]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq-tag.c
KVM: x86: Clear CR2 on VCPU reset
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq-tag.c
1 /*
2 * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
3 * over multiple cachelines to avoid ping-pong between multiple submitters
4 * or submitter and completer. Uses rolling wakeups to avoid falling of
5 * the scaling cliff when we run out of tags and have to start putting
6 * submitters to sleep.
7 *
8 * Uses active queue tracking to support fairer distribution of tags
9 * between multiple submitters when a shared tag map is used.
10 *
11 * Copyright (C) 2013-2014 Jens Axboe
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16
17 #include <linux/blk-mq.h>
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-tag.h"
21
22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
23 {
24 int i;
25
26 for (i = 0; i < bt->map_nr; i++) {
27 struct blk_align_bitmap *bm = &bt->map[i];
28 int ret;
29
30 ret = find_first_zero_bit(&bm->word, bm->depth);
31 if (ret < bm->depth)
32 return true;
33 }
34
35 return false;
36 }
37
38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
39 {
40 if (!tags)
41 return true;
42
43 return bt_has_free_tags(&tags->bitmap_tags);
44 }
45
46 static inline int bt_index_inc(int index)
47 {
48 return (index + 1) & (BT_WAIT_QUEUES - 1);
49 }
50
51 static inline void bt_index_atomic_inc(atomic_t *index)
52 {
53 int old = atomic_read(index);
54 int new = bt_index_inc(old);
55 atomic_cmpxchg(index, old, new);
56 }
57
58 /*
59 * If a previously inactive queue goes active, bump the active user count.
60 */
61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
62 {
63 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
64 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
65 atomic_inc(&hctx->tags->active_queues);
66
67 return true;
68 }
69
70 /*
71 * Wakeup all potentially sleeping on tags
72 */
73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
74 {
75 struct blk_mq_bitmap_tags *bt;
76 int i, wake_index;
77
78 bt = &tags->bitmap_tags;
79 wake_index = atomic_read(&bt->wake_index);
80 for (i = 0; i < BT_WAIT_QUEUES; i++) {
81 struct bt_wait_state *bs = &bt->bs[wake_index];
82
83 if (waitqueue_active(&bs->wait))
84 wake_up(&bs->wait);
85
86 wake_index = bt_index_inc(wake_index);
87 }
88
89 if (include_reserve) {
90 bt = &tags->breserved_tags;
91 if (waitqueue_active(&bt->bs[0].wait))
92 wake_up(&bt->bs[0].wait);
93 }
94 }
95
96 /*
97 * If a previously busy queue goes inactive, potential waiters could now
98 * be allowed to queue. Wake them up and check.
99 */
100 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
101 {
102 struct blk_mq_tags *tags = hctx->tags;
103
104 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
105 return;
106
107 atomic_dec(&tags->active_queues);
108
109 blk_mq_tag_wakeup_all(tags, false);
110 }
111
112 /*
113 * For shared tag users, we track the number of currently active users
114 * and attempt to provide a fair share of the tag depth for each of them.
115 */
116 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
117 struct blk_mq_bitmap_tags *bt)
118 {
119 unsigned int depth, users;
120
121 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
122 return true;
123 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
124 return true;
125
126 /*
127 * Don't try dividing an ant
128 */
129 if (bt->depth == 1)
130 return true;
131
132 users = atomic_read(&hctx->tags->active_queues);
133 if (!users)
134 return true;
135
136 /*
137 * Allow at least some tags
138 */
139 depth = max((bt->depth + users - 1) / users, 4U);
140 return atomic_read(&hctx->nr_active) < depth;
141 }
142
143 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag,
144 bool nowrap)
145 {
146 int tag, org_last_tag = last_tag;
147
148 while (1) {
149 tag = find_next_zero_bit(&bm->word, bm->depth, last_tag);
150 if (unlikely(tag >= bm->depth)) {
151 /*
152 * We started with an offset, and we didn't reset the
153 * offset to 0 in a failure case, so start from 0 to
154 * exhaust the map.
155 */
156 if (org_last_tag && last_tag && !nowrap) {
157 last_tag = org_last_tag = 0;
158 continue;
159 }
160 return -1;
161 }
162
163 if (!test_and_set_bit(tag, &bm->word))
164 break;
165
166 last_tag = tag + 1;
167 if (last_tag >= bm->depth - 1)
168 last_tag = 0;
169 }
170
171 return tag;
172 }
173
174 #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR)
175
176 /*
177 * Straight forward bitmap tag implementation, where each bit is a tag
178 * (cleared == free, and set == busy). The small twist is using per-cpu
179 * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
180 * contexts. This enables us to drastically limit the space searched,
181 * without dirtying an extra shared cacheline like we would if we stored
182 * the cache value inside the shared blk_mq_bitmap_tags structure. On top
183 * of that, each word of tags is in a separate cacheline. This means that
184 * multiple users will tend to stick to different cachelines, at least
185 * until the map is exhausted.
186 */
187 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
188 unsigned int *tag_cache, struct blk_mq_tags *tags)
189 {
190 unsigned int last_tag, org_last_tag;
191 int index, i, tag;
192
193 if (!hctx_may_queue(hctx, bt))
194 return -1;
195
196 last_tag = org_last_tag = *tag_cache;
197 index = TAG_TO_INDEX(bt, last_tag);
198
199 for (i = 0; i < bt->map_nr; i++) {
200 tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag),
201 BT_ALLOC_RR(tags));
202 if (tag != -1) {
203 tag += (index << bt->bits_per_word);
204 goto done;
205 }
206
207 /*
208 * Jump to next index, and reset the last tag to be the
209 * first tag of that index
210 */
211 index++;
212 last_tag = (index << bt->bits_per_word);
213
214 if (index >= bt->map_nr) {
215 index = 0;
216 last_tag = 0;
217 }
218 }
219
220 *tag_cache = 0;
221 return -1;
222
223 /*
224 * Only update the cache from the allocation path, if we ended
225 * up using the specific cached tag.
226 */
227 done:
228 if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) {
229 last_tag = tag + 1;
230 if (last_tag >= bt->depth - 1)
231 last_tag = 0;
232
233 *tag_cache = last_tag;
234 }
235
236 return tag;
237 }
238
239 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
240 struct blk_mq_hw_ctx *hctx)
241 {
242 struct bt_wait_state *bs;
243 int wait_index;
244
245 if (!hctx)
246 return &bt->bs[0];
247
248 wait_index = atomic_read(&hctx->wait_index);
249 bs = &bt->bs[wait_index];
250 bt_index_atomic_inc(&hctx->wait_index);
251 return bs;
252 }
253
254 static int bt_get(struct blk_mq_alloc_data *data,
255 struct blk_mq_bitmap_tags *bt,
256 struct blk_mq_hw_ctx *hctx,
257 unsigned int *last_tag, struct blk_mq_tags *tags)
258 {
259 struct bt_wait_state *bs;
260 DEFINE_WAIT(wait);
261 int tag;
262
263 tag = __bt_get(hctx, bt, last_tag, tags);
264 if (tag != -1)
265 return tag;
266
267 if (!(data->gfp & __GFP_WAIT))
268 return -1;
269
270 bs = bt_wait_ptr(bt, hctx);
271 do {
272 prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);
273
274 tag = __bt_get(hctx, bt, last_tag, tags);
275 if (tag != -1)
276 break;
277
278 /*
279 * We're out of tags on this hardware queue, kick any
280 * pending IO submits before going to sleep waiting for
281 * some to complete.
282 */
283 blk_mq_run_hw_queue(hctx, false);
284
285 /*
286 * Retry tag allocation after running the hardware queue,
287 * as running the queue may also have found completions.
288 */
289 tag = __bt_get(hctx, bt, last_tag, tags);
290 if (tag != -1)
291 break;
292
293 blk_mq_put_ctx(data->ctx);
294
295 io_schedule();
296
297 data->ctx = blk_mq_get_ctx(data->q);
298 data->hctx = data->q->mq_ops->map_queue(data->q,
299 data->ctx->cpu);
300 if (data->reserved) {
301 bt = &data->hctx->tags->breserved_tags;
302 } else {
303 last_tag = &data->ctx->last_tag;
304 hctx = data->hctx;
305 bt = &hctx->tags->bitmap_tags;
306 }
307 finish_wait(&bs->wait, &wait);
308 bs = bt_wait_ptr(bt, hctx);
309 } while (1);
310
311 finish_wait(&bs->wait, &wait);
312 return tag;
313 }
314
315 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
316 {
317 int tag;
318
319 tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
320 &data->ctx->last_tag, data->hctx->tags);
321 if (tag >= 0)
322 return tag + data->hctx->tags->nr_reserved_tags;
323
324 return BLK_MQ_TAG_FAIL;
325 }
326
327 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
328 {
329 int tag, zero = 0;
330
331 if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
332 WARN_ON_ONCE(1);
333 return BLK_MQ_TAG_FAIL;
334 }
335
336 tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero,
337 data->hctx->tags);
338 if (tag < 0)
339 return BLK_MQ_TAG_FAIL;
340
341 return tag;
342 }
343
344 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
345 {
346 if (!data->reserved)
347 return __blk_mq_get_tag(data);
348
349 return __blk_mq_get_reserved_tag(data);
350 }
351
352 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
353 {
354 int i, wake_index;
355
356 wake_index = atomic_read(&bt->wake_index);
357 for (i = 0; i < BT_WAIT_QUEUES; i++) {
358 struct bt_wait_state *bs = &bt->bs[wake_index];
359
360 if (waitqueue_active(&bs->wait)) {
361 int o = atomic_read(&bt->wake_index);
362 if (wake_index != o)
363 atomic_cmpxchg(&bt->wake_index, o, wake_index);
364
365 return bs;
366 }
367
368 wake_index = bt_index_inc(wake_index);
369 }
370
371 return NULL;
372 }
373
374 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
375 {
376 const int index = TAG_TO_INDEX(bt, tag);
377 struct bt_wait_state *bs;
378 int wait_cnt;
379
380 clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word);
381
382 /* Ensure that the wait list checks occur after clear_bit(). */
383 smp_mb();
384
385 bs = bt_wake_ptr(bt);
386 if (!bs)
387 return;
388
389 wait_cnt = atomic_dec_return(&bs->wait_cnt);
390 if (unlikely(wait_cnt < 0))
391 wait_cnt = atomic_inc_return(&bs->wait_cnt);
392 if (wait_cnt == 0) {
393 atomic_add(bt->wake_cnt, &bs->wait_cnt);
394 bt_index_atomic_inc(&bt->wake_index);
395 wake_up(&bs->wait);
396 }
397 }
398
399 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
400 unsigned int *last_tag)
401 {
402 struct blk_mq_tags *tags = hctx->tags;
403
404 if (tag >= tags->nr_reserved_tags) {
405 const int real_tag = tag - tags->nr_reserved_tags;
406
407 BUG_ON(real_tag >= tags->nr_tags);
408 bt_clear_tag(&tags->bitmap_tags, real_tag);
409 if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO))
410 *last_tag = real_tag;
411 } else {
412 BUG_ON(tag >= tags->nr_reserved_tags);
413 bt_clear_tag(&tags->breserved_tags, tag);
414 }
415 }
416
417 static void bt_for_each(struct blk_mq_hw_ctx *hctx,
418 struct blk_mq_bitmap_tags *bt, unsigned int off,
419 busy_iter_fn *fn, void *data, bool reserved)
420 {
421 struct request *rq;
422 int bit, i;
423
424 for (i = 0; i < bt->map_nr; i++) {
425 struct blk_align_bitmap *bm = &bt->map[i];
426
427 for (bit = find_first_bit(&bm->word, bm->depth);
428 bit < bm->depth;
429 bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
430 rq = blk_mq_tag_to_rq(hctx->tags, off + bit);
431 if (rq->q == hctx->queue)
432 fn(hctx, rq, data, reserved);
433 }
434
435 off += (1 << bt->bits_per_word);
436 }
437 }
438
439 void blk_mq_tag_busy_iter(struct blk_mq_hw_ctx *hctx, busy_iter_fn *fn,
440 void *priv)
441 {
442 struct blk_mq_tags *tags = hctx->tags;
443
444 if (tags->nr_reserved_tags)
445 bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true);
446 bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
447 false);
448 }
449 EXPORT_SYMBOL(blk_mq_tag_busy_iter);
450
451 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
452 {
453 unsigned int i, used;
454
455 for (i = 0, used = 0; i < bt->map_nr; i++) {
456 struct blk_align_bitmap *bm = &bt->map[i];
457
458 used += bitmap_weight(&bm->word, bm->depth);
459 }
460
461 return bt->depth - used;
462 }
463
464 static void bt_update_count(struct blk_mq_bitmap_tags *bt,
465 unsigned int depth)
466 {
467 unsigned int tags_per_word = 1U << bt->bits_per_word;
468 unsigned int map_depth = depth;
469
470 if (depth) {
471 int i;
472
473 for (i = 0; i < bt->map_nr; i++) {
474 bt->map[i].depth = min(map_depth, tags_per_word);
475 map_depth -= bt->map[i].depth;
476 }
477 }
478
479 bt->wake_cnt = BT_WAIT_BATCH;
480 if (bt->wake_cnt > depth / BT_WAIT_QUEUES)
481 bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES);
482
483 bt->depth = depth;
484 }
485
486 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
487 int node, bool reserved)
488 {
489 int i;
490
491 bt->bits_per_word = ilog2(BITS_PER_LONG);
492
493 /*
494 * Depth can be zero for reserved tags, that's not a failure
495 * condition.
496 */
497 if (depth) {
498 unsigned int nr, tags_per_word;
499
500 tags_per_word = (1 << bt->bits_per_word);
501
502 /*
503 * If the tag space is small, shrink the number of tags
504 * per word so we spread over a few cachelines, at least.
505 * If less than 4 tags, just forget about it, it's not
506 * going to work optimally anyway.
507 */
508 if (depth >= 4) {
509 while (tags_per_word * 4 > depth) {
510 bt->bits_per_word--;
511 tags_per_word = (1 << bt->bits_per_word);
512 }
513 }
514
515 nr = ALIGN(depth, tags_per_word) / tags_per_word;
516 bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
517 GFP_KERNEL, node);
518 if (!bt->map)
519 return -ENOMEM;
520
521 bt->map_nr = nr;
522 }
523
524 bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
525 if (!bt->bs) {
526 kfree(bt->map);
527 bt->map = NULL;
528 return -ENOMEM;
529 }
530
531 bt_update_count(bt, depth);
532
533 for (i = 0; i < BT_WAIT_QUEUES; i++) {
534 init_waitqueue_head(&bt->bs[i].wait);
535 atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt);
536 }
537
538 return 0;
539 }
540
541 static void bt_free(struct blk_mq_bitmap_tags *bt)
542 {
543 kfree(bt->map);
544 kfree(bt->bs);
545 }
546
547 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
548 int node, int alloc_policy)
549 {
550 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
551
552 tags->alloc_policy = alloc_policy;
553
554 if (bt_alloc(&tags->bitmap_tags, depth, node, false))
555 goto enomem;
556 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
557 goto enomem;
558
559 return tags;
560 enomem:
561 bt_free(&tags->bitmap_tags);
562 kfree(tags);
563 return NULL;
564 }
565
566 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
567 unsigned int reserved_tags,
568 int node, int alloc_policy)
569 {
570 struct blk_mq_tags *tags;
571
572 if (total_tags > BLK_MQ_TAG_MAX) {
573 pr_err("blk-mq: tag depth too large\n");
574 return NULL;
575 }
576
577 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
578 if (!tags)
579 return NULL;
580
581 tags->nr_tags = total_tags;
582 tags->nr_reserved_tags = reserved_tags;
583
584 return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
585 }
586
587 void blk_mq_free_tags(struct blk_mq_tags *tags)
588 {
589 bt_free(&tags->bitmap_tags);
590 bt_free(&tags->breserved_tags);
591 kfree(tags);
592 }
593
594 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
595 {
596 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
597
598 *tag = prandom_u32() % depth;
599 }
600
601 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
602 {
603 tdepth -= tags->nr_reserved_tags;
604 if (tdepth > tags->nr_tags)
605 return -EINVAL;
606
607 /*
608 * Don't need (or can't) update reserved tags here, they remain
609 * static and should never need resizing.
610 */
611 bt_update_count(&tags->bitmap_tags, tdepth);
612 blk_mq_tag_wakeup_all(tags, false);
613 return 0;
614 }
615
616 /**
617 * blk_mq_unique_tag() - return a tag that is unique queue-wide
618 * @rq: request for which to compute a unique tag
619 *
620 * The tag field in struct request is unique per hardware queue but not over
621 * all hardware queues. Hence this function that returns a tag with the
622 * hardware context index in the upper bits and the per hardware queue tag in
623 * the lower bits.
624 *
625 * Note: When called for a request that is queued on a non-multiqueue request
626 * queue, the hardware context index is set to zero.
627 */
628 u32 blk_mq_unique_tag(struct request *rq)
629 {
630 struct request_queue *q = rq->q;
631 struct blk_mq_hw_ctx *hctx;
632 int hwq = 0;
633
634 if (q->mq_ops) {
635 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
636 hwq = hctx->queue_num;
637 }
638
639 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
640 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
641 }
642 EXPORT_SYMBOL(blk_mq_unique_tag);
643
644 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
645 {
646 char *orig_page = page;
647 unsigned int free, res;
648
649 if (!tags)
650 return 0;
651
652 page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
653 "bits_per_word=%u\n",
654 tags->nr_tags, tags->nr_reserved_tags,
655 tags->bitmap_tags.bits_per_word);
656
657 free = bt_unused_tags(&tags->bitmap_tags);
658 res = bt_unused_tags(&tags->breserved_tags);
659
660 page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
661 page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
662
663 return page - orig_page;
664 }