * others which should be contiguous.
789 */
790 static inline bool blk_discard_mergable(struct request *req)
791 {
792 if (req_op(req) == REQ_OP_DISCARD &&
793 queue_max_discard_segments(req->q) > 1)
794 return true;
795 return false;
796 }
797
798 static enum elv_merge blk_try_req_merge(struct request *req,
799 struct request *next)
800 {
801 if (blk_discard_mergable(req))
802 return ELEVATOR_DISCARD_MERGE;
803 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
804 return ELEVATOR_BACK_MERGE;
805
806 return ELEVATOR_NO_MERGE;
807 }
808
809 /*
810 * For non-mq, this has to be called with the request spinlock acquired.
811 * For mq with scheduling, the appropriate queue wide lock should be held.
812 */
813 static struct request *attempt_merge(struct request_queue *q,
814 struct request *req, struct request *next)
815 {
816 if (!rq_mergeable(req) || !rq_mergeable(next))
817 return NULL;
818
819 if (req_op(req) != req_op(next))
820 return NULL;
821
822 if (rq_data_dir(req) != rq_data_dir(next)
823 || req->rq_disk != next->rq_disk)
824 return NULL;
825
826 if (req_op(req) == REQ_OP_WRITE_SAME &&
827 !blk_write_same_mergeable(req->bio, next->bio))
828 return NULL;
829
830 /*
831 * Don't allow merge of different write hints, or for a hint with
832 * non-hint IO.
833 */
834 if (req->write_hint != next->write_hint)
835 return NULL;
836
837 if (req->ioprio != next->ioprio)
838 return NULL;
839
840 /*
841 * If we are allowed to merge, then append bio list
842 * from next to rq and release next. merge_requests_fn
843 * will have updated segment counts, update sector
844 * counts here. Handle DISCARDs separately, as they
845 * have separate settings.
846 */
847
848 switch (blk_try_req_merge(req, next)) {
849 case ELEVATOR_DISCARD_MERGE:
850 if (!req_attempt_discard_merge(q, req, next))
851 return NULL;
852 break;
853 case ELEVATOR_BACK_MERGE:
854 if (!ll_merge_requests_fn(q, req, next))
855 return NULL;
856 break;
857 default:
858 return NULL;
859 }
860
861 /*
862 * If failfast settings disagree or any of the two is already
863 * a mixed merge, mark both as mixed before proceeding. This
864 * makes sure that all involved bios have mixable attributes
865 * set properly.
866 */
867 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
868 (req->cmd_flags & REQ_FAILFAST_MASK) !=
869 (next->cmd_flags & REQ_FAILFAST_MASK)) {
870 blk_rq_set_mixed_merge(req);
871 blk_rq_set_mixed_merge(next);
872 }
873
874 /*
875 * At this point we have either done a back merge or front merge. We
876 * need the smaller start_time_ns of the merged requests to be the
877 * current request for accounting purposes.
878 */
879 if (next->start_time_ns < req->start_time_ns)
880 req->start_time_ns = next->start_time_ns;
881
882 req->biotail->bi_next = next->bio;
883 req->biotail = next->biotail;
884
885 req->__data_len += blk_rq_bytes(next);
886
887 if (!blk_discard_mergable(req))
888 elv_merge_requests(q, req, next);
889
890 /*
891 * 'next' is going away, so update stats accordingly
892 */
893 blk_account_io_merge(next);
894
895 /*
896 * ownership of bio passed from next to req, return 'next' for
897 * the caller to free
898 */
899 next->bio = NULL;
900 return next;
901 }
902
903 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
904 {
905 struct request *next = elv_latter_request(q, rq);
906
907 if (next)
908 return attempt_merge(q, rq, next);
909
910 return NULL;
911 }
912
913 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
914 {
915 struct request *prev = elv_former_request(q, rq);
916
917 if (prev)
918 return attempt_merge(q, prev, rq);
919
920 return NULL;
921 }
922
923 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
924 struct request *next)
925 {
926 struct request *free;
927
928 free = attempt_merge(q, rq, next);
929 if (free) {
930 blk_put_request(free);
931 return 1;
932 }
933
934 return 0;
935 }
936
937 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
938 {
939 if (!rq_mergeable(rq) || !bio_mergeable(bio))
940 return false;
941
942 if (req_op(rq) != bio_op(bio))
943 return false;
944
945 /* different data direction or already started, don't merge */
946 if (bio_data_dir(bio) != rq_data_dir(rq))
947 return false;
948
949 /* must be same device */
950 if (rq->rq_disk != bio->bi_disk)
951 return false;
952
953 /* only merge integrity protected bio into ditto rq */
954 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
955 return false;
956
957 /* must be using the same buffer */
958 if (req_op(rq) == REQ_OP_WRITE_SAME &&
959 !blk_write_same_mergeable(rq->bio, bio))
960 return false;
961
962 /*
963 * Don't allow merge of different write hints, or for a hint with
964 * non-hint IO.
965 */
966 if (rq->write_hint != bio->bi_write_hint)
967 return false;
968
969 if (rq->ioprio != bio_prio(bio))
970 return false;
971
972 return true;
973 }
974
975 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
976 {
977 if (blk_discard_mergable(rq))
978 return ELEVATOR_DISCARD_MERGE;
979 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
980 return ELEVATOR_BACK_MERGE;
981 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
982 return ELEVATOR_FRONT_MERGE;
983 return ELEVATOR_NO_MERGE;
984 }