]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq-sched.c
blk-mq-sched: alloate reserved tags out of normal pool
[mirror_ubuntu-artful-kernel.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-sched.h"
15 #include "blk-mq-tag.h"
16 #include "blk-wbt.h"
17
18 void blk_mq_sched_free_hctx_data(struct request_queue *q,
19 void (*exit)(struct blk_mq_hw_ctx *))
20 {
21 struct blk_mq_hw_ctx *hctx;
22 int i;
23
24 queue_for_each_hw_ctx(q, hctx, i) {
25 if (exit && hctx->sched_data)
26 exit(hctx);
27 kfree(hctx->sched_data);
28 hctx->sched_data = NULL;
29 }
30 }
31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
32
33 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
34 struct request *rq,
35 struct bio *bio,
36 struct io_context *ioc)
37 {
38 struct io_cq *icq;
39
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
43
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
48 }
49
50 rq->elv.icq = icq;
51 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
52 rq->rq_flags |= RQF_ELVPRIV;
53 get_io_context(icq->ioc);
54 return;
55 }
56
57 rq->elv.icq = NULL;
58 }
59
60 static void blk_mq_sched_assign_ioc(struct request_queue *q,
61 struct request *rq, struct bio *bio)
62 {
63 struct io_context *ioc;
64
65 ioc = rq_ioc(bio);
66 if (ioc)
67 __blk_mq_sched_assign_ioc(q, rq, bio, ioc);
68 }
69
70 struct request *blk_mq_sched_get_request(struct request_queue *q,
71 struct bio *bio,
72 unsigned int op,
73 struct blk_mq_alloc_data *data)
74 {
75 struct elevator_queue *e = q->elevator;
76 struct request *rq;
77
78 blk_queue_enter_live(q);
79 data->q = q;
80 if (likely(!data->ctx))
81 data->ctx = blk_mq_get_ctx(q);
82 if (likely(!data->hctx))
83 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
84
85 /*
86 * For a reserved tag, allocate a normal request since we might
87 * have driver dependencies on the value of the internal tag.
88 */
89 if (e && !(data->flags & BLK_MQ_REQ_RESERVED)) {
90 data->flags |= BLK_MQ_REQ_INTERNAL;
91
92 /*
93 * Flush requests are special and go directly to the
94 * dispatch list.
95 */
96 if (!op_is_flush(op) && e->type->ops.mq.get_request) {
97 rq = e->type->ops.mq.get_request(q, op, data);
98 if (rq)
99 rq->rq_flags |= RQF_QUEUED;
100 } else
101 rq = __blk_mq_alloc_request(data, op);
102 } else {
103 rq = __blk_mq_alloc_request(data, op);
104 }
105
106 if (rq) {
107 if (!op_is_flush(op)) {
108 rq->elv.icq = NULL;
109 if (e && e->type->icq_cache)
110 blk_mq_sched_assign_ioc(q, rq, bio);
111 }
112 data->hctx->queued++;
113 return rq;
114 }
115
116 blk_queue_exit(q);
117 return NULL;
118 }
119
120 void blk_mq_sched_put_request(struct request *rq)
121 {
122 struct request_queue *q = rq->q;
123 struct elevator_queue *e = q->elevator;
124
125 if (rq->rq_flags & RQF_ELVPRIV) {
126 blk_mq_sched_put_rq_priv(rq->q, rq);
127 if (rq->elv.icq) {
128 put_io_context(rq->elv.icq->ioc);
129 rq->elv.icq = NULL;
130 }
131 }
132
133 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
134 e->type->ops.mq.put_request(rq);
135 else
136 blk_mq_finish_request(rq);
137 }
138
139 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
140 {
141 struct request_queue *q = hctx->queue;
142 struct elevator_queue *e = q->elevator;
143 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
144 bool did_work = false;
145 LIST_HEAD(rq_list);
146
147 if (unlikely(blk_mq_hctx_stopped(hctx)))
148 return;
149
150 hctx->run++;
151
152 /*
153 * If we have previous entries on our dispatch list, grab them first for
154 * more fair dispatch.
155 */
156 if (!list_empty_careful(&hctx->dispatch)) {
157 spin_lock(&hctx->lock);
158 if (!list_empty(&hctx->dispatch))
159 list_splice_init(&hctx->dispatch, &rq_list);
160 spin_unlock(&hctx->lock);
161 }
162
163 /*
164 * Only ask the scheduler for requests, if we didn't have residual
165 * requests from the dispatch list. This is to avoid the case where
166 * we only ever dispatch a fraction of the requests available because
167 * of low device queue depth. Once we pull requests out of the IO
168 * scheduler, we can no longer merge or sort them. So it's best to
169 * leave them there for as long as we can. Mark the hw queue as
170 * needing a restart in that case.
171 */
172 if (!list_empty(&rq_list)) {
173 blk_mq_sched_mark_restart_hctx(hctx);
174 did_work = blk_mq_dispatch_rq_list(q, &rq_list);
175 } else if (!has_sched_dispatch) {
176 blk_mq_flush_busy_ctxs(hctx, &rq_list);
177 blk_mq_dispatch_rq_list(q, &rq_list);
178 }
179
180 /*
181 * We want to dispatch from the scheduler if we had no work left
182 * on the dispatch list, OR if we did have work but weren't able
183 * to make progress.
184 */
185 if (!did_work && has_sched_dispatch) {
186 do {
187 struct request *rq;
188
189 rq = e->type->ops.mq.dispatch_request(hctx);
190 if (!rq)
191 break;
192 list_add(&rq->queuelist, &rq_list);
193 } while (blk_mq_dispatch_rq_list(q, &rq_list));
194 }
195 }
196
197 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
198 struct request **merged_request)
199 {
200 struct request *rq;
201
202 switch (elv_merge(q, &rq, bio)) {
203 case ELEVATOR_BACK_MERGE:
204 if (!blk_mq_sched_allow_merge(q, rq, bio))
205 return false;
206 if (!bio_attempt_back_merge(q, rq, bio))
207 return false;
208 *merged_request = attempt_back_merge(q, rq);
209 if (!*merged_request)
210 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
211 return true;
212 case ELEVATOR_FRONT_MERGE:
213 if (!blk_mq_sched_allow_merge(q, rq, bio))
214 return false;
215 if (!bio_attempt_front_merge(q, rq, bio))
216 return false;
217 *merged_request = attempt_front_merge(q, rq);
218 if (!*merged_request)
219 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
220 return true;
221 default:
222 return false;
223 }
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
226
227 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
228 {
229 struct elevator_queue *e = q->elevator;
230
231 if (e->type->ops.mq.bio_merge) {
232 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
233 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
234
235 blk_mq_put_ctx(ctx);
236 return e->type->ops.mq.bio_merge(hctx, bio);
237 }
238
239 return false;
240 }
241
242 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
243 {
244 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
247
248 void blk_mq_sched_request_inserted(struct request *rq)
249 {
250 trace_block_rq_insert(rq->q, rq);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
253
254 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
255 struct request *rq)
256 {
257 if (rq->tag == -1) {
258 rq->rq_flags |= RQF_SORTED;
259 return false;
260 }
261
262 /*
263 * If we already have a real request tag, send directly to
264 * the dispatch list.
265 */
266 spin_lock(&hctx->lock);
267 list_add(&rq->queuelist, &hctx->dispatch);
268 spin_unlock(&hctx->lock);
269 return true;
270 }
271
272 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
273 {
274 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
275 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
276 if (blk_mq_hctx_has_pending(hctx)) {
277 blk_mq_run_hw_queue(hctx, true);
278 return true;
279 }
280 }
281 return false;
282 }
283
284 /**
285 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
286 * @pos: loop cursor.
287 * @skip: the list element that will not be examined. Iteration starts at
288 * @skip->next.
289 * @head: head of the list to examine. This list must have at least one
290 * element, namely @skip.
291 * @member: name of the list_head structure within typeof(*pos).
292 */
293 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
294 for ((pos) = (skip); \
295 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
296 (pos)->member.next, typeof(*pos), member) : \
297 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
298 (pos) != (skip); )
299
300 /*
301 * Called after a driver tag has been freed to check whether a hctx needs to
302 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
303 * queues in a round-robin fashion if the tag set of @hctx is shared with other
304 * hardware queues.
305 */
306 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
307 {
308 struct blk_mq_tags *const tags = hctx->tags;
309 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
310 struct request_queue *const queue = hctx->queue, *q;
311 struct blk_mq_hw_ctx *hctx2;
312 unsigned int i, j;
313
314 if (set->flags & BLK_MQ_F_TAG_SHARED) {
315 rcu_read_lock();
316 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
317 tag_set_list) {
318 queue_for_each_hw_ctx(q, hctx2, i)
319 if (hctx2->tags == tags &&
320 blk_mq_sched_restart_hctx(hctx2))
321 goto done;
322 }
323 j = hctx->queue_num + 1;
324 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
325 if (j == queue->nr_hw_queues)
326 j = 0;
327 hctx2 = queue->queue_hw_ctx[j];
328 if (hctx2->tags == tags &&
329 blk_mq_sched_restart_hctx(hctx2))
330 break;
331 }
332 done:
333 rcu_read_unlock();
334 } else {
335 blk_mq_sched_restart_hctx(hctx);
336 }
337 }
338
339 /*
340 * Add flush/fua to the queue. If we fail getting a driver tag, then
341 * punt to the requeue list. Requeue will re-invoke us from a context
342 * that's safe to block from.
343 */
344 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
345 struct request *rq, bool can_block)
346 {
347 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
348 blk_insert_flush(rq);
349 blk_mq_run_hw_queue(hctx, true);
350 } else
351 blk_mq_add_to_requeue_list(rq, false, true);
352 }
353
354 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
355 bool run_queue, bool async, bool can_block)
356 {
357 struct request_queue *q = rq->q;
358 struct elevator_queue *e = q->elevator;
359 struct blk_mq_ctx *ctx = rq->mq_ctx;
360 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
361
362 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
363 blk_mq_sched_insert_flush(hctx, rq, can_block);
364 return;
365 }
366
367 if (e && blk_mq_sched_bypass_insert(hctx, rq))
368 goto run;
369
370 if (e && e->type->ops.mq.insert_requests) {
371 LIST_HEAD(list);
372
373 list_add(&rq->queuelist, &list);
374 e->type->ops.mq.insert_requests(hctx, &list, at_head);
375 } else {
376 spin_lock(&ctx->lock);
377 __blk_mq_insert_request(hctx, rq, at_head);
378 spin_unlock(&ctx->lock);
379 }
380
381 run:
382 if (run_queue)
383 blk_mq_run_hw_queue(hctx, async);
384 }
385
386 void blk_mq_sched_insert_requests(struct request_queue *q,
387 struct blk_mq_ctx *ctx,
388 struct list_head *list, bool run_queue_async)
389 {
390 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
391 struct elevator_queue *e = hctx->queue->elevator;
392
393 if (e) {
394 struct request *rq, *next;
395
396 /*
397 * We bypass requests that already have a driver tag assigned,
398 * which should only be flushes. Flushes are only ever inserted
399 * as single requests, so we shouldn't ever hit the
400 * WARN_ON_ONCE() below (but let's handle it just in case).
401 */
402 list_for_each_entry_safe(rq, next, list, queuelist) {
403 if (WARN_ON_ONCE(rq->tag != -1)) {
404 list_del_init(&rq->queuelist);
405 blk_mq_sched_bypass_insert(hctx, rq);
406 }
407 }
408 }
409
410 if (e && e->type->ops.mq.insert_requests)
411 e->type->ops.mq.insert_requests(hctx, list, false);
412 else
413 blk_mq_insert_requests(hctx, ctx, list);
414
415 blk_mq_run_hw_queue(hctx, run_queue_async);
416 }
417
418 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
419 struct blk_mq_hw_ctx *hctx,
420 unsigned int hctx_idx)
421 {
422 if (hctx->sched_tags) {
423 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
424 blk_mq_free_rq_map(hctx->sched_tags);
425 hctx->sched_tags = NULL;
426 }
427 }
428
429 static int blk_mq_sched_alloc_tags(struct request_queue *q,
430 struct blk_mq_hw_ctx *hctx,
431 unsigned int hctx_idx)
432 {
433 struct blk_mq_tag_set *set = q->tag_set;
434 int ret;
435
436 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
437 set->reserved_tags);
438 if (!hctx->sched_tags)
439 return -ENOMEM;
440
441 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
442 if (ret)
443 blk_mq_sched_free_tags(set, hctx, hctx_idx);
444
445 return ret;
446 }
447
448 static void blk_mq_sched_tags_teardown(struct request_queue *q)
449 {
450 struct blk_mq_tag_set *set = q->tag_set;
451 struct blk_mq_hw_ctx *hctx;
452 int i;
453
454 queue_for_each_hw_ctx(q, hctx, i)
455 blk_mq_sched_free_tags(set, hctx, i);
456 }
457
458 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
459 unsigned int hctx_idx)
460 {
461 struct elevator_queue *e = q->elevator;
462 int ret;
463
464 if (!e)
465 return 0;
466
467 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
468 if (ret)
469 return ret;
470
471 if (e->type->ops.mq.init_hctx) {
472 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
473 if (ret) {
474 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
475 return ret;
476 }
477 }
478
479 return 0;
480 }
481
482 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
483 unsigned int hctx_idx)
484 {
485 struct elevator_queue *e = q->elevator;
486
487 if (!e)
488 return;
489
490 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
491 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
492 hctx->sched_data = NULL;
493 }
494
495 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
496 }
497
498 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
499 {
500 struct blk_mq_hw_ctx *hctx;
501 struct elevator_queue *eq;
502 unsigned int i;
503 int ret;
504
505 if (!e) {
506 q->elevator = NULL;
507 return 0;
508 }
509
510 /*
511 * Default to 256, since we don't split into sync/async like the
512 * old code did. Additionally, this is a per-hw queue depth.
513 */
514 q->nr_requests = 2 * BLKDEV_MAX_RQ;
515
516 queue_for_each_hw_ctx(q, hctx, i) {
517 ret = blk_mq_sched_alloc_tags(q, hctx, i);
518 if (ret)
519 goto err;
520 }
521
522 ret = e->ops.mq.init_sched(q, e);
523 if (ret)
524 goto err;
525
526 if (e->ops.mq.init_hctx) {
527 queue_for_each_hw_ctx(q, hctx, i) {
528 ret = e->ops.mq.init_hctx(hctx, i);
529 if (ret) {
530 eq = q->elevator;
531 blk_mq_exit_sched(q, eq);
532 kobject_put(&eq->kobj);
533 return ret;
534 }
535 }
536 }
537
538 return 0;
539
540 err:
541 blk_mq_sched_tags_teardown(q);
542 q->elevator = NULL;
543 return ret;
544 }
545
546 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
547 {
548 struct blk_mq_hw_ctx *hctx;
549 unsigned int i;
550
551 if (e->type->ops.mq.exit_hctx) {
552 queue_for_each_hw_ctx(q, hctx, i) {
553 if (hctx->sched_data) {
554 e->type->ops.mq.exit_hctx(hctx, i);
555 hctx->sched_data = NULL;
556 }
557 }
558 }
559 if (e->type->ops.mq.exit_sched)
560 e->type->ops.mq.exit_sched(e);
561 blk_mq_sched_tags_teardown(q);
562 q->elevator = NULL;
563 }
564
565 int blk_mq_sched_init(struct request_queue *q)
566 {
567 int ret;
568
569 mutex_lock(&q->sysfs_lock);
570 ret = elevator_init(q, NULL);
571 mutex_unlock(&q->sysfs_lock);
572
573 return ret;
574 }