]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq-sched.c
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20
21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 struct request_queue *q = rq->q;
24 struct io_context *ioc;
25 struct io_cq *icq;
26
27 /*
28 * May not have an IO context if it's a passthrough request
29 */
30 ioc = current->io_context;
31 if (!ioc)
32 return;
33
34 spin_lock_irq(&q->queue_lock);
35 icq = ioc_lookup_icq(ioc, q);
36 spin_unlock_irq(&q->queue_lock);
37
38 if (!icq) {
39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 if (!icq)
41 return;
42 }
43 get_io_context(icq->ioc);
44 rq->elv.icq = icq;
45 }
46
47 /*
48 * Mark a hardware queue as needing a restart. For shared queues, maintain
49 * a count of how many hardware queues are marked for restart.
50 */
51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 {
53 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
54 return;
55
56 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57 }
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59
60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 {
62 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 return;
64 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65
66 /*
67 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
68 * in blk_mq_run_hw_queue(). Its pair is the barrier in
69 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
70 * meantime new request added to hctx->dispatch is missed to check in
71 * blk_mq_run_hw_queue().
72 */
73 smp_mb();
74
75 blk_mq_run_hw_queue(hctx, true);
76 }
77
78 static int sched_rq_cmp(void *priv, const struct list_head *a,
79 const struct list_head *b)
80 {
81 struct request *rqa = container_of(a, struct request, queuelist);
82 struct request *rqb = container_of(b, struct request, queuelist);
83
84 return rqa->mq_hctx > rqb->mq_hctx;
85 }
86
87 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
88 {
89 struct blk_mq_hw_ctx *hctx =
90 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
91 struct request *rq;
92 LIST_HEAD(hctx_list);
93 unsigned int count = 0;
94
95 list_for_each_entry(rq, rq_list, queuelist) {
96 if (rq->mq_hctx != hctx) {
97 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
98 goto dispatch;
99 }
100 count++;
101 }
102 list_splice_tail_init(rq_list, &hctx_list);
103
104 dispatch:
105 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106 }
107
108 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
109
110 /*
111 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
112 * its queue by itself in its completion handler, so we don't need to
113 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114 *
115 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
116 * be run again. This is necessary to avoid starving flushes.
117 */
118 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119 {
120 struct request_queue *q = hctx->queue;
121 struct elevator_queue *e = q->elevator;
122 bool multi_hctxs = false, run_queue = false;
123 bool dispatched = false, busy = false;
124 unsigned int max_dispatch;
125 LIST_HEAD(rq_list);
126 int count = 0;
127
128 if (hctx->dispatch_busy)
129 max_dispatch = 1;
130 else
131 max_dispatch = hctx->queue->nr_requests;
132
133 do {
134 struct request *rq;
135 int budget_token;
136
137 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
138 break;
139
140 if (!list_empty_careful(&hctx->dispatch)) {
141 busy = true;
142 break;
143 }
144
145 budget_token = blk_mq_get_dispatch_budget(q);
146 if (budget_token < 0)
147 break;
148
149 rq = e->type->ops.dispatch_request(hctx);
150 if (!rq) {
151 blk_mq_put_dispatch_budget(q, budget_token);
152 /*
153 * We're releasing without dispatching. Holding the
154 * budget could have blocked any "hctx"s with the
155 * same queue and if we didn't dispatch then there's
156 * no guarantee anyone will kick the queue. Kick it
157 * ourselves.
158 */
159 run_queue = true;
160 break;
161 }
162
163 blk_mq_set_rq_budget_token(rq, budget_token);
164
165 /*
166 * Now this rq owns the budget which has to be released
167 * if this rq won't be queued to driver via .queue_rq()
168 * in blk_mq_dispatch_rq_list().
169 */
170 list_add_tail(&rq->queuelist, &rq_list);
171 count++;
172 if (rq->mq_hctx != hctx)
173 multi_hctxs = true;
174
175 /*
176 * If we cannot get tag for the request, stop dequeueing
177 * requests from the IO scheduler. We are unlikely to be able
178 * to submit them anyway and it creates false impression for
179 * scheduling heuristics that the device can take more IO.
180 */
181 if (!blk_mq_get_driver_tag(rq))
182 break;
183 } while (count < max_dispatch);
184
185 if (!count) {
186 if (run_queue)
187 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
188 } else if (multi_hctxs) {
189 /*
190 * Requests from different hctx may be dequeued from some
191 * schedulers, such as bfq and deadline.
192 *
193 * Sort the requests in the list according to their hctx,
194 * dispatch batching requests from same hctx at a time.
195 */
196 list_sort(NULL, &rq_list, sched_rq_cmp);
197 do {
198 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
199 } while (!list_empty(&rq_list));
200 } else {
201 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
202 }
203
204 if (busy)
205 return -EAGAIN;
206 return !!dispatched;
207 }
208
209 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
210 {
211 unsigned long end = jiffies + HZ;
212 int ret;
213
214 do {
215 ret = __blk_mq_do_dispatch_sched(hctx);
216 if (ret != 1)
217 break;
218 if (need_resched() || time_is_before_jiffies(end)) {
219 blk_mq_delay_run_hw_queue(hctx, 0);
220 break;
221 }
222 } while (1);
223
224 return ret;
225 }
226
227 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
228 struct blk_mq_ctx *ctx)
229 {
230 unsigned short idx = ctx->index_hw[hctx->type];
231
232 if (++idx == hctx->nr_ctx)
233 idx = 0;
234
235 return hctx->ctxs[idx];
236 }
237
238 /*
239 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
240 * its queue by itself in its completion handler, so we don't need to
241 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
242 *
243 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
244 * be run again. This is necessary to avoid starving flushes.
245 */
246 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
247 {
248 struct request_queue *q = hctx->queue;
249 LIST_HEAD(rq_list);
250 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
251 int ret = 0;
252 struct request *rq;
253
254 do {
255 int budget_token;
256
257 if (!list_empty_careful(&hctx->dispatch)) {
258 ret = -EAGAIN;
259 break;
260 }
261
262 if (!sbitmap_any_bit_set(&hctx->ctx_map))
263 break;
264
265 budget_token = blk_mq_get_dispatch_budget(q);
266 if (budget_token < 0)
267 break;
268
269 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
270 if (!rq) {
271 blk_mq_put_dispatch_budget(q, budget_token);
272 /*
273 * We're releasing without dispatching. Holding the
274 * budget could have blocked any "hctx"s with the
275 * same queue and if we didn't dispatch then there's
276 * no guarantee anyone will kick the queue. Kick it
277 * ourselves.
278 */
279 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
280 break;
281 }
282
283 blk_mq_set_rq_budget_token(rq, budget_token);
284
285 /*
286 * Now this rq owns the budget which has to be released
287 * if this rq won't be queued to driver via .queue_rq()
288 * in blk_mq_dispatch_rq_list().
289 */
290 list_add(&rq->queuelist, &rq_list);
291
292 /* round robin for fair dispatch */
293 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
294
295 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
296
297 WRITE_ONCE(hctx->dispatch_from, ctx);
298 return ret;
299 }
300
301 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
302 {
303 struct request_queue *q = hctx->queue;
304 const bool has_sched = q->elevator;
305 int ret = 0;
306 LIST_HEAD(rq_list);
307
308 /*
309 * If we have previous entries on our dispatch list, grab them first for
310 * more fair dispatch.
311 */
312 if (!list_empty_careful(&hctx->dispatch)) {
313 spin_lock(&hctx->lock);
314 if (!list_empty(&hctx->dispatch))
315 list_splice_init(&hctx->dispatch, &rq_list);
316 spin_unlock(&hctx->lock);
317 }
318
319 /*
320 * Only ask the scheduler for requests, if we didn't have residual
321 * requests from the dispatch list. This is to avoid the case where
322 * we only ever dispatch a fraction of the requests available because
323 * of low device queue depth. Once we pull requests out of the IO
324 * scheduler, we can no longer merge or sort them. So it's best to
325 * leave them there for as long as we can. Mark the hw queue as
326 * needing a restart in that case.
327 *
328 * We want to dispatch from the scheduler if there was nothing
329 * on the dispatch list or we were able to dispatch from the
330 * dispatch list.
331 */
332 if (!list_empty(&rq_list)) {
333 blk_mq_sched_mark_restart_hctx(hctx);
334 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
335 if (has_sched)
336 ret = blk_mq_do_dispatch_sched(hctx);
337 else
338 ret = blk_mq_do_dispatch_ctx(hctx);
339 }
340 } else if (has_sched) {
341 ret = blk_mq_do_dispatch_sched(hctx);
342 } else if (hctx->dispatch_busy) {
343 /* dequeue request one by one from sw queue if queue is busy */
344 ret = blk_mq_do_dispatch_ctx(hctx);
345 } else {
346 blk_mq_flush_busy_ctxs(hctx, &rq_list);
347 blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
348 }
349
350 return ret;
351 }
352
353 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
354 {
355 struct request_queue *q = hctx->queue;
356
357 /* RCU or SRCU read lock is needed before checking quiesced flag */
358 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
359 return;
360
361 hctx->run++;
362
363 /*
364 * A return of -EAGAIN is an indication that hctx->dispatch is not
365 * empty and we must run again in order to avoid starving flushes.
366 */
367 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
368 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
369 blk_mq_run_hw_queue(hctx, true);
370 }
371 }
372
373 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
374 unsigned int nr_segs)
375 {
376 struct elevator_queue *e = q->elevator;
377 struct blk_mq_ctx *ctx;
378 struct blk_mq_hw_ctx *hctx;
379 bool ret = false;
380 enum hctx_type type;
381
382 if (e && e->type->ops.bio_merge)
383 return e->type->ops.bio_merge(q, bio, nr_segs);
384
385 ctx = blk_mq_get_ctx(q);
386 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
387 type = hctx->type;
388 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
389 list_empty_careful(&ctx->rq_lists[type]))
390 return false;
391
392 /* default per sw-queue merge */
393 spin_lock(&ctx->lock);
394 /*
395 * Reverse check our software queue for entries that we could
396 * potentially merge with. Currently includes a hand-wavy stop
397 * count of 8, to not spend too much time checking for merges.
398 */
399 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
400 ctx->rq_merged++;
401 ret = true;
402 }
403
404 spin_unlock(&ctx->lock);
405
406 return ret;
407 }
408
409 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
410 struct list_head *free)
411 {
412 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
413 }
414 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
415
416 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
417 struct request *rq)
418 {
419 /*
420 * dispatch flush and passthrough rq directly
421 *
422 * passthrough request has to be added to hctx->dispatch directly.
423 * For some reason, device may be in one situation which can't
424 * handle FS request, so STS_RESOURCE is always returned and the
425 * FS request will be added to hctx->dispatch. However passthrough
426 * request may be required at that time for fixing the problem. If
427 * passthrough request is added to scheduler queue, there isn't any
428 * chance to dispatch it given we prioritize requests in hctx->dispatch.
429 */
430 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
431 return true;
432
433 return false;
434 }
435
436 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
437 bool run_queue, bool async)
438 {
439 struct request_queue *q = rq->q;
440 struct elevator_queue *e = q->elevator;
441 struct blk_mq_ctx *ctx = rq->mq_ctx;
442 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
443
444 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
445
446 if (blk_mq_sched_bypass_insert(hctx, rq)) {
447 /*
448 * Firstly normal IO request is inserted to scheduler queue or
449 * sw queue, meantime we add flush request to dispatch queue(
450 * hctx->dispatch) directly and there is at most one in-flight
451 * flush request for each hw queue, so it doesn't matter to add
452 * flush request to tail or front of the dispatch queue.
453 *
454 * Secondly in case of NCQ, flush request belongs to non-NCQ
455 * command, and queueing it will fail when there is any
456 * in-flight normal IO request(NCQ command). When adding flush
457 * rq to the front of hctx->dispatch, it is easier to introduce
458 * extra time to flush rq's latency because of S_SCHED_RESTART
459 * compared with adding to the tail of dispatch queue, then
460 * chance of flush merge is increased, and less flush requests
461 * will be issued to controller. It is observed that ~10% time
462 * is saved in blktests block/004 on disk attached to AHCI/NCQ
463 * drive when adding flush rq to the front of hctx->dispatch.
464 *
465 * Simply queue flush rq to the front of hctx->dispatch so that
466 * intensive flush workloads can benefit in case of NCQ HW.
467 */
468 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
469 blk_mq_request_bypass_insert(rq, at_head, false);
470 goto run;
471 }
472
473 if (e) {
474 LIST_HEAD(list);
475
476 list_add(&rq->queuelist, &list);
477 e->type->ops.insert_requests(hctx, &list, at_head);
478 } else {
479 spin_lock(&ctx->lock);
480 __blk_mq_insert_request(hctx, rq, at_head);
481 spin_unlock(&ctx->lock);
482 }
483
484 run:
485 if (run_queue)
486 blk_mq_run_hw_queue(hctx, async);
487 }
488
489 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
490 struct blk_mq_ctx *ctx,
491 struct list_head *list, bool run_queue_async)
492 {
493 struct elevator_queue *e;
494 struct request_queue *q = hctx->queue;
495
496 /*
497 * blk_mq_sched_insert_requests() is called from flush plug
498 * context only, and hold one usage counter to prevent queue
499 * from being released.
500 */
501 percpu_ref_get(&q->q_usage_counter);
502
503 e = hctx->queue->elevator;
504 if (e) {
505 e->type->ops.insert_requests(hctx, list, false);
506 } else {
507 /*
508 * try to issue requests directly if the hw queue isn't
509 * busy in case of 'none' scheduler, and this way may save
510 * us one extra enqueue & dequeue to sw queue.
511 */
512 if (!hctx->dispatch_busy && !e && !run_queue_async) {
513 blk_mq_try_issue_list_directly(hctx, list);
514 if (list_empty(list))
515 goto out;
516 }
517 blk_mq_insert_requests(hctx, ctx, list);
518 }
519
520 blk_mq_run_hw_queue(hctx, run_queue_async);
521 out:
522 percpu_ref_put(&q->q_usage_counter);
523 }
524
525 static int blk_mq_sched_alloc_tags(struct request_queue *q,
526 struct blk_mq_hw_ctx *hctx,
527 unsigned int hctx_idx)
528 {
529 struct blk_mq_tag_set *set = q->tag_set;
530 int ret;
531
532 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
533 set->reserved_tags, set->flags);
534 if (!hctx->sched_tags)
535 return -ENOMEM;
536
537 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
538 if (ret) {
539 blk_mq_free_rq_map(hctx->sched_tags, set->flags);
540 hctx->sched_tags = NULL;
541 }
542
543 return ret;
544 }
545
546 /* called in queue's release handler, tagset has gone away */
547 static void blk_mq_sched_tags_teardown(struct request_queue *q)
548 {
549 struct blk_mq_hw_ctx *hctx;
550 int i;
551
552 queue_for_each_hw_ctx(q, hctx, i) {
553 if (hctx->sched_tags) {
554 blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
555 hctx->sched_tags = NULL;
556 }
557 }
558 }
559
560 static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
561 {
562 struct blk_mq_tag_set *set = queue->tag_set;
563 int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
564 struct blk_mq_hw_ctx *hctx;
565 int ret, i;
566
567 /*
568 * Set initial depth at max so that we don't need to reallocate for
569 * updating nr_requests.
570 */
571 ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
572 &queue->sched_breserved_tags,
573 MAX_SCHED_RQ, set->reserved_tags,
574 set->numa_node, alloc_policy);
575 if (ret)
576 return ret;
577
578 queue_for_each_hw_ctx(queue, hctx, i) {
579 hctx->sched_tags->bitmap_tags =
580 &queue->sched_bitmap_tags;
581 hctx->sched_tags->breserved_tags =
582 &queue->sched_breserved_tags;
583 }
584
585 sbitmap_queue_resize(&queue->sched_bitmap_tags,
586 queue->nr_requests - set->reserved_tags);
587
588 return 0;
589 }
590
591 static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
592 {
593 sbitmap_queue_free(&queue->sched_bitmap_tags);
594 sbitmap_queue_free(&queue->sched_breserved_tags);
595 }
596
597 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
598 {
599 struct blk_mq_hw_ctx *hctx;
600 struct elevator_queue *eq;
601 unsigned int i;
602 int ret;
603
604 if (!e) {
605 q->elevator = NULL;
606 q->nr_requests = q->tag_set->queue_depth;
607 return 0;
608 }
609
610 /*
611 * Default to double of smaller one between hw queue_depth and 128,
612 * since we don't split into sync/async like the old code did.
613 * Additionally, this is a per-hw queue depth.
614 */
615 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
616 BLKDEV_MAX_RQ);
617
618 queue_for_each_hw_ctx(q, hctx, i) {
619 ret = blk_mq_sched_alloc_tags(q, hctx, i);
620 if (ret)
621 goto err_free_tags;
622 }
623
624 if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
625 ret = blk_mq_init_sched_shared_sbitmap(q);
626 if (ret)
627 goto err_free_tags;
628 }
629
630 ret = e->ops.init_sched(q, e);
631 if (ret)
632 goto err_free_sbitmap;
633
634 blk_mq_debugfs_register_sched(q);
635
636 queue_for_each_hw_ctx(q, hctx, i) {
637 if (e->ops.init_hctx) {
638 ret = e->ops.init_hctx(hctx, i);
639 if (ret) {
640 eq = q->elevator;
641 blk_mq_sched_free_requests(q);
642 blk_mq_exit_sched(q, eq);
643 kobject_put(&eq->kobj);
644 return ret;
645 }
646 }
647 blk_mq_debugfs_register_sched_hctx(q, hctx);
648 }
649
650 return 0;
651
652 err_free_sbitmap:
653 if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
654 blk_mq_exit_sched_shared_sbitmap(q);
655 err_free_tags:
656 blk_mq_sched_free_requests(q);
657 blk_mq_sched_tags_teardown(q);
658 q->elevator = NULL;
659 return ret;
660 }
661
662 /*
663 * called in either blk_queue_cleanup or elevator_switch, tagset
664 * is required for freeing requests
665 */
666 void blk_mq_sched_free_requests(struct request_queue *q)
667 {
668 struct blk_mq_hw_ctx *hctx;
669 int i;
670
671 queue_for_each_hw_ctx(q, hctx, i) {
672 if (hctx->sched_tags)
673 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
674 }
675 }
676
677 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
678 {
679 struct blk_mq_hw_ctx *hctx;
680 unsigned int i;
681 unsigned int flags = 0;
682
683 queue_for_each_hw_ctx(q, hctx, i) {
684 blk_mq_debugfs_unregister_sched_hctx(hctx);
685 if (e->type->ops.exit_hctx && hctx->sched_data) {
686 e->type->ops.exit_hctx(hctx, i);
687 hctx->sched_data = NULL;
688 }
689 flags = hctx->flags;
690 }
691 blk_mq_debugfs_unregister_sched(q);
692 if (e->type->ops.exit_sched)
693 e->type->ops.exit_sched(e);
694 blk_mq_sched_tags_teardown(q);
695 if (blk_mq_is_sbitmap_shared(flags))
696 blk_mq_exit_sched_shared_sbitmap(q);
697 q->elevator = NULL;
698 }