]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq-sched.c
blk-mq: don't handle TAG_SHARED in restart
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
39
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
43
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
48 }
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
51 }
52
53 /*
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
56 */
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
61
62 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
63 struct request_queue *q = hctx->queue;
64
65 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
66 atomic_inc(&q->shared_hctx_restart);
67 } else
68 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
69 }
70
71 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
72 {
73 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74 return;
75
76 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
77
78 if (blk_mq_hctx_has_pending(hctx)) {
79 blk_mq_run_hw_queue(hctx, true);
80 return;
81 }
82 }
83
84 /* return true if hctx need to run again */
85 static bool blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
86 {
87 struct request_queue *q = hctx->queue;
88 struct elevator_queue *e = q->elevator;
89 LIST_HEAD(rq_list);
90
91 do {
92 struct request *rq;
93 blk_status_t ret;
94
95 if (e->type->ops.mq.has_work &&
96 !e->type->ops.mq.has_work(hctx))
97 break;
98
99 ret = blk_mq_get_dispatch_budget(hctx);
100 if (ret == BLK_STS_RESOURCE)
101 return true;
102
103 rq = e->type->ops.mq.dispatch_request(hctx);
104 if (!rq) {
105 blk_mq_put_dispatch_budget(hctx);
106 break;
107 } else if (ret != BLK_STS_OK) {
108 blk_mq_end_request(rq, ret);
109 continue;
110 }
111
112 /*
113 * Now this rq owns the budget which has to be released
114 * if this rq won't be queued to driver via .queue_rq()
115 * in blk_mq_dispatch_rq_list().
116 */
117 list_add(&rq->queuelist, &rq_list);
118 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
119
120 return false;
121 }
122
123 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
124 struct blk_mq_ctx *ctx)
125 {
126 unsigned idx = ctx->index_hw;
127
128 if (++idx == hctx->nr_ctx)
129 idx = 0;
130
131 return hctx->ctxs[idx];
132 }
133
134 /* return true if hctx need to run again */
135 static bool blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
136 {
137 struct request_queue *q = hctx->queue;
138 LIST_HEAD(rq_list);
139 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
140
141 do {
142 struct request *rq;
143 blk_status_t ret;
144
145 if (!sbitmap_any_bit_set(&hctx->ctx_map))
146 break;
147
148 ret = blk_mq_get_dispatch_budget(hctx);
149 if (ret == BLK_STS_RESOURCE)
150 return true;
151
152 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
153 if (!rq) {
154 blk_mq_put_dispatch_budget(hctx);
155 break;
156 } else if (ret != BLK_STS_OK) {
157 blk_mq_end_request(rq, ret);
158 continue;
159 }
160
161 /*
162 * Now this rq owns the budget which has to be released
163 * if this rq won't be queued to driver via .queue_rq()
164 * in blk_mq_dispatch_rq_list().
165 */
166 list_add(&rq->queuelist, &rq_list);
167
168 /* round robin for fair dispatch */
169 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
170
171 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
172
173 WRITE_ONCE(hctx->dispatch_from, ctx);
174
175 return false;
176 }
177
178 /* return true if hw queue need to be run again */
179 bool blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
180 {
181 struct request_queue *q = hctx->queue;
182 struct elevator_queue *e = q->elevator;
183 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
184 LIST_HEAD(rq_list);
185 bool run_queue = false;
186
187 /* RCU or SRCU read lock is needed before checking quiesced flag */
188 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
189 return false;
190
191 hctx->run++;
192
193 /*
194 * If we have previous entries on our dispatch list, grab them first for
195 * more fair dispatch.
196 */
197 if (!list_empty_careful(&hctx->dispatch)) {
198 spin_lock(&hctx->lock);
199 if (!list_empty(&hctx->dispatch))
200 list_splice_init(&hctx->dispatch, &rq_list);
201 spin_unlock(&hctx->lock);
202 }
203
204 /*
205 * Only ask the scheduler for requests, if we didn't have residual
206 * requests from the dispatch list. This is to avoid the case where
207 * we only ever dispatch a fraction of the requests available because
208 * of low device queue depth. Once we pull requests out of the IO
209 * scheduler, we can no longer merge or sort them. So it's best to
210 * leave them there for as long as we can. Mark the hw queue as
211 * needing a restart in that case.
212 *
213 * We want to dispatch from the scheduler if there was nothing
214 * on the dispatch list or we were able to dispatch from the
215 * dispatch list.
216 */
217 if (!list_empty(&rq_list)) {
218 blk_mq_sched_mark_restart_hctx(hctx);
219 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
220 if (has_sched_dispatch)
221 run_queue = blk_mq_do_dispatch_sched(hctx);
222 else
223 run_queue = blk_mq_do_dispatch_ctx(hctx);
224 }
225 } else if (has_sched_dispatch) {
226 run_queue = blk_mq_do_dispatch_sched(hctx);
227 } else if (q->mq_ops->get_budget) {
228 /*
229 * If we need to get budget before queuing request, we
230 * dequeue request one by one from sw queue for avoiding
231 * to mess up I/O merge when dispatch runs out of resource.
232 *
233 * TODO: get more budgets, and dequeue more requests in
234 * one time.
235 */
236 run_queue = blk_mq_do_dispatch_ctx(hctx);
237 } else {
238 blk_mq_flush_busy_ctxs(hctx, &rq_list);
239 blk_mq_dispatch_rq_list(q, &rq_list, false);
240 }
241
242 if (run_queue && !blk_mq_sched_needs_restart(hctx) &&
243 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) {
244 blk_mq_sched_mark_restart_hctx(hctx);
245 return true;
246 }
247
248 return false;
249 }
250
251 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
252 struct request **merged_request)
253 {
254 struct request *rq;
255
256 switch (elv_merge(q, &rq, bio)) {
257 case ELEVATOR_BACK_MERGE:
258 if (!blk_mq_sched_allow_merge(q, rq, bio))
259 return false;
260 if (!bio_attempt_back_merge(q, rq, bio))
261 return false;
262 *merged_request = attempt_back_merge(q, rq);
263 if (!*merged_request)
264 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
265 return true;
266 case ELEVATOR_FRONT_MERGE:
267 if (!blk_mq_sched_allow_merge(q, rq, bio))
268 return false;
269 if (!bio_attempt_front_merge(q, rq, bio))
270 return false;
271 *merged_request = attempt_front_merge(q, rq);
272 if (!*merged_request)
273 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
274 return true;
275 default:
276 return false;
277 }
278 }
279 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
280
281 /*
282 * Reverse check our software queue for entries that we could potentially
283 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
284 * too much time checking for merges.
285 */
286 static bool blk_mq_attempt_merge(struct request_queue *q,
287 struct blk_mq_ctx *ctx, struct bio *bio)
288 {
289 struct request *rq;
290 int checked = 8;
291
292 lockdep_assert_held(&ctx->lock);
293
294 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
295 bool merged = false;
296
297 if (!checked--)
298 break;
299
300 if (!blk_rq_merge_ok(rq, bio))
301 continue;
302
303 switch (blk_try_merge(rq, bio)) {
304 case ELEVATOR_BACK_MERGE:
305 if (blk_mq_sched_allow_merge(q, rq, bio))
306 merged = bio_attempt_back_merge(q, rq, bio);
307 break;
308 case ELEVATOR_FRONT_MERGE:
309 if (blk_mq_sched_allow_merge(q, rq, bio))
310 merged = bio_attempt_front_merge(q, rq, bio);
311 break;
312 case ELEVATOR_DISCARD_MERGE:
313 merged = bio_attempt_discard_merge(q, rq, bio);
314 break;
315 default:
316 continue;
317 }
318
319 if (merged)
320 ctx->rq_merged++;
321 return merged;
322 }
323
324 return false;
325 }
326
327 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
328 {
329 struct elevator_queue *e = q->elevator;
330 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
331 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
332 bool ret = false;
333
334 if (e && e->type->ops.mq.bio_merge) {
335 blk_mq_put_ctx(ctx);
336 return e->type->ops.mq.bio_merge(hctx, bio);
337 }
338
339 if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
340 /* default per sw-queue merge */
341 spin_lock(&ctx->lock);
342 ret = blk_mq_attempt_merge(q, ctx, bio);
343 spin_unlock(&ctx->lock);
344 }
345
346 blk_mq_put_ctx(ctx);
347 return ret;
348 }
349
350 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
351 {
352 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
353 }
354 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
355
356 void blk_mq_sched_request_inserted(struct request *rq)
357 {
358 trace_block_rq_insert(rq->q, rq);
359 }
360 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
361
362 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
363 struct request *rq)
364 {
365 if (rq->tag == -1) {
366 rq->rq_flags |= RQF_SORTED;
367 return false;
368 }
369
370 /*
371 * If we already have a real request tag, send directly to
372 * the dispatch list.
373 */
374 spin_lock(&hctx->lock);
375 list_add(&rq->queuelist, &hctx->dispatch);
376 spin_unlock(&hctx->lock);
377 return true;
378 }
379
380 /*
381 * Add flush/fua to the queue. If we fail getting a driver tag, then
382 * punt to the requeue list. Requeue will re-invoke us from a context
383 * that's safe to block from.
384 */
385 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
386 struct request *rq, bool can_block)
387 {
388 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
389 blk_insert_flush(rq);
390 blk_mq_run_hw_queue(hctx, true);
391 } else
392 blk_mq_add_to_requeue_list(rq, false, true);
393 }
394
395 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
396 bool run_queue, bool async, bool can_block)
397 {
398 struct request_queue *q = rq->q;
399 struct elevator_queue *e = q->elevator;
400 struct blk_mq_ctx *ctx = rq->mq_ctx;
401 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
402
403 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
404 blk_mq_sched_insert_flush(hctx, rq, can_block);
405 return;
406 }
407
408 if (e && blk_mq_sched_bypass_insert(hctx, rq))
409 goto run;
410
411 if (e && e->type->ops.mq.insert_requests) {
412 LIST_HEAD(list);
413
414 list_add(&rq->queuelist, &list);
415 e->type->ops.mq.insert_requests(hctx, &list, at_head);
416 } else {
417 spin_lock(&ctx->lock);
418 __blk_mq_insert_request(hctx, rq, at_head);
419 spin_unlock(&ctx->lock);
420 }
421
422 run:
423 if (run_queue)
424 blk_mq_run_hw_queue(hctx, async);
425 }
426
427 void blk_mq_sched_insert_requests(struct request_queue *q,
428 struct blk_mq_ctx *ctx,
429 struct list_head *list, bool run_queue_async)
430 {
431 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
432 struct elevator_queue *e = hctx->queue->elevator;
433
434 if (e) {
435 struct request *rq, *next;
436
437 /*
438 * We bypass requests that already have a driver tag assigned,
439 * which should only be flushes. Flushes are only ever inserted
440 * as single requests, so we shouldn't ever hit the
441 * WARN_ON_ONCE() below (but let's handle it just in case).
442 */
443 list_for_each_entry_safe(rq, next, list, queuelist) {
444 if (WARN_ON_ONCE(rq->tag != -1)) {
445 list_del_init(&rq->queuelist);
446 blk_mq_sched_bypass_insert(hctx, rq);
447 }
448 }
449 }
450
451 if (e && e->type->ops.mq.insert_requests)
452 e->type->ops.mq.insert_requests(hctx, list, false);
453 else
454 blk_mq_insert_requests(hctx, ctx, list);
455
456 blk_mq_run_hw_queue(hctx, run_queue_async);
457 }
458
459 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
460 struct blk_mq_hw_ctx *hctx,
461 unsigned int hctx_idx)
462 {
463 if (hctx->sched_tags) {
464 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
465 blk_mq_free_rq_map(hctx->sched_tags);
466 hctx->sched_tags = NULL;
467 }
468 }
469
470 static int blk_mq_sched_alloc_tags(struct request_queue *q,
471 struct blk_mq_hw_ctx *hctx,
472 unsigned int hctx_idx)
473 {
474 struct blk_mq_tag_set *set = q->tag_set;
475 int ret;
476
477 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
478 set->reserved_tags);
479 if (!hctx->sched_tags)
480 return -ENOMEM;
481
482 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
483 if (ret)
484 blk_mq_sched_free_tags(set, hctx, hctx_idx);
485
486 return ret;
487 }
488
489 static void blk_mq_sched_tags_teardown(struct request_queue *q)
490 {
491 struct blk_mq_tag_set *set = q->tag_set;
492 struct blk_mq_hw_ctx *hctx;
493 int i;
494
495 queue_for_each_hw_ctx(q, hctx, i)
496 blk_mq_sched_free_tags(set, hctx, i);
497 }
498
499 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
500 unsigned int hctx_idx)
501 {
502 struct elevator_queue *e = q->elevator;
503 int ret;
504
505 if (!e)
506 return 0;
507
508 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
509 if (ret)
510 return ret;
511
512 if (e->type->ops.mq.init_hctx) {
513 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
514 if (ret) {
515 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
516 return ret;
517 }
518 }
519
520 blk_mq_debugfs_register_sched_hctx(q, hctx);
521
522 return 0;
523 }
524
525 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
526 unsigned int hctx_idx)
527 {
528 struct elevator_queue *e = q->elevator;
529
530 if (!e)
531 return;
532
533 blk_mq_debugfs_unregister_sched_hctx(hctx);
534
535 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
536 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
537 hctx->sched_data = NULL;
538 }
539
540 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
541 }
542
543 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
544 {
545 struct blk_mq_hw_ctx *hctx;
546 struct elevator_queue *eq;
547 unsigned int i;
548 int ret;
549
550 if (!e) {
551 q->elevator = NULL;
552 return 0;
553 }
554
555 /*
556 * Default to double of smaller one between hw queue_depth and 128,
557 * since we don't split into sync/async like the old code did.
558 * Additionally, this is a per-hw queue depth.
559 */
560 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
561 BLKDEV_MAX_RQ);
562
563 queue_for_each_hw_ctx(q, hctx, i) {
564 ret = blk_mq_sched_alloc_tags(q, hctx, i);
565 if (ret)
566 goto err;
567 }
568
569 ret = e->ops.mq.init_sched(q, e);
570 if (ret)
571 goto err;
572
573 blk_mq_debugfs_register_sched(q);
574
575 queue_for_each_hw_ctx(q, hctx, i) {
576 if (e->ops.mq.init_hctx) {
577 ret = e->ops.mq.init_hctx(hctx, i);
578 if (ret) {
579 eq = q->elevator;
580 blk_mq_exit_sched(q, eq);
581 kobject_put(&eq->kobj);
582 return ret;
583 }
584 }
585 blk_mq_debugfs_register_sched_hctx(q, hctx);
586 }
587
588 return 0;
589
590 err:
591 blk_mq_sched_tags_teardown(q);
592 q->elevator = NULL;
593 return ret;
594 }
595
596 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
597 {
598 struct blk_mq_hw_ctx *hctx;
599 unsigned int i;
600
601 queue_for_each_hw_ctx(q, hctx, i) {
602 blk_mq_debugfs_unregister_sched_hctx(hctx);
603 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
604 e->type->ops.mq.exit_hctx(hctx, i);
605 hctx->sched_data = NULL;
606 }
607 }
608 blk_mq_debugfs_unregister_sched(q);
609 if (e->type->ops.mq.exit_sched)
610 e->type->ops.mq.exit_sched(e);
611 blk_mq_sched_tags_teardown(q);
612 q->elevator = NULL;
613 }
614
615 int blk_mq_sched_init(struct request_queue *q)
616 {
617 int ret;
618
619 mutex_lock(&q->sysfs_lock);
620 ret = elevator_init(q, NULL);
621 mutex_unlock(&q->sysfs_lock);
622
623 return ret;
624 }