]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-mq-sched.c
usb: dwc3: gadget: Bail from dwc3_gadget_exit() if dwc->gadget is NULL
[mirror_ubuntu-hirsute-kernel.git] / block / blk-mq-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20
21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 struct request_queue *q = rq->q;
24 struct io_context *ioc;
25 struct io_cq *icq;
26
27 /*
28 * May not have an IO context if it's a passthrough request
29 */
30 ioc = current->io_context;
31 if (!ioc)
32 return;
33
34 spin_lock_irq(&q->queue_lock);
35 icq = ioc_lookup_icq(ioc, q);
36 spin_unlock_irq(&q->queue_lock);
37
38 if (!icq) {
39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 if (!icq)
41 return;
42 }
43 get_io_context(icq->ioc);
44 rq->elv.icq = icq;
45 }
46
47 /*
48 * Mark a hardware queue as needing a restart. For shared queues, maintain
49 * a count of how many hardware queues are marked for restart.
50 */
51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 {
53 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
54 return;
55
56 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57 }
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59
60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 {
62 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 return;
64 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65
66 /*
67 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
68 * in blk_mq_run_hw_queue(). Its pair is the barrier in
69 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
70 * meantime new request added to hctx->dispatch is missed to check in
71 * blk_mq_run_hw_queue().
72 */
73 smp_mb();
74
75 blk_mq_run_hw_queue(hctx, true);
76 }
77
78 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
79 {
80 struct request *rqa = container_of(a, struct request, queuelist);
81 struct request *rqb = container_of(b, struct request, queuelist);
82
83 return rqa->mq_hctx > rqb->mq_hctx;
84 }
85
86 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
87 {
88 struct blk_mq_hw_ctx *hctx =
89 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
90 struct request *rq;
91 LIST_HEAD(hctx_list);
92 unsigned int count = 0;
93
94 list_for_each_entry(rq, rq_list, queuelist) {
95 if (rq->mq_hctx != hctx) {
96 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
97 goto dispatch;
98 }
99 count++;
100 }
101 list_splice_tail_init(rq_list, &hctx_list);
102
103 dispatch:
104 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
105 }
106
107 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
108
109 /*
110 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
111 * its queue by itself in its completion handler, so we don't need to
112 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
113 *
114 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
115 * be run again. This is necessary to avoid starving flushes.
116 */
117 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
118 {
119 struct request_queue *q = hctx->queue;
120 struct elevator_queue *e = q->elevator;
121 bool multi_hctxs = false, run_queue = false;
122 bool dispatched = false, busy = false;
123 unsigned int max_dispatch;
124 LIST_HEAD(rq_list);
125 int count = 0;
126
127 if (hctx->dispatch_busy)
128 max_dispatch = 1;
129 else
130 max_dispatch = hctx->queue->nr_requests;
131
132 do {
133 struct request *rq;
134
135 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
136 break;
137
138 if (!list_empty_careful(&hctx->dispatch)) {
139 busy = true;
140 break;
141 }
142
143 if (!blk_mq_get_dispatch_budget(q))
144 break;
145
146 rq = e->type->ops.dispatch_request(hctx);
147 if (!rq) {
148 blk_mq_put_dispatch_budget(q);
149 /*
150 * We're releasing without dispatching. Holding the
151 * budget could have blocked any "hctx"s with the
152 * same queue and if we didn't dispatch then there's
153 * no guarantee anyone will kick the queue. Kick it
154 * ourselves.
155 */
156 run_queue = true;
157 break;
158 }
159
160 /*
161 * Now this rq owns the budget which has to be released
162 * if this rq won't be queued to driver via .queue_rq()
163 * in blk_mq_dispatch_rq_list().
164 */
165 list_add_tail(&rq->queuelist, &rq_list);
166 if (rq->mq_hctx != hctx)
167 multi_hctxs = true;
168 } while (++count < max_dispatch);
169
170 if (!count) {
171 if (run_queue)
172 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
173 } else if (multi_hctxs) {
174 /*
175 * Requests from different hctx may be dequeued from some
176 * schedulers, such as bfq and deadline.
177 *
178 * Sort the requests in the list according to their hctx,
179 * dispatch batching requests from same hctx at a time.
180 */
181 list_sort(NULL, &rq_list, sched_rq_cmp);
182 do {
183 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
184 } while (!list_empty(&rq_list));
185 } else {
186 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
187 }
188
189 if (busy)
190 return -EAGAIN;
191 return !!dispatched;
192 }
193
194 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
195 {
196 int ret;
197
198 do {
199 ret = __blk_mq_do_dispatch_sched(hctx);
200 } while (ret == 1);
201
202 return ret;
203 }
204
205 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
206 struct blk_mq_ctx *ctx)
207 {
208 unsigned short idx = ctx->index_hw[hctx->type];
209
210 if (++idx == hctx->nr_ctx)
211 idx = 0;
212
213 return hctx->ctxs[idx];
214 }
215
216 /*
217 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
218 * its queue by itself in its completion handler, so we don't need to
219 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
220 *
221 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
222 * be run again. This is necessary to avoid starving flushes.
223 */
224 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
225 {
226 struct request_queue *q = hctx->queue;
227 LIST_HEAD(rq_list);
228 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
229 int ret = 0;
230 struct request *rq;
231
232 do {
233 if (!list_empty_careful(&hctx->dispatch)) {
234 ret = -EAGAIN;
235 break;
236 }
237
238 if (!sbitmap_any_bit_set(&hctx->ctx_map))
239 break;
240
241 if (!blk_mq_get_dispatch_budget(q))
242 break;
243
244 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
245 if (!rq) {
246 blk_mq_put_dispatch_budget(q);
247 /*
248 * We're releasing without dispatching. Holding the
249 * budget could have blocked any "hctx"s with the
250 * same queue and if we didn't dispatch then there's
251 * no guarantee anyone will kick the queue. Kick it
252 * ourselves.
253 */
254 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
255 break;
256 }
257
258 /*
259 * Now this rq owns the budget which has to be released
260 * if this rq won't be queued to driver via .queue_rq()
261 * in blk_mq_dispatch_rq_list().
262 */
263 list_add(&rq->queuelist, &rq_list);
264
265 /* round robin for fair dispatch */
266 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
267
268 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
269
270 WRITE_ONCE(hctx->dispatch_from, ctx);
271 return ret;
272 }
273
274 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
275 {
276 struct request_queue *q = hctx->queue;
277 struct elevator_queue *e = q->elevator;
278 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
279 int ret = 0;
280 LIST_HEAD(rq_list);
281
282 /*
283 * If we have previous entries on our dispatch list, grab them first for
284 * more fair dispatch.
285 */
286 if (!list_empty_careful(&hctx->dispatch)) {
287 spin_lock(&hctx->lock);
288 if (!list_empty(&hctx->dispatch))
289 list_splice_init(&hctx->dispatch, &rq_list);
290 spin_unlock(&hctx->lock);
291 }
292
293 /*
294 * Only ask the scheduler for requests, if we didn't have residual
295 * requests from the dispatch list. This is to avoid the case where
296 * we only ever dispatch a fraction of the requests available because
297 * of low device queue depth. Once we pull requests out of the IO
298 * scheduler, we can no longer merge or sort them. So it's best to
299 * leave them there for as long as we can. Mark the hw queue as
300 * needing a restart in that case.
301 *
302 * We want to dispatch from the scheduler if there was nothing
303 * on the dispatch list or we were able to dispatch from the
304 * dispatch list.
305 */
306 if (!list_empty(&rq_list)) {
307 blk_mq_sched_mark_restart_hctx(hctx);
308 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
309 if (has_sched_dispatch)
310 ret = blk_mq_do_dispatch_sched(hctx);
311 else
312 ret = blk_mq_do_dispatch_ctx(hctx);
313 }
314 } else if (has_sched_dispatch) {
315 ret = blk_mq_do_dispatch_sched(hctx);
316 } else if (hctx->dispatch_busy) {
317 /* dequeue request one by one from sw queue if queue is busy */
318 ret = blk_mq_do_dispatch_ctx(hctx);
319 } else {
320 blk_mq_flush_busy_ctxs(hctx, &rq_list);
321 blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
322 }
323
324 return ret;
325 }
326
327 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
328 {
329 struct request_queue *q = hctx->queue;
330
331 /* RCU or SRCU read lock is needed before checking quiesced flag */
332 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
333 return;
334
335 hctx->run++;
336
337 /*
338 * A return of -EAGAIN is an indication that hctx->dispatch is not
339 * empty and we must run again in order to avoid starving flushes.
340 */
341 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
342 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
343 blk_mq_run_hw_queue(hctx, true);
344 }
345 }
346
347 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
348 unsigned int nr_segs)
349 {
350 struct elevator_queue *e = q->elevator;
351 struct blk_mq_ctx *ctx;
352 struct blk_mq_hw_ctx *hctx;
353 bool ret = false;
354 enum hctx_type type;
355
356 if (e && e->type->ops.bio_merge)
357 return e->type->ops.bio_merge(q, bio, nr_segs);
358
359 ctx = blk_mq_get_ctx(q);
360 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
361 type = hctx->type;
362 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
363 list_empty_careful(&ctx->rq_lists[type]))
364 return false;
365
366 /* default per sw-queue merge */
367 spin_lock(&ctx->lock);
368 /*
369 * Reverse check our software queue for entries that we could
370 * potentially merge with. Currently includes a hand-wavy stop
371 * count of 8, to not spend too much time checking for merges.
372 */
373 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
374 ctx->rq_merged++;
375 ret = true;
376 }
377
378 spin_unlock(&ctx->lock);
379
380 return ret;
381 }
382
383 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
384 {
385 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
386 }
387 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
388
389 void blk_mq_sched_request_inserted(struct request *rq)
390 {
391 trace_block_rq_insert(rq);
392 }
393 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
394
395 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
396 bool has_sched,
397 struct request *rq)
398 {
399 /*
400 * dispatch flush and passthrough rq directly
401 *
402 * passthrough request has to be added to hctx->dispatch directly.
403 * For some reason, device may be in one situation which can't
404 * handle FS request, so STS_RESOURCE is always returned and the
405 * FS request will be added to hctx->dispatch. However passthrough
406 * request may be required at that time for fixing the problem. If
407 * passthrough request is added to scheduler queue, there isn't any
408 * chance to dispatch it given we prioritize requests in hctx->dispatch.
409 */
410 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
411 return true;
412
413 if (has_sched)
414 rq->rq_flags |= RQF_SORTED;
415
416 return false;
417 }
418
419 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
420 bool run_queue, bool async)
421 {
422 struct request_queue *q = rq->q;
423 struct elevator_queue *e = q->elevator;
424 struct blk_mq_ctx *ctx = rq->mq_ctx;
425 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
426
427 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
428
429 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
430 /*
431 * Firstly normal IO request is inserted to scheduler queue or
432 * sw queue, meantime we add flush request to dispatch queue(
433 * hctx->dispatch) directly and there is at most one in-flight
434 * flush request for each hw queue, so it doesn't matter to add
435 * flush request to tail or front of the dispatch queue.
436 *
437 * Secondly in case of NCQ, flush request belongs to non-NCQ
438 * command, and queueing it will fail when there is any
439 * in-flight normal IO request(NCQ command). When adding flush
440 * rq to the front of hctx->dispatch, it is easier to introduce
441 * extra time to flush rq's latency because of S_SCHED_RESTART
442 * compared with adding to the tail of dispatch queue, then
443 * chance of flush merge is increased, and less flush requests
444 * will be issued to controller. It is observed that ~10% time
445 * is saved in blktests block/004 on disk attached to AHCI/NCQ
446 * drive when adding flush rq to the front of hctx->dispatch.
447 *
448 * Simply queue flush rq to the front of hctx->dispatch so that
449 * intensive flush workloads can benefit in case of NCQ HW.
450 */
451 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
452 blk_mq_request_bypass_insert(rq, at_head, false);
453 goto run;
454 }
455
456 if (e && e->type->ops.insert_requests) {
457 LIST_HEAD(list);
458
459 list_add(&rq->queuelist, &list);
460 e->type->ops.insert_requests(hctx, &list, at_head);
461 } else {
462 spin_lock(&ctx->lock);
463 __blk_mq_insert_request(hctx, rq, at_head);
464 spin_unlock(&ctx->lock);
465 }
466
467 run:
468 if (run_queue)
469 blk_mq_run_hw_queue(hctx, async);
470 }
471
472 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
473 struct blk_mq_ctx *ctx,
474 struct list_head *list, bool run_queue_async)
475 {
476 struct elevator_queue *e;
477 struct request_queue *q = hctx->queue;
478
479 /*
480 * blk_mq_sched_insert_requests() is called from flush plug
481 * context only, and hold one usage counter to prevent queue
482 * from being released.
483 */
484 percpu_ref_get(&q->q_usage_counter);
485
486 e = hctx->queue->elevator;
487 if (e && e->type->ops.insert_requests)
488 e->type->ops.insert_requests(hctx, list, false);
489 else {
490 /*
491 * try to issue requests directly if the hw queue isn't
492 * busy in case of 'none' scheduler, and this way may save
493 * us one extra enqueue & dequeue to sw queue.
494 */
495 if (!hctx->dispatch_busy && !e && !run_queue_async) {
496 blk_mq_try_issue_list_directly(hctx, list);
497 if (list_empty(list))
498 goto out;
499 }
500 blk_mq_insert_requests(hctx, ctx, list);
501 }
502
503 blk_mq_run_hw_queue(hctx, run_queue_async);
504 out:
505 percpu_ref_put(&q->q_usage_counter);
506 }
507
508 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
509 struct blk_mq_hw_ctx *hctx,
510 unsigned int hctx_idx)
511 {
512 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
513
514 if (hctx->sched_tags) {
515 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
516 blk_mq_free_rq_map(hctx->sched_tags, flags);
517 hctx->sched_tags = NULL;
518 }
519 }
520
521 static int blk_mq_sched_alloc_tags(struct request_queue *q,
522 struct blk_mq_hw_ctx *hctx,
523 unsigned int hctx_idx)
524 {
525 struct blk_mq_tag_set *set = q->tag_set;
526 /* Clear HCTX_SHARED so tags are init'ed */
527 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
528 int ret;
529
530 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
531 set->reserved_tags, flags);
532 if (!hctx->sched_tags)
533 return -ENOMEM;
534
535 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
536 if (ret)
537 blk_mq_sched_free_tags(set, hctx, hctx_idx);
538
539 return ret;
540 }
541
542 /* called in queue's release handler, tagset has gone away */
543 static void blk_mq_sched_tags_teardown(struct request_queue *q)
544 {
545 struct blk_mq_hw_ctx *hctx;
546 int i;
547
548 queue_for_each_hw_ctx(q, hctx, i) {
549 /* Clear HCTX_SHARED so tags are freed */
550 unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
551
552 if (hctx->sched_tags) {
553 blk_mq_free_rq_map(hctx->sched_tags, flags);
554 hctx->sched_tags = NULL;
555 }
556 }
557 }
558
559 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
560 {
561 struct blk_mq_hw_ctx *hctx;
562 struct elevator_queue *eq;
563 unsigned int i;
564 int ret;
565
566 if (!e) {
567 q->elevator = NULL;
568 q->nr_requests = q->tag_set->queue_depth;
569 return 0;
570 }
571
572 /*
573 * Default to double of smaller one between hw queue_depth and 128,
574 * since we don't split into sync/async like the old code did.
575 * Additionally, this is a per-hw queue depth.
576 */
577 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
578 BLKDEV_MAX_RQ);
579
580 queue_for_each_hw_ctx(q, hctx, i) {
581 ret = blk_mq_sched_alloc_tags(q, hctx, i);
582 if (ret)
583 goto err;
584 }
585
586 ret = e->ops.init_sched(q, e);
587 if (ret)
588 goto err;
589
590 blk_mq_debugfs_register_sched(q);
591
592 queue_for_each_hw_ctx(q, hctx, i) {
593 if (e->ops.init_hctx) {
594 ret = e->ops.init_hctx(hctx, i);
595 if (ret) {
596 eq = q->elevator;
597 blk_mq_sched_free_requests(q);
598 blk_mq_exit_sched(q, eq);
599 kobject_put(&eq->kobj);
600 return ret;
601 }
602 }
603 blk_mq_debugfs_register_sched_hctx(q, hctx);
604 }
605
606 return 0;
607
608 err:
609 blk_mq_sched_free_requests(q);
610 blk_mq_sched_tags_teardown(q);
611 q->elevator = NULL;
612 return ret;
613 }
614
615 /*
616 * called in either blk_queue_cleanup or elevator_switch, tagset
617 * is required for freeing requests
618 */
619 void blk_mq_sched_free_requests(struct request_queue *q)
620 {
621 struct blk_mq_hw_ctx *hctx;
622 int i;
623
624 queue_for_each_hw_ctx(q, hctx, i) {
625 if (hctx->sched_tags)
626 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
627 }
628 }
629
630 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
631 {
632 struct blk_mq_hw_ctx *hctx;
633 unsigned int i;
634
635 queue_for_each_hw_ctx(q, hctx, i) {
636 blk_mq_debugfs_unregister_sched_hctx(hctx);
637 if (e->type->ops.exit_hctx && hctx->sched_data) {
638 e->type->ops.exit_hctx(hctx, i);
639 hctx->sched_data = NULL;
640 }
641 }
642 blk_mq_debugfs_unregister_sched(q);
643 if (e->type->ops.exit_sched)
644 e->type->ops.exit_sched(e);
645 blk_mq_sched_tags_teardown(q);
646 q->elevator = NULL;
647 }