]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-merge.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / block / blk-merge.c
1 /*
2 * Functions related to segment and merge handling
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/bio.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13
14 static struct bio *blk_bio_discard_split(struct request_queue *q,
15 struct bio *bio,
16 struct bio_set *bs,
17 unsigned *nsegs)
18 {
19 unsigned int max_discard_sectors, granularity;
20 int alignment;
21 sector_t tmp;
22 unsigned split_sectors;
23
24 *nsegs = 1;
25
26 /* Zero-sector (unknown) and one-sector granularities are the same. */
27 granularity = max(q->limits.discard_granularity >> 9, 1U);
28
29 max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
30 max_discard_sectors -= max_discard_sectors % granularity;
31
32 if (unlikely(!max_discard_sectors)) {
33 /* XXX: warn */
34 return NULL;
35 }
36
37 if (bio_sectors(bio) <= max_discard_sectors)
38 return NULL;
39
40 split_sectors = max_discard_sectors;
41
42 /*
43 * If the next starting sector would be misaligned, stop the discard at
44 * the previous aligned sector.
45 */
46 alignment = (q->limits.discard_alignment >> 9) % granularity;
47
48 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
49 tmp = sector_div(tmp, granularity);
50
51 if (split_sectors > tmp)
52 split_sectors -= tmp;
53
54 return bio_split(bio, split_sectors, GFP_NOIO, bs);
55 }
56
57 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
58 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
59 {
60 *nsegs = 1;
61
62 if (!q->limits.max_write_zeroes_sectors)
63 return NULL;
64
65 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
66 return NULL;
67
68 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
69 }
70
71 static struct bio *blk_bio_write_same_split(struct request_queue *q,
72 struct bio *bio,
73 struct bio_set *bs,
74 unsigned *nsegs)
75 {
76 *nsegs = 1;
77
78 if (!q->limits.max_write_same_sectors)
79 return NULL;
80
81 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
82 return NULL;
83
84 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
85 }
86
87 static inline unsigned get_max_io_size(struct request_queue *q,
88 struct bio *bio)
89 {
90 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
91 unsigned mask = queue_logical_block_size(q) - 1;
92
93 /* aligned to logical block size */
94 sectors &= ~(mask >> 9);
95
96 return sectors;
97 }
98
99 static struct bio *blk_bio_segment_split(struct request_queue *q,
100 struct bio *bio,
101 struct bio_set *bs,
102 unsigned *segs)
103 {
104 struct bio_vec bv, bvprv, *bvprvp = NULL;
105 struct bvec_iter iter;
106 unsigned seg_size = 0, nsegs = 0, sectors = 0;
107 unsigned front_seg_size = bio->bi_seg_front_size;
108 bool do_split = true;
109 struct bio *new = NULL;
110 const unsigned max_sectors = get_max_io_size(q, bio);
111 unsigned bvecs = 0;
112
113 bio_for_each_segment(bv, bio, iter) {
114 /*
115 * With arbitrary bio size, the incoming bio may be very
116 * big. We have to split the bio into small bios so that
117 * each holds at most BIO_MAX_PAGES bvecs because
118 * bio_clone() can fail to allocate big bvecs.
119 *
120 * It should have been better to apply the limit per
121 * request queue in which bio_clone() is involved,
122 * instead of globally. The biggest blocker is the
123 * bio_clone() in bio bounce.
124 *
125 * If bio is splitted by this reason, we should have
126 * allowed to continue bios merging, but don't do
127 * that now for making the change simple.
128 *
129 * TODO: deal with bio bounce's bio_clone() gracefully
130 * and convert the global limit into per-queue limit.
131 */
132 if (bvecs++ >= BIO_MAX_PAGES)
133 goto split;
134
135 /*
136 * If the queue doesn't support SG gaps and adding this
137 * offset would create a gap, disallow it.
138 */
139 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
140 goto split;
141
142 if (sectors + (bv.bv_len >> 9) > max_sectors) {
143 /*
144 * Consider this a new segment if we're splitting in
145 * the middle of this vector.
146 */
147 if (nsegs < queue_max_segments(q) &&
148 sectors < max_sectors) {
149 nsegs++;
150 sectors = max_sectors;
151 }
152 if (sectors)
153 goto split;
154 /* Make this single bvec as the 1st segment */
155 }
156
157 if (bvprvp && blk_queue_cluster(q)) {
158 if (seg_size + bv.bv_len > queue_max_segment_size(q))
159 goto new_segment;
160 if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
161 goto new_segment;
162 if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
163 goto new_segment;
164
165 seg_size += bv.bv_len;
166 bvprv = bv;
167 bvprvp = &bvprv;
168 sectors += bv.bv_len >> 9;
169
170 if (nsegs == 1 && seg_size > front_seg_size)
171 front_seg_size = seg_size;
172 continue;
173 }
174 new_segment:
175 if (nsegs == queue_max_segments(q))
176 goto split;
177
178 nsegs++;
179 bvprv = bv;
180 bvprvp = &bvprv;
181 seg_size = bv.bv_len;
182 sectors += bv.bv_len >> 9;
183
184 if (nsegs == 1 && seg_size > front_seg_size)
185 front_seg_size = seg_size;
186 }
187
188 do_split = false;
189 split:
190 *segs = nsegs;
191
192 if (do_split) {
193 new = bio_split(bio, sectors, GFP_NOIO, bs);
194 if (new)
195 bio = new;
196 }
197
198 bio->bi_seg_front_size = front_seg_size;
199 if (seg_size > bio->bi_seg_back_size)
200 bio->bi_seg_back_size = seg_size;
201
202 return do_split ? new : NULL;
203 }
204
205 void blk_queue_split(struct request_queue *q, struct bio **bio,
206 struct bio_set *bs)
207 {
208 struct bio *split, *res;
209 unsigned nsegs;
210
211 switch (bio_op(*bio)) {
212 case REQ_OP_DISCARD:
213 case REQ_OP_SECURE_ERASE:
214 split = blk_bio_discard_split(q, *bio, bs, &nsegs);
215 break;
216 case REQ_OP_WRITE_ZEROES:
217 split = blk_bio_write_zeroes_split(q, *bio, bs, &nsegs);
218 break;
219 case REQ_OP_WRITE_SAME:
220 split = blk_bio_write_same_split(q, *bio, bs, &nsegs);
221 break;
222 default:
223 split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
224 break;
225 }
226
227 /* physical segments can be figured out during splitting */
228 res = split ? split : *bio;
229 res->bi_phys_segments = nsegs;
230 bio_set_flag(res, BIO_SEG_VALID);
231
232 if (split) {
233 /* there isn't chance to merge the splitted bio */
234 split->bi_opf |= REQ_NOMERGE;
235
236 bio_chain(split, *bio);
237 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
238 generic_make_request(*bio);
239 *bio = split;
240 }
241 }
242 EXPORT_SYMBOL(blk_queue_split);
243
244 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
245 struct bio *bio,
246 bool no_sg_merge)
247 {
248 struct bio_vec bv, bvprv = { NULL };
249 int cluster, prev = 0;
250 unsigned int seg_size, nr_phys_segs;
251 struct bio *fbio, *bbio;
252 struct bvec_iter iter;
253
254 if (!bio)
255 return 0;
256
257 switch (bio_op(bio)) {
258 case REQ_OP_DISCARD:
259 case REQ_OP_SECURE_ERASE:
260 case REQ_OP_WRITE_ZEROES:
261 return 0;
262 case REQ_OP_WRITE_SAME:
263 return 1;
264 }
265
266 fbio = bio;
267 cluster = blk_queue_cluster(q);
268 seg_size = 0;
269 nr_phys_segs = 0;
270 for_each_bio(bio) {
271 bio_for_each_segment(bv, bio, iter) {
272 /*
273 * If SG merging is disabled, each bio vector is
274 * a segment
275 */
276 if (no_sg_merge)
277 goto new_segment;
278
279 if (prev && cluster) {
280 if (seg_size + bv.bv_len
281 > queue_max_segment_size(q))
282 goto new_segment;
283 if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
284 goto new_segment;
285 if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
286 goto new_segment;
287
288 seg_size += bv.bv_len;
289 bvprv = bv;
290 continue;
291 }
292 new_segment:
293 if (nr_phys_segs == 1 && seg_size >
294 fbio->bi_seg_front_size)
295 fbio->bi_seg_front_size = seg_size;
296
297 nr_phys_segs++;
298 bvprv = bv;
299 prev = 1;
300 seg_size = bv.bv_len;
301 }
302 bbio = bio;
303 }
304
305 if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
306 fbio->bi_seg_front_size = seg_size;
307 if (seg_size > bbio->bi_seg_back_size)
308 bbio->bi_seg_back_size = seg_size;
309
310 return nr_phys_segs;
311 }
312
313 void blk_recalc_rq_segments(struct request *rq)
314 {
315 bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
316 &rq->q->queue_flags);
317
318 rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
319 no_sg_merge);
320 }
321
322 void blk_recount_segments(struct request_queue *q, struct bio *bio)
323 {
324 unsigned short seg_cnt;
325
326 /* estimate segment number by bi_vcnt for non-cloned bio */
327 if (bio_flagged(bio, BIO_CLONED))
328 seg_cnt = bio_segments(bio);
329 else
330 seg_cnt = bio->bi_vcnt;
331
332 if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
333 (seg_cnt < queue_max_segments(q)))
334 bio->bi_phys_segments = seg_cnt;
335 else {
336 struct bio *nxt = bio->bi_next;
337
338 bio->bi_next = NULL;
339 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
340 bio->bi_next = nxt;
341 }
342
343 bio_set_flag(bio, BIO_SEG_VALID);
344 }
345 EXPORT_SYMBOL(blk_recount_segments);
346
347 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
348 struct bio *nxt)
349 {
350 struct bio_vec end_bv = { NULL }, nxt_bv;
351
352 if (!blk_queue_cluster(q))
353 return 0;
354
355 if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
356 queue_max_segment_size(q))
357 return 0;
358
359 if (!bio_has_data(bio))
360 return 1;
361
362 bio_get_last_bvec(bio, &end_bv);
363 bio_get_first_bvec(nxt, &nxt_bv);
364
365 if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
366 return 0;
367
368 /*
369 * bio and nxt are contiguous in memory; check if the queue allows
370 * these two to be merged into one
371 */
372 if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
373 return 1;
374
375 return 0;
376 }
377
378 static inline void
379 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
380 struct scatterlist *sglist, struct bio_vec *bvprv,
381 struct scatterlist **sg, int *nsegs, int *cluster)
382 {
383
384 int nbytes = bvec->bv_len;
385
386 if (*sg && *cluster) {
387 if ((*sg)->length + nbytes > queue_max_segment_size(q))
388 goto new_segment;
389
390 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
391 goto new_segment;
392 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
393 goto new_segment;
394
395 (*sg)->length += nbytes;
396 } else {
397 new_segment:
398 if (!*sg)
399 *sg = sglist;
400 else {
401 /*
402 * If the driver previously mapped a shorter
403 * list, we could see a termination bit
404 * prematurely unless it fully inits the sg
405 * table on each mapping. We KNOW that there
406 * must be more entries here or the driver
407 * would be buggy, so force clear the
408 * termination bit to avoid doing a full
409 * sg_init_table() in drivers for each command.
410 */
411 sg_unmark_end(*sg);
412 *sg = sg_next(*sg);
413 }
414
415 sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
416 (*nsegs)++;
417 }
418 *bvprv = *bvec;
419 }
420
421 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
422 struct scatterlist *sglist, struct scatterlist **sg)
423 {
424 *sg = sglist;
425 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
426 return 1;
427 }
428
429 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
430 struct scatterlist *sglist,
431 struct scatterlist **sg)
432 {
433 struct bio_vec bvec, bvprv = { NULL };
434 struct bvec_iter iter;
435 int cluster = blk_queue_cluster(q), nsegs = 0;
436
437 for_each_bio(bio)
438 bio_for_each_segment(bvec, bio, iter)
439 __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
440 &nsegs, &cluster);
441
442 return nsegs;
443 }
444
445 /*
446 * map a request to scatterlist, return number of sg entries setup. Caller
447 * must make sure sg can hold rq->nr_phys_segments entries
448 */
449 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
450 struct scatterlist *sglist)
451 {
452 struct scatterlist *sg = NULL;
453 int nsegs = 0;
454
455 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
456 nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
457 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
458 nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
459 else if (rq->bio)
460 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
461
462 if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
463 (blk_rq_bytes(rq) & q->dma_pad_mask)) {
464 unsigned int pad_len =
465 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
466
467 sg->length += pad_len;
468 rq->extra_len += pad_len;
469 }
470
471 if (q->dma_drain_size && q->dma_drain_needed(rq)) {
472 if (op_is_write(req_op(rq)))
473 memset(q->dma_drain_buffer, 0, q->dma_drain_size);
474
475 sg_unmark_end(sg);
476 sg = sg_next(sg);
477 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
478 q->dma_drain_size,
479 ((unsigned long)q->dma_drain_buffer) &
480 (PAGE_SIZE - 1));
481 nsegs++;
482 rq->extra_len += q->dma_drain_size;
483 }
484
485 if (sg)
486 sg_mark_end(sg);
487
488 /*
489 * Something must have been wrong if the figured number of
490 * segment is bigger than number of req's physical segments
491 */
492 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
493
494 return nsegs;
495 }
496 EXPORT_SYMBOL(blk_rq_map_sg);
497
498 static inline int ll_new_hw_segment(struct request_queue *q,
499 struct request *req,
500 struct bio *bio)
501 {
502 int nr_phys_segs = bio_phys_segments(q, bio);
503
504 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
505 goto no_merge;
506
507 if (blk_integrity_merge_bio(q, req, bio) == false)
508 goto no_merge;
509
510 /*
511 * This will form the start of a new hw segment. Bump both
512 * counters.
513 */
514 req->nr_phys_segments += nr_phys_segs;
515 return 1;
516
517 no_merge:
518 req_set_nomerge(q, req);
519 return 0;
520 }
521
522 int ll_back_merge_fn(struct request_queue *q, struct request *req,
523 struct bio *bio)
524 {
525 if (req_gap_back_merge(req, bio))
526 return 0;
527 if (blk_integrity_rq(req) &&
528 integrity_req_gap_back_merge(req, bio))
529 return 0;
530 if (blk_rq_sectors(req) + bio_sectors(bio) >
531 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
532 req_set_nomerge(q, req);
533 return 0;
534 }
535 if (!bio_flagged(req->biotail, BIO_SEG_VALID))
536 blk_recount_segments(q, req->biotail);
537 if (!bio_flagged(bio, BIO_SEG_VALID))
538 blk_recount_segments(q, bio);
539
540 return ll_new_hw_segment(q, req, bio);
541 }
542
543 int ll_front_merge_fn(struct request_queue *q, struct request *req,
544 struct bio *bio)
545 {
546
547 if (req_gap_front_merge(req, bio))
548 return 0;
549 if (blk_integrity_rq(req) &&
550 integrity_req_gap_front_merge(req, bio))
551 return 0;
552 if (blk_rq_sectors(req) + bio_sectors(bio) >
553 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
554 req_set_nomerge(q, req);
555 return 0;
556 }
557 if (!bio_flagged(bio, BIO_SEG_VALID))
558 blk_recount_segments(q, bio);
559 if (!bio_flagged(req->bio, BIO_SEG_VALID))
560 blk_recount_segments(q, req->bio);
561
562 return ll_new_hw_segment(q, req, bio);
563 }
564
565 /*
566 * blk-mq uses req->special to carry normal driver per-request payload, it
567 * does not indicate a prepared command that we cannot merge with.
568 */
569 static bool req_no_special_merge(struct request *req)
570 {
571 struct request_queue *q = req->q;
572
573 return !q->mq_ops && req->special;
574 }
575
576 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
577 struct request *next)
578 {
579 int total_phys_segments;
580 unsigned int seg_size =
581 req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
582
583 /*
584 * First check if the either of the requests are re-queued
585 * requests. Can't merge them if they are.
586 */
587 if (req_no_special_merge(req) || req_no_special_merge(next))
588 return 0;
589
590 if (req_gap_back_merge(req, next->bio))
591 return 0;
592
593 /*
594 * Will it become too large?
595 */
596 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
597 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
598 return 0;
599
600 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
601 if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
602 if (req->nr_phys_segments == 1)
603 req->bio->bi_seg_front_size = seg_size;
604 if (next->nr_phys_segments == 1)
605 next->biotail->bi_seg_back_size = seg_size;
606 total_phys_segments--;
607 }
608
609 if (total_phys_segments > queue_max_segments(q))
610 return 0;
611
612 if (blk_integrity_merge_rq(q, req, next) == false)
613 return 0;
614
615 /* Merge is OK... */
616 req->nr_phys_segments = total_phys_segments;
617 return 1;
618 }
619
620 /**
621 * blk_rq_set_mixed_merge - mark a request as mixed merge
622 * @rq: request to mark as mixed merge
623 *
624 * Description:
625 * @rq is about to be mixed merged. Make sure the attributes
626 * which can be mixed are set in each bio and mark @rq as mixed
627 * merged.
628 */
629 void blk_rq_set_mixed_merge(struct request *rq)
630 {
631 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
632 struct bio *bio;
633
634 if (rq->rq_flags & RQF_MIXED_MERGE)
635 return;
636
637 /*
638 * @rq will no longer represent mixable attributes for all the
639 * contained bios. It will just track those of the first one.
640 * Distributes the attributs to each bio.
641 */
642 for (bio = rq->bio; bio; bio = bio->bi_next) {
643 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
644 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
645 bio->bi_opf |= ff;
646 }
647 rq->rq_flags |= RQF_MIXED_MERGE;
648 }
649
650 static void blk_account_io_merge(struct request *req)
651 {
652 if (blk_do_io_stat(req)) {
653 struct hd_struct *part;
654 int cpu;
655
656 cpu = part_stat_lock();
657 part = req->part;
658
659 part_round_stats(cpu, part);
660 part_dec_in_flight(part, rq_data_dir(req));
661
662 hd_struct_put(part);
663 part_stat_unlock();
664 }
665 }
666
667 /*
668 * For non-mq, this has to be called with the request spinlock acquired.
669 * For mq with scheduling, the appropriate queue wide lock should be held.
670 */
671 static struct request *attempt_merge(struct request_queue *q,
672 struct request *req, struct request *next)
673 {
674 if (!rq_mergeable(req) || !rq_mergeable(next))
675 return NULL;
676
677 if (req_op(req) != req_op(next))
678 return NULL;
679
680 /*
681 * not contiguous
682 */
683 if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
684 return NULL;
685
686 if (rq_data_dir(req) != rq_data_dir(next)
687 || req->rq_disk != next->rq_disk
688 || req_no_special_merge(next))
689 return NULL;
690
691 if (req_op(req) == REQ_OP_WRITE_SAME &&
692 !blk_write_same_mergeable(req->bio, next->bio))
693 return NULL;
694
695 /*
696 * If we are allowed to merge, then append bio list
697 * from next to rq and release next. merge_requests_fn
698 * will have updated segment counts, update sector
699 * counts here.
700 */
701 if (!ll_merge_requests_fn(q, req, next))
702 return NULL;
703
704 /*
705 * If failfast settings disagree or any of the two is already
706 * a mixed merge, mark both as mixed before proceeding. This
707 * makes sure that all involved bios have mixable attributes
708 * set properly.
709 */
710 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
711 (req->cmd_flags & REQ_FAILFAST_MASK) !=
712 (next->cmd_flags & REQ_FAILFAST_MASK)) {
713 blk_rq_set_mixed_merge(req);
714 blk_rq_set_mixed_merge(next);
715 }
716
717 /*
718 * At this point we have either done a back merge
719 * or front merge. We need the smaller start_time of
720 * the merged requests to be the current request
721 * for accounting purposes.
722 */
723 if (time_after(req->start_time, next->start_time))
724 req->start_time = next->start_time;
725
726 req->biotail->bi_next = next->bio;
727 req->biotail = next->biotail;
728
729 req->__data_len += blk_rq_bytes(next);
730
731 elv_merge_requests(q, req, next);
732
733 /*
734 * 'next' is going away, so update stats accordingly
735 */
736 blk_account_io_merge(next);
737
738 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
739 if (blk_rq_cpu_valid(next))
740 req->cpu = next->cpu;
741
742 /*
743 * ownership of bio passed from next to req, return 'next' for
744 * the caller to free
745 */
746 next->bio = NULL;
747 return next;
748 }
749
750 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
751 {
752 struct request *next = elv_latter_request(q, rq);
753
754 if (next)
755 return attempt_merge(q, rq, next);
756
757 return NULL;
758 }
759
760 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
761 {
762 struct request *prev = elv_former_request(q, rq);
763
764 if (prev)
765 return attempt_merge(q, prev, rq);
766
767 return NULL;
768 }
769
770 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
771 struct request *next)
772 {
773 struct elevator_queue *e = q->elevator;
774 struct request *free;
775
776 if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn)
777 if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next))
778 return 0;
779
780 free = attempt_merge(q, rq, next);
781 if (free) {
782 __blk_put_request(q, free);
783 return 1;
784 }
785
786 return 0;
787 }
788
789 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
790 {
791 if (!rq_mergeable(rq) || !bio_mergeable(bio))
792 return false;
793
794 if (req_op(rq) != bio_op(bio))
795 return false;
796
797 /* different data direction or already started, don't merge */
798 if (bio_data_dir(bio) != rq_data_dir(rq))
799 return false;
800
801 /* must be same device and not a special request */
802 if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
803 return false;
804
805 /* only merge integrity protected bio into ditto rq */
806 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
807 return false;
808
809 /* must be using the same buffer */
810 if (req_op(rq) == REQ_OP_WRITE_SAME &&
811 !blk_write_same_mergeable(rq->bio, bio))
812 return false;
813
814 return true;
815 }
816
817 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
818 {
819 if (req_op(rq) == REQ_OP_DISCARD &&
820 queue_max_discard_segments(rq->q) > 1)
821 return ELEVATOR_DISCARD_MERGE;
822 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
823 return ELEVATOR_BACK_MERGE;
824 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
825 return ELEVATOR_FRONT_MERGE;
826 return ELEVATOR_NO_MERGE;
827 }