]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-merge.c
Merge tag 'docs-5.10-2' of git://git.lwn.net/linux
[mirror_ubuntu-hirsute-kernel.git] / block / blk-merge.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10
11 #include <trace/events/block.h>
12
13 #include "blk.h"
14 #include "blk-rq-qos.h"
15
16 static inline bool bio_will_gap(struct request_queue *q,
17 struct request *prev_rq, struct bio *prev, struct bio *next)
18 {
19 struct bio_vec pb, nb;
20
21 if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 return false;
23
24 /*
25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 * is quite difficult to respect the sg gap limit. We work hard to
27 * merge a huge number of small single bios in case of mkfs.
28 */
29 if (prev_rq)
30 bio_get_first_bvec(prev_rq->bio, &pb);
31 else
32 bio_get_first_bvec(prev, &pb);
33 if (pb.bv_offset & queue_virt_boundary(q))
34 return true;
35
36 /*
37 * We don't need to worry about the situation that the merged segment
38 * ends in unaligned virt boundary:
39 *
40 * - if 'pb' ends aligned, the merged segment ends aligned
41 * - if 'pb' ends unaligned, the next bio must include
42 * one single bvec of 'nb', otherwise the 'nb' can't
43 * merge with 'pb'
44 */
45 bio_get_last_bvec(prev, &pb);
46 bio_get_first_bvec(next, &nb);
47 if (biovec_phys_mergeable(q, &pb, &nb))
48 return false;
49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
50 }
51
52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 {
54 return bio_will_gap(req->q, req, req->biotail, bio);
55 }
56
57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 {
59 return bio_will_gap(req->q, NULL, bio, req->bio);
60 }
61
62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 struct bio *bio,
64 struct bio_set *bs,
65 unsigned *nsegs)
66 {
67 unsigned int max_discard_sectors, granularity;
68 int alignment;
69 sector_t tmp;
70 unsigned split_sectors;
71
72 *nsegs = 1;
73
74 /* Zero-sector (unknown) and one-sector granularities are the same. */
75 granularity = max(q->limits.discard_granularity >> 9, 1U);
76
77 max_discard_sectors = min(q->limits.max_discard_sectors,
78 bio_allowed_max_sectors(q));
79 max_discard_sectors -= max_discard_sectors % granularity;
80
81 if (unlikely(!max_discard_sectors)) {
82 /* XXX: warn */
83 return NULL;
84 }
85
86 if (bio_sectors(bio) <= max_discard_sectors)
87 return NULL;
88
89 split_sectors = max_discard_sectors;
90
91 /*
92 * If the next starting sector would be misaligned, stop the discard at
93 * the previous aligned sector.
94 */
95 alignment = (q->limits.discard_alignment >> 9) % granularity;
96
97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 tmp = sector_div(tmp, granularity);
99
100 if (split_sectors > tmp)
101 split_sectors -= tmp;
102
103 return bio_split(bio, split_sectors, GFP_NOIO, bs);
104 }
105
106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 {
109 *nsegs = 0;
110
111 if (!q->limits.max_write_zeroes_sectors)
112 return NULL;
113
114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 return NULL;
116
117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
118 }
119
120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 struct bio *bio,
122 struct bio_set *bs,
123 unsigned *nsegs)
124 {
125 *nsegs = 1;
126
127 if (!q->limits.max_write_same_sectors)
128 return NULL;
129
130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 return NULL;
132
133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
134 }
135
136 /*
137 * Return the maximum number of sectors from the start of a bio that may be
138 * submitted as a single request to a block device. If enough sectors remain,
139 * align the end to the physical block size. Otherwise align the end to the
140 * logical block size. This approach minimizes the number of non-aligned
141 * requests that are submitted to a block device if the start of a bio is not
142 * aligned to a physical block boundary.
143 */
144 static inline unsigned get_max_io_size(struct request_queue *q,
145 struct bio *bio)
146 {
147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
148 unsigned max_sectors = sectors;
149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152
153 max_sectors += start_offset;
154 max_sectors &= ~(pbs - 1);
155 if (max_sectors > start_offset)
156 return max_sectors - start_offset;
157
158 return sectors & ~(lbs - 1);
159 }
160
161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 struct page *start_page,
163 unsigned long offset)
164 {
165 unsigned long mask = queue_segment_boundary(q);
166
167 offset = mask & (page_to_phys(start_page) + offset);
168
169 /*
170 * overflow may be triggered in case of zero page physical address
171 * on 32bit arch, use queue's max segment size when that happens.
172 */
173 return min_not_zero(mask - offset + 1,
174 (unsigned long)queue_max_segment_size(q));
175 }
176
177 /**
178 * bvec_split_segs - verify whether or not a bvec should be split in the middle
179 * @q: [in] request queue associated with the bio associated with @bv
180 * @bv: [in] bvec to examine
181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
182 * by the number of segments from @bv that may be appended to that
183 * bio without exceeding @max_segs
184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
185 * by the number of sectors from @bv that may be appended to that
186 * bio without exceeding @max_sectors
187 * @max_segs: [in] upper bound for *@nsegs
188 * @max_sectors: [in] upper bound for *@sectors
189 *
190 * When splitting a bio, it can happen that a bvec is encountered that is too
191 * big to fit in a single segment and hence that it has to be split in the
192 * middle. This function verifies whether or not that should happen. The value
193 * %true is returned if and only if appending the entire @bv to a bio with
194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195 * the block driver.
196 */
197 static bool bvec_split_segs(const struct request_queue *q,
198 const struct bio_vec *bv, unsigned *nsegs,
199 unsigned *sectors, unsigned max_segs,
200 unsigned max_sectors)
201 {
202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 unsigned len = min(bv->bv_len, max_len);
204 unsigned total_len = 0;
205 unsigned seg_size = 0;
206
207 while (len && *nsegs < max_segs) {
208 seg_size = get_max_segment_size(q, bv->bv_page,
209 bv->bv_offset + total_len);
210 seg_size = min(seg_size, len);
211
212 (*nsegs)++;
213 total_len += seg_size;
214 len -= seg_size;
215
216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 break;
218 }
219
220 *sectors += total_len >> 9;
221
222 /* tell the caller to split the bvec if it is too big to fit */
223 return len > 0 || bv->bv_len > max_len;
224 }
225
226 /**
227 * blk_bio_segment_split - split a bio in two bios
228 * @q: [in] request queue pointer
229 * @bio: [in] bio to be split
230 * @bs: [in] bio set to allocate the clone from
231 * @segs: [out] number of segments in the bio with the first half of the sectors
232 *
233 * Clone @bio, update the bi_iter of the clone to represent the first sectors
234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235 * following is guaranteed for the cloned bio:
236 * - That it has at most get_max_io_size(@q, @bio) sectors.
237 * - That it has at most queue_max_segments(@q) segments.
238 *
239 * Except for discard requests the cloned bio will point at the bi_io_vec of
240 * the original bio. It is the responsibility of the caller to ensure that the
241 * original bio is not freed before the cloned bio. The caller is also
242 * responsible for ensuring that @bs is only destroyed after processing of the
243 * split bio has finished.
244 */
245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 struct bio *bio,
247 struct bio_set *bs,
248 unsigned *segs)
249 {
250 struct bio_vec bv, bvprv, *bvprvp = NULL;
251 struct bvec_iter iter;
252 unsigned nsegs = 0, sectors = 0;
253 const unsigned max_sectors = get_max_io_size(q, bio);
254 const unsigned max_segs = queue_max_segments(q);
255
256 bio_for_each_bvec(bv, bio, iter) {
257 /*
258 * If the queue doesn't support SG gaps and adding this
259 * offset would create a gap, disallow it.
260 */
261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 goto split;
263
264 if (nsegs < max_segs &&
265 sectors + (bv.bv_len >> 9) <= max_sectors &&
266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 nsegs++;
268 sectors += bv.bv_len >> 9;
269 } else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 max_sectors)) {
271 goto split;
272 }
273
274 bvprv = bv;
275 bvprvp = &bvprv;
276 }
277
278 *segs = nsegs;
279 return NULL;
280 split:
281 *segs = nsegs;
282 return bio_split(bio, sectors, GFP_NOIO, bs);
283 }
284
285 /**
286 * __blk_queue_split - split a bio and submit the second half
287 * @bio: [in, out] bio to be split
288 * @nr_segs: [out] number of segments in the first bio
289 *
290 * Split a bio into two bios, chain the two bios, submit the second half and
291 * store a pointer to the first half in *@bio. If the second bio is still too
292 * big it will be split by a recursive call to this function. Since this
293 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
294 * the responsibility of the caller to ensure that
295 * @bio->bi_disk->queue->bio_split is only released after processing of the
296 * split bio has finished.
297 */
298 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
299 {
300 struct request_queue *q = (*bio)->bi_disk->queue;
301 struct bio *split = NULL;
302
303 switch (bio_op(*bio)) {
304 case REQ_OP_DISCARD:
305 case REQ_OP_SECURE_ERASE:
306 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
307 break;
308 case REQ_OP_WRITE_ZEROES:
309 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
310 nr_segs);
311 break;
312 case REQ_OP_WRITE_SAME:
313 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
314 nr_segs);
315 break;
316 default:
317 /*
318 * All drivers must accept single-segments bios that are <=
319 * PAGE_SIZE. This is a quick and dirty check that relies on
320 * the fact that bi_io_vec[0] is always valid if a bio has data.
321 * The check might lead to occasional false negatives when bios
322 * are cloned, but compared to the performance impact of cloned
323 * bios themselves the loop below doesn't matter anyway.
324 */
325 if (!q->limits.chunk_sectors &&
326 (*bio)->bi_vcnt == 1 &&
327 ((*bio)->bi_io_vec[0].bv_len +
328 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
329 *nr_segs = 1;
330 break;
331 }
332 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
333 break;
334 }
335
336 if (split) {
337 /* there isn't chance to merge the splitted bio */
338 split->bi_opf |= REQ_NOMERGE;
339
340 bio_chain(split, *bio);
341 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
342 submit_bio_noacct(*bio);
343 *bio = split;
344 }
345 }
346
347 /**
348 * blk_queue_split - split a bio and submit the second half
349 * @bio: [in, out] bio to be split
350 *
351 * Split a bio into two bios, chains the two bios, submit the second half and
352 * store a pointer to the first half in *@bio. Since this function may allocate
353 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
354 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
355 * after processing of the split bio has finished.
356 */
357 void blk_queue_split(struct bio **bio)
358 {
359 unsigned int nr_segs;
360
361 __blk_queue_split(bio, &nr_segs);
362 }
363 EXPORT_SYMBOL(blk_queue_split);
364
365 unsigned int blk_recalc_rq_segments(struct request *rq)
366 {
367 unsigned int nr_phys_segs = 0;
368 unsigned int nr_sectors = 0;
369 struct req_iterator iter;
370 struct bio_vec bv;
371
372 if (!rq->bio)
373 return 0;
374
375 switch (bio_op(rq->bio)) {
376 case REQ_OP_DISCARD:
377 case REQ_OP_SECURE_ERASE:
378 case REQ_OP_WRITE_ZEROES:
379 return 0;
380 case REQ_OP_WRITE_SAME:
381 return 1;
382 }
383
384 rq_for_each_bvec(bv, rq, iter)
385 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
386 UINT_MAX, UINT_MAX);
387 return nr_phys_segs;
388 }
389
390 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
391 struct scatterlist *sglist)
392 {
393 if (!*sg)
394 return sglist;
395
396 /*
397 * If the driver previously mapped a shorter list, we could see a
398 * termination bit prematurely unless it fully inits the sg table
399 * on each mapping. We KNOW that there must be more entries here
400 * or the driver would be buggy, so force clear the termination bit
401 * to avoid doing a full sg_init_table() in drivers for each command.
402 */
403 sg_unmark_end(*sg);
404 return sg_next(*sg);
405 }
406
407 static unsigned blk_bvec_map_sg(struct request_queue *q,
408 struct bio_vec *bvec, struct scatterlist *sglist,
409 struct scatterlist **sg)
410 {
411 unsigned nbytes = bvec->bv_len;
412 unsigned nsegs = 0, total = 0;
413
414 while (nbytes > 0) {
415 unsigned offset = bvec->bv_offset + total;
416 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
417 offset), nbytes);
418 struct page *page = bvec->bv_page;
419
420 /*
421 * Unfortunately a fair number of drivers barf on scatterlists
422 * that have an offset larger than PAGE_SIZE, despite other
423 * subsystems dealing with that invariant just fine. For now
424 * stick to the legacy format where we never present those from
425 * the block layer, but the code below should be removed once
426 * these offenders (mostly MMC/SD drivers) are fixed.
427 */
428 page += (offset >> PAGE_SHIFT);
429 offset &= ~PAGE_MASK;
430
431 *sg = blk_next_sg(sg, sglist);
432 sg_set_page(*sg, page, len, offset);
433
434 total += len;
435 nbytes -= len;
436 nsegs++;
437 }
438
439 return nsegs;
440 }
441
442 static inline int __blk_bvec_map_sg(struct bio_vec bv,
443 struct scatterlist *sglist, struct scatterlist **sg)
444 {
445 *sg = blk_next_sg(sg, sglist);
446 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
447 return 1;
448 }
449
450 /* only try to merge bvecs into one sg if they are from two bios */
451 static inline bool
452 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
453 struct bio_vec *bvprv, struct scatterlist **sg)
454 {
455
456 int nbytes = bvec->bv_len;
457
458 if (!*sg)
459 return false;
460
461 if ((*sg)->length + nbytes > queue_max_segment_size(q))
462 return false;
463
464 if (!biovec_phys_mergeable(q, bvprv, bvec))
465 return false;
466
467 (*sg)->length += nbytes;
468
469 return true;
470 }
471
472 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
473 struct scatterlist *sglist,
474 struct scatterlist **sg)
475 {
476 struct bio_vec bvec, bvprv = { NULL };
477 struct bvec_iter iter;
478 int nsegs = 0;
479 bool new_bio = false;
480
481 for_each_bio(bio) {
482 bio_for_each_bvec(bvec, bio, iter) {
483 /*
484 * Only try to merge bvecs from two bios given we
485 * have done bio internal merge when adding pages
486 * to bio
487 */
488 if (new_bio &&
489 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
490 goto next_bvec;
491
492 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
493 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
494 else
495 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
496 next_bvec:
497 new_bio = false;
498 }
499 if (likely(bio->bi_iter.bi_size)) {
500 bvprv = bvec;
501 new_bio = true;
502 }
503 }
504
505 return nsegs;
506 }
507
508 /*
509 * map a request to scatterlist, return number of sg entries setup. Caller
510 * must make sure sg can hold rq->nr_phys_segments entries
511 */
512 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
513 struct scatterlist *sglist, struct scatterlist **last_sg)
514 {
515 int nsegs = 0;
516
517 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
518 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
519 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
520 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
521 else if (rq->bio)
522 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
523
524 if (*last_sg)
525 sg_mark_end(*last_sg);
526
527 /*
528 * Something must have been wrong if the figured number of
529 * segment is bigger than number of req's physical segments
530 */
531 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
532
533 return nsegs;
534 }
535 EXPORT_SYMBOL(__blk_rq_map_sg);
536
537 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
538 {
539 if (req_op(rq) == REQ_OP_DISCARD)
540 return queue_max_discard_segments(rq->q);
541 return queue_max_segments(rq->q);
542 }
543
544 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
545 unsigned int nr_phys_segs)
546 {
547 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
548 goto no_merge;
549
550 if (blk_integrity_merge_bio(req->q, req, bio) == false)
551 goto no_merge;
552
553 /*
554 * This will form the start of a new hw segment. Bump both
555 * counters.
556 */
557 req->nr_phys_segments += nr_phys_segs;
558 return 1;
559
560 no_merge:
561 req_set_nomerge(req->q, req);
562 return 0;
563 }
564
565 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
566 {
567 if (req_gap_back_merge(req, bio))
568 return 0;
569 if (blk_integrity_rq(req) &&
570 integrity_req_gap_back_merge(req, bio))
571 return 0;
572 if (!bio_crypt_ctx_back_mergeable(req, bio))
573 return 0;
574 if (blk_rq_sectors(req) + bio_sectors(bio) >
575 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
576 req_set_nomerge(req->q, req);
577 return 0;
578 }
579
580 return ll_new_hw_segment(req, bio, nr_segs);
581 }
582
583 static int ll_front_merge_fn(struct request *req, struct bio *bio,
584 unsigned int nr_segs)
585 {
586 if (req_gap_front_merge(req, bio))
587 return 0;
588 if (blk_integrity_rq(req) &&
589 integrity_req_gap_front_merge(req, bio))
590 return 0;
591 if (!bio_crypt_ctx_front_mergeable(req, bio))
592 return 0;
593 if (blk_rq_sectors(req) + bio_sectors(bio) >
594 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
595 req_set_nomerge(req->q, req);
596 return 0;
597 }
598
599 return ll_new_hw_segment(req, bio, nr_segs);
600 }
601
602 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
603 struct request *next)
604 {
605 unsigned short segments = blk_rq_nr_discard_segments(req);
606
607 if (segments >= queue_max_discard_segments(q))
608 goto no_merge;
609 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
610 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
611 goto no_merge;
612
613 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
614 return true;
615 no_merge:
616 req_set_nomerge(q, req);
617 return false;
618 }
619
620 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
621 struct request *next)
622 {
623 int total_phys_segments;
624
625 if (req_gap_back_merge(req, next->bio))
626 return 0;
627
628 /*
629 * Will it become too large?
630 */
631 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
632 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
633 return 0;
634
635 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
636 if (total_phys_segments > blk_rq_get_max_segments(req))
637 return 0;
638
639 if (blk_integrity_merge_rq(q, req, next) == false)
640 return 0;
641
642 if (!bio_crypt_ctx_merge_rq(req, next))
643 return 0;
644
645 /* Merge is OK... */
646 req->nr_phys_segments = total_phys_segments;
647 return 1;
648 }
649
650 /**
651 * blk_rq_set_mixed_merge - mark a request as mixed merge
652 * @rq: request to mark as mixed merge
653 *
654 * Description:
655 * @rq is about to be mixed merged. Make sure the attributes
656 * which can be mixed are set in each bio and mark @rq as mixed
657 * merged.
658 */
659 void blk_rq_set_mixed_merge(struct request *rq)
660 {
661 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
662 struct bio *bio;
663
664 if (rq->rq_flags & RQF_MIXED_MERGE)
665 return;
666
667 /*
668 * @rq will no longer represent mixable attributes for all the
669 * contained bios. It will just track those of the first one.
670 * Distributes the attributs to each bio.
671 */
672 for (bio = rq->bio; bio; bio = bio->bi_next) {
673 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
674 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
675 bio->bi_opf |= ff;
676 }
677 rq->rq_flags |= RQF_MIXED_MERGE;
678 }
679
680 static void blk_account_io_merge_request(struct request *req)
681 {
682 if (blk_do_io_stat(req)) {
683 part_stat_lock();
684 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
685 part_stat_unlock();
686
687 hd_struct_put(req->part);
688 }
689 }
690
691 /*
692 * Two cases of handling DISCARD merge:
693 * If max_discard_segments > 1, the driver takes every bio
694 * as a range and send them to controller together. The ranges
695 * needn't to be contiguous.
696 * Otherwise, the bios/requests will be handled as same as
697 * others which should be contiguous.
698 */
699 static inline bool blk_discard_mergable(struct request *req)
700 {
701 if (req_op(req) == REQ_OP_DISCARD &&
702 queue_max_discard_segments(req->q) > 1)
703 return true;
704 return false;
705 }
706
707 static enum elv_merge blk_try_req_merge(struct request *req,
708 struct request *next)
709 {
710 if (blk_discard_mergable(req))
711 return ELEVATOR_DISCARD_MERGE;
712 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
713 return ELEVATOR_BACK_MERGE;
714
715 return ELEVATOR_NO_MERGE;
716 }
717
718 /*
719 * For non-mq, this has to be called with the request spinlock acquired.
720 * For mq with scheduling, the appropriate queue wide lock should be held.
721 */
722 static struct request *attempt_merge(struct request_queue *q,
723 struct request *req, struct request *next)
724 {
725 if (!rq_mergeable(req) || !rq_mergeable(next))
726 return NULL;
727
728 if (req_op(req) != req_op(next))
729 return NULL;
730
731 if (rq_data_dir(req) != rq_data_dir(next)
732 || req->rq_disk != next->rq_disk)
733 return NULL;
734
735 if (req_op(req) == REQ_OP_WRITE_SAME &&
736 !blk_write_same_mergeable(req->bio, next->bio))
737 return NULL;
738
739 /*
740 * Don't allow merge of different write hints, or for a hint with
741 * non-hint IO.
742 */
743 if (req->write_hint != next->write_hint)
744 return NULL;
745
746 if (req->ioprio != next->ioprio)
747 return NULL;
748
749 /*
750 * If we are allowed to merge, then append bio list
751 * from next to rq and release next. merge_requests_fn
752 * will have updated segment counts, update sector
753 * counts here. Handle DISCARDs separately, as they
754 * have separate settings.
755 */
756
757 switch (blk_try_req_merge(req, next)) {
758 case ELEVATOR_DISCARD_MERGE:
759 if (!req_attempt_discard_merge(q, req, next))
760 return NULL;
761 break;
762 case ELEVATOR_BACK_MERGE:
763 if (!ll_merge_requests_fn(q, req, next))
764 return NULL;
765 break;
766 default:
767 return NULL;
768 }
769
770 /*
771 * If failfast settings disagree or any of the two is already
772 * a mixed merge, mark both as mixed before proceeding. This
773 * makes sure that all involved bios have mixable attributes
774 * set properly.
775 */
776 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
777 (req->cmd_flags & REQ_FAILFAST_MASK) !=
778 (next->cmd_flags & REQ_FAILFAST_MASK)) {
779 blk_rq_set_mixed_merge(req);
780 blk_rq_set_mixed_merge(next);
781 }
782
783 /*
784 * At this point we have either done a back merge or front merge. We
785 * need the smaller start_time_ns of the merged requests to be the
786 * current request for accounting purposes.
787 */
788 if (next->start_time_ns < req->start_time_ns)
789 req->start_time_ns = next->start_time_ns;
790
791 req->biotail->bi_next = next->bio;
792 req->biotail = next->biotail;
793
794 req->__data_len += blk_rq_bytes(next);
795
796 if (!blk_discard_mergable(req))
797 elv_merge_requests(q, req, next);
798
799 /*
800 * 'next' is going away, so update stats accordingly
801 */
802 blk_account_io_merge_request(next);
803
804 trace_block_rq_merge(q, next);
805
806 /*
807 * ownership of bio passed from next to req, return 'next' for
808 * the caller to free
809 */
810 next->bio = NULL;
811 return next;
812 }
813
814 static struct request *attempt_back_merge(struct request_queue *q,
815 struct request *rq)
816 {
817 struct request *next = elv_latter_request(q, rq);
818
819 if (next)
820 return attempt_merge(q, rq, next);
821
822 return NULL;
823 }
824
825 static struct request *attempt_front_merge(struct request_queue *q,
826 struct request *rq)
827 {
828 struct request *prev = elv_former_request(q, rq);
829
830 if (prev)
831 return attempt_merge(q, prev, rq);
832
833 return NULL;
834 }
835
836 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
837 struct request *next)
838 {
839 struct request *free;
840
841 free = attempt_merge(q, rq, next);
842 if (free) {
843 blk_put_request(free);
844 return 1;
845 }
846
847 return 0;
848 }
849
850 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
851 {
852 if (!rq_mergeable(rq) || !bio_mergeable(bio))
853 return false;
854
855 if (req_op(rq) != bio_op(bio))
856 return false;
857
858 /* different data direction or already started, don't merge */
859 if (bio_data_dir(bio) != rq_data_dir(rq))
860 return false;
861
862 /* must be same device */
863 if (rq->rq_disk != bio->bi_disk)
864 return false;
865
866 /* only merge integrity protected bio into ditto rq */
867 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
868 return false;
869
870 /* Only merge if the crypt contexts are compatible */
871 if (!bio_crypt_rq_ctx_compatible(rq, bio))
872 return false;
873
874 /* must be using the same buffer */
875 if (req_op(rq) == REQ_OP_WRITE_SAME &&
876 !blk_write_same_mergeable(rq->bio, bio))
877 return false;
878
879 /*
880 * Don't allow merge of different write hints, or for a hint with
881 * non-hint IO.
882 */
883 if (rq->write_hint != bio->bi_write_hint)
884 return false;
885
886 if (rq->ioprio != bio_prio(bio))
887 return false;
888
889 return true;
890 }
891
892 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
893 {
894 if (blk_discard_mergable(rq))
895 return ELEVATOR_DISCARD_MERGE;
896 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
897 return ELEVATOR_BACK_MERGE;
898 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
899 return ELEVATOR_FRONT_MERGE;
900 return ELEVATOR_NO_MERGE;
901 }
902
903 static void blk_account_io_merge_bio(struct request *req)
904 {
905 if (!blk_do_io_stat(req))
906 return;
907
908 part_stat_lock();
909 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
910 part_stat_unlock();
911 }
912
913 enum bio_merge_status {
914 BIO_MERGE_OK,
915 BIO_MERGE_NONE,
916 BIO_MERGE_FAILED,
917 };
918
919 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
920 struct bio *bio, unsigned int nr_segs)
921 {
922 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
923
924 if (!ll_back_merge_fn(req, bio, nr_segs))
925 return BIO_MERGE_FAILED;
926
927 trace_block_bio_backmerge(req->q, req, bio);
928 rq_qos_merge(req->q, req, bio);
929
930 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
931 blk_rq_set_mixed_merge(req);
932
933 req->biotail->bi_next = bio;
934 req->biotail = bio;
935 req->__data_len += bio->bi_iter.bi_size;
936
937 bio_crypt_free_ctx(bio);
938
939 blk_account_io_merge_bio(req);
940 return BIO_MERGE_OK;
941 }
942
943 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
944 struct bio *bio, unsigned int nr_segs)
945 {
946 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
947
948 if (!ll_front_merge_fn(req, bio, nr_segs))
949 return BIO_MERGE_FAILED;
950
951 trace_block_bio_frontmerge(req->q, req, bio);
952 rq_qos_merge(req->q, req, bio);
953
954 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
955 blk_rq_set_mixed_merge(req);
956
957 bio->bi_next = req->bio;
958 req->bio = bio;
959
960 req->__sector = bio->bi_iter.bi_sector;
961 req->__data_len += bio->bi_iter.bi_size;
962
963 bio_crypt_do_front_merge(req, bio);
964
965 blk_account_io_merge_bio(req);
966 return BIO_MERGE_OK;
967 }
968
969 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
970 struct request *req, struct bio *bio)
971 {
972 unsigned short segments = blk_rq_nr_discard_segments(req);
973
974 if (segments >= queue_max_discard_segments(q))
975 goto no_merge;
976 if (blk_rq_sectors(req) + bio_sectors(bio) >
977 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
978 goto no_merge;
979
980 rq_qos_merge(q, req, bio);
981
982 req->biotail->bi_next = bio;
983 req->biotail = bio;
984 req->__data_len += bio->bi_iter.bi_size;
985 req->nr_phys_segments = segments + 1;
986
987 blk_account_io_merge_bio(req);
988 return BIO_MERGE_OK;
989 no_merge:
990 req_set_nomerge(q, req);
991 return BIO_MERGE_FAILED;
992 }
993
994 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
995 struct request *rq,
996 struct bio *bio,
997 unsigned int nr_segs,
998 bool sched_allow_merge)
999 {
1000 if (!blk_rq_merge_ok(rq, bio))
1001 return BIO_MERGE_NONE;
1002
1003 switch (blk_try_merge(rq, bio)) {
1004 case ELEVATOR_BACK_MERGE:
1005 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1006 return bio_attempt_back_merge(rq, bio, nr_segs);
1007 break;
1008 case ELEVATOR_FRONT_MERGE:
1009 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1010 return bio_attempt_front_merge(rq, bio, nr_segs);
1011 break;
1012 case ELEVATOR_DISCARD_MERGE:
1013 return bio_attempt_discard_merge(q, rq, bio);
1014 default:
1015 return BIO_MERGE_NONE;
1016 }
1017
1018 return BIO_MERGE_FAILED;
1019 }
1020
1021 /**
1022 * blk_attempt_plug_merge - try to merge with %current's plugged list
1023 * @q: request_queue new bio is being queued at
1024 * @bio: new bio being queued
1025 * @nr_segs: number of segments in @bio
1026 * @same_queue_rq: pointer to &struct request that gets filled in when
1027 * another request associated with @q is found on the plug list
1028 * (optional, may be %NULL)
1029 *
1030 * Determine whether @bio being queued on @q can be merged with a request
1031 * on %current's plugged list. Returns %true if merge was successful,
1032 * otherwise %false.
1033 *
1034 * Plugging coalesces IOs from the same issuer for the same purpose without
1035 * going through @q->queue_lock. As such it's more of an issuing mechanism
1036 * than scheduling, and the request, while may have elvpriv data, is not
1037 * added on the elevator at this point. In addition, we don't have
1038 * reliable access to the elevator outside queue lock. Only check basic
1039 * merging parameters without querying the elevator.
1040 *
1041 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1042 */
1043 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1044 unsigned int nr_segs, struct request **same_queue_rq)
1045 {
1046 struct blk_plug *plug;
1047 struct request *rq;
1048 struct list_head *plug_list;
1049
1050 plug = blk_mq_plug(q, bio);
1051 if (!plug)
1052 return false;
1053
1054 plug_list = &plug->mq_list;
1055
1056 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1057 if (rq->q == q && same_queue_rq) {
1058 /*
1059 * Only blk-mq multiple hardware queues case checks the
1060 * rq in the same queue, there should be only one such
1061 * rq in a queue
1062 **/
1063 *same_queue_rq = rq;
1064 }
1065
1066 if (rq->q != q)
1067 continue;
1068
1069 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1070 BIO_MERGE_OK)
1071 return true;
1072 }
1073
1074 return false;
1075 }
1076
1077 /*
1078 * Iterate list of requests and see if we can merge this bio with any
1079 * of them.
1080 */
1081 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1082 struct bio *bio, unsigned int nr_segs)
1083 {
1084 struct request *rq;
1085 int checked = 8;
1086
1087 list_for_each_entry_reverse(rq, list, queuelist) {
1088 if (!checked--)
1089 break;
1090
1091 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1092 case BIO_MERGE_NONE:
1093 continue;
1094 case BIO_MERGE_OK:
1095 return true;
1096 case BIO_MERGE_FAILED:
1097 return false;
1098 }
1099
1100 }
1101
1102 return false;
1103 }
1104 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1105
1106 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1107 unsigned int nr_segs, struct request **merged_request)
1108 {
1109 struct request *rq;
1110
1111 switch (elv_merge(q, &rq, bio)) {
1112 case ELEVATOR_BACK_MERGE:
1113 if (!blk_mq_sched_allow_merge(q, rq, bio))
1114 return false;
1115 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1116 return false;
1117 *merged_request = attempt_back_merge(q, rq);
1118 if (!*merged_request)
1119 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1120 return true;
1121 case ELEVATOR_FRONT_MERGE:
1122 if (!blk_mq_sched_allow_merge(q, rq, bio))
1123 return false;
1124 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1125 return false;
1126 *merged_request = attempt_front_merge(q, rq);
1127 if (!*merged_request)
1128 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1129 return true;
1130 case ELEVATOR_DISCARD_MERGE:
1131 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1132 default:
1133 return false;
1134 }
1135 }
1136 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);