]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - block/blk-merge.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / block / blk-merge.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 #include <linux/blk-cgroup.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15
16 static inline bool bio_will_gap(struct request_queue *q,
17 struct request *prev_rq, struct bio *prev, struct bio *next)
18 {
19 struct bio_vec pb, nb;
20
21 if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 return false;
23
24 /*
25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 * is quite difficult to respect the sg gap limit. We work hard to
27 * merge a huge number of small single bios in case of mkfs.
28 */
29 if (prev_rq)
30 bio_get_first_bvec(prev_rq->bio, &pb);
31 else
32 bio_get_first_bvec(prev, &pb);
33 if (pb.bv_offset & queue_virt_boundary(q))
34 return true;
35
36 /*
37 * We don't need to worry about the situation that the merged segment
38 * ends in unaligned virt boundary:
39 *
40 * - if 'pb' ends aligned, the merged segment ends aligned
41 * - if 'pb' ends unaligned, the next bio must include
42 * one single bvec of 'nb', otherwise the 'nb' can't
43 * merge with 'pb'
44 */
45 bio_get_last_bvec(prev, &pb);
46 bio_get_first_bvec(next, &nb);
47 if (biovec_phys_mergeable(q, &pb, &nb))
48 return false;
49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
50 }
51
52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 {
54 return bio_will_gap(req->q, req, req->biotail, bio);
55 }
56
57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 {
59 return bio_will_gap(req->q, NULL, bio, req->bio);
60 }
61
62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 struct bio *bio,
64 struct bio_set *bs,
65 unsigned *nsegs)
66 {
67 unsigned int max_discard_sectors, granularity;
68 int alignment;
69 sector_t tmp;
70 unsigned split_sectors;
71
72 *nsegs = 1;
73
74 /* Zero-sector (unknown) and one-sector granularities are the same. */
75 granularity = max(q->limits.discard_granularity >> 9, 1U);
76
77 max_discard_sectors = min(q->limits.max_discard_sectors,
78 bio_allowed_max_sectors(q));
79 max_discard_sectors -= max_discard_sectors % granularity;
80
81 if (unlikely(!max_discard_sectors)) {
82 /* XXX: warn */
83 return NULL;
84 }
85
86 if (bio_sectors(bio) <= max_discard_sectors)
87 return NULL;
88
89 split_sectors = max_discard_sectors;
90
91 /*
92 * If the next starting sector would be misaligned, stop the discard at
93 * the previous aligned sector.
94 */
95 alignment = (q->limits.discard_alignment >> 9) % granularity;
96
97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 tmp = sector_div(tmp, granularity);
99
100 if (split_sectors > tmp)
101 split_sectors -= tmp;
102
103 return bio_split(bio, split_sectors, GFP_NOIO, bs);
104 }
105
106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 {
109 *nsegs = 0;
110
111 if (!q->limits.max_write_zeroes_sectors)
112 return NULL;
113
114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 return NULL;
116
117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
118 }
119
120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 struct bio *bio,
122 struct bio_set *bs,
123 unsigned *nsegs)
124 {
125 *nsegs = 1;
126
127 if (!q->limits.max_write_same_sectors)
128 return NULL;
129
130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 return NULL;
132
133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
134 }
135
136 /*
137 * Return the maximum number of sectors from the start of a bio that may be
138 * submitted as a single request to a block device. If enough sectors remain,
139 * align the end to the physical block size. Otherwise align the end to the
140 * logical block size. This approach minimizes the number of non-aligned
141 * requests that are submitted to a block device if the start of a bio is not
142 * aligned to a physical block boundary.
143 */
144 static inline unsigned get_max_io_size(struct request_queue *q,
145 struct bio *bio)
146 {
147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
148 unsigned max_sectors = sectors;
149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152
153 max_sectors += start_offset;
154 max_sectors &= ~(pbs - 1);
155 if (max_sectors > start_offset)
156 return max_sectors - start_offset;
157
158 return sectors & ~(lbs - 1);
159 }
160
161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 struct page *start_page,
163 unsigned long offset)
164 {
165 unsigned long mask = queue_segment_boundary(q);
166
167 offset = mask & (page_to_phys(start_page) + offset);
168
169 /*
170 * overflow may be triggered in case of zero page physical address
171 * on 32bit arch, use queue's max segment size when that happens.
172 */
173 return min_not_zero(mask - offset + 1,
174 (unsigned long)queue_max_segment_size(q));
175 }
176
177 /**
178 * bvec_split_segs - verify whether or not a bvec should be split in the middle
179 * @q: [in] request queue associated with the bio associated with @bv
180 * @bv: [in] bvec to examine
181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
182 * by the number of segments from @bv that may be appended to that
183 * bio without exceeding @max_segs
184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
185 * by the number of sectors from @bv that may be appended to that
186 * bio without exceeding @max_sectors
187 * @max_segs: [in] upper bound for *@nsegs
188 * @max_sectors: [in] upper bound for *@sectors
189 *
190 * When splitting a bio, it can happen that a bvec is encountered that is too
191 * big to fit in a single segment and hence that it has to be split in the
192 * middle. This function verifies whether or not that should happen. The value
193 * %true is returned if and only if appending the entire @bv to a bio with
194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195 * the block driver.
196 */
197 static bool bvec_split_segs(const struct request_queue *q,
198 const struct bio_vec *bv, unsigned *nsegs,
199 unsigned *sectors, unsigned max_segs,
200 unsigned max_sectors)
201 {
202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 unsigned len = min(bv->bv_len, max_len);
204 unsigned total_len = 0;
205 unsigned seg_size = 0;
206
207 while (len && *nsegs < max_segs) {
208 seg_size = get_max_segment_size(q, bv->bv_page,
209 bv->bv_offset + total_len);
210 seg_size = min(seg_size, len);
211
212 (*nsegs)++;
213 total_len += seg_size;
214 len -= seg_size;
215
216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 break;
218 }
219
220 *sectors += total_len >> 9;
221
222 /* tell the caller to split the bvec if it is too big to fit */
223 return len > 0 || bv->bv_len > max_len;
224 }
225
226 /**
227 * blk_bio_segment_split - split a bio in two bios
228 * @q: [in] request queue pointer
229 * @bio: [in] bio to be split
230 * @bs: [in] bio set to allocate the clone from
231 * @segs: [out] number of segments in the bio with the first half of the sectors
232 *
233 * Clone @bio, update the bi_iter of the clone to represent the first sectors
234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235 * following is guaranteed for the cloned bio:
236 * - That it has at most get_max_io_size(@q, @bio) sectors.
237 * - That it has at most queue_max_segments(@q) segments.
238 *
239 * Except for discard requests the cloned bio will point at the bi_io_vec of
240 * the original bio. It is the responsibility of the caller to ensure that the
241 * original bio is not freed before the cloned bio. The caller is also
242 * responsible for ensuring that @bs is only destroyed after processing of the
243 * split bio has finished.
244 */
245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 struct bio *bio,
247 struct bio_set *bs,
248 unsigned *segs)
249 {
250 struct bio_vec bv, bvprv, *bvprvp = NULL;
251 struct bvec_iter iter;
252 unsigned nsegs = 0, sectors = 0;
253 const unsigned max_sectors = get_max_io_size(q, bio);
254 const unsigned max_segs = queue_max_segments(q);
255
256 bio_for_each_bvec(bv, bio, iter) {
257 /*
258 * If the queue doesn't support SG gaps and adding this
259 * offset would create a gap, disallow it.
260 */
261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 goto split;
263
264 if (nsegs < max_segs &&
265 sectors + (bv.bv_len >> 9) <= max_sectors &&
266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 nsegs++;
268 sectors += bv.bv_len >> 9;
269 } else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 max_sectors)) {
271 goto split;
272 }
273
274 bvprv = bv;
275 bvprvp = &bvprv;
276 }
277
278 *segs = nsegs;
279 return NULL;
280 split:
281 *segs = nsegs;
282 return bio_split(bio, sectors, GFP_NOIO, bs);
283 }
284
285 /**
286 * __blk_queue_split - split a bio and submit the second half
287 * @q: [in] request queue pointer
288 * @bio: [in, out] bio to be split
289 * @nr_segs: [out] number of segments in the first bio
290 *
291 * Split a bio into two bios, chain the two bios, submit the second half and
292 * store a pointer to the first half in *@bio. If the second bio is still too
293 * big it will be split by a recursive call to this function. Since this
294 * function may allocate a new bio from @q->bio_split, it is the responsibility
295 * of the caller to ensure that @q is only released after processing of the
296 * split bio has finished.
297 */
298 void __blk_queue_split(struct request_queue *q, struct bio **bio,
299 unsigned int *nr_segs)
300 {
301 struct bio *split;
302
303 switch (bio_op(*bio)) {
304 case REQ_OP_DISCARD:
305 case REQ_OP_SECURE_ERASE:
306 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
307 break;
308 case REQ_OP_WRITE_ZEROES:
309 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
310 nr_segs);
311 break;
312 case REQ_OP_WRITE_SAME:
313 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
314 nr_segs);
315 break;
316 default:
317 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
318 break;
319 }
320
321 if (split) {
322 /* there isn't chance to merge the splitted bio */
323 split->bi_opf |= REQ_NOMERGE;
324
325 /*
326 * Since we're recursing into make_request here, ensure
327 * that we mark this bio as already having entered the queue.
328 * If not, and the queue is going away, we can get stuck
329 * forever on waiting for the queue reference to drop. But
330 * that will never happen, as we're already holding a
331 * reference to it.
332 */
333 bio_set_flag(*bio, BIO_QUEUE_ENTERED);
334
335 bio_chain(split, *bio);
336 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
337 generic_make_request(*bio);
338 *bio = split;
339 }
340 }
341
342 /**
343 * blk_queue_split - split a bio and submit the second half
344 * @q: [in] request queue pointer
345 * @bio: [in, out] bio to be split
346 *
347 * Split a bio into two bios, chains the two bios, submit the second half and
348 * store a pointer to the first half in *@bio. Since this function may allocate
349 * a new bio from @q->bio_split, it is the responsibility of the caller to
350 * ensure that @q is only released after processing of the split bio has
351 * finished.
352 */
353 void blk_queue_split(struct request_queue *q, struct bio **bio)
354 {
355 unsigned int nr_segs;
356
357 __blk_queue_split(q, bio, &nr_segs);
358 }
359 EXPORT_SYMBOL(blk_queue_split);
360
361 unsigned int blk_recalc_rq_segments(struct request *rq)
362 {
363 unsigned int nr_phys_segs = 0;
364 unsigned int nr_sectors = 0;
365 struct req_iterator iter;
366 struct bio_vec bv;
367
368 if (!rq->bio)
369 return 0;
370
371 switch (bio_op(rq->bio)) {
372 case REQ_OP_DISCARD:
373 case REQ_OP_SECURE_ERASE:
374 if (queue_max_discard_segments(rq->q) > 1) {
375 struct bio *bio = rq->bio;
376
377 for_each_bio(bio)
378 nr_phys_segs++;
379 return nr_phys_segs;
380 }
381 return 1;
382 case REQ_OP_WRITE_ZEROES:
383 return 0;
384 case REQ_OP_WRITE_SAME:
385 return 1;
386 }
387
388 rq_for_each_bvec(bv, rq, iter)
389 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
390 UINT_MAX, UINT_MAX);
391 return nr_phys_segs;
392 }
393
394 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
395 struct scatterlist *sglist)
396 {
397 if (!*sg)
398 return sglist;
399
400 /*
401 * If the driver previously mapped a shorter list, we could see a
402 * termination bit prematurely unless it fully inits the sg table
403 * on each mapping. We KNOW that there must be more entries here
404 * or the driver would be buggy, so force clear the termination bit
405 * to avoid doing a full sg_init_table() in drivers for each command.
406 */
407 sg_unmark_end(*sg);
408 return sg_next(*sg);
409 }
410
411 static unsigned blk_bvec_map_sg(struct request_queue *q,
412 struct bio_vec *bvec, struct scatterlist *sglist,
413 struct scatterlist **sg)
414 {
415 unsigned nbytes = bvec->bv_len;
416 unsigned nsegs = 0, total = 0;
417
418 while (nbytes > 0) {
419 unsigned offset = bvec->bv_offset + total;
420 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
421 offset), nbytes);
422 struct page *page = bvec->bv_page;
423
424 /*
425 * Unfortunately a fair number of drivers barf on scatterlists
426 * that have an offset larger than PAGE_SIZE, despite other
427 * subsystems dealing with that invariant just fine. For now
428 * stick to the legacy format where we never present those from
429 * the block layer, but the code below should be removed once
430 * these offenders (mostly MMC/SD drivers) are fixed.
431 */
432 page += (offset >> PAGE_SHIFT);
433 offset &= ~PAGE_MASK;
434
435 *sg = blk_next_sg(sg, sglist);
436 sg_set_page(*sg, page, len, offset);
437
438 total += len;
439 nbytes -= len;
440 nsegs++;
441 }
442
443 return nsegs;
444 }
445
446 static inline int __blk_bvec_map_sg(struct bio_vec bv,
447 struct scatterlist *sglist, struct scatterlist **sg)
448 {
449 *sg = blk_next_sg(sg, sglist);
450 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
451 return 1;
452 }
453
454 /* only try to merge bvecs into one sg if they are from two bios */
455 static inline bool
456 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
457 struct bio_vec *bvprv, struct scatterlist **sg)
458 {
459
460 int nbytes = bvec->bv_len;
461
462 if (!*sg)
463 return false;
464
465 if ((*sg)->length + nbytes > queue_max_segment_size(q))
466 return false;
467
468 if (!biovec_phys_mergeable(q, bvprv, bvec))
469 return false;
470
471 (*sg)->length += nbytes;
472
473 return true;
474 }
475
476 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
477 struct scatterlist *sglist,
478 struct scatterlist **sg)
479 {
480 struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
481 struct bvec_iter iter;
482 int nsegs = 0;
483 bool new_bio = false;
484
485 for_each_bio(bio) {
486 bio_for_each_bvec(bvec, bio, iter) {
487 /*
488 * Only try to merge bvecs from two bios given we
489 * have done bio internal merge when adding pages
490 * to bio
491 */
492 if (new_bio &&
493 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
494 goto next_bvec;
495
496 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
497 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
498 else
499 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
500 next_bvec:
501 new_bio = false;
502 }
503 if (likely(bio->bi_iter.bi_size)) {
504 bvprv = bvec;
505 new_bio = true;
506 }
507 }
508
509 return nsegs;
510 }
511
512 /*
513 * map a request to scatterlist, return number of sg entries setup. Caller
514 * must make sure sg can hold rq->nr_phys_segments entries
515 */
516 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
517 struct scatterlist *sglist)
518 {
519 struct scatterlist *sg = NULL;
520 int nsegs = 0;
521
522 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
523 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg);
524 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
525 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg);
526 else if (rq->bio)
527 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
528
529 if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
530 (blk_rq_bytes(rq) & q->dma_pad_mask)) {
531 unsigned int pad_len =
532 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
533
534 sg->length += pad_len;
535 rq->extra_len += pad_len;
536 }
537
538 if (q->dma_drain_size && q->dma_drain_needed(rq)) {
539 if (op_is_write(req_op(rq)))
540 memset(q->dma_drain_buffer, 0, q->dma_drain_size);
541
542 sg_unmark_end(sg);
543 sg = sg_next(sg);
544 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
545 q->dma_drain_size,
546 ((unsigned long)q->dma_drain_buffer) &
547 (PAGE_SIZE - 1));
548 nsegs++;
549 rq->extra_len += q->dma_drain_size;
550 }
551
552 if (sg)
553 sg_mark_end(sg);
554
555 /*
556 * Something must have been wrong if the figured number of
557 * segment is bigger than number of req's physical segments
558 */
559 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
560
561 return nsegs;
562 }
563 EXPORT_SYMBOL(blk_rq_map_sg);
564
565 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
566 {
567 if (req_op(rq) == REQ_OP_DISCARD)
568 return queue_max_discard_segments(rq->q);
569 return queue_max_segments(rq->q);
570 }
571
572 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
573 unsigned int nr_phys_segs)
574 {
575 if (!blk_cgroup_mergeable(req, bio))
576 goto no_merge;
577
578 if (blk_integrity_merge_bio(req->q, req, bio) == false)
579 goto no_merge;
580
581 /* discard request merge won't add new segment */
582 if (req_op(req) == REQ_OP_DISCARD)
583 return 1;
584
585 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
586 goto no_merge;
587
588 /*
589 * This will form the start of a new hw segment. Bump both
590 * counters.
591 */
592 req->nr_phys_segments += nr_phys_segs;
593 return 1;
594
595 no_merge:
596 req_set_nomerge(req->q, req);
597 return 0;
598 }
599
600 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
601 {
602 if (req_gap_back_merge(req, bio))
603 return 0;
604 if (blk_integrity_rq(req) &&
605 integrity_req_gap_back_merge(req, bio))
606 return 0;
607 if (blk_rq_sectors(req) + bio_sectors(bio) >
608 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
609 req_set_nomerge(req->q, req);
610 return 0;
611 }
612
613 return ll_new_hw_segment(req, bio, nr_segs);
614 }
615
616 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
617 {
618 if (req_gap_front_merge(req, bio))
619 return 0;
620 if (blk_integrity_rq(req) &&
621 integrity_req_gap_front_merge(req, bio))
622 return 0;
623 if (blk_rq_sectors(req) + bio_sectors(bio) >
624 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
625 req_set_nomerge(req->q, req);
626 return 0;
627 }
628
629 return ll_new_hw_segment(req, bio, nr_segs);
630 }
631
632 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
633 struct request *next)
634 {
635 unsigned short segments = blk_rq_nr_discard_segments(req);
636
637 if (segments >= queue_max_discard_segments(q))
638 goto no_merge;
639 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
640 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
641 goto no_merge;
642
643 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
644 return true;
645 no_merge:
646 req_set_nomerge(q, req);
647 return false;
648 }
649
650 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
651 struct request *next)
652 {
653 int total_phys_segments;
654
655 if (req_gap_back_merge(req, next->bio))
656 return 0;
657
658 /*
659 * Will it become too large?
660 */
661 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
662 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
663 return 0;
664
665 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
666 if (total_phys_segments > blk_rq_get_max_segments(req))
667 return 0;
668
669 if (!blk_cgroup_mergeable(req, next->bio))
670 return 0;
671
672 if (blk_integrity_merge_rq(q, req, next) == false)
673 return 0;
674
675 /* Merge is OK... */
676 req->nr_phys_segments = total_phys_segments;
677 return 1;
678 }
679
680 /**
681 * blk_rq_set_mixed_merge - mark a request as mixed merge
682 * @rq: request to mark as mixed merge
683 *
684 * Description:
685 * @rq is about to be mixed merged. Make sure the attributes
686 * which can be mixed are set in each bio and mark @rq as mixed
687 * merged.
688 */
689 void blk_rq_set_mixed_merge(struct request *rq)
690 {
691 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
692 struct bio *bio;
693
694 if (rq->rq_flags & RQF_MIXED_MERGE)
695 return;
696
697 /*
698 * @rq will no longer represent mixable attributes for all the
699 * contained bios. It will just track those of the first one.
700 * Distributes the attributs to each bio.
701 */
702 for (bio = rq->bio; bio; bio = bio->bi_next) {
703 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
704 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
705 bio->bi_opf |= ff;
706 }
707 rq->rq_flags |= RQF_MIXED_MERGE;
708 }
709
710 static void blk_account_io_merge(struct request *req)
711 {
712 if (blk_do_io_stat(req)) {
713 struct hd_struct *part;
714
715 part_stat_lock();
716 part = req->part;
717
718 part_dec_in_flight(req->q, part, rq_data_dir(req));
719
720 hd_struct_put(part);
721 part_stat_unlock();
722 }
723 }
724 /*
725 * Two cases of handling DISCARD merge:
726 * If max_discard_segments > 1, the driver takes every bio
727 * as a range and send them to controller together. The ranges
728 * needn't to be contiguous.
729 * Otherwise, the bios/requests will be handled as same as
730 * others which should be contiguous.
731 */
732 static inline bool blk_discard_mergable(struct request *req)
733 {
734 if (req_op(req) == REQ_OP_DISCARD &&
735 queue_max_discard_segments(req->q) > 1)
736 return true;
737 return false;
738 }
739
740 static enum elv_merge blk_try_req_merge(struct request *req,
741 struct request *next)
742 {
743 if (blk_discard_mergable(req))
744 return ELEVATOR_DISCARD_MERGE;
745 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
746 return ELEVATOR_BACK_MERGE;
747
748 return ELEVATOR_NO_MERGE;
749 }
750
751 /*
752 * For non-mq, this has to be called with the request spinlock acquired.
753 * For mq with scheduling, the appropriate queue wide lock should be held.
754 */
755 static struct request *attempt_merge(struct request_queue *q,
756 struct request *req, struct request *next)
757 {
758 if (!rq_mergeable(req) || !rq_mergeable(next))
759 return NULL;
760
761 if (req_op(req) != req_op(next))
762 return NULL;
763
764 if (rq_data_dir(req) != rq_data_dir(next)
765 || req->rq_disk != next->rq_disk)
766 return NULL;
767
768 if (req_op(req) == REQ_OP_WRITE_SAME &&
769 !blk_write_same_mergeable(req->bio, next->bio))
770 return NULL;
771
772 /*
773 * Don't allow merge of different write hints, or for a hint with
774 * non-hint IO.
775 */
776 if (req->write_hint != next->write_hint)
777 return NULL;
778
779 if (req->ioprio != next->ioprio)
780 return NULL;
781
782 /*
783 * If we are allowed to merge, then append bio list
784 * from next to rq and release next. merge_requests_fn
785 * will have updated segment counts, update sector
786 * counts here. Handle DISCARDs separately, as they
787 * have separate settings.
788 */
789
790 switch (blk_try_req_merge(req, next)) {
791 case ELEVATOR_DISCARD_MERGE:
792 if (!req_attempt_discard_merge(q, req, next))
793 return NULL;
794 break;
795 case ELEVATOR_BACK_MERGE:
796 if (!ll_merge_requests_fn(q, req, next))
797 return NULL;
798 break;
799 default:
800 return NULL;
801 }
802
803 /*
804 * If failfast settings disagree or any of the two is already
805 * a mixed merge, mark both as mixed before proceeding. This
806 * makes sure that all involved bios have mixable attributes
807 * set properly.
808 */
809 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
810 (req->cmd_flags & REQ_FAILFAST_MASK) !=
811 (next->cmd_flags & REQ_FAILFAST_MASK)) {
812 blk_rq_set_mixed_merge(req);
813 blk_rq_set_mixed_merge(next);
814 }
815
816 /*
817 * At this point we have either done a back merge or front merge. We
818 * need the smaller start_time_ns of the merged requests to be the
819 * current request for accounting purposes.
820 */
821 if (next->start_time_ns < req->start_time_ns)
822 req->start_time_ns = next->start_time_ns;
823
824 req->biotail->bi_next = next->bio;
825 req->biotail = next->biotail;
826
827 req->__data_len += blk_rq_bytes(next);
828
829 if (!blk_discard_mergable(req))
830 elv_merge_requests(q, req, next);
831
832 /*
833 * 'next' is going away, so update stats accordingly
834 */
835 blk_account_io_merge(next);
836
837 /*
838 * ownership of bio passed from next to req, return 'next' for
839 * the caller to free
840 */
841 next->bio = NULL;
842 return next;
843 }
844
845 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
846 {
847 struct request *next = elv_latter_request(q, rq);
848
849 if (next)
850 return attempt_merge(q, rq, next);
851
852 return NULL;
853 }
854
855 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
856 {
857 struct request *prev = elv_former_request(q, rq);
858
859 if (prev)
860 return attempt_merge(q, prev, rq);
861
862 return NULL;
863 }
864
865 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
866 struct request *next)
867 {
868 struct request *free;
869
870 free = attempt_merge(q, rq, next);
871 if (free) {
872 blk_put_request(free);
873 return 1;
874 }
875
876 return 0;
877 }
878
879 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
880 {
881 if (!rq_mergeable(rq) || !bio_mergeable(bio))
882 return false;
883
884 if (req_op(rq) != bio_op(bio))
885 return false;
886
887 /* different data direction or already started, don't merge */
888 if (bio_data_dir(bio) != rq_data_dir(rq))
889 return false;
890
891 /* must be same device */
892 if (rq->rq_disk != bio->bi_disk)
893 return false;
894
895 /* don't merge across cgroup boundaries */
896 if (!blk_cgroup_mergeable(rq, bio))
897 return false;
898
899 /* only merge integrity protected bio into ditto rq */
900 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
901 return false;
902
903 /* must be using the same buffer */
904 if (req_op(rq) == REQ_OP_WRITE_SAME &&
905 !blk_write_same_mergeable(rq->bio, bio))
906 return false;
907
908 /*
909 * Don't allow merge of different write hints, or for a hint with
910 * non-hint IO.
911 */
912 if (rq->write_hint != bio->bi_write_hint)
913 return false;
914
915 if (rq->ioprio != bio_prio(bio))
916 return false;
917
918 return true;
919 }
920
921 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
922 {
923 if (blk_discard_mergable(rq))
924 return ELEVATOR_DISCARD_MERGE;
925 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
926 return ELEVATOR_BACK_MERGE;
927 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
928 return ELEVATOR_FRONT_MERGE;
929 return ELEVATOR_NO_MERGE;
930 }