]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-merge.c
KVM: x86: dump_vmcs should consider only the load controls of EFER/PAT
[mirror_ubuntu-jammy-kernel.git] / block / blk-merge.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10
11 #include <trace/events/block.h>
12
13 #include "blk.h"
14 #include "blk-rq-qos.h"
15
16 static inline bool bio_will_gap(struct request_queue *q,
17 struct request *prev_rq, struct bio *prev, struct bio *next)
18 {
19 struct bio_vec pb, nb;
20
21 if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 return false;
23
24 /*
25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 * is quite difficult to respect the sg gap limit. We work hard to
27 * merge a huge number of small single bios in case of mkfs.
28 */
29 if (prev_rq)
30 bio_get_first_bvec(prev_rq->bio, &pb);
31 else
32 bio_get_first_bvec(prev, &pb);
33 if (pb.bv_offset & queue_virt_boundary(q))
34 return true;
35
36 /*
37 * We don't need to worry about the situation that the merged segment
38 * ends in unaligned virt boundary:
39 *
40 * - if 'pb' ends aligned, the merged segment ends aligned
41 * - if 'pb' ends unaligned, the next bio must include
42 * one single bvec of 'nb', otherwise the 'nb' can't
43 * merge with 'pb'
44 */
45 bio_get_last_bvec(prev, &pb);
46 bio_get_first_bvec(next, &nb);
47 if (biovec_phys_mergeable(q, &pb, &nb))
48 return false;
49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
50 }
51
52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 {
54 return bio_will_gap(req->q, req, req->biotail, bio);
55 }
56
57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 {
59 return bio_will_gap(req->q, NULL, bio, req->bio);
60 }
61
62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 struct bio *bio,
64 struct bio_set *bs,
65 unsigned *nsegs)
66 {
67 unsigned int max_discard_sectors, granularity;
68 int alignment;
69 sector_t tmp;
70 unsigned split_sectors;
71
72 *nsegs = 1;
73
74 /* Zero-sector (unknown) and one-sector granularities are the same. */
75 granularity = max(q->limits.discard_granularity >> 9, 1U);
76
77 max_discard_sectors = min(q->limits.max_discard_sectors,
78 bio_allowed_max_sectors(q));
79 max_discard_sectors -= max_discard_sectors % granularity;
80
81 if (unlikely(!max_discard_sectors)) {
82 /* XXX: warn */
83 return NULL;
84 }
85
86 if (bio_sectors(bio) <= max_discard_sectors)
87 return NULL;
88
89 split_sectors = max_discard_sectors;
90
91 /*
92 * If the next starting sector would be misaligned, stop the discard at
93 * the previous aligned sector.
94 */
95 alignment = (q->limits.discard_alignment >> 9) % granularity;
96
97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 tmp = sector_div(tmp, granularity);
99
100 if (split_sectors > tmp)
101 split_sectors -= tmp;
102
103 return bio_split(bio, split_sectors, GFP_NOIO, bs);
104 }
105
106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 {
109 *nsegs = 0;
110
111 if (!q->limits.max_write_zeroes_sectors)
112 return NULL;
113
114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 return NULL;
116
117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
118 }
119
120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 struct bio *bio,
122 struct bio_set *bs,
123 unsigned *nsegs)
124 {
125 *nsegs = 1;
126
127 if (!q->limits.max_write_same_sectors)
128 return NULL;
129
130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 return NULL;
132
133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
134 }
135
136 /*
137 * Return the maximum number of sectors from the start of a bio that may be
138 * submitted as a single request to a block device. If enough sectors remain,
139 * align the end to the physical block size. Otherwise align the end to the
140 * logical block size. This approach minimizes the number of non-aligned
141 * requests that are submitted to a block device if the start of a bio is not
142 * aligned to a physical block boundary.
143 */
144 static inline unsigned get_max_io_size(struct request_queue *q,
145 struct bio *bio)
146 {
147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
148 unsigned max_sectors = sectors;
149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152
153 max_sectors += start_offset;
154 max_sectors &= ~(pbs - 1);
155 if (max_sectors > start_offset)
156 return max_sectors - start_offset;
157
158 return sectors & ~(lbs - 1);
159 }
160
161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 struct page *start_page,
163 unsigned long offset)
164 {
165 unsigned long mask = queue_segment_boundary(q);
166
167 offset = mask & (page_to_phys(start_page) + offset);
168
169 /*
170 * overflow may be triggered in case of zero page physical address
171 * on 32bit arch, use queue's max segment size when that happens.
172 */
173 return min_not_zero(mask - offset + 1,
174 (unsigned long)queue_max_segment_size(q));
175 }
176
177 /**
178 * bvec_split_segs - verify whether or not a bvec should be split in the middle
179 * @q: [in] request queue associated with the bio associated with @bv
180 * @bv: [in] bvec to examine
181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
182 * by the number of segments from @bv that may be appended to that
183 * bio without exceeding @max_segs
184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
185 * by the number of sectors from @bv that may be appended to that
186 * bio without exceeding @max_sectors
187 * @max_segs: [in] upper bound for *@nsegs
188 * @max_sectors: [in] upper bound for *@sectors
189 *
190 * When splitting a bio, it can happen that a bvec is encountered that is too
191 * big to fit in a single segment and hence that it has to be split in the
192 * middle. This function verifies whether or not that should happen. The value
193 * %true is returned if and only if appending the entire @bv to a bio with
194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195 * the block driver.
196 */
197 static bool bvec_split_segs(const struct request_queue *q,
198 const struct bio_vec *bv, unsigned *nsegs,
199 unsigned *sectors, unsigned max_segs,
200 unsigned max_sectors)
201 {
202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 unsigned len = min(bv->bv_len, max_len);
204 unsigned total_len = 0;
205 unsigned seg_size = 0;
206
207 while (len && *nsegs < max_segs) {
208 seg_size = get_max_segment_size(q, bv->bv_page,
209 bv->bv_offset + total_len);
210 seg_size = min(seg_size, len);
211
212 (*nsegs)++;
213 total_len += seg_size;
214 len -= seg_size;
215
216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 break;
218 }
219
220 *sectors += total_len >> 9;
221
222 /* tell the caller to split the bvec if it is too big to fit */
223 return len > 0 || bv->bv_len > max_len;
224 }
225
226 /**
227 * blk_bio_segment_split - split a bio in two bios
228 * @q: [in] request queue pointer
229 * @bio: [in] bio to be split
230 * @bs: [in] bio set to allocate the clone from
231 * @segs: [out] number of segments in the bio with the first half of the sectors
232 *
233 * Clone @bio, update the bi_iter of the clone to represent the first sectors
234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235 * following is guaranteed for the cloned bio:
236 * - That it has at most get_max_io_size(@q, @bio) sectors.
237 * - That it has at most queue_max_segments(@q) segments.
238 *
239 * Except for discard requests the cloned bio will point at the bi_io_vec of
240 * the original bio. It is the responsibility of the caller to ensure that the
241 * original bio is not freed before the cloned bio. The caller is also
242 * responsible for ensuring that @bs is only destroyed after processing of the
243 * split bio has finished.
244 */
245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 struct bio *bio,
247 struct bio_set *bs,
248 unsigned *segs)
249 {
250 struct bio_vec bv, bvprv, *bvprvp = NULL;
251 struct bvec_iter iter;
252 unsigned nsegs = 0, sectors = 0;
253 const unsigned max_sectors = get_max_io_size(q, bio);
254 const unsigned max_segs = queue_max_segments(q);
255
256 bio_for_each_bvec(bv, bio, iter) {
257 /*
258 * If the queue doesn't support SG gaps and adding this
259 * offset would create a gap, disallow it.
260 */
261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 goto split;
263
264 if (nsegs < max_segs &&
265 sectors + (bv.bv_len >> 9) <= max_sectors &&
266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 nsegs++;
268 sectors += bv.bv_len >> 9;
269 } else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 max_sectors)) {
271 goto split;
272 }
273
274 bvprv = bv;
275 bvprvp = &bvprv;
276 }
277
278 *segs = nsegs;
279 return NULL;
280 split:
281 *segs = nsegs;
282
283 /*
284 * Bio splitting may cause subtle trouble such as hang when doing sync
285 * iopoll in direct IO routine. Given performance gain of iopoll for
286 * big IO can be trival, disable iopoll when split needed.
287 */
288 bio->bi_opf &= ~REQ_HIPRI;
289
290 return bio_split(bio, sectors, GFP_NOIO, bs);
291 }
292
293 /**
294 * __blk_queue_split - split a bio and submit the second half
295 * @bio: [in, out] bio to be split
296 * @nr_segs: [out] number of segments in the first bio
297 *
298 * Split a bio into two bios, chain the two bios, submit the second half and
299 * store a pointer to the first half in *@bio. If the second bio is still too
300 * big it will be split by a recursive call to this function. Since this
301 * function may allocate a new bio from q->bio_split, it is the responsibility
302 * of the caller to ensure that q->bio_split is only released after processing
303 * of the split bio has finished.
304 */
305 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
306 {
307 struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
308 struct bio *split = NULL;
309
310 switch (bio_op(*bio)) {
311 case REQ_OP_DISCARD:
312 case REQ_OP_SECURE_ERASE:
313 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
314 break;
315 case REQ_OP_WRITE_ZEROES:
316 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
317 nr_segs);
318 break;
319 case REQ_OP_WRITE_SAME:
320 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
321 nr_segs);
322 break;
323 default:
324 /*
325 * All drivers must accept single-segments bios that are <=
326 * PAGE_SIZE. This is a quick and dirty check that relies on
327 * the fact that bi_io_vec[0] is always valid if a bio has data.
328 * The check might lead to occasional false negatives when bios
329 * are cloned, but compared to the performance impact of cloned
330 * bios themselves the loop below doesn't matter anyway.
331 */
332 if (!q->limits.chunk_sectors &&
333 (*bio)->bi_vcnt == 1 &&
334 ((*bio)->bi_io_vec[0].bv_len +
335 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
336 *nr_segs = 1;
337 break;
338 }
339 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
340 break;
341 }
342
343 if (split) {
344 /* there isn't chance to merge the splitted bio */
345 split->bi_opf |= REQ_NOMERGE;
346
347 bio_chain(split, *bio);
348 trace_block_split(split, (*bio)->bi_iter.bi_sector);
349 submit_bio_noacct(*bio);
350 *bio = split;
351 }
352 }
353
354 /**
355 * blk_queue_split - split a bio and submit the second half
356 * @bio: [in, out] bio to be split
357 *
358 * Split a bio into two bios, chains the two bios, submit the second half and
359 * store a pointer to the first half in *@bio. Since this function may allocate
360 * a new bio from q->bio_split, it is the responsibility of the caller to ensure
361 * that q->bio_split is only released after processing of the split bio has
362 * finished.
363 */
364 void blk_queue_split(struct bio **bio)
365 {
366 unsigned int nr_segs;
367
368 __blk_queue_split(bio, &nr_segs);
369 }
370 EXPORT_SYMBOL(blk_queue_split);
371
372 unsigned int blk_recalc_rq_segments(struct request *rq)
373 {
374 unsigned int nr_phys_segs = 0;
375 unsigned int nr_sectors = 0;
376 struct req_iterator iter;
377 struct bio_vec bv;
378
379 if (!rq->bio)
380 return 0;
381
382 switch (bio_op(rq->bio)) {
383 case REQ_OP_DISCARD:
384 case REQ_OP_SECURE_ERASE:
385 case REQ_OP_WRITE_ZEROES:
386 return 0;
387 case REQ_OP_WRITE_SAME:
388 return 1;
389 }
390
391 rq_for_each_bvec(bv, rq, iter)
392 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
393 UINT_MAX, UINT_MAX);
394 return nr_phys_segs;
395 }
396
397 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
398 struct scatterlist *sglist)
399 {
400 if (!*sg)
401 return sglist;
402
403 /*
404 * If the driver previously mapped a shorter list, we could see a
405 * termination bit prematurely unless it fully inits the sg table
406 * on each mapping. We KNOW that there must be more entries here
407 * or the driver would be buggy, so force clear the termination bit
408 * to avoid doing a full sg_init_table() in drivers for each command.
409 */
410 sg_unmark_end(*sg);
411 return sg_next(*sg);
412 }
413
414 static unsigned blk_bvec_map_sg(struct request_queue *q,
415 struct bio_vec *bvec, struct scatterlist *sglist,
416 struct scatterlist **sg)
417 {
418 unsigned nbytes = bvec->bv_len;
419 unsigned nsegs = 0, total = 0;
420
421 while (nbytes > 0) {
422 unsigned offset = bvec->bv_offset + total;
423 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
424 offset), nbytes);
425 struct page *page = bvec->bv_page;
426
427 /*
428 * Unfortunately a fair number of drivers barf on scatterlists
429 * that have an offset larger than PAGE_SIZE, despite other
430 * subsystems dealing with that invariant just fine. For now
431 * stick to the legacy format where we never present those from
432 * the block layer, but the code below should be removed once
433 * these offenders (mostly MMC/SD drivers) are fixed.
434 */
435 page += (offset >> PAGE_SHIFT);
436 offset &= ~PAGE_MASK;
437
438 *sg = blk_next_sg(sg, sglist);
439 sg_set_page(*sg, page, len, offset);
440
441 total += len;
442 nbytes -= len;
443 nsegs++;
444 }
445
446 return nsegs;
447 }
448
449 static inline int __blk_bvec_map_sg(struct bio_vec bv,
450 struct scatterlist *sglist, struct scatterlist **sg)
451 {
452 *sg = blk_next_sg(sg, sglist);
453 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
454 return 1;
455 }
456
457 /* only try to merge bvecs into one sg if they are from two bios */
458 static inline bool
459 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
460 struct bio_vec *bvprv, struct scatterlist **sg)
461 {
462
463 int nbytes = bvec->bv_len;
464
465 if (!*sg)
466 return false;
467
468 if ((*sg)->length + nbytes > queue_max_segment_size(q))
469 return false;
470
471 if (!biovec_phys_mergeable(q, bvprv, bvec))
472 return false;
473
474 (*sg)->length += nbytes;
475
476 return true;
477 }
478
479 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
480 struct scatterlist *sglist,
481 struct scatterlist **sg)
482 {
483 struct bio_vec bvec, bvprv = { NULL };
484 struct bvec_iter iter;
485 int nsegs = 0;
486 bool new_bio = false;
487
488 for_each_bio(bio) {
489 bio_for_each_bvec(bvec, bio, iter) {
490 /*
491 * Only try to merge bvecs from two bios given we
492 * have done bio internal merge when adding pages
493 * to bio
494 */
495 if (new_bio &&
496 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
497 goto next_bvec;
498
499 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
500 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
501 else
502 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
503 next_bvec:
504 new_bio = false;
505 }
506 if (likely(bio->bi_iter.bi_size)) {
507 bvprv = bvec;
508 new_bio = true;
509 }
510 }
511
512 return nsegs;
513 }
514
515 /*
516 * map a request to scatterlist, return number of sg entries setup. Caller
517 * must make sure sg can hold rq->nr_phys_segments entries
518 */
519 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
520 struct scatterlist *sglist, struct scatterlist **last_sg)
521 {
522 int nsegs = 0;
523
524 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
525 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
526 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
527 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
528 else if (rq->bio)
529 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
530
531 if (*last_sg)
532 sg_mark_end(*last_sg);
533
534 /*
535 * Something must have been wrong if the figured number of
536 * segment is bigger than number of req's physical segments
537 */
538 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
539
540 return nsegs;
541 }
542 EXPORT_SYMBOL(__blk_rq_map_sg);
543
544 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
545 {
546 if (req_op(rq) == REQ_OP_DISCARD)
547 return queue_max_discard_segments(rq->q);
548 return queue_max_segments(rq->q);
549 }
550
551 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
552 unsigned int nr_phys_segs)
553 {
554 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
555 goto no_merge;
556
557 if (blk_integrity_merge_bio(req->q, req, bio) == false)
558 goto no_merge;
559
560 /*
561 * This will form the start of a new hw segment. Bump both
562 * counters.
563 */
564 req->nr_phys_segments += nr_phys_segs;
565 return 1;
566
567 no_merge:
568 req_set_nomerge(req->q, req);
569 return 0;
570 }
571
572 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
573 {
574 if (req_gap_back_merge(req, bio))
575 return 0;
576 if (blk_integrity_rq(req) &&
577 integrity_req_gap_back_merge(req, bio))
578 return 0;
579 if (!bio_crypt_ctx_back_mergeable(req, bio))
580 return 0;
581 if (blk_rq_sectors(req) + bio_sectors(bio) >
582 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
583 req_set_nomerge(req->q, req);
584 return 0;
585 }
586
587 return ll_new_hw_segment(req, bio, nr_segs);
588 }
589
590 static int ll_front_merge_fn(struct request *req, struct bio *bio,
591 unsigned int nr_segs)
592 {
593 if (req_gap_front_merge(req, bio))
594 return 0;
595 if (blk_integrity_rq(req) &&
596 integrity_req_gap_front_merge(req, bio))
597 return 0;
598 if (!bio_crypt_ctx_front_mergeable(req, bio))
599 return 0;
600 if (blk_rq_sectors(req) + bio_sectors(bio) >
601 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
602 req_set_nomerge(req->q, req);
603 return 0;
604 }
605
606 return ll_new_hw_segment(req, bio, nr_segs);
607 }
608
609 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
610 struct request *next)
611 {
612 unsigned short segments = blk_rq_nr_discard_segments(req);
613
614 if (segments >= queue_max_discard_segments(q))
615 goto no_merge;
616 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
617 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
618 goto no_merge;
619
620 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
621 return true;
622 no_merge:
623 req_set_nomerge(q, req);
624 return false;
625 }
626
627 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
628 struct request *next)
629 {
630 int total_phys_segments;
631
632 if (req_gap_back_merge(req, next->bio))
633 return 0;
634
635 /*
636 * Will it become too large?
637 */
638 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
639 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
640 return 0;
641
642 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
643 if (total_phys_segments > blk_rq_get_max_segments(req))
644 return 0;
645
646 if (blk_integrity_merge_rq(q, req, next) == false)
647 return 0;
648
649 if (!bio_crypt_ctx_merge_rq(req, next))
650 return 0;
651
652 /* Merge is OK... */
653 req->nr_phys_segments = total_phys_segments;
654 return 1;
655 }
656
657 /**
658 * blk_rq_set_mixed_merge - mark a request as mixed merge
659 * @rq: request to mark as mixed merge
660 *
661 * Description:
662 * @rq is about to be mixed merged. Make sure the attributes
663 * which can be mixed are set in each bio and mark @rq as mixed
664 * merged.
665 */
666 void blk_rq_set_mixed_merge(struct request *rq)
667 {
668 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
669 struct bio *bio;
670
671 if (rq->rq_flags & RQF_MIXED_MERGE)
672 return;
673
674 /*
675 * @rq will no longer represent mixable attributes for all the
676 * contained bios. It will just track those of the first one.
677 * Distributes the attributs to each bio.
678 */
679 for (bio = rq->bio; bio; bio = bio->bi_next) {
680 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
681 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
682 bio->bi_opf |= ff;
683 }
684 rq->rq_flags |= RQF_MIXED_MERGE;
685 }
686
687 static void blk_account_io_merge_request(struct request *req)
688 {
689 if (blk_do_io_stat(req)) {
690 part_stat_lock();
691 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
692 part_stat_unlock();
693 }
694 }
695
696 /*
697 * Two cases of handling DISCARD merge:
698 * If max_discard_segments > 1, the driver takes every bio
699 * as a range and send them to controller together. The ranges
700 * needn't to be contiguous.
701 * Otherwise, the bios/requests will be handled as same as
702 * others which should be contiguous.
703 */
704 static inline bool blk_discard_mergable(struct request *req)
705 {
706 if (req_op(req) == REQ_OP_DISCARD &&
707 queue_max_discard_segments(req->q) > 1)
708 return true;
709 return false;
710 }
711
712 static enum elv_merge blk_try_req_merge(struct request *req,
713 struct request *next)
714 {
715 if (blk_discard_mergable(req))
716 return ELEVATOR_DISCARD_MERGE;
717 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
718 return ELEVATOR_BACK_MERGE;
719
720 return ELEVATOR_NO_MERGE;
721 }
722
723 /*
724 * For non-mq, this has to be called with the request spinlock acquired.
725 * For mq with scheduling, the appropriate queue wide lock should be held.
726 */
727 static struct request *attempt_merge(struct request_queue *q,
728 struct request *req, struct request *next)
729 {
730 if (!rq_mergeable(req) || !rq_mergeable(next))
731 return NULL;
732
733 if (req_op(req) != req_op(next))
734 return NULL;
735
736 if (rq_data_dir(req) != rq_data_dir(next)
737 || req->rq_disk != next->rq_disk)
738 return NULL;
739
740 if (req_op(req) == REQ_OP_WRITE_SAME &&
741 !blk_write_same_mergeable(req->bio, next->bio))
742 return NULL;
743
744 /*
745 * Don't allow merge of different write hints, or for a hint with
746 * non-hint IO.
747 */
748 if (req->write_hint != next->write_hint)
749 return NULL;
750
751 if (req->ioprio != next->ioprio)
752 return NULL;
753
754 /*
755 * If we are allowed to merge, then append bio list
756 * from next to rq and release next. merge_requests_fn
757 * will have updated segment counts, update sector
758 * counts here. Handle DISCARDs separately, as they
759 * have separate settings.
760 */
761
762 switch (blk_try_req_merge(req, next)) {
763 case ELEVATOR_DISCARD_MERGE:
764 if (!req_attempt_discard_merge(q, req, next))
765 return NULL;
766 break;
767 case ELEVATOR_BACK_MERGE:
768 if (!ll_merge_requests_fn(q, req, next))
769 return NULL;
770 break;
771 default:
772 return NULL;
773 }
774
775 /*
776 * If failfast settings disagree or any of the two is already
777 * a mixed merge, mark both as mixed before proceeding. This
778 * makes sure that all involved bios have mixable attributes
779 * set properly.
780 */
781 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
782 (req->cmd_flags & REQ_FAILFAST_MASK) !=
783 (next->cmd_flags & REQ_FAILFAST_MASK)) {
784 blk_rq_set_mixed_merge(req);
785 blk_rq_set_mixed_merge(next);
786 }
787
788 /*
789 * At this point we have either done a back merge or front merge. We
790 * need the smaller start_time_ns of the merged requests to be the
791 * current request for accounting purposes.
792 */
793 if (next->start_time_ns < req->start_time_ns)
794 req->start_time_ns = next->start_time_ns;
795
796 req->biotail->bi_next = next->bio;
797 req->biotail = next->biotail;
798
799 req->__data_len += blk_rq_bytes(next);
800
801 if (!blk_discard_mergable(req))
802 elv_merge_requests(q, req, next);
803
804 /*
805 * 'next' is going away, so update stats accordingly
806 */
807 blk_account_io_merge_request(next);
808
809 trace_block_rq_merge(next);
810
811 /*
812 * ownership of bio passed from next to req, return 'next' for
813 * the caller to free
814 */
815 next->bio = NULL;
816 return next;
817 }
818
819 static struct request *attempt_back_merge(struct request_queue *q,
820 struct request *rq)
821 {
822 struct request *next = elv_latter_request(q, rq);
823
824 if (next)
825 return attempt_merge(q, rq, next);
826
827 return NULL;
828 }
829
830 static struct request *attempt_front_merge(struct request_queue *q,
831 struct request *rq)
832 {
833 struct request *prev = elv_former_request(q, rq);
834
835 if (prev)
836 return attempt_merge(q, prev, rq);
837
838 return NULL;
839 }
840
841 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
842 struct request *next)
843 {
844 struct request *free;
845
846 free = attempt_merge(q, rq, next);
847 if (free) {
848 blk_put_request(free);
849 return 1;
850 }
851
852 return 0;
853 }
854
855 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
856 {
857 if (!rq_mergeable(rq) || !bio_mergeable(bio))
858 return false;
859
860 if (req_op(rq) != bio_op(bio))
861 return false;
862
863 /* different data direction or already started, don't merge */
864 if (bio_data_dir(bio) != rq_data_dir(rq))
865 return false;
866
867 /* must be same device */
868 if (rq->rq_disk != bio->bi_bdev->bd_disk)
869 return false;
870
871 /* only merge integrity protected bio into ditto rq */
872 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
873 return false;
874
875 /* Only merge if the crypt contexts are compatible */
876 if (!bio_crypt_rq_ctx_compatible(rq, bio))
877 return false;
878
879 /* must be using the same buffer */
880 if (req_op(rq) == REQ_OP_WRITE_SAME &&
881 !blk_write_same_mergeable(rq->bio, bio))
882 return false;
883
884 /*
885 * Don't allow merge of different write hints, or for a hint with
886 * non-hint IO.
887 */
888 if (rq->write_hint != bio->bi_write_hint)
889 return false;
890
891 if (rq->ioprio != bio_prio(bio))
892 return false;
893
894 return true;
895 }
896
897 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
898 {
899 if (blk_discard_mergable(rq))
900 return ELEVATOR_DISCARD_MERGE;
901 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
902 return ELEVATOR_BACK_MERGE;
903 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
904 return ELEVATOR_FRONT_MERGE;
905 return ELEVATOR_NO_MERGE;
906 }
907
908 static void blk_account_io_merge_bio(struct request *req)
909 {
910 if (!blk_do_io_stat(req))
911 return;
912
913 part_stat_lock();
914 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
915 part_stat_unlock();
916 }
917
918 enum bio_merge_status {
919 BIO_MERGE_OK,
920 BIO_MERGE_NONE,
921 BIO_MERGE_FAILED,
922 };
923
924 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
925 struct bio *bio, unsigned int nr_segs)
926 {
927 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
928
929 if (!ll_back_merge_fn(req, bio, nr_segs))
930 return BIO_MERGE_FAILED;
931
932 trace_block_bio_backmerge(bio);
933 rq_qos_merge(req->q, req, bio);
934
935 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
936 blk_rq_set_mixed_merge(req);
937
938 req->biotail->bi_next = bio;
939 req->biotail = bio;
940 req->__data_len += bio->bi_iter.bi_size;
941
942 bio_crypt_free_ctx(bio);
943
944 blk_account_io_merge_bio(req);
945 return BIO_MERGE_OK;
946 }
947
948 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
949 struct bio *bio, unsigned int nr_segs)
950 {
951 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
952
953 if (!ll_front_merge_fn(req, bio, nr_segs))
954 return BIO_MERGE_FAILED;
955
956 trace_block_bio_frontmerge(bio);
957 rq_qos_merge(req->q, req, bio);
958
959 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
960 blk_rq_set_mixed_merge(req);
961
962 bio->bi_next = req->bio;
963 req->bio = bio;
964
965 req->__sector = bio->bi_iter.bi_sector;
966 req->__data_len += bio->bi_iter.bi_size;
967
968 bio_crypt_do_front_merge(req, bio);
969
970 blk_account_io_merge_bio(req);
971 return BIO_MERGE_OK;
972 }
973
974 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
975 struct request *req, struct bio *bio)
976 {
977 unsigned short segments = blk_rq_nr_discard_segments(req);
978
979 if (segments >= queue_max_discard_segments(q))
980 goto no_merge;
981 if (blk_rq_sectors(req) + bio_sectors(bio) >
982 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
983 goto no_merge;
984
985 rq_qos_merge(q, req, bio);
986
987 req->biotail->bi_next = bio;
988 req->biotail = bio;
989 req->__data_len += bio->bi_iter.bi_size;
990 req->nr_phys_segments = segments + 1;
991
992 blk_account_io_merge_bio(req);
993 return BIO_MERGE_OK;
994 no_merge:
995 req_set_nomerge(q, req);
996 return BIO_MERGE_FAILED;
997 }
998
999 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1000 struct request *rq,
1001 struct bio *bio,
1002 unsigned int nr_segs,
1003 bool sched_allow_merge)
1004 {
1005 if (!blk_rq_merge_ok(rq, bio))
1006 return BIO_MERGE_NONE;
1007
1008 switch (blk_try_merge(rq, bio)) {
1009 case ELEVATOR_BACK_MERGE:
1010 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1011 return bio_attempt_back_merge(rq, bio, nr_segs);
1012 break;
1013 case ELEVATOR_FRONT_MERGE:
1014 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1015 return bio_attempt_front_merge(rq, bio, nr_segs);
1016 break;
1017 case ELEVATOR_DISCARD_MERGE:
1018 return bio_attempt_discard_merge(q, rq, bio);
1019 default:
1020 return BIO_MERGE_NONE;
1021 }
1022
1023 return BIO_MERGE_FAILED;
1024 }
1025
1026 /**
1027 * blk_attempt_plug_merge - try to merge with %current's plugged list
1028 * @q: request_queue new bio is being queued at
1029 * @bio: new bio being queued
1030 * @nr_segs: number of segments in @bio
1031 * @same_queue_rq: pointer to &struct request that gets filled in when
1032 * another request associated with @q is found on the plug list
1033 * (optional, may be %NULL)
1034 *
1035 * Determine whether @bio being queued on @q can be merged with a request
1036 * on %current's plugged list. Returns %true if merge was successful,
1037 * otherwise %false.
1038 *
1039 * Plugging coalesces IOs from the same issuer for the same purpose without
1040 * going through @q->queue_lock. As such it's more of an issuing mechanism
1041 * than scheduling, and the request, while may have elvpriv data, is not
1042 * added on the elevator at this point. In addition, we don't have
1043 * reliable access to the elevator outside queue lock. Only check basic
1044 * merging parameters without querying the elevator.
1045 *
1046 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1047 */
1048 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1049 unsigned int nr_segs, struct request **same_queue_rq)
1050 {
1051 struct blk_plug *plug;
1052 struct request *rq;
1053 struct list_head *plug_list;
1054
1055 plug = blk_mq_plug(q, bio);
1056 if (!plug)
1057 return false;
1058
1059 plug_list = &plug->mq_list;
1060
1061 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1062 if (rq->q == q && same_queue_rq) {
1063 /*
1064 * Only blk-mq multiple hardware queues case checks the
1065 * rq in the same queue, there should be only one such
1066 * rq in a queue
1067 **/
1068 *same_queue_rq = rq;
1069 }
1070
1071 if (rq->q != q)
1072 continue;
1073
1074 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1075 BIO_MERGE_OK)
1076 return true;
1077 }
1078
1079 return false;
1080 }
1081
1082 /*
1083 * Iterate list of requests and see if we can merge this bio with any
1084 * of them.
1085 */
1086 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1087 struct bio *bio, unsigned int nr_segs)
1088 {
1089 struct request *rq;
1090 int checked = 8;
1091
1092 list_for_each_entry_reverse(rq, list, queuelist) {
1093 if (!checked--)
1094 break;
1095
1096 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1097 case BIO_MERGE_NONE:
1098 continue;
1099 case BIO_MERGE_OK:
1100 return true;
1101 case BIO_MERGE_FAILED:
1102 return false;
1103 }
1104
1105 }
1106
1107 return false;
1108 }
1109 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1110
1111 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1112 unsigned int nr_segs, struct request **merged_request)
1113 {
1114 struct request *rq;
1115
1116 switch (elv_merge(q, &rq, bio)) {
1117 case ELEVATOR_BACK_MERGE:
1118 if (!blk_mq_sched_allow_merge(q, rq, bio))
1119 return false;
1120 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1121 return false;
1122 *merged_request = attempt_back_merge(q, rq);
1123 if (!*merged_request)
1124 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1125 return true;
1126 case ELEVATOR_FRONT_MERGE:
1127 if (!blk_mq_sched_allow_merge(q, rq, bio))
1128 return false;
1129 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1130 return false;
1131 *merged_request = attempt_front_merge(q, rq);
1132 if (!*merged_request)
1133 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1134 return true;
1135 case ELEVATOR_DISCARD_MERGE:
1136 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1137 default:
1138 return false;
1139 }
1140 }
1141 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);