]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-mq-sched.c
blk-mq-sched: fix starvation for multiple hardware queues and shared tags
[mirror_ubuntu-hirsute-kernel.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-sched.h"
15 #include "blk-mq-tag.h"
16 #include "blk-wbt.h"
17
18 void blk_mq_sched_free_hctx_data(struct request_queue *q,
19 void (*exit)(struct blk_mq_hw_ctx *))
20 {
21 struct blk_mq_hw_ctx *hctx;
22 int i;
23
24 queue_for_each_hw_ctx(q, hctx, i) {
25 if (exit && hctx->sched_data)
26 exit(hctx);
27 kfree(hctx->sched_data);
28 hctx->sched_data = NULL;
29 }
30 }
31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
32
33 int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
34 int (*init)(struct blk_mq_hw_ctx *),
35 void (*exit)(struct blk_mq_hw_ctx *))
36 {
37 struct blk_mq_hw_ctx *hctx;
38 int ret;
39 int i;
40
41 queue_for_each_hw_ctx(q, hctx, i) {
42 hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
43 if (!hctx->sched_data) {
44 ret = -ENOMEM;
45 goto error;
46 }
47
48 if (init) {
49 ret = init(hctx);
50 if (ret) {
51 /*
52 * We don't want to give exit() a partially
53 * initialized sched_data. init() must clean up
54 * if it fails.
55 */
56 kfree(hctx->sched_data);
57 hctx->sched_data = NULL;
58 goto error;
59 }
60 }
61 }
62
63 return 0;
64 error:
65 blk_mq_sched_free_hctx_data(q, exit);
66 return ret;
67 }
68 EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
69
70 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
71 struct request *rq, struct io_context *ioc)
72 {
73 struct io_cq *icq;
74
75 spin_lock_irq(q->queue_lock);
76 icq = ioc_lookup_icq(ioc, q);
77 spin_unlock_irq(q->queue_lock);
78
79 if (!icq) {
80 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
81 if (!icq)
82 return;
83 }
84
85 rq->elv.icq = icq;
86 if (!blk_mq_sched_get_rq_priv(q, rq)) {
87 rq->rq_flags |= RQF_ELVPRIV;
88 get_io_context(icq->ioc);
89 return;
90 }
91
92 rq->elv.icq = NULL;
93 }
94
95 static void blk_mq_sched_assign_ioc(struct request_queue *q,
96 struct request *rq, struct bio *bio)
97 {
98 struct io_context *ioc;
99
100 ioc = rq_ioc(bio);
101 if (ioc)
102 __blk_mq_sched_assign_ioc(q, rq, ioc);
103 }
104
105 struct request *blk_mq_sched_get_request(struct request_queue *q,
106 struct bio *bio,
107 unsigned int op,
108 struct blk_mq_alloc_data *data)
109 {
110 struct elevator_queue *e = q->elevator;
111 struct blk_mq_hw_ctx *hctx;
112 struct blk_mq_ctx *ctx;
113 struct request *rq;
114 const bool is_flush = op & (REQ_PREFLUSH | REQ_FUA);
115
116 blk_queue_enter_live(q);
117 ctx = blk_mq_get_ctx(q);
118 hctx = blk_mq_map_queue(q, ctx->cpu);
119
120 blk_mq_set_alloc_data(data, q, data->flags, ctx, hctx);
121
122 if (e) {
123 data->flags |= BLK_MQ_REQ_INTERNAL;
124
125 /*
126 * Flush requests are special and go directly to the
127 * dispatch list.
128 */
129 if (!is_flush && e->type->ops.mq.get_request) {
130 rq = e->type->ops.mq.get_request(q, op, data);
131 if (rq)
132 rq->rq_flags |= RQF_QUEUED;
133 } else
134 rq = __blk_mq_alloc_request(data, op);
135 } else {
136 rq = __blk_mq_alloc_request(data, op);
137 if (rq)
138 data->hctx->tags->rqs[rq->tag] = rq;
139 }
140
141 if (rq) {
142 if (!is_flush) {
143 rq->elv.icq = NULL;
144 if (e && e->type->icq_cache)
145 blk_mq_sched_assign_ioc(q, rq, bio);
146 }
147 data->hctx->queued++;
148 return rq;
149 }
150
151 blk_queue_exit(q);
152 return NULL;
153 }
154
155 void blk_mq_sched_put_request(struct request *rq)
156 {
157 struct request_queue *q = rq->q;
158 struct elevator_queue *e = q->elevator;
159
160 if (rq->rq_flags & RQF_ELVPRIV) {
161 blk_mq_sched_put_rq_priv(rq->q, rq);
162 if (rq->elv.icq) {
163 put_io_context(rq->elv.icq->ioc);
164 rq->elv.icq = NULL;
165 }
166 }
167
168 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
169 e->type->ops.mq.put_request(rq);
170 else
171 blk_mq_finish_request(rq);
172 }
173
174 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
175 {
176 struct elevator_queue *e = hctx->queue->elevator;
177 LIST_HEAD(rq_list);
178
179 if (unlikely(blk_mq_hctx_stopped(hctx)))
180 return;
181
182 hctx->run++;
183
184 /*
185 * If we have previous entries on our dispatch list, grab them first for
186 * more fair dispatch.
187 */
188 if (!list_empty_careful(&hctx->dispatch)) {
189 spin_lock(&hctx->lock);
190 if (!list_empty(&hctx->dispatch))
191 list_splice_init(&hctx->dispatch, &rq_list);
192 spin_unlock(&hctx->lock);
193 }
194
195 /*
196 * Only ask the scheduler for requests, if we didn't have residual
197 * requests from the dispatch list. This is to avoid the case where
198 * we only ever dispatch a fraction of the requests available because
199 * of low device queue depth. Once we pull requests out of the IO
200 * scheduler, we can no longer merge or sort them. So it's best to
201 * leave them there for as long as we can. Mark the hw queue as
202 * needing a restart in that case.
203 */
204 if (list_empty(&rq_list)) {
205 if (e && e->type->ops.mq.dispatch_requests)
206 e->type->ops.mq.dispatch_requests(hctx, &rq_list);
207 else
208 blk_mq_flush_busy_ctxs(hctx, &rq_list);
209 } else
210 blk_mq_sched_mark_restart(hctx);
211
212 blk_mq_dispatch_rq_list(hctx, &rq_list);
213 }
214
215 void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
216 struct list_head *rq_list,
217 struct request *(*get_rq)(struct blk_mq_hw_ctx *))
218 {
219 do {
220 struct request *rq;
221
222 rq = get_rq(hctx);
223 if (!rq)
224 break;
225
226 list_add_tail(&rq->queuelist, rq_list);
227 } while (1);
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
230
231 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio)
232 {
233 struct request *rq;
234 int ret;
235
236 ret = elv_merge(q, &rq, bio);
237 if (ret == ELEVATOR_BACK_MERGE) {
238 if (!blk_mq_sched_allow_merge(q, rq, bio))
239 return false;
240 if (bio_attempt_back_merge(q, rq, bio)) {
241 if (!attempt_back_merge(q, rq))
242 elv_merged_request(q, rq, ret);
243 return true;
244 }
245 } else if (ret == ELEVATOR_FRONT_MERGE) {
246 if (!blk_mq_sched_allow_merge(q, rq, bio))
247 return false;
248 if (bio_attempt_front_merge(q, rq, bio)) {
249 if (!attempt_front_merge(q, rq))
250 elv_merged_request(q, rq, ret);
251 return true;
252 }
253 }
254
255 return false;
256 }
257 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
258
259 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
260 {
261 struct elevator_queue *e = q->elevator;
262
263 if (e->type->ops.mq.bio_merge) {
264 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
265 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
266
267 blk_mq_put_ctx(ctx);
268 return e->type->ops.mq.bio_merge(hctx, bio);
269 }
270
271 return false;
272 }
273
274 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
275 {
276 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
277 }
278 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
279
280 void blk_mq_sched_request_inserted(struct request *rq)
281 {
282 trace_block_rq_insert(rq->q, rq);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
285
286 bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, struct request *rq)
287 {
288 if (rq->tag == -1) {
289 rq->rq_flags |= RQF_SORTED;
290 return false;
291 }
292
293 /*
294 * If we already have a real request tag, send directly to
295 * the dispatch list.
296 */
297 spin_lock(&hctx->lock);
298 list_add(&rq->queuelist, &hctx->dispatch);
299 spin_unlock(&hctx->lock);
300 return true;
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_sched_bypass_insert);
303
304 static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
305 {
306 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
307 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
308 if (blk_mq_hctx_has_pending(hctx))
309 blk_mq_run_hw_queue(hctx, true);
310 }
311 }
312
313 void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx)
314 {
315 unsigned int i;
316
317 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED))
318 blk_mq_sched_restart_hctx(hctx);
319 else {
320 struct request_queue *q = hctx->queue;
321
322 if (!test_bit(QUEUE_FLAG_RESTART, &q->queue_flags))
323 return;
324
325 clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags);
326
327 queue_for_each_hw_ctx(q, hctx, i)
328 blk_mq_sched_restart_hctx(hctx);
329 }
330 }
331
332 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
333 struct blk_mq_hw_ctx *hctx,
334 unsigned int hctx_idx)
335 {
336 if (hctx->sched_tags) {
337 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
338 blk_mq_free_rq_map(hctx->sched_tags);
339 hctx->sched_tags = NULL;
340 }
341 }
342
343 int blk_mq_sched_setup(struct request_queue *q)
344 {
345 struct blk_mq_tag_set *set = q->tag_set;
346 struct blk_mq_hw_ctx *hctx;
347 int ret, i;
348
349 /*
350 * Default to 256, since we don't split into sync/async like the
351 * old code did. Additionally, this is a per-hw queue depth.
352 */
353 q->nr_requests = 2 * BLKDEV_MAX_RQ;
354
355 /*
356 * We're switching to using an IO scheduler, so setup the hctx
357 * scheduler tags and switch the request map from the regular
358 * tags to scheduler tags. First allocate what we need, so we
359 * can safely fail and fallback, if needed.
360 */
361 ret = 0;
362 queue_for_each_hw_ctx(q, hctx, i) {
363 hctx->sched_tags = blk_mq_alloc_rq_map(set, i, q->nr_requests, 0);
364 if (!hctx->sched_tags) {
365 ret = -ENOMEM;
366 break;
367 }
368 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
369 if (ret)
370 break;
371 }
372
373 /*
374 * If we failed, free what we did allocate
375 */
376 if (ret) {
377 queue_for_each_hw_ctx(q, hctx, i) {
378 if (!hctx->sched_tags)
379 continue;
380 blk_mq_sched_free_tags(set, hctx, i);
381 }
382
383 return ret;
384 }
385
386 return 0;
387 }
388
389 void blk_mq_sched_teardown(struct request_queue *q)
390 {
391 struct blk_mq_tag_set *set = q->tag_set;
392 struct blk_mq_hw_ctx *hctx;
393 int i;
394
395 queue_for_each_hw_ctx(q, hctx, i)
396 blk_mq_sched_free_tags(set, hctx, i);
397 }
398
399 int blk_mq_sched_init(struct request_queue *q)
400 {
401 int ret;
402
403 #if defined(CONFIG_DEFAULT_SQ_NONE)
404 if (q->nr_hw_queues == 1)
405 return 0;
406 #endif
407 #if defined(CONFIG_DEFAULT_MQ_NONE)
408 if (q->nr_hw_queues > 1)
409 return 0;
410 #endif
411
412 mutex_lock(&q->sysfs_lock);
413 ret = elevator_init(q, NULL);
414 mutex_unlock(&q->sysfs_lock);
415
416 return ret;
417 }