]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-mq-sched.c
perf tools: Add FIFO file names as alternative options to --control
[mirror_ubuntu-hirsute-kernel.git] / block / blk-mq-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20
21 void blk_mq_sched_free_hctx_data(struct request_queue *q,
22 void (*exit)(struct blk_mq_hw_ctx *))
23 {
24 struct blk_mq_hw_ctx *hctx;
25 int i;
26
27 queue_for_each_hw_ctx(q, hctx, i) {
28 if (exit && hctx->sched_data)
29 exit(hctx);
30 kfree(hctx->sched_data);
31 hctx->sched_data = NULL;
32 }
33 }
34 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
35
36 void blk_mq_sched_assign_ioc(struct request *rq)
37 {
38 struct request_queue *q = rq->q;
39 struct io_context *ioc;
40 struct io_cq *icq;
41
42 /*
43 * May not have an IO context if it's a passthrough request
44 */
45 ioc = current->io_context;
46 if (!ioc)
47 return;
48
49 spin_lock_irq(&q->queue_lock);
50 icq = ioc_lookup_icq(ioc, q);
51 spin_unlock_irq(&q->queue_lock);
52
53 if (!icq) {
54 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
55 if (!icq)
56 return;
57 }
58 get_io_context(icq->ioc);
59 rq->elv.icq = icq;
60 }
61
62 /*
63 * Mark a hardware queue as needing a restart. For shared queues, maintain
64 * a count of how many hardware queues are marked for restart.
65 */
66 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
67 {
68 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
69 return;
70
71 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
74
75 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
76 {
77 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
78 return;
79 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
80
81 /*
82 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
83 * in blk_mq_run_hw_queue(). Its pair is the barrier in
84 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
85 * meantime new request added to hctx->dispatch is missed to check in
86 * blk_mq_run_hw_queue().
87 */
88 smp_mb();
89
90 blk_mq_run_hw_queue(hctx, true);
91 }
92
93 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
94 {
95 struct request *rqa = container_of(a, struct request, queuelist);
96 struct request *rqb = container_of(b, struct request, queuelist);
97
98 return rqa->mq_hctx > rqb->mq_hctx;
99 }
100
101 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
102 {
103 struct blk_mq_hw_ctx *hctx =
104 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
105 struct request *rq;
106 LIST_HEAD(hctx_list);
107 unsigned int count = 0;
108
109 list_for_each_entry(rq, rq_list, queuelist) {
110 if (rq->mq_hctx != hctx) {
111 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
112 goto dispatch;
113 }
114 count++;
115 }
116 list_splice_tail_init(rq_list, &hctx_list);
117
118 dispatch:
119 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
120 }
121
122 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
123
124 /*
125 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
126 * its queue by itself in its completion handler, so we don't need to
127 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
128 *
129 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
130 * be run again. This is necessary to avoid starving flushes.
131 */
132 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
133 {
134 struct request_queue *q = hctx->queue;
135 struct elevator_queue *e = q->elevator;
136 bool multi_hctxs = false, run_queue = false;
137 bool dispatched = false, busy = false;
138 unsigned int max_dispatch;
139 LIST_HEAD(rq_list);
140 int count = 0;
141
142 if (hctx->dispatch_busy)
143 max_dispatch = 1;
144 else
145 max_dispatch = hctx->queue->nr_requests;
146
147 do {
148 struct request *rq;
149
150 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
151 break;
152
153 if (!list_empty_careful(&hctx->dispatch)) {
154 busy = true;
155 break;
156 }
157
158 if (!blk_mq_get_dispatch_budget(q))
159 break;
160
161 rq = e->type->ops.dispatch_request(hctx);
162 if (!rq) {
163 blk_mq_put_dispatch_budget(q);
164 /*
165 * We're releasing without dispatching. Holding the
166 * budget could have blocked any "hctx"s with the
167 * same queue and if we didn't dispatch then there's
168 * no guarantee anyone will kick the queue. Kick it
169 * ourselves.
170 */
171 run_queue = true;
172 break;
173 }
174
175 /*
176 * Now this rq owns the budget which has to be released
177 * if this rq won't be queued to driver via .queue_rq()
178 * in blk_mq_dispatch_rq_list().
179 */
180 list_add_tail(&rq->queuelist, &rq_list);
181 if (rq->mq_hctx != hctx)
182 multi_hctxs = true;
183 } while (++count < max_dispatch);
184
185 if (!count) {
186 if (run_queue)
187 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
188 } else if (multi_hctxs) {
189 /*
190 * Requests from different hctx may be dequeued from some
191 * schedulers, such as bfq and deadline.
192 *
193 * Sort the requests in the list according to their hctx,
194 * dispatch batching requests from same hctx at a time.
195 */
196 list_sort(NULL, &rq_list, sched_rq_cmp);
197 do {
198 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
199 } while (!list_empty(&rq_list));
200 } else {
201 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
202 }
203
204 if (busy)
205 return -EAGAIN;
206 return !!dispatched;
207 }
208
209 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
210 {
211 int ret;
212
213 do {
214 ret = __blk_mq_do_dispatch_sched(hctx);
215 } while (ret == 1);
216
217 return ret;
218 }
219
220 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
221 struct blk_mq_ctx *ctx)
222 {
223 unsigned short idx = ctx->index_hw[hctx->type];
224
225 if (++idx == hctx->nr_ctx)
226 idx = 0;
227
228 return hctx->ctxs[idx];
229 }
230
231 /*
232 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
233 * its queue by itself in its completion handler, so we don't need to
234 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
235 *
236 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
237 * be run again. This is necessary to avoid starving flushes.
238 */
239 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
240 {
241 struct request_queue *q = hctx->queue;
242 LIST_HEAD(rq_list);
243 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
244 int ret = 0;
245 struct request *rq;
246
247 do {
248 if (!list_empty_careful(&hctx->dispatch)) {
249 ret = -EAGAIN;
250 break;
251 }
252
253 if (!sbitmap_any_bit_set(&hctx->ctx_map))
254 break;
255
256 if (!blk_mq_get_dispatch_budget(q))
257 break;
258
259 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
260 if (!rq) {
261 blk_mq_put_dispatch_budget(q);
262 /*
263 * We're releasing without dispatching. Holding the
264 * budget could have blocked any "hctx"s with the
265 * same queue and if we didn't dispatch then there's
266 * no guarantee anyone will kick the queue. Kick it
267 * ourselves.
268 */
269 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
270 break;
271 }
272
273 /*
274 * Now this rq owns the budget which has to be released
275 * if this rq won't be queued to driver via .queue_rq()
276 * in blk_mq_dispatch_rq_list().
277 */
278 list_add(&rq->queuelist, &rq_list);
279
280 /* round robin for fair dispatch */
281 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
282
283 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
284
285 WRITE_ONCE(hctx->dispatch_from, ctx);
286 return ret;
287 }
288
289 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
290 {
291 struct request_queue *q = hctx->queue;
292 struct elevator_queue *e = q->elevator;
293 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
294 int ret = 0;
295 LIST_HEAD(rq_list);
296
297 /*
298 * If we have previous entries on our dispatch list, grab them first for
299 * more fair dispatch.
300 */
301 if (!list_empty_careful(&hctx->dispatch)) {
302 spin_lock(&hctx->lock);
303 if (!list_empty(&hctx->dispatch))
304 list_splice_init(&hctx->dispatch, &rq_list);
305 spin_unlock(&hctx->lock);
306 }
307
308 /*
309 * Only ask the scheduler for requests, if we didn't have residual
310 * requests from the dispatch list. This is to avoid the case where
311 * we only ever dispatch a fraction of the requests available because
312 * of low device queue depth. Once we pull requests out of the IO
313 * scheduler, we can no longer merge or sort them. So it's best to
314 * leave them there for as long as we can. Mark the hw queue as
315 * needing a restart in that case.
316 *
317 * We want to dispatch from the scheduler if there was nothing
318 * on the dispatch list or we were able to dispatch from the
319 * dispatch list.
320 */
321 if (!list_empty(&rq_list)) {
322 blk_mq_sched_mark_restart_hctx(hctx);
323 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
324 if (has_sched_dispatch)
325 ret = blk_mq_do_dispatch_sched(hctx);
326 else
327 ret = blk_mq_do_dispatch_ctx(hctx);
328 }
329 } else if (has_sched_dispatch) {
330 ret = blk_mq_do_dispatch_sched(hctx);
331 } else if (hctx->dispatch_busy) {
332 /* dequeue request one by one from sw queue if queue is busy */
333 ret = blk_mq_do_dispatch_ctx(hctx);
334 } else {
335 blk_mq_flush_busy_ctxs(hctx, &rq_list);
336 blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
337 }
338
339 return ret;
340 }
341
342 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
343 {
344 struct request_queue *q = hctx->queue;
345
346 /* RCU or SRCU read lock is needed before checking quiesced flag */
347 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
348 return;
349
350 hctx->run++;
351
352 /*
353 * A return of -EAGAIN is an indication that hctx->dispatch is not
354 * empty and we must run again in order to avoid starving flushes.
355 */
356 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
357 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
358 blk_mq_run_hw_queue(hctx, true);
359 }
360 }
361
362 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
363 unsigned int nr_segs, struct request **merged_request)
364 {
365 struct request *rq;
366
367 switch (elv_merge(q, &rq, bio)) {
368 case ELEVATOR_BACK_MERGE:
369 if (!blk_mq_sched_allow_merge(q, rq, bio))
370 return false;
371 if (!bio_attempt_back_merge(rq, bio, nr_segs))
372 return false;
373 *merged_request = attempt_back_merge(q, rq);
374 if (!*merged_request)
375 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
376 return true;
377 case ELEVATOR_FRONT_MERGE:
378 if (!blk_mq_sched_allow_merge(q, rq, bio))
379 return false;
380 if (!bio_attempt_front_merge(rq, bio, nr_segs))
381 return false;
382 *merged_request = attempt_front_merge(q, rq);
383 if (!*merged_request)
384 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
385 return true;
386 case ELEVATOR_DISCARD_MERGE:
387 return bio_attempt_discard_merge(q, rq, bio);
388 default:
389 return false;
390 }
391 }
392 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
393
394 /*
395 * Iterate list of requests and see if we can merge this bio with any
396 * of them.
397 */
398 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
399 struct bio *bio, unsigned int nr_segs)
400 {
401 struct request *rq;
402 int checked = 8;
403
404 list_for_each_entry_reverse(rq, list, queuelist) {
405 bool merged = false;
406
407 if (!checked--)
408 break;
409
410 if (!blk_rq_merge_ok(rq, bio))
411 continue;
412
413 switch (blk_try_merge(rq, bio)) {
414 case ELEVATOR_BACK_MERGE:
415 if (blk_mq_sched_allow_merge(q, rq, bio))
416 merged = bio_attempt_back_merge(rq, bio,
417 nr_segs);
418 break;
419 case ELEVATOR_FRONT_MERGE:
420 if (blk_mq_sched_allow_merge(q, rq, bio))
421 merged = bio_attempt_front_merge(rq, bio,
422 nr_segs);
423 break;
424 case ELEVATOR_DISCARD_MERGE:
425 merged = bio_attempt_discard_merge(q, rq, bio);
426 break;
427 default:
428 continue;
429 }
430
431 return merged;
432 }
433
434 return false;
435 }
436 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
437
438 /*
439 * Reverse check our software queue for entries that we could potentially
440 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
441 * too much time checking for merges.
442 */
443 static bool blk_mq_attempt_merge(struct request_queue *q,
444 struct blk_mq_hw_ctx *hctx,
445 struct blk_mq_ctx *ctx, struct bio *bio,
446 unsigned int nr_segs)
447 {
448 enum hctx_type type = hctx->type;
449
450 lockdep_assert_held(&ctx->lock);
451
452 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
453 ctx->rq_merged++;
454 return true;
455 }
456
457 return false;
458 }
459
460 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
461 unsigned int nr_segs)
462 {
463 struct elevator_queue *e = q->elevator;
464 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
465 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
466 bool ret = false;
467 enum hctx_type type;
468
469 if (e && e->type->ops.bio_merge)
470 return e->type->ops.bio_merge(hctx, bio, nr_segs);
471
472 type = hctx->type;
473 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
474 !list_empty_careful(&ctx->rq_lists[type])) {
475 /* default per sw-queue merge */
476 spin_lock(&ctx->lock);
477 ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
478 spin_unlock(&ctx->lock);
479 }
480
481 return ret;
482 }
483
484 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
485 {
486 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
487 }
488 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
489
490 void blk_mq_sched_request_inserted(struct request *rq)
491 {
492 trace_block_rq_insert(rq->q, rq);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
495
496 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
497 bool has_sched,
498 struct request *rq)
499 {
500 /*
501 * dispatch flush and passthrough rq directly
502 *
503 * passthrough request has to be added to hctx->dispatch directly.
504 * For some reason, device may be in one situation which can't
505 * handle FS request, so STS_RESOURCE is always returned and the
506 * FS request will be added to hctx->dispatch. However passthrough
507 * request may be required at that time for fixing the problem. If
508 * passthrough request is added to scheduler queue, there isn't any
509 * chance to dispatch it given we prioritize requests in hctx->dispatch.
510 */
511 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
512 return true;
513
514 if (has_sched)
515 rq->rq_flags |= RQF_SORTED;
516
517 return false;
518 }
519
520 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
521 bool run_queue, bool async)
522 {
523 struct request_queue *q = rq->q;
524 struct elevator_queue *e = q->elevator;
525 struct blk_mq_ctx *ctx = rq->mq_ctx;
526 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
527
528 /* flush rq in flush machinery need to be dispatched directly */
529 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
530 blk_insert_flush(rq);
531 goto run;
532 }
533
534 WARN_ON(e && (rq->tag != -1));
535
536 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
537 /*
538 * Firstly normal IO request is inserted to scheduler queue or
539 * sw queue, meantime we add flush request to dispatch queue(
540 * hctx->dispatch) directly and there is at most one in-flight
541 * flush request for each hw queue, so it doesn't matter to add
542 * flush request to tail or front of the dispatch queue.
543 *
544 * Secondly in case of NCQ, flush request belongs to non-NCQ
545 * command, and queueing it will fail when there is any
546 * in-flight normal IO request(NCQ command). When adding flush
547 * rq to the front of hctx->dispatch, it is easier to introduce
548 * extra time to flush rq's latency because of S_SCHED_RESTART
549 * compared with adding to the tail of dispatch queue, then
550 * chance of flush merge is increased, and less flush requests
551 * will be issued to controller. It is observed that ~10% time
552 * is saved in blktests block/004 on disk attached to AHCI/NCQ
553 * drive when adding flush rq to the front of hctx->dispatch.
554 *
555 * Simply queue flush rq to the front of hctx->dispatch so that
556 * intensive flush workloads can benefit in case of NCQ HW.
557 */
558 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
559 blk_mq_request_bypass_insert(rq, at_head, false);
560 goto run;
561 }
562
563 if (e && e->type->ops.insert_requests) {
564 LIST_HEAD(list);
565
566 list_add(&rq->queuelist, &list);
567 e->type->ops.insert_requests(hctx, &list, at_head);
568 } else {
569 spin_lock(&ctx->lock);
570 __blk_mq_insert_request(hctx, rq, at_head);
571 spin_unlock(&ctx->lock);
572 }
573
574 run:
575 if (run_queue)
576 blk_mq_run_hw_queue(hctx, async);
577 }
578
579 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
580 struct blk_mq_ctx *ctx,
581 struct list_head *list, bool run_queue_async)
582 {
583 struct elevator_queue *e;
584 struct request_queue *q = hctx->queue;
585
586 /*
587 * blk_mq_sched_insert_requests() is called from flush plug
588 * context only, and hold one usage counter to prevent queue
589 * from being released.
590 */
591 percpu_ref_get(&q->q_usage_counter);
592
593 e = hctx->queue->elevator;
594 if (e && e->type->ops.insert_requests)
595 e->type->ops.insert_requests(hctx, list, false);
596 else {
597 /*
598 * try to issue requests directly if the hw queue isn't
599 * busy in case of 'none' scheduler, and this way may save
600 * us one extra enqueue & dequeue to sw queue.
601 */
602 if (!hctx->dispatch_busy && !e && !run_queue_async) {
603 blk_mq_try_issue_list_directly(hctx, list);
604 if (list_empty(list))
605 goto out;
606 }
607 blk_mq_insert_requests(hctx, ctx, list);
608 }
609
610 blk_mq_run_hw_queue(hctx, run_queue_async);
611 out:
612 percpu_ref_put(&q->q_usage_counter);
613 }
614
615 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
616 struct blk_mq_hw_ctx *hctx,
617 unsigned int hctx_idx)
618 {
619 if (hctx->sched_tags) {
620 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
621 blk_mq_free_rq_map(hctx->sched_tags);
622 hctx->sched_tags = NULL;
623 }
624 }
625
626 static int blk_mq_sched_alloc_tags(struct request_queue *q,
627 struct blk_mq_hw_ctx *hctx,
628 unsigned int hctx_idx)
629 {
630 struct blk_mq_tag_set *set = q->tag_set;
631 int ret;
632
633 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
634 set->reserved_tags);
635 if (!hctx->sched_tags)
636 return -ENOMEM;
637
638 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
639 if (ret)
640 blk_mq_sched_free_tags(set, hctx, hctx_idx);
641
642 return ret;
643 }
644
645 /* called in queue's release handler, tagset has gone away */
646 static void blk_mq_sched_tags_teardown(struct request_queue *q)
647 {
648 struct blk_mq_hw_ctx *hctx;
649 int i;
650
651 queue_for_each_hw_ctx(q, hctx, i) {
652 if (hctx->sched_tags) {
653 blk_mq_free_rq_map(hctx->sched_tags);
654 hctx->sched_tags = NULL;
655 }
656 }
657 }
658
659 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
660 {
661 struct blk_mq_hw_ctx *hctx;
662 struct elevator_queue *eq;
663 unsigned int i;
664 int ret;
665
666 if (!e) {
667 q->elevator = NULL;
668 q->nr_requests = q->tag_set->queue_depth;
669 return 0;
670 }
671
672 /*
673 * Default to double of smaller one between hw queue_depth and 128,
674 * since we don't split into sync/async like the old code did.
675 * Additionally, this is a per-hw queue depth.
676 */
677 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
678 BLKDEV_MAX_RQ);
679
680 queue_for_each_hw_ctx(q, hctx, i) {
681 ret = blk_mq_sched_alloc_tags(q, hctx, i);
682 if (ret)
683 goto err;
684 }
685
686 ret = e->ops.init_sched(q, e);
687 if (ret)
688 goto err;
689
690 blk_mq_debugfs_register_sched(q);
691
692 queue_for_each_hw_ctx(q, hctx, i) {
693 if (e->ops.init_hctx) {
694 ret = e->ops.init_hctx(hctx, i);
695 if (ret) {
696 eq = q->elevator;
697 blk_mq_sched_free_requests(q);
698 blk_mq_exit_sched(q, eq);
699 kobject_put(&eq->kobj);
700 return ret;
701 }
702 }
703 blk_mq_debugfs_register_sched_hctx(q, hctx);
704 }
705
706 return 0;
707
708 err:
709 blk_mq_sched_free_requests(q);
710 blk_mq_sched_tags_teardown(q);
711 q->elevator = NULL;
712 return ret;
713 }
714
715 /*
716 * called in either blk_queue_cleanup or elevator_switch, tagset
717 * is required for freeing requests
718 */
719 void blk_mq_sched_free_requests(struct request_queue *q)
720 {
721 struct blk_mq_hw_ctx *hctx;
722 int i;
723
724 queue_for_each_hw_ctx(q, hctx, i) {
725 if (hctx->sched_tags)
726 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
727 }
728 }
729
730 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
731 {
732 struct blk_mq_hw_ctx *hctx;
733 unsigned int i;
734
735 queue_for_each_hw_ctx(q, hctx, i) {
736 blk_mq_debugfs_unregister_sched_hctx(hctx);
737 if (e->type->ops.exit_hctx && hctx->sched_data) {
738 e->type->ops.exit_hctx(hctx, i);
739 hctx->sched_data = NULL;
740 }
741 }
742 blk_mq_debugfs_unregister_sched(q);
743 if (e->type->ops.exit_sched)
744 e->type->ops.exit_sched(e);
745 blk_mq_sched_tags_teardown(q);
746 q->elevator = NULL;
747 }