]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq-sched.c
blk-mq: Document locking assumptions
[mirror_ubuntu-artful-kernel.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
39
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
43
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
48 }
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
51 }
52
53 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
54 {
55 struct request_queue *q = hctx->queue;
56 struct elevator_queue *e = q->elevator;
57 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
58 bool did_work = false;
59 LIST_HEAD(rq_list);
60
61 /* RCU or SRCU read lock is needed before checking quiesced flag */
62 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
63 return;
64
65 hctx->run++;
66
67 /*
68 * If we have previous entries on our dispatch list, grab them first for
69 * more fair dispatch.
70 */
71 if (!list_empty_careful(&hctx->dispatch)) {
72 spin_lock(&hctx->lock);
73 if (!list_empty(&hctx->dispatch))
74 list_splice_init(&hctx->dispatch, &rq_list);
75 spin_unlock(&hctx->lock);
76 }
77
78 /*
79 * Only ask the scheduler for requests, if we didn't have residual
80 * requests from the dispatch list. This is to avoid the case where
81 * we only ever dispatch a fraction of the requests available because
82 * of low device queue depth. Once we pull requests out of the IO
83 * scheduler, we can no longer merge or sort them. So it's best to
84 * leave them there for as long as we can. Mark the hw queue as
85 * needing a restart in that case.
86 */
87 if (!list_empty(&rq_list)) {
88 blk_mq_sched_mark_restart_hctx(hctx);
89 did_work = blk_mq_dispatch_rq_list(q, &rq_list);
90 } else if (!has_sched_dispatch) {
91 blk_mq_flush_busy_ctxs(hctx, &rq_list);
92 blk_mq_dispatch_rq_list(q, &rq_list);
93 }
94
95 /*
96 * We want to dispatch from the scheduler if we had no work left
97 * on the dispatch list, OR if we did have work but weren't able
98 * to make progress.
99 */
100 if (!did_work && has_sched_dispatch) {
101 do {
102 struct request *rq;
103
104 rq = e->type->ops.mq.dispatch_request(hctx);
105 if (!rq)
106 break;
107 list_add(&rq->queuelist, &rq_list);
108 } while (blk_mq_dispatch_rq_list(q, &rq_list));
109 }
110 }
111
112 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
113 struct request **merged_request)
114 {
115 struct request *rq;
116
117 switch (elv_merge(q, &rq, bio)) {
118 case ELEVATOR_BACK_MERGE:
119 if (!blk_mq_sched_allow_merge(q, rq, bio))
120 return false;
121 if (!bio_attempt_back_merge(q, rq, bio))
122 return false;
123 *merged_request = attempt_back_merge(q, rq);
124 if (!*merged_request)
125 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
126 return true;
127 case ELEVATOR_FRONT_MERGE:
128 if (!blk_mq_sched_allow_merge(q, rq, bio))
129 return false;
130 if (!bio_attempt_front_merge(q, rq, bio))
131 return false;
132 *merged_request = attempt_front_merge(q, rq);
133 if (!*merged_request)
134 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
135 return true;
136 default:
137 return false;
138 }
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
141
142 /*
143 * Reverse check our software queue for entries that we could potentially
144 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
145 * too much time checking for merges.
146 */
147 static bool blk_mq_attempt_merge(struct request_queue *q,
148 struct blk_mq_ctx *ctx, struct bio *bio)
149 {
150 struct request *rq;
151 int checked = 8;
152
153 lockdep_assert_held(&ctx->lock);
154
155 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
156 bool merged = false;
157
158 if (!checked--)
159 break;
160
161 if (!blk_rq_merge_ok(rq, bio))
162 continue;
163
164 switch (blk_try_merge(rq, bio)) {
165 case ELEVATOR_BACK_MERGE:
166 if (blk_mq_sched_allow_merge(q, rq, bio))
167 merged = bio_attempt_back_merge(q, rq, bio);
168 break;
169 case ELEVATOR_FRONT_MERGE:
170 if (blk_mq_sched_allow_merge(q, rq, bio))
171 merged = bio_attempt_front_merge(q, rq, bio);
172 break;
173 case ELEVATOR_DISCARD_MERGE:
174 merged = bio_attempt_discard_merge(q, rq, bio);
175 break;
176 default:
177 continue;
178 }
179
180 if (merged)
181 ctx->rq_merged++;
182 return merged;
183 }
184
185 return false;
186 }
187
188 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
189 {
190 struct elevator_queue *e = q->elevator;
191 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
192 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
193 bool ret = false;
194
195 if (e && e->type->ops.mq.bio_merge) {
196 blk_mq_put_ctx(ctx);
197 return e->type->ops.mq.bio_merge(hctx, bio);
198 }
199
200 if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
201 /* default per sw-queue merge */
202 spin_lock(&ctx->lock);
203 ret = blk_mq_attempt_merge(q, ctx, bio);
204 spin_unlock(&ctx->lock);
205 }
206
207 blk_mq_put_ctx(ctx);
208 return ret;
209 }
210
211 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
212 {
213 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
216
217 void blk_mq_sched_request_inserted(struct request *rq)
218 {
219 trace_block_rq_insert(rq->q, rq);
220 }
221 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
222
223 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
224 struct request *rq)
225 {
226 if (rq->tag == -1) {
227 rq->rq_flags |= RQF_SORTED;
228 return false;
229 }
230
231 /*
232 * If we already have a real request tag, send directly to
233 * the dispatch list.
234 */
235 spin_lock(&hctx->lock);
236 list_add(&rq->queuelist, &hctx->dispatch);
237 spin_unlock(&hctx->lock);
238 return true;
239 }
240
241 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
242 {
243 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
244 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
245 if (blk_mq_hctx_has_pending(hctx)) {
246 blk_mq_run_hw_queue(hctx, true);
247 return true;
248 }
249 }
250 return false;
251 }
252
253 /**
254 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
255 * @pos: loop cursor.
256 * @skip: the list element that will not be examined. Iteration starts at
257 * @skip->next.
258 * @head: head of the list to examine. This list must have at least one
259 * element, namely @skip.
260 * @member: name of the list_head structure within typeof(*pos).
261 */
262 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
263 for ((pos) = (skip); \
264 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
265 (pos)->member.next, typeof(*pos), member) : \
266 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
267 (pos) != (skip); )
268
269 /*
270 * Called after a driver tag has been freed to check whether a hctx needs to
271 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
272 * queues in a round-robin fashion if the tag set of @hctx is shared with other
273 * hardware queues.
274 */
275 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
276 {
277 struct blk_mq_tags *const tags = hctx->tags;
278 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
279 struct request_queue *const queue = hctx->queue, *q;
280 struct blk_mq_hw_ctx *hctx2;
281 unsigned int i, j;
282
283 if (set->flags & BLK_MQ_F_TAG_SHARED) {
284 rcu_read_lock();
285 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
286 tag_set_list) {
287 queue_for_each_hw_ctx(q, hctx2, i)
288 if (hctx2->tags == tags &&
289 blk_mq_sched_restart_hctx(hctx2))
290 goto done;
291 }
292 j = hctx->queue_num + 1;
293 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
294 if (j == queue->nr_hw_queues)
295 j = 0;
296 hctx2 = queue->queue_hw_ctx[j];
297 if (hctx2->tags == tags &&
298 blk_mq_sched_restart_hctx(hctx2))
299 break;
300 }
301 done:
302 rcu_read_unlock();
303 } else {
304 blk_mq_sched_restart_hctx(hctx);
305 }
306 }
307
308 /*
309 * Add flush/fua to the queue. If we fail getting a driver tag, then
310 * punt to the requeue list. Requeue will re-invoke us from a context
311 * that's safe to block from.
312 */
313 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
314 struct request *rq, bool can_block)
315 {
316 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
317 blk_insert_flush(rq);
318 blk_mq_run_hw_queue(hctx, true);
319 } else
320 blk_mq_add_to_requeue_list(rq, false, true);
321 }
322
323 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
324 bool run_queue, bool async, bool can_block)
325 {
326 struct request_queue *q = rq->q;
327 struct elevator_queue *e = q->elevator;
328 struct blk_mq_ctx *ctx = rq->mq_ctx;
329 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
330
331 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
332 blk_mq_sched_insert_flush(hctx, rq, can_block);
333 return;
334 }
335
336 if (e && blk_mq_sched_bypass_insert(hctx, rq))
337 goto run;
338
339 if (e && e->type->ops.mq.insert_requests) {
340 LIST_HEAD(list);
341
342 list_add(&rq->queuelist, &list);
343 e->type->ops.mq.insert_requests(hctx, &list, at_head);
344 } else {
345 spin_lock(&ctx->lock);
346 __blk_mq_insert_request(hctx, rq, at_head);
347 spin_unlock(&ctx->lock);
348 }
349
350 run:
351 if (run_queue)
352 blk_mq_run_hw_queue(hctx, async);
353 }
354
355 void blk_mq_sched_insert_requests(struct request_queue *q,
356 struct blk_mq_ctx *ctx,
357 struct list_head *list, bool run_queue_async)
358 {
359 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
360 struct elevator_queue *e = hctx->queue->elevator;
361
362 if (e) {
363 struct request *rq, *next;
364
365 /*
366 * We bypass requests that already have a driver tag assigned,
367 * which should only be flushes. Flushes are only ever inserted
368 * as single requests, so we shouldn't ever hit the
369 * WARN_ON_ONCE() below (but let's handle it just in case).
370 */
371 list_for_each_entry_safe(rq, next, list, queuelist) {
372 if (WARN_ON_ONCE(rq->tag != -1)) {
373 list_del_init(&rq->queuelist);
374 blk_mq_sched_bypass_insert(hctx, rq);
375 }
376 }
377 }
378
379 if (e && e->type->ops.mq.insert_requests)
380 e->type->ops.mq.insert_requests(hctx, list, false);
381 else
382 blk_mq_insert_requests(hctx, ctx, list);
383
384 blk_mq_run_hw_queue(hctx, run_queue_async);
385 }
386
387 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
388 struct blk_mq_hw_ctx *hctx,
389 unsigned int hctx_idx)
390 {
391 if (hctx->sched_tags) {
392 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
393 blk_mq_free_rq_map(hctx->sched_tags);
394 hctx->sched_tags = NULL;
395 }
396 }
397
398 static int blk_mq_sched_alloc_tags(struct request_queue *q,
399 struct blk_mq_hw_ctx *hctx,
400 unsigned int hctx_idx)
401 {
402 struct blk_mq_tag_set *set = q->tag_set;
403 int ret;
404
405 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
406 set->reserved_tags);
407 if (!hctx->sched_tags)
408 return -ENOMEM;
409
410 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
411 if (ret)
412 blk_mq_sched_free_tags(set, hctx, hctx_idx);
413
414 return ret;
415 }
416
417 static void blk_mq_sched_tags_teardown(struct request_queue *q)
418 {
419 struct blk_mq_tag_set *set = q->tag_set;
420 struct blk_mq_hw_ctx *hctx;
421 int i;
422
423 queue_for_each_hw_ctx(q, hctx, i)
424 blk_mq_sched_free_tags(set, hctx, i);
425 }
426
427 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
428 unsigned int hctx_idx)
429 {
430 struct elevator_queue *e = q->elevator;
431 int ret;
432
433 if (!e)
434 return 0;
435
436 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
437 if (ret)
438 return ret;
439
440 if (e->type->ops.mq.init_hctx) {
441 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
442 if (ret) {
443 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
444 return ret;
445 }
446 }
447
448 blk_mq_debugfs_register_sched_hctx(q, hctx);
449
450 return 0;
451 }
452
453 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
454 unsigned int hctx_idx)
455 {
456 struct elevator_queue *e = q->elevator;
457
458 if (!e)
459 return;
460
461 blk_mq_debugfs_unregister_sched_hctx(hctx);
462
463 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
464 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
465 hctx->sched_data = NULL;
466 }
467
468 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
469 }
470
471 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
472 {
473 struct blk_mq_hw_ctx *hctx;
474 struct elevator_queue *eq;
475 unsigned int i;
476 int ret;
477
478 if (!e) {
479 q->elevator = NULL;
480 return 0;
481 }
482
483 /*
484 * Default to 256, since we don't split into sync/async like the
485 * old code did. Additionally, this is a per-hw queue depth.
486 */
487 q->nr_requests = 2 * BLKDEV_MAX_RQ;
488
489 queue_for_each_hw_ctx(q, hctx, i) {
490 ret = blk_mq_sched_alloc_tags(q, hctx, i);
491 if (ret)
492 goto err;
493 }
494
495 ret = e->ops.mq.init_sched(q, e);
496 if (ret)
497 goto err;
498
499 blk_mq_debugfs_register_sched(q);
500
501 queue_for_each_hw_ctx(q, hctx, i) {
502 if (e->ops.mq.init_hctx) {
503 ret = e->ops.mq.init_hctx(hctx, i);
504 if (ret) {
505 eq = q->elevator;
506 blk_mq_exit_sched(q, eq);
507 kobject_put(&eq->kobj);
508 return ret;
509 }
510 }
511 blk_mq_debugfs_register_sched_hctx(q, hctx);
512 }
513
514 return 0;
515
516 err:
517 blk_mq_sched_tags_teardown(q);
518 q->elevator = NULL;
519 return ret;
520 }
521
522 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
523 {
524 struct blk_mq_hw_ctx *hctx;
525 unsigned int i;
526
527 queue_for_each_hw_ctx(q, hctx, i) {
528 blk_mq_debugfs_unregister_sched_hctx(hctx);
529 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
530 e->type->ops.mq.exit_hctx(hctx, i);
531 hctx->sched_data = NULL;
532 }
533 }
534 blk_mq_debugfs_unregister_sched(q);
535 if (e->type->ops.mq.exit_sched)
536 e->type->ops.mq.exit_sched(e);
537 blk_mq_sched_tags_teardown(q);
538 q->elevator = NULL;
539 }
540
541 int blk_mq_sched_init(struct request_queue *q)
542 {
543 int ret;
544
545 mutex_lock(&q->sysfs_lock);
546 ret = elevator_init(q, NULL);
547 mutex_unlock(&q->sysfs_lock);
548
549 return ret;
550 }