]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq-sched.c
blk-mq: make per-sw-queue bio merge as default .bio_merge
[mirror_ubuntu-artful-kernel.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
34 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
35 struct request *rq,
36 struct bio *bio,
37 struct io_context *ioc)
38 {
39 struct io_cq *icq;
40
41 spin_lock_irq(q->queue_lock);
42 icq = ioc_lookup_icq(ioc, q);
43 spin_unlock_irq(q->queue_lock);
44
45 if (!icq) {
46 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
47 if (!icq)
48 return;
49 }
50
51 rq->elv.icq = icq;
52 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
53 rq->rq_flags |= RQF_ELVPRIV;
54 get_io_context(icq->ioc);
55 return;
56 }
57
58 rq->elv.icq = NULL;
59 }
60
61 static void blk_mq_sched_assign_ioc(struct request_queue *q,
62 struct request *rq, struct bio *bio)
63 {
64 struct io_context *ioc;
65
66 ioc = rq_ioc(bio);
67 if (ioc)
68 __blk_mq_sched_assign_ioc(q, rq, bio, ioc);
69 }
70
71 struct request *blk_mq_sched_get_request(struct request_queue *q,
72 struct bio *bio,
73 unsigned int op,
74 struct blk_mq_alloc_data *data)
75 {
76 struct elevator_queue *e = q->elevator;
77 struct request *rq;
78
79 blk_queue_enter_live(q);
80 data->q = q;
81 if (likely(!data->ctx))
82 data->ctx = blk_mq_get_ctx(q);
83 if (likely(!data->hctx))
84 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
85
86 if (e) {
87 data->flags |= BLK_MQ_REQ_INTERNAL;
88
89 /*
90 * Flush requests are special and go directly to the
91 * dispatch list.
92 */
93 if (!op_is_flush(op) && e->type->ops.mq.get_request) {
94 rq = e->type->ops.mq.get_request(q, op, data);
95 if (rq)
96 rq->rq_flags |= RQF_QUEUED;
97 } else
98 rq = __blk_mq_alloc_request(data, op);
99 } else {
100 rq = __blk_mq_alloc_request(data, op);
101 }
102
103 if (rq) {
104 if (!op_is_flush(op)) {
105 rq->elv.icq = NULL;
106 if (e && e->type->icq_cache)
107 blk_mq_sched_assign_ioc(q, rq, bio);
108 }
109 data->hctx->queued++;
110 return rq;
111 }
112
113 blk_queue_exit(q);
114 return NULL;
115 }
116
117 void blk_mq_sched_put_request(struct request *rq)
118 {
119 struct request_queue *q = rq->q;
120 struct elevator_queue *e = q->elevator;
121
122 if (rq->rq_flags & RQF_ELVPRIV) {
123 blk_mq_sched_put_rq_priv(rq->q, rq);
124 if (rq->elv.icq) {
125 put_io_context(rq->elv.icq->ioc);
126 rq->elv.icq = NULL;
127 }
128 }
129
130 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
131 e->type->ops.mq.put_request(rq);
132 else
133 blk_mq_finish_request(rq);
134 }
135
136 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
137 {
138 struct request_queue *q = hctx->queue;
139 struct elevator_queue *e = q->elevator;
140 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
141 bool did_work = false;
142 LIST_HEAD(rq_list);
143
144 if (unlikely(blk_mq_hctx_stopped(hctx)))
145 return;
146
147 hctx->run++;
148
149 /*
150 * If we have previous entries on our dispatch list, grab them first for
151 * more fair dispatch.
152 */
153 if (!list_empty_careful(&hctx->dispatch)) {
154 spin_lock(&hctx->lock);
155 if (!list_empty(&hctx->dispatch))
156 list_splice_init(&hctx->dispatch, &rq_list);
157 spin_unlock(&hctx->lock);
158 }
159
160 /*
161 * Only ask the scheduler for requests, if we didn't have residual
162 * requests from the dispatch list. This is to avoid the case where
163 * we only ever dispatch a fraction of the requests available because
164 * of low device queue depth. Once we pull requests out of the IO
165 * scheduler, we can no longer merge or sort them. So it's best to
166 * leave them there for as long as we can. Mark the hw queue as
167 * needing a restart in that case.
168 */
169 if (!list_empty(&rq_list)) {
170 blk_mq_sched_mark_restart_hctx(hctx);
171 did_work = blk_mq_dispatch_rq_list(q, &rq_list);
172 } else if (!has_sched_dispatch) {
173 blk_mq_flush_busy_ctxs(hctx, &rq_list);
174 blk_mq_dispatch_rq_list(q, &rq_list);
175 }
176
177 /*
178 * We want to dispatch from the scheduler if we had no work left
179 * on the dispatch list, OR if we did have work but weren't able
180 * to make progress.
181 */
182 if (!did_work && has_sched_dispatch) {
183 do {
184 struct request *rq;
185
186 rq = e->type->ops.mq.dispatch_request(hctx);
187 if (!rq)
188 break;
189 list_add(&rq->queuelist, &rq_list);
190 } while (blk_mq_dispatch_rq_list(q, &rq_list));
191 }
192 }
193
194 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
195 struct request **merged_request)
196 {
197 struct request *rq;
198
199 switch (elv_merge(q, &rq, bio)) {
200 case ELEVATOR_BACK_MERGE:
201 if (!blk_mq_sched_allow_merge(q, rq, bio))
202 return false;
203 if (!bio_attempt_back_merge(q, rq, bio))
204 return false;
205 *merged_request = attempt_back_merge(q, rq);
206 if (!*merged_request)
207 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
208 return true;
209 case ELEVATOR_FRONT_MERGE:
210 if (!blk_mq_sched_allow_merge(q, rq, bio))
211 return false;
212 if (!bio_attempt_front_merge(q, rq, bio))
213 return false;
214 *merged_request = attempt_front_merge(q, rq);
215 if (!*merged_request)
216 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
217 return true;
218 default:
219 return false;
220 }
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
223
224 /*
225 * Reverse check our software queue for entries that we could potentially
226 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
227 * too much time checking for merges.
228 */
229 static bool blk_mq_attempt_merge(struct request_queue *q,
230 struct blk_mq_ctx *ctx, struct bio *bio)
231 {
232 struct request *rq;
233 int checked = 8;
234
235 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
236 bool merged = false;
237
238 if (!checked--)
239 break;
240
241 if (!blk_rq_merge_ok(rq, bio))
242 continue;
243
244 switch (blk_try_merge(rq, bio)) {
245 case ELEVATOR_BACK_MERGE:
246 if (blk_mq_sched_allow_merge(q, rq, bio))
247 merged = bio_attempt_back_merge(q, rq, bio);
248 break;
249 case ELEVATOR_FRONT_MERGE:
250 if (blk_mq_sched_allow_merge(q, rq, bio))
251 merged = bio_attempt_front_merge(q, rq, bio);
252 break;
253 case ELEVATOR_DISCARD_MERGE:
254 merged = bio_attempt_discard_merge(q, rq, bio);
255 break;
256 default:
257 continue;
258 }
259
260 if (merged)
261 ctx->rq_merged++;
262 return merged;
263 }
264
265 return false;
266 }
267
268 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
269 {
270 struct elevator_queue *e = q->elevator;
271 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
272 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
273 bool ret = false;
274
275 if (e && e->type->ops.mq.bio_merge) {
276 blk_mq_put_ctx(ctx);
277 return e->type->ops.mq.bio_merge(hctx, bio);
278 }
279
280 if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
281 /* default per sw-queue merge */
282 spin_lock(&ctx->lock);
283 ret = blk_mq_attempt_merge(q, ctx, bio);
284 spin_unlock(&ctx->lock);
285 }
286
287 blk_mq_put_ctx(ctx);
288 return ret;
289 }
290
291 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
292 {
293 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
294 }
295 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
296
297 void blk_mq_sched_request_inserted(struct request *rq)
298 {
299 trace_block_rq_insert(rq->q, rq);
300 }
301 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
302
303 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
304 struct request *rq)
305 {
306 if (rq->tag == -1) {
307 rq->rq_flags |= RQF_SORTED;
308 return false;
309 }
310
311 /*
312 * If we already have a real request tag, send directly to
313 * the dispatch list.
314 */
315 spin_lock(&hctx->lock);
316 list_add(&rq->queuelist, &hctx->dispatch);
317 spin_unlock(&hctx->lock);
318 return true;
319 }
320
321 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
322 {
323 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
324 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
325 if (blk_mq_hctx_has_pending(hctx)) {
326 blk_mq_run_hw_queue(hctx, true);
327 return true;
328 }
329 }
330 return false;
331 }
332
333 /**
334 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
335 * @pos: loop cursor.
336 * @skip: the list element that will not be examined. Iteration starts at
337 * @skip->next.
338 * @head: head of the list to examine. This list must have at least one
339 * element, namely @skip.
340 * @member: name of the list_head structure within typeof(*pos).
341 */
342 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
343 for ((pos) = (skip); \
344 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
345 (pos)->member.next, typeof(*pos), member) : \
346 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
347 (pos) != (skip); )
348
349 /*
350 * Called after a driver tag has been freed to check whether a hctx needs to
351 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
352 * queues in a round-robin fashion if the tag set of @hctx is shared with other
353 * hardware queues.
354 */
355 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
356 {
357 struct blk_mq_tags *const tags = hctx->tags;
358 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
359 struct request_queue *const queue = hctx->queue, *q;
360 struct blk_mq_hw_ctx *hctx2;
361 unsigned int i, j;
362
363 if (set->flags & BLK_MQ_F_TAG_SHARED) {
364 rcu_read_lock();
365 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
366 tag_set_list) {
367 queue_for_each_hw_ctx(q, hctx2, i)
368 if (hctx2->tags == tags &&
369 blk_mq_sched_restart_hctx(hctx2))
370 goto done;
371 }
372 j = hctx->queue_num + 1;
373 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
374 if (j == queue->nr_hw_queues)
375 j = 0;
376 hctx2 = queue->queue_hw_ctx[j];
377 if (hctx2->tags == tags &&
378 blk_mq_sched_restart_hctx(hctx2))
379 break;
380 }
381 done:
382 rcu_read_unlock();
383 } else {
384 blk_mq_sched_restart_hctx(hctx);
385 }
386 }
387
388 /*
389 * Add flush/fua to the queue. If we fail getting a driver tag, then
390 * punt to the requeue list. Requeue will re-invoke us from a context
391 * that's safe to block from.
392 */
393 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
394 struct request *rq, bool can_block)
395 {
396 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
397 blk_insert_flush(rq);
398 blk_mq_run_hw_queue(hctx, true);
399 } else
400 blk_mq_add_to_requeue_list(rq, false, true);
401 }
402
403 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
404 bool run_queue, bool async, bool can_block)
405 {
406 struct request_queue *q = rq->q;
407 struct elevator_queue *e = q->elevator;
408 struct blk_mq_ctx *ctx = rq->mq_ctx;
409 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
410
411 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
412 blk_mq_sched_insert_flush(hctx, rq, can_block);
413 return;
414 }
415
416 if (e && blk_mq_sched_bypass_insert(hctx, rq))
417 goto run;
418
419 if (e && e->type->ops.mq.insert_requests) {
420 LIST_HEAD(list);
421
422 list_add(&rq->queuelist, &list);
423 e->type->ops.mq.insert_requests(hctx, &list, at_head);
424 } else {
425 spin_lock(&ctx->lock);
426 __blk_mq_insert_request(hctx, rq, at_head);
427 spin_unlock(&ctx->lock);
428 }
429
430 run:
431 if (run_queue)
432 blk_mq_run_hw_queue(hctx, async);
433 }
434
435 void blk_mq_sched_insert_requests(struct request_queue *q,
436 struct blk_mq_ctx *ctx,
437 struct list_head *list, bool run_queue_async)
438 {
439 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
440 struct elevator_queue *e = hctx->queue->elevator;
441
442 if (e) {
443 struct request *rq, *next;
444
445 /*
446 * We bypass requests that already have a driver tag assigned,
447 * which should only be flushes. Flushes are only ever inserted
448 * as single requests, so we shouldn't ever hit the
449 * WARN_ON_ONCE() below (but let's handle it just in case).
450 */
451 list_for_each_entry_safe(rq, next, list, queuelist) {
452 if (WARN_ON_ONCE(rq->tag != -1)) {
453 list_del_init(&rq->queuelist);
454 blk_mq_sched_bypass_insert(hctx, rq);
455 }
456 }
457 }
458
459 if (e && e->type->ops.mq.insert_requests)
460 e->type->ops.mq.insert_requests(hctx, list, false);
461 else
462 blk_mq_insert_requests(hctx, ctx, list);
463
464 blk_mq_run_hw_queue(hctx, run_queue_async);
465 }
466
467 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
468 struct blk_mq_hw_ctx *hctx,
469 unsigned int hctx_idx)
470 {
471 if (hctx->sched_tags) {
472 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
473 blk_mq_free_rq_map(hctx->sched_tags);
474 hctx->sched_tags = NULL;
475 }
476 }
477
478 static int blk_mq_sched_alloc_tags(struct request_queue *q,
479 struct blk_mq_hw_ctx *hctx,
480 unsigned int hctx_idx)
481 {
482 struct blk_mq_tag_set *set = q->tag_set;
483 int ret;
484
485 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
486 set->reserved_tags);
487 if (!hctx->sched_tags)
488 return -ENOMEM;
489
490 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
491 if (ret)
492 blk_mq_sched_free_tags(set, hctx, hctx_idx);
493
494 return ret;
495 }
496
497 static void blk_mq_sched_tags_teardown(struct request_queue *q)
498 {
499 struct blk_mq_tag_set *set = q->tag_set;
500 struct blk_mq_hw_ctx *hctx;
501 int i;
502
503 queue_for_each_hw_ctx(q, hctx, i)
504 blk_mq_sched_free_tags(set, hctx, i);
505 }
506
507 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
508 unsigned int hctx_idx)
509 {
510 struct elevator_queue *e = q->elevator;
511 int ret;
512
513 if (!e)
514 return 0;
515
516 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
517 if (ret)
518 return ret;
519
520 if (e->type->ops.mq.init_hctx) {
521 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
522 if (ret) {
523 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
524 return ret;
525 }
526 }
527
528 blk_mq_debugfs_register_sched_hctx(q, hctx);
529
530 return 0;
531 }
532
533 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
534 unsigned int hctx_idx)
535 {
536 struct elevator_queue *e = q->elevator;
537
538 if (!e)
539 return;
540
541 blk_mq_debugfs_unregister_sched_hctx(hctx);
542
543 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
544 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
545 hctx->sched_data = NULL;
546 }
547
548 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
549 }
550
551 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
552 {
553 struct blk_mq_hw_ctx *hctx;
554 struct elevator_queue *eq;
555 unsigned int i;
556 int ret;
557
558 if (!e) {
559 q->elevator = NULL;
560 return 0;
561 }
562
563 /*
564 * Default to 256, since we don't split into sync/async like the
565 * old code did. Additionally, this is a per-hw queue depth.
566 */
567 q->nr_requests = 2 * BLKDEV_MAX_RQ;
568
569 queue_for_each_hw_ctx(q, hctx, i) {
570 ret = blk_mq_sched_alloc_tags(q, hctx, i);
571 if (ret)
572 goto err;
573 }
574
575 ret = e->ops.mq.init_sched(q, e);
576 if (ret)
577 goto err;
578
579 blk_mq_debugfs_register_sched(q);
580
581 queue_for_each_hw_ctx(q, hctx, i) {
582 if (e->ops.mq.init_hctx) {
583 ret = e->ops.mq.init_hctx(hctx, i);
584 if (ret) {
585 eq = q->elevator;
586 blk_mq_exit_sched(q, eq);
587 kobject_put(&eq->kobj);
588 return ret;
589 }
590 }
591 blk_mq_debugfs_register_sched_hctx(q, hctx);
592 }
593
594 return 0;
595
596 err:
597 blk_mq_sched_tags_teardown(q);
598 q->elevator = NULL;
599 return ret;
600 }
601
602 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
603 {
604 struct blk_mq_hw_ctx *hctx;
605 unsigned int i;
606
607 queue_for_each_hw_ctx(q, hctx, i) {
608 blk_mq_debugfs_unregister_sched_hctx(hctx);
609 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
610 e->type->ops.mq.exit_hctx(hctx, i);
611 hctx->sched_data = NULL;
612 }
613 }
614 blk_mq_debugfs_unregister_sched(q);
615 if (e->type->ops.mq.exit_sched)
616 e->type->ops.mq.exit_sched(e);
617 blk_mq_sched_tags_teardown(q);
618 q->elevator = NULL;
619 }
620
621 int blk_mq_sched_init(struct request_queue *q)
622 {
623 int ret;
624
625 mutex_lock(&q->sysfs_lock);
626 ret = elevator_init(q, NULL);
627 mutex_unlock(&q->sysfs_lock);
628
629 return ret;
630 }