]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-merge.c
ACPI: video: Force backlight native for some TongFang devices
[mirror_ubuntu-jammy-kernel.git] / block / blk-merge.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 #include <linux/blk-cgroup.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-rq-qos.h"
16
17 static inline bool bio_will_gap(struct request_queue *q,
18 struct request *prev_rq, struct bio *prev, struct bio *next)
19 {
20 struct bio_vec pb, nb;
21
22 if (!bio_has_data(prev) || !queue_virt_boundary(q))
23 return false;
24
25 /*
26 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
27 * is quite difficult to respect the sg gap limit. We work hard to
28 * merge a huge number of small single bios in case of mkfs.
29 */
30 if (prev_rq)
31 bio_get_first_bvec(prev_rq->bio, &pb);
32 else
33 bio_get_first_bvec(prev, &pb);
34 if (pb.bv_offset & queue_virt_boundary(q))
35 return true;
36
37 /*
38 * We don't need to worry about the situation that the merged segment
39 * ends in unaligned virt boundary:
40 *
41 * - if 'pb' ends aligned, the merged segment ends aligned
42 * - if 'pb' ends unaligned, the next bio must include
43 * one single bvec of 'nb', otherwise the 'nb' can't
44 * merge with 'pb'
45 */
46 bio_get_last_bvec(prev, &pb);
47 bio_get_first_bvec(next, &nb);
48 if (biovec_phys_mergeable(q, &pb, &nb))
49 return false;
50 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
51 }
52
53 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
54 {
55 return bio_will_gap(req->q, req, req->biotail, bio);
56 }
57
58 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
59 {
60 return bio_will_gap(req->q, NULL, bio, req->bio);
61 }
62
63 static struct bio *blk_bio_discard_split(struct request_queue *q,
64 struct bio *bio,
65 struct bio_set *bs,
66 unsigned *nsegs)
67 {
68 unsigned int max_discard_sectors, granularity;
69 int alignment;
70 sector_t tmp;
71 unsigned split_sectors;
72
73 *nsegs = 1;
74
75 /* Zero-sector (unknown) and one-sector granularities are the same. */
76 granularity = max(q->limits.discard_granularity >> 9, 1U);
77
78 max_discard_sectors = min(q->limits.max_discard_sectors,
79 bio_allowed_max_sectors(q));
80 max_discard_sectors -= max_discard_sectors % granularity;
81
82 if (unlikely(!max_discard_sectors)) {
83 /* XXX: warn */
84 return NULL;
85 }
86
87 if (bio_sectors(bio) <= max_discard_sectors)
88 return NULL;
89
90 split_sectors = max_discard_sectors;
91
92 /*
93 * If the next starting sector would be misaligned, stop the discard at
94 * the previous aligned sector.
95 */
96 alignment = (q->limits.discard_alignment >> 9) % granularity;
97
98 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
99 tmp = sector_div(tmp, granularity);
100
101 if (split_sectors > tmp)
102 split_sectors -= tmp;
103
104 return bio_split(bio, split_sectors, GFP_NOIO, bs);
105 }
106
107 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
108 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
109 {
110 *nsegs = 0;
111
112 if (!q->limits.max_write_zeroes_sectors)
113 return NULL;
114
115 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
116 return NULL;
117
118 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
119 }
120
121 static struct bio *blk_bio_write_same_split(struct request_queue *q,
122 struct bio *bio,
123 struct bio_set *bs,
124 unsigned *nsegs)
125 {
126 *nsegs = 1;
127
128 if (!q->limits.max_write_same_sectors)
129 return NULL;
130
131 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
132 return NULL;
133
134 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
135 }
136
137 /*
138 * Return the maximum number of sectors from the start of a bio that may be
139 * submitted as a single request to a block device. If enough sectors remain,
140 * align the end to the physical block size. Otherwise align the end to the
141 * logical block size. This approach minimizes the number of non-aligned
142 * requests that are submitted to a block device if the start of a bio is not
143 * aligned to a physical block boundary.
144 */
145 static inline unsigned get_max_io_size(struct request_queue *q,
146 struct bio *bio)
147 {
148 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
149 unsigned max_sectors = sectors;
150 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
151 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
152 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
153
154 max_sectors += start_offset;
155 max_sectors &= ~(pbs - 1);
156 if (max_sectors > start_offset)
157 return max_sectors - start_offset;
158
159 return sectors & ~(lbs - 1);
160 }
161
162 static inline unsigned get_max_segment_size(const struct request_queue *q,
163 struct page *start_page,
164 unsigned long offset)
165 {
166 unsigned long mask = queue_segment_boundary(q);
167
168 offset = mask & (page_to_phys(start_page) + offset);
169
170 /*
171 * overflow may be triggered in case of zero page physical address
172 * on 32bit arch, use queue's max segment size when that happens.
173 */
174 return min_not_zero(mask - offset + 1,
175 (unsigned long)queue_max_segment_size(q));
176 }
177
178 /**
179 * bvec_split_segs - verify whether or not a bvec should be split in the middle
180 * @q: [in] request queue associated with the bio associated with @bv
181 * @bv: [in] bvec to examine
182 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
183 * by the number of segments from @bv that may be appended to that
184 * bio without exceeding @max_segs
185 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
186 * by the number of sectors from @bv that may be appended to that
187 * bio without exceeding @max_sectors
188 * @max_segs: [in] upper bound for *@nsegs
189 * @max_sectors: [in] upper bound for *@sectors
190 *
191 * When splitting a bio, it can happen that a bvec is encountered that is too
192 * big to fit in a single segment and hence that it has to be split in the
193 * middle. This function verifies whether or not that should happen. The value
194 * %true is returned if and only if appending the entire @bv to a bio with
195 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
196 * the block driver.
197 */
198 static bool bvec_split_segs(const struct request_queue *q,
199 const struct bio_vec *bv, unsigned *nsegs,
200 unsigned *sectors, unsigned max_segs,
201 unsigned max_sectors)
202 {
203 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
204 unsigned len = min(bv->bv_len, max_len);
205 unsigned total_len = 0;
206 unsigned seg_size = 0;
207
208 while (len && *nsegs < max_segs) {
209 seg_size = get_max_segment_size(q, bv->bv_page,
210 bv->bv_offset + total_len);
211 seg_size = min(seg_size, len);
212
213 (*nsegs)++;
214 total_len += seg_size;
215 len -= seg_size;
216
217 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
218 break;
219 }
220
221 *sectors += total_len >> 9;
222
223 /* tell the caller to split the bvec if it is too big to fit */
224 return len > 0 || bv->bv_len > max_len;
225 }
226
227 /**
228 * blk_bio_segment_split - split a bio in two bios
229 * @q: [in] request queue pointer
230 * @bio: [in] bio to be split
231 * @bs: [in] bio set to allocate the clone from
232 * @segs: [out] number of segments in the bio with the first half of the sectors
233 *
234 * Clone @bio, update the bi_iter of the clone to represent the first sectors
235 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
236 * following is guaranteed for the cloned bio:
237 * - That it has at most get_max_io_size(@q, @bio) sectors.
238 * - That it has at most queue_max_segments(@q) segments.
239 *
240 * Except for discard requests the cloned bio will point at the bi_io_vec of
241 * the original bio. It is the responsibility of the caller to ensure that the
242 * original bio is not freed before the cloned bio. The caller is also
243 * responsible for ensuring that @bs is only destroyed after processing of the
244 * split bio has finished.
245 */
246 static struct bio *blk_bio_segment_split(struct request_queue *q,
247 struct bio *bio,
248 struct bio_set *bs,
249 unsigned *segs)
250 {
251 struct bio_vec bv, bvprv, *bvprvp = NULL;
252 struct bvec_iter iter;
253 unsigned nsegs = 0, sectors = 0;
254 const unsigned max_sectors = get_max_io_size(q, bio);
255 const unsigned max_segs = queue_max_segments(q);
256
257 bio_for_each_bvec(bv, bio, iter) {
258 /*
259 * If the queue doesn't support SG gaps and adding this
260 * offset would create a gap, disallow it.
261 */
262 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
263 goto split;
264
265 if (nsegs < max_segs &&
266 sectors + (bv.bv_len >> 9) <= max_sectors &&
267 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
268 nsegs++;
269 sectors += bv.bv_len >> 9;
270 } else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
271 max_sectors)) {
272 goto split;
273 }
274
275 bvprv = bv;
276 bvprvp = &bvprv;
277 }
278
279 *segs = nsegs;
280 return NULL;
281 split:
282 *segs = nsegs;
283
284 /*
285 * Bio splitting may cause subtle trouble such as hang when doing sync
286 * iopoll in direct IO routine. Given performance gain of iopoll for
287 * big IO can be trival, disable iopoll when split needed.
288 */
289 bio_clear_hipri(bio);
290
291 return bio_split(bio, sectors, GFP_NOIO, bs);
292 }
293
294 /**
295 * __blk_queue_split - split a bio and submit the second half
296 * @bio: [in, out] bio to be split
297 * @nr_segs: [out] number of segments in the first bio
298 *
299 * Split a bio into two bios, chain the two bios, submit the second half and
300 * store a pointer to the first half in *@bio. If the second bio is still too
301 * big it will be split by a recursive call to this function. Since this
302 * function may allocate a new bio from q->bio_split, it is the responsibility
303 * of the caller to ensure that q->bio_split is only released after processing
304 * of the split bio has finished.
305 */
306 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
307 {
308 struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
309 struct bio *split = NULL;
310
311 switch (bio_op(*bio)) {
312 case REQ_OP_DISCARD:
313 case REQ_OP_SECURE_ERASE:
314 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
315 break;
316 case REQ_OP_WRITE_ZEROES:
317 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
318 nr_segs);
319 break;
320 case REQ_OP_WRITE_SAME:
321 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
322 nr_segs);
323 break;
324 default:
325 /*
326 * All drivers must accept single-segments bios that are <=
327 * PAGE_SIZE. This is a quick and dirty check that relies on
328 * the fact that bi_io_vec[0] is always valid if a bio has data.
329 * The check might lead to occasional false negatives when bios
330 * are cloned, but compared to the performance impact of cloned
331 * bios themselves the loop below doesn't matter anyway.
332 */
333 if (!q->limits.chunk_sectors &&
334 (*bio)->bi_vcnt == 1 &&
335 ((*bio)->bi_io_vec[0].bv_len +
336 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
337 *nr_segs = 1;
338 break;
339 }
340 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
341 break;
342 }
343
344 if (split) {
345 /* there isn't chance to merge the splitted bio */
346 split->bi_opf |= REQ_NOMERGE;
347
348 bio_chain(split, *bio);
349 trace_block_split(split, (*bio)->bi_iter.bi_sector);
350 submit_bio_noacct(*bio);
351 *bio = split;
352
353 blk_throtl_charge_bio_split(*bio);
354 }
355 }
356
357 /**
358 * blk_queue_split - split a bio and submit the second half
359 * @bio: [in, out] bio to be split
360 *
361 * Split a bio into two bios, chains the two bios, submit the second half and
362 * store a pointer to the first half in *@bio. Since this function may allocate
363 * a new bio from q->bio_split, it is the responsibility of the caller to ensure
364 * that q->bio_split is only released after processing of the split bio has
365 * finished.
366 */
367 void blk_queue_split(struct bio **bio)
368 {
369 unsigned int nr_segs;
370
371 __blk_queue_split(bio, &nr_segs);
372 }
373 EXPORT_SYMBOL(blk_queue_split);
374
375 unsigned int blk_recalc_rq_segments(struct request *rq)
376 {
377 unsigned int nr_phys_segs = 0;
378 unsigned int nr_sectors = 0;
379 struct req_iterator iter;
380 struct bio_vec bv;
381
382 if (!rq->bio)
383 return 0;
384
385 switch (bio_op(rq->bio)) {
386 case REQ_OP_DISCARD:
387 case REQ_OP_SECURE_ERASE:
388 if (queue_max_discard_segments(rq->q) > 1) {
389 struct bio *bio = rq->bio;
390
391 for_each_bio(bio)
392 nr_phys_segs++;
393 return nr_phys_segs;
394 }
395 return 1;
396 case REQ_OP_WRITE_ZEROES:
397 return 0;
398 case REQ_OP_WRITE_SAME:
399 return 1;
400 }
401
402 rq_for_each_bvec(bv, rq, iter)
403 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
404 UINT_MAX, UINT_MAX);
405 return nr_phys_segs;
406 }
407
408 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
409 struct scatterlist *sglist)
410 {
411 if (!*sg)
412 return sglist;
413
414 /*
415 * If the driver previously mapped a shorter list, we could see a
416 * termination bit prematurely unless it fully inits the sg table
417 * on each mapping. We KNOW that there must be more entries here
418 * or the driver would be buggy, so force clear the termination bit
419 * to avoid doing a full sg_init_table() in drivers for each command.
420 */
421 sg_unmark_end(*sg);
422 return sg_next(*sg);
423 }
424
425 static unsigned blk_bvec_map_sg(struct request_queue *q,
426 struct bio_vec *bvec, struct scatterlist *sglist,
427 struct scatterlist **sg)
428 {
429 unsigned nbytes = bvec->bv_len;
430 unsigned nsegs = 0, total = 0;
431
432 while (nbytes > 0) {
433 unsigned offset = bvec->bv_offset + total;
434 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
435 offset), nbytes);
436 struct page *page = bvec->bv_page;
437
438 /*
439 * Unfortunately a fair number of drivers barf on scatterlists
440 * that have an offset larger than PAGE_SIZE, despite other
441 * subsystems dealing with that invariant just fine. For now
442 * stick to the legacy format where we never present those from
443 * the block layer, but the code below should be removed once
444 * these offenders (mostly MMC/SD drivers) are fixed.
445 */
446 page += (offset >> PAGE_SHIFT);
447 offset &= ~PAGE_MASK;
448
449 *sg = blk_next_sg(sg, sglist);
450 sg_set_page(*sg, page, len, offset);
451
452 total += len;
453 nbytes -= len;
454 nsegs++;
455 }
456
457 return nsegs;
458 }
459
460 static inline int __blk_bvec_map_sg(struct bio_vec bv,
461 struct scatterlist *sglist, struct scatterlist **sg)
462 {
463 *sg = blk_next_sg(sg, sglist);
464 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
465 return 1;
466 }
467
468 /* only try to merge bvecs into one sg if they are from two bios */
469 static inline bool
470 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
471 struct bio_vec *bvprv, struct scatterlist **sg)
472 {
473
474 int nbytes = bvec->bv_len;
475
476 if (!*sg)
477 return false;
478
479 if ((*sg)->length + nbytes > queue_max_segment_size(q))
480 return false;
481
482 if (!biovec_phys_mergeable(q, bvprv, bvec))
483 return false;
484
485 (*sg)->length += nbytes;
486
487 return true;
488 }
489
490 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
491 struct scatterlist *sglist,
492 struct scatterlist **sg)
493 {
494 struct bio_vec bvec, bvprv = { NULL };
495 struct bvec_iter iter;
496 int nsegs = 0;
497 bool new_bio = false;
498
499 for_each_bio(bio) {
500 bio_for_each_bvec(bvec, bio, iter) {
501 /*
502 * Only try to merge bvecs from two bios given we
503 * have done bio internal merge when adding pages
504 * to bio
505 */
506 if (new_bio &&
507 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
508 goto next_bvec;
509
510 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
511 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
512 else
513 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
514 next_bvec:
515 new_bio = false;
516 }
517 if (likely(bio->bi_iter.bi_size)) {
518 bvprv = bvec;
519 new_bio = true;
520 }
521 }
522
523 return nsegs;
524 }
525
526 /*
527 * map a request to scatterlist, return number of sg entries setup. Caller
528 * must make sure sg can hold rq->nr_phys_segments entries
529 */
530 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
531 struct scatterlist *sglist, struct scatterlist **last_sg)
532 {
533 int nsegs = 0;
534
535 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
536 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
537 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
538 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
539 else if (rq->bio)
540 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
541
542 if (*last_sg)
543 sg_mark_end(*last_sg);
544
545 /*
546 * Something must have been wrong if the figured number of
547 * segment is bigger than number of req's physical segments
548 */
549 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
550
551 return nsegs;
552 }
553 EXPORT_SYMBOL(__blk_rq_map_sg);
554
555 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
556 {
557 if (req_op(rq) == REQ_OP_DISCARD)
558 return queue_max_discard_segments(rq->q);
559 return queue_max_segments(rq->q);
560 }
561
562 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
563 unsigned int nr_phys_segs)
564 {
565 if (!blk_cgroup_mergeable(req, bio))
566 goto no_merge;
567
568 if (blk_integrity_merge_bio(req->q, req, bio) == false)
569 goto no_merge;
570
571 /* discard request merge won't add new segment */
572 if (req_op(req) == REQ_OP_DISCARD)
573 return 1;
574
575 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
576 goto no_merge;
577
578 /*
579 * This will form the start of a new hw segment. Bump both
580 * counters.
581 */
582 req->nr_phys_segments += nr_phys_segs;
583 return 1;
584
585 no_merge:
586 req_set_nomerge(req->q, req);
587 return 0;
588 }
589
590 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
591 {
592 if (req_gap_back_merge(req, bio))
593 return 0;
594 if (blk_integrity_rq(req) &&
595 integrity_req_gap_back_merge(req, bio))
596 return 0;
597 if (!bio_crypt_ctx_back_mergeable(req, bio))
598 return 0;
599 if (blk_rq_sectors(req) + bio_sectors(bio) >
600 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
601 req_set_nomerge(req->q, req);
602 return 0;
603 }
604
605 return ll_new_hw_segment(req, bio, nr_segs);
606 }
607
608 static int ll_front_merge_fn(struct request *req, struct bio *bio,
609 unsigned int nr_segs)
610 {
611 if (req_gap_front_merge(req, bio))
612 return 0;
613 if (blk_integrity_rq(req) &&
614 integrity_req_gap_front_merge(req, bio))
615 return 0;
616 if (!bio_crypt_ctx_front_mergeable(req, bio))
617 return 0;
618 if (blk_rq_sectors(req) + bio_sectors(bio) >
619 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
620 req_set_nomerge(req->q, req);
621 return 0;
622 }
623
624 return ll_new_hw_segment(req, bio, nr_segs);
625 }
626
627 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
628 struct request *next)
629 {
630 unsigned short segments = blk_rq_nr_discard_segments(req);
631
632 if (segments >= queue_max_discard_segments(q))
633 goto no_merge;
634 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
635 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
636 goto no_merge;
637
638 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
639 return true;
640 no_merge:
641 req_set_nomerge(q, req);
642 return false;
643 }
644
645 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
646 struct request *next)
647 {
648 int total_phys_segments;
649
650 if (req_gap_back_merge(req, next->bio))
651 return 0;
652
653 /*
654 * Will it become too large?
655 */
656 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
657 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
658 return 0;
659
660 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
661 if (total_phys_segments > blk_rq_get_max_segments(req))
662 return 0;
663
664 if (!blk_cgroup_mergeable(req, next->bio))
665 return 0;
666
667 if (blk_integrity_merge_rq(q, req, next) == false)
668 return 0;
669
670 if (!bio_crypt_ctx_merge_rq(req, next))
671 return 0;
672
673 /* Merge is OK... */
674 req->nr_phys_segments = total_phys_segments;
675 return 1;
676 }
677
678 /**
679 * blk_rq_set_mixed_merge - mark a request as mixed merge
680 * @rq: request to mark as mixed merge
681 *
682 * Description:
683 * @rq is about to be mixed merged. Make sure the attributes
684 * which can be mixed are set in each bio and mark @rq as mixed
685 * merged.
686 */
687 void blk_rq_set_mixed_merge(struct request *rq)
688 {
689 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
690 struct bio *bio;
691
692 if (rq->rq_flags & RQF_MIXED_MERGE)
693 return;
694
695 /*
696 * @rq will no longer represent mixable attributes for all the
697 * contained bios. It will just track those of the first one.
698 * Distributes the attributs to each bio.
699 */
700 for (bio = rq->bio; bio; bio = bio->bi_next) {
701 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
702 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
703 bio->bi_opf |= ff;
704 }
705 rq->rq_flags |= RQF_MIXED_MERGE;
706 }
707
708 static void blk_account_io_merge_request(struct request *req)
709 {
710 if (blk_do_io_stat(req)) {
711 part_stat_lock();
712 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
713 part_stat_unlock();
714 }
715 }
716
717 static enum elv_merge blk_try_req_merge(struct request *req,
718 struct request *next)
719 {
720 if (blk_discard_mergable(req))
721 return ELEVATOR_DISCARD_MERGE;
722 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
723 return ELEVATOR_BACK_MERGE;
724
725 return ELEVATOR_NO_MERGE;
726 }
727
728 /*
729 * For non-mq, this has to be called with the request spinlock acquired.
730 * For mq with scheduling, the appropriate queue wide lock should be held.
731 */
732 static struct request *attempt_merge(struct request_queue *q,
733 struct request *req, struct request *next)
734 {
735 if (!rq_mergeable(req) || !rq_mergeable(next))
736 return NULL;
737
738 if (req_op(req) != req_op(next))
739 return NULL;
740
741 if (rq_data_dir(req) != rq_data_dir(next)
742 || req->rq_disk != next->rq_disk)
743 return NULL;
744
745 if (req_op(req) == REQ_OP_WRITE_SAME &&
746 !blk_write_same_mergeable(req->bio, next->bio))
747 return NULL;
748
749 /*
750 * Don't allow merge of different write hints, or for a hint with
751 * non-hint IO.
752 */
753 if (req->write_hint != next->write_hint)
754 return NULL;
755
756 if (req->ioprio != next->ioprio)
757 return NULL;
758
759 /*
760 * If we are allowed to merge, then append bio list
761 * from next to rq and release next. merge_requests_fn
762 * will have updated segment counts, update sector
763 * counts here. Handle DISCARDs separately, as they
764 * have separate settings.
765 */
766
767 switch (blk_try_req_merge(req, next)) {
768 case ELEVATOR_DISCARD_MERGE:
769 if (!req_attempt_discard_merge(q, req, next))
770 return NULL;
771 break;
772 case ELEVATOR_BACK_MERGE:
773 if (!ll_merge_requests_fn(q, req, next))
774 return NULL;
775 break;
776 default:
777 return NULL;
778 }
779
780 /*
781 * If failfast settings disagree or any of the two is already
782 * a mixed merge, mark both as mixed before proceeding. This
783 * makes sure that all involved bios have mixable attributes
784 * set properly.
785 */
786 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
787 (req->cmd_flags & REQ_FAILFAST_MASK) !=
788 (next->cmd_flags & REQ_FAILFAST_MASK)) {
789 blk_rq_set_mixed_merge(req);
790 blk_rq_set_mixed_merge(next);
791 }
792
793 /*
794 * At this point we have either done a back merge or front merge. We
795 * need the smaller start_time_ns of the merged requests to be the
796 * current request for accounting purposes.
797 */
798 if (next->start_time_ns < req->start_time_ns)
799 req->start_time_ns = next->start_time_ns;
800
801 req->biotail->bi_next = next->bio;
802 req->biotail = next->biotail;
803
804 req->__data_len += blk_rq_bytes(next);
805
806 if (!blk_discard_mergable(req))
807 elv_merge_requests(q, req, next);
808
809 /*
810 * 'next' is going away, so update stats accordingly
811 */
812 blk_account_io_merge_request(next);
813
814 trace_block_rq_merge(next);
815
816 /*
817 * ownership of bio passed from next to req, return 'next' for
818 * the caller to free
819 */
820 next->bio = NULL;
821 return next;
822 }
823
824 static struct request *attempt_back_merge(struct request_queue *q,
825 struct request *rq)
826 {
827 struct request *next = elv_latter_request(q, rq);
828
829 if (next)
830 return attempt_merge(q, rq, next);
831
832 return NULL;
833 }
834
835 static struct request *attempt_front_merge(struct request_queue *q,
836 struct request *rq)
837 {
838 struct request *prev = elv_former_request(q, rq);
839
840 if (prev)
841 return attempt_merge(q, prev, rq);
842
843 return NULL;
844 }
845
846 /*
847 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
848 * otherwise. The caller is responsible for freeing 'next' if the merge
849 * happened.
850 */
851 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
852 struct request *next)
853 {
854 return attempt_merge(q, rq, next);
855 }
856
857 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
858 {
859 if (!rq_mergeable(rq) || !bio_mergeable(bio))
860 return false;
861
862 if (req_op(rq) != bio_op(bio))
863 return false;
864
865 /* different data direction or already started, don't merge */
866 if (bio_data_dir(bio) != rq_data_dir(rq))
867 return false;
868
869 /* must be same device */
870 if (rq->rq_disk != bio->bi_bdev->bd_disk)
871 return false;
872
873 /* don't merge across cgroup boundaries */
874 if (!blk_cgroup_mergeable(rq, bio))
875 return false;
876
877 /* only merge integrity protected bio into ditto rq */
878 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
879 return false;
880
881 /* Only merge if the crypt contexts are compatible */
882 if (!bio_crypt_rq_ctx_compatible(rq, bio))
883 return false;
884
885 /* must be using the same buffer */
886 if (req_op(rq) == REQ_OP_WRITE_SAME &&
887 !blk_write_same_mergeable(rq->bio, bio))
888 return false;
889
890 /*
891 * Don't allow merge of different write hints, or for a hint with
892 * non-hint IO.
893 */
894 if (rq->write_hint != bio->bi_write_hint)
895 return false;
896
897 if (rq->ioprio != bio_prio(bio))
898 return false;
899
900 return true;
901 }
902
903 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
904 {
905 if (blk_discard_mergable(rq))
906 return ELEVATOR_DISCARD_MERGE;
907 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
908 return ELEVATOR_BACK_MERGE;
909 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
910 return ELEVATOR_FRONT_MERGE;
911 return ELEVATOR_NO_MERGE;
912 }
913
914 static void blk_account_io_merge_bio(struct request *req)
915 {
916 if (!blk_do_io_stat(req))
917 return;
918
919 part_stat_lock();
920 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
921 part_stat_unlock();
922 }
923
924 enum bio_merge_status {
925 BIO_MERGE_OK,
926 BIO_MERGE_NONE,
927 BIO_MERGE_FAILED,
928 };
929
930 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
931 struct bio *bio, unsigned int nr_segs)
932 {
933 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
934
935 if (!ll_back_merge_fn(req, bio, nr_segs))
936 return BIO_MERGE_FAILED;
937
938 trace_block_bio_backmerge(bio);
939 rq_qos_merge(req->q, req, bio);
940
941 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
942 blk_rq_set_mixed_merge(req);
943
944 req->biotail->bi_next = bio;
945 req->biotail = bio;
946 req->__data_len += bio->bi_iter.bi_size;
947
948 bio_crypt_free_ctx(bio);
949
950 blk_account_io_merge_bio(req);
951 return BIO_MERGE_OK;
952 }
953
954 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
955 struct bio *bio, unsigned int nr_segs)
956 {
957 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
958
959 if (!ll_front_merge_fn(req, bio, nr_segs))
960 return BIO_MERGE_FAILED;
961
962 trace_block_bio_frontmerge(bio);
963 rq_qos_merge(req->q, req, bio);
964
965 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
966 blk_rq_set_mixed_merge(req);
967
968 bio->bi_next = req->bio;
969 req->bio = bio;
970
971 req->__sector = bio->bi_iter.bi_sector;
972 req->__data_len += bio->bi_iter.bi_size;
973
974 bio_crypt_do_front_merge(req, bio);
975
976 blk_account_io_merge_bio(req);
977 return BIO_MERGE_OK;
978 }
979
980 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
981 struct request *req, struct bio *bio)
982 {
983 unsigned short segments = blk_rq_nr_discard_segments(req);
984
985 if (segments >= queue_max_discard_segments(q))
986 goto no_merge;
987 if (blk_rq_sectors(req) + bio_sectors(bio) >
988 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
989 goto no_merge;
990
991 rq_qos_merge(q, req, bio);
992
993 req->biotail->bi_next = bio;
994 req->biotail = bio;
995 req->__data_len += bio->bi_iter.bi_size;
996 req->nr_phys_segments = segments + 1;
997
998 blk_account_io_merge_bio(req);
999 return BIO_MERGE_OK;
1000 no_merge:
1001 req_set_nomerge(q, req);
1002 return BIO_MERGE_FAILED;
1003 }
1004
1005 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1006 struct request *rq,
1007 struct bio *bio,
1008 unsigned int nr_segs,
1009 bool sched_allow_merge)
1010 {
1011 if (!blk_rq_merge_ok(rq, bio))
1012 return BIO_MERGE_NONE;
1013
1014 switch (blk_try_merge(rq, bio)) {
1015 case ELEVATOR_BACK_MERGE:
1016 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1017 return bio_attempt_back_merge(rq, bio, nr_segs);
1018 break;
1019 case ELEVATOR_FRONT_MERGE:
1020 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1021 return bio_attempt_front_merge(rq, bio, nr_segs);
1022 break;
1023 case ELEVATOR_DISCARD_MERGE:
1024 return bio_attempt_discard_merge(q, rq, bio);
1025 default:
1026 return BIO_MERGE_NONE;
1027 }
1028
1029 return BIO_MERGE_FAILED;
1030 }
1031
1032 /**
1033 * blk_attempt_plug_merge - try to merge with %current's plugged list
1034 * @q: request_queue new bio is being queued at
1035 * @bio: new bio being queued
1036 * @nr_segs: number of segments in @bio
1037 * @same_queue_rq: pointer to &struct request that gets filled in when
1038 * another request associated with @q is found on the plug list
1039 * (optional, may be %NULL)
1040 *
1041 * Determine whether @bio being queued on @q can be merged with a request
1042 * on %current's plugged list. Returns %true if merge was successful,
1043 * otherwise %false.
1044 *
1045 * Plugging coalesces IOs from the same issuer for the same purpose without
1046 * going through @q->queue_lock. As such it's more of an issuing mechanism
1047 * than scheduling, and the request, while may have elvpriv data, is not
1048 * added on the elevator at this point. In addition, we don't have
1049 * reliable access to the elevator outside queue lock. Only check basic
1050 * merging parameters without querying the elevator.
1051 *
1052 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1053 */
1054 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1055 unsigned int nr_segs, struct request **same_queue_rq)
1056 {
1057 struct blk_plug *plug;
1058 struct request *rq;
1059 struct list_head *plug_list;
1060
1061 plug = blk_mq_plug(q, bio);
1062 if (!plug)
1063 return false;
1064
1065 plug_list = &plug->mq_list;
1066
1067 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1068 if (rq->q == q && same_queue_rq) {
1069 /*
1070 * Only blk-mq multiple hardware queues case checks the
1071 * rq in the same queue, there should be only one such
1072 * rq in a queue
1073 **/
1074 *same_queue_rq = rq;
1075 }
1076
1077 if (rq->q != q)
1078 continue;
1079
1080 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1081 BIO_MERGE_OK)
1082 return true;
1083 }
1084
1085 return false;
1086 }
1087
1088 /*
1089 * Iterate list of requests and see if we can merge this bio with any
1090 * of them.
1091 */
1092 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1093 struct bio *bio, unsigned int nr_segs)
1094 {
1095 struct request *rq;
1096 int checked = 8;
1097
1098 list_for_each_entry_reverse(rq, list, queuelist) {
1099 if (!checked--)
1100 break;
1101
1102 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1103 case BIO_MERGE_NONE:
1104 continue;
1105 case BIO_MERGE_OK:
1106 return true;
1107 case BIO_MERGE_FAILED:
1108 return false;
1109 }
1110
1111 }
1112
1113 return false;
1114 }
1115 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1116
1117 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1118 unsigned int nr_segs, struct request **merged_request)
1119 {
1120 struct request *rq;
1121
1122 switch (elv_merge(q, &rq, bio)) {
1123 case ELEVATOR_BACK_MERGE:
1124 if (!blk_mq_sched_allow_merge(q, rq, bio))
1125 return false;
1126 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1127 return false;
1128 *merged_request = attempt_back_merge(q, rq);
1129 if (!*merged_request)
1130 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1131 return true;
1132 case ELEVATOR_FRONT_MERGE:
1133 if (!blk_mq_sched_allow_merge(q, rq, bio))
1134 return false;
1135 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1136 return false;
1137 *merged_request = attempt_front_merge(q, rq);
1138 if (!*merged_request)
1139 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1140 return true;
1141 case ELEVATOR_DISCARD_MERGE:
1142 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1143 default:
1144 return false;
1145 }
1146 }
1147 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);