]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq-sched.c
blk-mq: fix performance regression with shared tags
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
34 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
35 struct request *rq,
36 struct bio *bio,
37 struct io_context *ioc)
38 {
39 struct io_cq *icq;
40
41 spin_lock_irq(q->queue_lock);
42 icq = ioc_lookup_icq(ioc, q);
43 spin_unlock_irq(q->queue_lock);
44
45 if (!icq) {
46 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
47 if (!icq)
48 return;
49 }
50
51 rq->elv.icq = icq;
52 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
53 rq->rq_flags |= RQF_ELVPRIV;
54 get_io_context(icq->ioc);
55 return;
56 }
57
58 rq->elv.icq = NULL;
59 }
60
61 static void blk_mq_sched_assign_ioc(struct request_queue *q,
62 struct request *rq, struct bio *bio)
63 {
64 struct io_context *ioc;
65
66 ioc = rq_ioc(bio);
67 if (ioc)
68 __blk_mq_sched_assign_ioc(q, rq, bio, ioc);
69 }
70
71 /*
72 * Mark a hardware queue as needing a restart. For shared queues, maintain
73 * a count of how many hardware queues are marked for restart.
74 */
75 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
76 {
77 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
78 return;
79
80 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
81 struct request_queue *q = hctx->queue;
82
83 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
84 atomic_inc(&q->shared_hctx_restart);
85 } else
86 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
87 }
88
89 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
90 {
91 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
92 return false;
93
94 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
95 struct request_queue *q = hctx->queue;
96
97 if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
98 atomic_dec(&q->shared_hctx_restart);
99 } else
100 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
101
102 if (blk_mq_hctx_has_pending(hctx)) {
103 blk_mq_run_hw_queue(hctx, true);
104 return true;
105 }
106
107 return false;
108 }
109
110 struct request *blk_mq_sched_get_request(struct request_queue *q,
111 struct bio *bio,
112 unsigned int op,
113 struct blk_mq_alloc_data *data)
114 {
115 struct elevator_queue *e = q->elevator;
116 struct request *rq;
117
118 blk_queue_enter_live(q);
119 data->q = q;
120 if (likely(!data->ctx))
121 data->ctx = blk_mq_get_ctx(q);
122 if (likely(!data->hctx))
123 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
124
125 if (e) {
126 data->flags |= BLK_MQ_REQ_INTERNAL;
127
128 /*
129 * Flush requests are special and go directly to the
130 * dispatch list.
131 */
132 if (!op_is_flush(op) && e->type->ops.mq.get_request) {
133 rq = e->type->ops.mq.get_request(q, op, data);
134 if (rq)
135 rq->rq_flags |= RQF_QUEUED;
136 } else
137 rq = __blk_mq_alloc_request(data, op);
138 } else {
139 rq = __blk_mq_alloc_request(data, op);
140 }
141
142 if (rq) {
143 if (!op_is_flush(op)) {
144 rq->elv.icq = NULL;
145 if (e && e->type->icq_cache)
146 blk_mq_sched_assign_ioc(q, rq, bio);
147 }
148 data->hctx->queued++;
149 return rq;
150 }
151
152 blk_queue_exit(q);
153 return NULL;
154 }
155
156 void blk_mq_sched_put_request(struct request *rq)
157 {
158 struct request_queue *q = rq->q;
159 struct elevator_queue *e = q->elevator;
160
161 if (rq->rq_flags & RQF_ELVPRIV) {
162 blk_mq_sched_put_rq_priv(rq->q, rq);
163 if (rq->elv.icq) {
164 put_io_context(rq->elv.icq->ioc);
165 rq->elv.icq = NULL;
166 }
167 }
168
169 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
170 e->type->ops.mq.put_request(rq);
171 else
172 blk_mq_finish_request(rq);
173 }
174
175 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
176 {
177 struct request_queue *q = hctx->queue;
178 struct elevator_queue *e = q->elevator;
179 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
180 bool did_work = false;
181 LIST_HEAD(rq_list);
182
183 if (unlikely(blk_mq_hctx_stopped(hctx)))
184 return;
185
186 hctx->run++;
187
188 /*
189 * If we have previous entries on our dispatch list, grab them first for
190 * more fair dispatch.
191 */
192 if (!list_empty_careful(&hctx->dispatch)) {
193 spin_lock(&hctx->lock);
194 if (!list_empty(&hctx->dispatch))
195 list_splice_init(&hctx->dispatch, &rq_list);
196 spin_unlock(&hctx->lock);
197 }
198
199 /*
200 * Only ask the scheduler for requests, if we didn't have residual
201 * requests from the dispatch list. This is to avoid the case where
202 * we only ever dispatch a fraction of the requests available because
203 * of low device queue depth. Once we pull requests out of the IO
204 * scheduler, we can no longer merge or sort them. So it's best to
205 * leave them there for as long as we can. Mark the hw queue as
206 * needing a restart in that case.
207 */
208 if (!list_empty(&rq_list)) {
209 blk_mq_sched_mark_restart_hctx(hctx);
210 did_work = blk_mq_dispatch_rq_list(q, &rq_list);
211 } else if (!has_sched_dispatch) {
212 blk_mq_flush_busy_ctxs(hctx, &rq_list);
213 blk_mq_dispatch_rq_list(q, &rq_list);
214 }
215
216 /*
217 * We want to dispatch from the scheduler if we had no work left
218 * on the dispatch list, OR if we did have work but weren't able
219 * to make progress.
220 */
221 if (!did_work && has_sched_dispatch) {
222 do {
223 struct request *rq;
224
225 rq = e->type->ops.mq.dispatch_request(hctx);
226 if (!rq)
227 break;
228 list_add(&rq->queuelist, &rq_list);
229 } while (blk_mq_dispatch_rq_list(q, &rq_list));
230 }
231 }
232
233 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
234 struct request **merged_request)
235 {
236 struct request *rq;
237
238 switch (elv_merge(q, &rq, bio)) {
239 case ELEVATOR_BACK_MERGE:
240 if (!blk_mq_sched_allow_merge(q, rq, bio))
241 return false;
242 if (!bio_attempt_back_merge(q, rq, bio))
243 return false;
244 *merged_request = attempt_back_merge(q, rq);
245 if (!*merged_request)
246 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
247 return true;
248 case ELEVATOR_FRONT_MERGE:
249 if (!blk_mq_sched_allow_merge(q, rq, bio))
250 return false;
251 if (!bio_attempt_front_merge(q, rq, bio))
252 return false;
253 *merged_request = attempt_front_merge(q, rq);
254 if (!*merged_request)
255 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
256 return true;
257 default:
258 return false;
259 }
260 }
261 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
262
263 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
264 {
265 struct elevator_queue *e = q->elevator;
266
267 if (e->type->ops.mq.bio_merge) {
268 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
269 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
270
271 blk_mq_put_ctx(ctx);
272 return e->type->ops.mq.bio_merge(hctx, bio);
273 }
274
275 return false;
276 }
277
278 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
279 {
280 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
281 }
282 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
283
284 void blk_mq_sched_request_inserted(struct request *rq)
285 {
286 trace_block_rq_insert(rq->q, rq);
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
289
290 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
291 struct request *rq)
292 {
293 if (rq->tag == -1) {
294 rq->rq_flags |= RQF_SORTED;
295 return false;
296 }
297
298 /*
299 * If we already have a real request tag, send directly to
300 * the dispatch list.
301 */
302 spin_lock(&hctx->lock);
303 list_add(&rq->queuelist, &hctx->dispatch);
304 spin_unlock(&hctx->lock);
305 return true;
306 }
307
308 /**
309 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
310 * @pos: loop cursor.
311 * @skip: the list element that will not be examined. Iteration starts at
312 * @skip->next.
313 * @head: head of the list to examine. This list must have at least one
314 * element, namely @skip.
315 * @member: name of the list_head structure within typeof(*pos).
316 */
317 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
318 for ((pos) = (skip); \
319 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
320 (pos)->member.next, typeof(*pos), member) : \
321 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
322 (pos) != (skip); )
323
324 /*
325 * Called after a driver tag has been freed to check whether a hctx needs to
326 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
327 * queues in a round-robin fashion if the tag set of @hctx is shared with other
328 * hardware queues.
329 */
330 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
331 {
332 struct blk_mq_tags *const tags = hctx->tags;
333 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
334 struct request_queue *const queue = hctx->queue, *q;
335 struct blk_mq_hw_ctx *hctx2;
336 unsigned int i, j;
337
338 if (set->flags & BLK_MQ_F_TAG_SHARED) {
339 /*
340 * If this is 0, then we know that no hardware queues
341 * have RESTART marked. We're done.
342 */
343 if (!atomic_read(&queue->shared_hctx_restart))
344 return;
345
346 rcu_read_lock();
347 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
348 tag_set_list) {
349 queue_for_each_hw_ctx(q, hctx2, i)
350 if (hctx2->tags == tags &&
351 blk_mq_sched_restart_hctx(hctx2))
352 goto done;
353 }
354 j = hctx->queue_num + 1;
355 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
356 if (j == queue->nr_hw_queues)
357 j = 0;
358 hctx2 = queue->queue_hw_ctx[j];
359 if (hctx2->tags == tags &&
360 blk_mq_sched_restart_hctx(hctx2))
361 break;
362 }
363 done:
364 rcu_read_unlock();
365 } else {
366 blk_mq_sched_restart_hctx(hctx);
367 }
368 }
369
370 /*
371 * Add flush/fua to the queue. If we fail getting a driver tag, then
372 * punt to the requeue list. Requeue will re-invoke us from a context
373 * that's safe to block from.
374 */
375 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
376 struct request *rq, bool can_block)
377 {
378 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
379 blk_insert_flush(rq);
380 blk_mq_run_hw_queue(hctx, true);
381 } else
382 blk_mq_add_to_requeue_list(rq, false, true);
383 }
384
385 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
386 bool run_queue, bool async, bool can_block)
387 {
388 struct request_queue *q = rq->q;
389 struct elevator_queue *e = q->elevator;
390 struct blk_mq_ctx *ctx = rq->mq_ctx;
391 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
392
393 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
394 blk_mq_sched_insert_flush(hctx, rq, can_block);
395 return;
396 }
397
398 if (e && blk_mq_sched_bypass_insert(hctx, rq))
399 goto run;
400
401 if (e && e->type->ops.mq.insert_requests) {
402 LIST_HEAD(list);
403
404 list_add(&rq->queuelist, &list);
405 e->type->ops.mq.insert_requests(hctx, &list, at_head);
406 } else {
407 spin_lock(&ctx->lock);
408 __blk_mq_insert_request(hctx, rq, at_head);
409 spin_unlock(&ctx->lock);
410 }
411
412 run:
413 if (run_queue)
414 blk_mq_run_hw_queue(hctx, async);
415 }
416
417 void blk_mq_sched_insert_requests(struct request_queue *q,
418 struct blk_mq_ctx *ctx,
419 struct list_head *list, bool run_queue_async)
420 {
421 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
422 struct elevator_queue *e = hctx->queue->elevator;
423
424 if (e) {
425 struct request *rq, *next;
426
427 /*
428 * We bypass requests that already have a driver tag assigned,
429 * which should only be flushes. Flushes are only ever inserted
430 * as single requests, so we shouldn't ever hit the
431 * WARN_ON_ONCE() below (but let's handle it just in case).
432 */
433 list_for_each_entry_safe(rq, next, list, queuelist) {
434 if (WARN_ON_ONCE(rq->tag != -1)) {
435 list_del_init(&rq->queuelist);
436 blk_mq_sched_bypass_insert(hctx, rq);
437 }
438 }
439 }
440
441 if (e && e->type->ops.mq.insert_requests)
442 e->type->ops.mq.insert_requests(hctx, list, false);
443 else
444 blk_mq_insert_requests(hctx, ctx, list);
445
446 blk_mq_run_hw_queue(hctx, run_queue_async);
447 }
448
449 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
450 struct blk_mq_hw_ctx *hctx,
451 unsigned int hctx_idx)
452 {
453 if (hctx->sched_tags) {
454 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
455 blk_mq_free_rq_map(hctx->sched_tags);
456 hctx->sched_tags = NULL;
457 }
458 }
459
460 static int blk_mq_sched_alloc_tags(struct request_queue *q,
461 struct blk_mq_hw_ctx *hctx,
462 unsigned int hctx_idx)
463 {
464 struct blk_mq_tag_set *set = q->tag_set;
465 int ret;
466
467 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
468 set->reserved_tags);
469 if (!hctx->sched_tags)
470 return -ENOMEM;
471
472 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
473 if (ret)
474 blk_mq_sched_free_tags(set, hctx, hctx_idx);
475
476 return ret;
477 }
478
479 static void blk_mq_sched_tags_teardown(struct request_queue *q)
480 {
481 struct blk_mq_tag_set *set = q->tag_set;
482 struct blk_mq_hw_ctx *hctx;
483 int i;
484
485 queue_for_each_hw_ctx(q, hctx, i)
486 blk_mq_sched_free_tags(set, hctx, i);
487 }
488
489 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
490 unsigned int hctx_idx)
491 {
492 struct elevator_queue *e = q->elevator;
493 int ret;
494
495 if (!e)
496 return 0;
497
498 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
499 if (ret)
500 return ret;
501
502 if (e->type->ops.mq.init_hctx) {
503 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
504 if (ret) {
505 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
506 return ret;
507 }
508 }
509
510 blk_mq_debugfs_register_sched_hctx(q, hctx);
511
512 return 0;
513 }
514
515 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
516 unsigned int hctx_idx)
517 {
518 struct elevator_queue *e = q->elevator;
519
520 if (!e)
521 return;
522
523 blk_mq_debugfs_unregister_sched_hctx(hctx);
524
525 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
526 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
527 hctx->sched_data = NULL;
528 }
529
530 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
531 }
532
533 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
534 {
535 struct blk_mq_hw_ctx *hctx;
536 struct elevator_queue *eq;
537 unsigned int i;
538 int ret;
539
540 if (!e) {
541 q->elevator = NULL;
542 return 0;
543 }
544
545 /*
546 * Default to 256, since we don't split into sync/async like the
547 * old code did. Additionally, this is a per-hw queue depth.
548 */
549 q->nr_requests = 2 * BLKDEV_MAX_RQ;
550
551 queue_for_each_hw_ctx(q, hctx, i) {
552 ret = blk_mq_sched_alloc_tags(q, hctx, i);
553 if (ret)
554 goto err;
555 }
556
557 ret = e->ops.mq.init_sched(q, e);
558 if (ret)
559 goto err;
560
561 blk_mq_debugfs_register_sched(q);
562
563 queue_for_each_hw_ctx(q, hctx, i) {
564 if (e->ops.mq.init_hctx) {
565 ret = e->ops.mq.init_hctx(hctx, i);
566 if (ret) {
567 eq = q->elevator;
568 blk_mq_exit_sched(q, eq);
569 kobject_put(&eq->kobj);
570 return ret;
571 }
572 }
573 blk_mq_debugfs_register_sched_hctx(q, hctx);
574 }
575
576 return 0;
577
578 err:
579 blk_mq_sched_tags_teardown(q);
580 q->elevator = NULL;
581 return ret;
582 }
583
584 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
585 {
586 struct blk_mq_hw_ctx *hctx;
587 unsigned int i;
588
589 queue_for_each_hw_ctx(q, hctx, i) {
590 blk_mq_debugfs_unregister_sched_hctx(hctx);
591 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
592 e->type->ops.mq.exit_hctx(hctx, i);
593 hctx->sched_data = NULL;
594 }
595 }
596 blk_mq_debugfs_unregister_sched(q);
597 if (e->type->ops.mq.exit_sched)
598 e->type->ops.mq.exit_sched(e);
599 blk_mq_sched_tags_teardown(q);
600 q->elevator = NULL;
601 }
602
603 int blk_mq_sched_init(struct request_queue *q)
604 {
605 int ret;
606
607 mutex_lock(&q->sysfs_lock);
608 ret = elevator_init(q, NULL);
609 mutex_unlock(&q->sysfs_lock);
610
611 return ret;
612 }