]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 void blk_freeze_queue_start(struct request_queue *q)
87 {
88 int freeze_depth;
89
90 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
91 if (freeze_depth == 1) {
92 percpu_ref_kill(&q->q_usage_counter);
93 blk_mq_run_hw_queues(q, false);
94 }
95 }
96 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
97
98 void blk_mq_freeze_queue_wait(struct request_queue *q)
99 {
100 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
101 }
102 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
103
104 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
105 unsigned long timeout)
106 {
107 return wait_event_timeout(q->mq_freeze_wq,
108 percpu_ref_is_zero(&q->q_usage_counter),
109 timeout);
110 }
111 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
112
113 /*
114 * Guarantee no request is in use, so we can change any data structure of
115 * the queue afterward.
116 */
117 void blk_freeze_queue(struct request_queue *q)
118 {
119 /*
120 * In the !blk_mq case we are only calling this to kill the
121 * q_usage_counter, otherwise this increases the freeze depth
122 * and waits for it to return to zero. For this reason there is
123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
124 * exported to drivers as the only user for unfreeze is blk_mq.
125 */
126 blk_freeze_queue_start(q);
127 blk_mq_freeze_queue_wait(q);
128 }
129
130 void blk_mq_freeze_queue(struct request_queue *q)
131 {
132 /*
133 * ...just an alias to keep freeze and unfreeze actions balanced
134 * in the blk_mq_* namespace
135 */
136 blk_freeze_queue(q);
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
139
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142 int freeze_depth;
143
144 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
145 WARN_ON_ONCE(freeze_depth < 0);
146 if (!freeze_depth) {
147 percpu_ref_reinit(&q->q_usage_counter);
148 wake_up_all(&q->mq_freeze_wq);
149 }
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
152
153 /*
154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
155 * mpt3sas driver such that this function can be removed.
156 */
157 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
158 {
159 unsigned long flags;
160
161 spin_lock_irqsave(q->queue_lock, flags);
162 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
163 spin_unlock_irqrestore(q->queue_lock, flags);
164 }
165 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
166
167 /**
168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
169 * @q: request queue.
170 *
171 * Note: this function does not prevent that the struct request end_io()
172 * callback function is invoked. Once this function is returned, we make
173 * sure no dispatch can happen until the queue is unquiesced via
174 * blk_mq_unquiesce_queue().
175 */
176 void blk_mq_quiesce_queue(struct request_queue *q)
177 {
178 struct blk_mq_hw_ctx *hctx;
179 unsigned int i;
180 bool rcu = false;
181
182 blk_mq_quiesce_queue_nowait(q);
183
184 queue_for_each_hw_ctx(q, hctx, i) {
185 if (hctx->flags & BLK_MQ_F_BLOCKING)
186 synchronize_srcu(hctx->queue_rq_srcu);
187 else
188 rcu = true;
189 }
190 if (rcu)
191 synchronize_rcu();
192 }
193 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
194
195 /*
196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
197 * @q: request queue.
198 *
199 * This function recovers queue into the state before quiescing
200 * which is done by blk_mq_quiesce_queue.
201 */
202 void blk_mq_unquiesce_queue(struct request_queue *q)
203 {
204 unsigned long flags;
205
206 spin_lock_irqsave(q->queue_lock, flags);
207 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
208 spin_unlock_irqrestore(q->queue_lock, flags);
209
210 /* dispatch requests which are inserted during quiescing */
211 blk_mq_run_hw_queues(q, true);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
214
215 void blk_mq_wake_waiters(struct request_queue *q)
216 {
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219
220 queue_for_each_hw_ctx(q, hctx, i)
221 if (blk_mq_hw_queue_mapped(hctx))
222 blk_mq_tag_wakeup_all(hctx->tags, true);
223
224 /*
225 * If we are called because the queue has now been marked as
226 * dying, we need to ensure that processes currently waiting on
227 * the queue are notified as well.
228 */
229 wake_up_all(&q->mq_freeze_wq);
230 }
231
232 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
233 {
234 return blk_mq_has_free_tags(hctx->tags);
235 }
236 EXPORT_SYMBOL(blk_mq_can_queue);
237
238 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
239 unsigned int tag, unsigned int op)
240 {
241 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
242 struct request *rq = tags->static_rqs[tag];
243
244 rq->rq_flags = 0;
245
246 if (data->flags & BLK_MQ_REQ_INTERNAL) {
247 rq->tag = -1;
248 rq->internal_tag = tag;
249 } else {
250 if (blk_mq_tag_busy(data->hctx)) {
251 rq->rq_flags = RQF_MQ_INFLIGHT;
252 atomic_inc(&data->hctx->nr_active);
253 }
254 rq->tag = tag;
255 rq->internal_tag = -1;
256 data->hctx->tags->rqs[rq->tag] = rq;
257 }
258
259 INIT_LIST_HEAD(&rq->queuelist);
260 /* csd/requeue_work/fifo_time is initialized before use */
261 rq->q = data->q;
262 rq->mq_ctx = data->ctx;
263 rq->cmd_flags = op;
264 if (blk_queue_io_stat(data->q))
265 rq->rq_flags |= RQF_IO_STAT;
266 /* do not touch atomic flags, it needs atomic ops against the timer */
267 rq->cpu = -1;
268 INIT_HLIST_NODE(&rq->hash);
269 RB_CLEAR_NODE(&rq->rb_node);
270 rq->rq_disk = NULL;
271 rq->part = NULL;
272 rq->start_time = jiffies;
273 #ifdef CONFIG_BLK_CGROUP
274 rq->rl = NULL;
275 set_start_time_ns(rq);
276 rq->io_start_time_ns = 0;
277 #endif
278 rq->nr_phys_segments = 0;
279 #if defined(CONFIG_BLK_DEV_INTEGRITY)
280 rq->nr_integrity_segments = 0;
281 #endif
282 rq->special = NULL;
283 /* tag was already set */
284 rq->extra_len = 0;
285
286 INIT_LIST_HEAD(&rq->timeout_list);
287 rq->timeout = 0;
288
289 rq->end_io = NULL;
290 rq->end_io_data = NULL;
291 rq->next_rq = NULL;
292
293 data->ctx->rq_dispatched[op_is_sync(op)]++;
294 return rq;
295 }
296
297 static struct request *blk_mq_get_request(struct request_queue *q,
298 struct bio *bio, unsigned int op,
299 struct blk_mq_alloc_data *data)
300 {
301 struct elevator_queue *e = q->elevator;
302 struct request *rq;
303 unsigned int tag;
304
305 blk_queue_enter_live(q);
306 data->q = q;
307 if (likely(!data->ctx))
308 data->ctx = blk_mq_get_ctx(q);
309 if (likely(!data->hctx))
310 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
311 if (op & REQ_NOWAIT)
312 data->flags |= BLK_MQ_REQ_NOWAIT;
313
314 if (e) {
315 data->flags |= BLK_MQ_REQ_INTERNAL;
316
317 /*
318 * Flush requests are special and go directly to the
319 * dispatch list.
320 */
321 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
322 e->type->ops.mq.limit_depth(op, data);
323 }
324
325 tag = blk_mq_get_tag(data);
326 if (tag == BLK_MQ_TAG_FAIL) {
327 blk_queue_exit(q);
328 return NULL;
329 }
330
331 rq = blk_mq_rq_ctx_init(data, tag, op);
332 if (!op_is_flush(op)) {
333 rq->elv.icq = NULL;
334 if (e && e->type->ops.mq.prepare_request) {
335 if (e->type->icq_cache && rq_ioc(bio))
336 blk_mq_sched_assign_ioc(rq, bio);
337
338 e->type->ops.mq.prepare_request(rq, bio);
339 rq->rq_flags |= RQF_ELVPRIV;
340 }
341 }
342 data->hctx->queued++;
343 return rq;
344 }
345
346 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
347 unsigned int flags)
348 {
349 struct blk_mq_alloc_data alloc_data = { .flags = flags };
350 struct request *rq;
351 int ret;
352
353 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
354 if (ret)
355 return ERR_PTR(ret);
356
357 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
358
359 blk_mq_put_ctx(alloc_data.ctx);
360 blk_queue_exit(q);
361
362 if (!rq)
363 return ERR_PTR(-EWOULDBLOCK);
364
365 rq->__data_len = 0;
366 rq->__sector = (sector_t) -1;
367 rq->bio = rq->biotail = NULL;
368 return rq;
369 }
370 EXPORT_SYMBOL(blk_mq_alloc_request);
371
372 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
373 unsigned int op, unsigned int flags, unsigned int hctx_idx)
374 {
375 struct blk_mq_alloc_data alloc_data = { .flags = flags };
376 struct request *rq;
377 unsigned int cpu;
378 int ret;
379
380 /*
381 * If the tag allocator sleeps we could get an allocation for a
382 * different hardware context. No need to complicate the low level
383 * allocator for this for the rare use case of a command tied to
384 * a specific queue.
385 */
386 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
387 return ERR_PTR(-EINVAL);
388
389 if (hctx_idx >= q->nr_hw_queues)
390 return ERR_PTR(-EIO);
391
392 ret = blk_queue_enter(q, true);
393 if (ret)
394 return ERR_PTR(ret);
395
396 /*
397 * Check if the hardware context is actually mapped to anything.
398 * If not tell the caller that it should skip this queue.
399 */
400 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
401 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
402 blk_queue_exit(q);
403 return ERR_PTR(-EXDEV);
404 }
405 cpu = cpumask_first(alloc_data.hctx->cpumask);
406 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
407
408 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409
410 blk_queue_exit(q);
411
412 if (!rq)
413 return ERR_PTR(-EWOULDBLOCK);
414
415 return rq;
416 }
417 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
418
419 void blk_mq_free_request(struct request *rq)
420 {
421 struct request_queue *q = rq->q;
422 struct elevator_queue *e = q->elevator;
423 struct blk_mq_ctx *ctx = rq->mq_ctx;
424 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
425 const int sched_tag = rq->internal_tag;
426
427 if (rq->rq_flags & RQF_ELVPRIV) {
428 if (e && e->type->ops.mq.finish_request)
429 e->type->ops.mq.finish_request(rq);
430 if (rq->elv.icq) {
431 put_io_context(rq->elv.icq->ioc);
432 rq->elv.icq = NULL;
433 }
434 }
435
436 ctx->rq_completed[rq_is_sync(rq)]++;
437 if (rq->rq_flags & RQF_MQ_INFLIGHT)
438 atomic_dec(&hctx->nr_active);
439
440 wbt_done(q->rq_wb, &rq->issue_stat);
441
442 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
444 if (rq->tag != -1)
445 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
446 if (sched_tag != -1)
447 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
448 blk_mq_sched_restart(hctx);
449 blk_queue_exit(q);
450 }
451 EXPORT_SYMBOL_GPL(blk_mq_free_request);
452
453 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
454 {
455 blk_account_io_done(rq);
456
457 if (rq->end_io) {
458 wbt_done(rq->q->rq_wb, &rq->issue_stat);
459 rq->end_io(rq, error);
460 } else {
461 if (unlikely(blk_bidi_rq(rq)))
462 blk_mq_free_request(rq->next_rq);
463 blk_mq_free_request(rq);
464 }
465 }
466 EXPORT_SYMBOL(__blk_mq_end_request);
467
468 void blk_mq_end_request(struct request *rq, blk_status_t error)
469 {
470 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
471 BUG();
472 __blk_mq_end_request(rq, error);
473 }
474 EXPORT_SYMBOL(blk_mq_end_request);
475
476 static void __blk_mq_complete_request_remote(void *data)
477 {
478 struct request *rq = data;
479
480 rq->q->softirq_done_fn(rq);
481 }
482
483 static void __blk_mq_complete_request(struct request *rq)
484 {
485 struct blk_mq_ctx *ctx = rq->mq_ctx;
486 bool shared = false;
487 int cpu;
488
489 if (rq->internal_tag != -1)
490 blk_mq_sched_completed_request(rq);
491 if (rq->rq_flags & RQF_STATS) {
492 blk_mq_poll_stats_start(rq->q);
493 blk_stat_add(rq);
494 }
495
496 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
497 rq->q->softirq_done_fn(rq);
498 return;
499 }
500
501 cpu = get_cpu();
502 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
503 shared = cpus_share_cache(cpu, ctx->cpu);
504
505 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
506 rq->csd.func = __blk_mq_complete_request_remote;
507 rq->csd.info = rq;
508 rq->csd.flags = 0;
509 smp_call_function_single_async(ctx->cpu, &rq->csd);
510 } else {
511 rq->q->softirq_done_fn(rq);
512 }
513 put_cpu();
514 }
515
516 /**
517 * blk_mq_complete_request - end I/O on a request
518 * @rq: the request being processed
519 *
520 * Description:
521 * Ends all I/O on a request. It does not handle partial completions.
522 * The actual completion happens out-of-order, through a IPI handler.
523 **/
524 void blk_mq_complete_request(struct request *rq)
525 {
526 struct request_queue *q = rq->q;
527
528 if (unlikely(blk_should_fake_timeout(q)))
529 return;
530 if (!blk_mark_rq_complete(rq))
531 __blk_mq_complete_request(rq);
532 }
533 EXPORT_SYMBOL(blk_mq_complete_request);
534
535 int blk_mq_request_started(struct request *rq)
536 {
537 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
538 }
539 EXPORT_SYMBOL_GPL(blk_mq_request_started);
540
541 void blk_mq_start_request(struct request *rq)
542 {
543 struct request_queue *q = rq->q;
544
545 blk_mq_sched_started_request(rq);
546
547 trace_block_rq_issue(q, rq);
548
549 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
550 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
551 rq->rq_flags |= RQF_STATS;
552 wbt_issue(q->rq_wb, &rq->issue_stat);
553 }
554
555 blk_add_timer(rq);
556
557 /*
558 * Ensure that ->deadline is visible before set the started
559 * flag and clear the completed flag.
560 */
561 smp_mb__before_atomic();
562
563 /*
564 * Mark us as started and clear complete. Complete might have been
565 * set if requeue raced with timeout, which then marked it as
566 * complete. So be sure to clear complete again when we start
567 * the request, otherwise we'll ignore the completion event.
568 */
569 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
570 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
571 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
572 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
573
574 if (q->dma_drain_size && blk_rq_bytes(rq)) {
575 /*
576 * Make sure space for the drain appears. We know we can do
577 * this because max_hw_segments has been adjusted to be one
578 * fewer than the device can handle.
579 */
580 rq->nr_phys_segments++;
581 }
582 }
583 EXPORT_SYMBOL(blk_mq_start_request);
584
585 /*
586 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
587 * flag isn't set yet, so there may be race with timeout handler,
588 * but given rq->deadline is just set in .queue_rq() under
589 * this situation, the race won't be possible in reality because
590 * rq->timeout should be set as big enough to cover the window
591 * between blk_mq_start_request() called from .queue_rq() and
592 * clearing REQ_ATOM_STARTED here.
593 */
594 static void __blk_mq_requeue_request(struct request *rq)
595 {
596 struct request_queue *q = rq->q;
597
598 trace_block_rq_requeue(q, rq);
599 wbt_requeue(q->rq_wb, &rq->issue_stat);
600 blk_mq_sched_requeue_request(rq);
601
602 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
603 if (q->dma_drain_size && blk_rq_bytes(rq))
604 rq->nr_phys_segments--;
605 }
606 }
607
608 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
609 {
610 __blk_mq_requeue_request(rq);
611
612 BUG_ON(blk_queued_rq(rq));
613 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
614 }
615 EXPORT_SYMBOL(blk_mq_requeue_request);
616
617 static void blk_mq_requeue_work(struct work_struct *work)
618 {
619 struct request_queue *q =
620 container_of(work, struct request_queue, requeue_work.work);
621 LIST_HEAD(rq_list);
622 struct request *rq, *next;
623 unsigned long flags;
624
625 spin_lock_irqsave(&q->requeue_lock, flags);
626 list_splice_init(&q->requeue_list, &rq_list);
627 spin_unlock_irqrestore(&q->requeue_lock, flags);
628
629 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
630 if (!(rq->rq_flags & RQF_SOFTBARRIER))
631 continue;
632
633 rq->rq_flags &= ~RQF_SOFTBARRIER;
634 list_del_init(&rq->queuelist);
635 blk_mq_sched_insert_request(rq, true, false, false, true);
636 }
637
638 while (!list_empty(&rq_list)) {
639 rq = list_entry(rq_list.next, struct request, queuelist);
640 list_del_init(&rq->queuelist);
641 blk_mq_sched_insert_request(rq, false, false, false, true);
642 }
643
644 blk_mq_run_hw_queues(q, false);
645 }
646
647 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
648 bool kick_requeue_list)
649 {
650 struct request_queue *q = rq->q;
651 unsigned long flags;
652
653 /*
654 * We abuse this flag that is otherwise used by the I/O scheduler to
655 * request head insertation from the workqueue.
656 */
657 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
658
659 spin_lock_irqsave(&q->requeue_lock, flags);
660 if (at_head) {
661 rq->rq_flags |= RQF_SOFTBARRIER;
662 list_add(&rq->queuelist, &q->requeue_list);
663 } else {
664 list_add_tail(&rq->queuelist, &q->requeue_list);
665 }
666 spin_unlock_irqrestore(&q->requeue_lock, flags);
667
668 if (kick_requeue_list)
669 blk_mq_kick_requeue_list(q);
670 }
671 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
672
673 void blk_mq_kick_requeue_list(struct request_queue *q)
674 {
675 kblockd_schedule_delayed_work(&q->requeue_work, 0);
676 }
677 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
678
679 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
680 unsigned long msecs)
681 {
682 kblockd_schedule_delayed_work(&q->requeue_work,
683 msecs_to_jiffies(msecs));
684 }
685 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
686
687 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
688 {
689 if (tag < tags->nr_tags) {
690 prefetch(tags->rqs[tag]);
691 return tags->rqs[tag];
692 }
693
694 return NULL;
695 }
696 EXPORT_SYMBOL(blk_mq_tag_to_rq);
697
698 struct blk_mq_timeout_data {
699 unsigned long next;
700 unsigned int next_set;
701 };
702
703 void blk_mq_rq_timed_out(struct request *req, bool reserved)
704 {
705 const struct blk_mq_ops *ops = req->q->mq_ops;
706 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
707
708 /*
709 * We know that complete is set at this point. If STARTED isn't set
710 * anymore, then the request isn't active and the "timeout" should
711 * just be ignored. This can happen due to the bitflag ordering.
712 * Timeout first checks if STARTED is set, and if it is, assumes
713 * the request is active. But if we race with completion, then
714 * both flags will get cleared. So check here again, and ignore
715 * a timeout event with a request that isn't active.
716 */
717 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
718 return;
719
720 if (ops->timeout)
721 ret = ops->timeout(req, reserved);
722
723 switch (ret) {
724 case BLK_EH_HANDLED:
725 __blk_mq_complete_request(req);
726 break;
727 case BLK_EH_RESET_TIMER:
728 blk_add_timer(req);
729 blk_clear_rq_complete(req);
730 break;
731 case BLK_EH_NOT_HANDLED:
732 break;
733 default:
734 printk(KERN_ERR "block: bad eh return: %d\n", ret);
735 break;
736 }
737 }
738
739 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
740 struct request *rq, void *priv, bool reserved)
741 {
742 struct blk_mq_timeout_data *data = priv;
743
744 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
745 return;
746
747 /*
748 * The rq being checked may have been freed and reallocated
749 * out already here, we avoid this race by checking rq->deadline
750 * and REQ_ATOM_COMPLETE flag together:
751 *
752 * - if rq->deadline is observed as new value because of
753 * reusing, the rq won't be timed out because of timing.
754 * - if rq->deadline is observed as previous value,
755 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
756 * because we put a barrier between setting rq->deadline
757 * and clearing the flag in blk_mq_start_request(), so
758 * this rq won't be timed out too.
759 */
760 if (time_after_eq(jiffies, rq->deadline)) {
761 if (!blk_mark_rq_complete(rq))
762 blk_mq_rq_timed_out(rq, reserved);
763 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
764 data->next = rq->deadline;
765 data->next_set = 1;
766 }
767 }
768
769 static void blk_mq_timeout_work(struct work_struct *work)
770 {
771 struct request_queue *q =
772 container_of(work, struct request_queue, timeout_work);
773 struct blk_mq_timeout_data data = {
774 .next = 0,
775 .next_set = 0,
776 };
777 int i;
778
779 /* A deadlock might occur if a request is stuck requiring a
780 * timeout at the same time a queue freeze is waiting
781 * completion, since the timeout code would not be able to
782 * acquire the queue reference here.
783 *
784 * That's why we don't use blk_queue_enter here; instead, we use
785 * percpu_ref_tryget directly, because we need to be able to
786 * obtain a reference even in the short window between the queue
787 * starting to freeze, by dropping the first reference in
788 * blk_freeze_queue_start, and the moment the last request is
789 * consumed, marked by the instant q_usage_counter reaches
790 * zero.
791 */
792 if (!percpu_ref_tryget(&q->q_usage_counter))
793 return;
794
795 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
796
797 if (data.next_set) {
798 data.next = blk_rq_timeout(round_jiffies_up(data.next));
799 mod_timer(&q->timeout, data.next);
800 } else {
801 struct blk_mq_hw_ctx *hctx;
802
803 queue_for_each_hw_ctx(q, hctx, i) {
804 /* the hctx may be unmapped, so check it here */
805 if (blk_mq_hw_queue_mapped(hctx))
806 blk_mq_tag_idle(hctx);
807 }
808 }
809 blk_queue_exit(q);
810 }
811
812 struct flush_busy_ctx_data {
813 struct blk_mq_hw_ctx *hctx;
814 struct list_head *list;
815 };
816
817 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
818 {
819 struct flush_busy_ctx_data *flush_data = data;
820 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
821 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
822
823 sbitmap_clear_bit(sb, bitnr);
824 spin_lock(&ctx->lock);
825 list_splice_tail_init(&ctx->rq_list, flush_data->list);
826 spin_unlock(&ctx->lock);
827 return true;
828 }
829
830 /*
831 * Process software queues that have been marked busy, splicing them
832 * to the for-dispatch
833 */
834 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
835 {
836 struct flush_busy_ctx_data data = {
837 .hctx = hctx,
838 .list = list,
839 };
840
841 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
842 }
843 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
844
845 static inline unsigned int queued_to_index(unsigned int queued)
846 {
847 if (!queued)
848 return 0;
849
850 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
851 }
852
853 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
854 bool wait)
855 {
856 struct blk_mq_alloc_data data = {
857 .q = rq->q,
858 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
859 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
860 };
861
862 might_sleep_if(wait);
863
864 if (rq->tag != -1)
865 goto done;
866
867 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
868 data.flags |= BLK_MQ_REQ_RESERVED;
869
870 rq->tag = blk_mq_get_tag(&data);
871 if (rq->tag >= 0) {
872 if (blk_mq_tag_busy(data.hctx)) {
873 rq->rq_flags |= RQF_MQ_INFLIGHT;
874 atomic_inc(&data.hctx->nr_active);
875 }
876 data.hctx->tags->rqs[rq->tag] = rq;
877 }
878
879 done:
880 if (hctx)
881 *hctx = data.hctx;
882 return rq->tag != -1;
883 }
884
885 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
886 struct request *rq)
887 {
888 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
889 rq->tag = -1;
890
891 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
892 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
893 atomic_dec(&hctx->nr_active);
894 }
895 }
896
897 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
898 struct request *rq)
899 {
900 if (rq->tag == -1 || rq->internal_tag == -1)
901 return;
902
903 __blk_mq_put_driver_tag(hctx, rq);
904 }
905
906 static void blk_mq_put_driver_tag(struct request *rq)
907 {
908 struct blk_mq_hw_ctx *hctx;
909
910 if (rq->tag == -1 || rq->internal_tag == -1)
911 return;
912
913 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
914 __blk_mq_put_driver_tag(hctx, rq);
915 }
916
917 /*
918 * If we fail getting a driver tag because all the driver tags are already
919 * assigned and on the dispatch list, BUT the first entry does not have a
920 * tag, then we could deadlock. For that case, move entries with assigned
921 * driver tags to the front, leaving the set of tagged requests in the
922 * same order, and the untagged set in the same order.
923 */
924 static bool reorder_tags_to_front(struct list_head *list)
925 {
926 struct request *rq, *tmp, *first = NULL;
927
928 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
929 if (rq == first)
930 break;
931 if (rq->tag != -1) {
932 list_move(&rq->queuelist, list);
933 if (!first)
934 first = rq;
935 }
936 }
937
938 return first != NULL;
939 }
940
941 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
942 void *key)
943 {
944 struct blk_mq_hw_ctx *hctx;
945
946 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
947
948 list_del(&wait->entry);
949 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
950 blk_mq_run_hw_queue(hctx, true);
951 return 1;
952 }
953
954 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
955 {
956 struct sbq_wait_state *ws;
957
958 /*
959 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
960 * The thread which wins the race to grab this bit adds the hardware
961 * queue to the wait queue.
962 */
963 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
964 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
965 return false;
966
967 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
968 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
969
970 /*
971 * As soon as this returns, it's no longer safe to fiddle with
972 * hctx->dispatch_wait, since a completion can wake up the wait queue
973 * and unlock the bit.
974 */
975 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
976 return true;
977 }
978
979 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
980 {
981 struct blk_mq_hw_ctx *hctx;
982 struct request *rq;
983 int errors, queued;
984
985 if (list_empty(list))
986 return false;
987
988 /*
989 * Now process all the entries, sending them to the driver.
990 */
991 errors = queued = 0;
992 do {
993 struct blk_mq_queue_data bd;
994 blk_status_t ret;
995
996 rq = list_first_entry(list, struct request, queuelist);
997 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
998 if (!queued && reorder_tags_to_front(list))
999 continue;
1000
1001 /*
1002 * The initial allocation attempt failed, so we need to
1003 * rerun the hardware queue when a tag is freed.
1004 */
1005 if (!blk_mq_dispatch_wait_add(hctx))
1006 break;
1007
1008 /*
1009 * It's possible that a tag was freed in the window
1010 * between the allocation failure and adding the
1011 * hardware queue to the wait queue.
1012 */
1013 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1014 break;
1015 }
1016
1017 list_del_init(&rq->queuelist);
1018
1019 bd.rq = rq;
1020
1021 /*
1022 * Flag last if we have no more requests, or if we have more
1023 * but can't assign a driver tag to it.
1024 */
1025 if (list_empty(list))
1026 bd.last = true;
1027 else {
1028 struct request *nxt;
1029
1030 nxt = list_first_entry(list, struct request, queuelist);
1031 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1032 }
1033
1034 ret = q->mq_ops->queue_rq(hctx, &bd);
1035 if (ret == BLK_STS_RESOURCE) {
1036 blk_mq_put_driver_tag_hctx(hctx, rq);
1037 list_add(&rq->queuelist, list);
1038 __blk_mq_requeue_request(rq);
1039 break;
1040 }
1041
1042 if (unlikely(ret != BLK_STS_OK)) {
1043 errors++;
1044 blk_mq_end_request(rq, BLK_STS_IOERR);
1045 continue;
1046 }
1047
1048 queued++;
1049 } while (!list_empty(list));
1050
1051 hctx->dispatched[queued_to_index(queued)]++;
1052
1053 /*
1054 * Any items that need requeuing? Stuff them into hctx->dispatch,
1055 * that is where we will continue on next queue run.
1056 */
1057 if (!list_empty(list)) {
1058 /*
1059 * If an I/O scheduler has been configured and we got a driver
1060 * tag for the next request already, free it again.
1061 */
1062 rq = list_first_entry(list, struct request, queuelist);
1063 blk_mq_put_driver_tag(rq);
1064
1065 spin_lock(&hctx->lock);
1066 list_splice_init(list, &hctx->dispatch);
1067 spin_unlock(&hctx->lock);
1068
1069 /*
1070 * If SCHED_RESTART was set by the caller of this function and
1071 * it is no longer set that means that it was cleared by another
1072 * thread and hence that a queue rerun is needed.
1073 *
1074 * If TAG_WAITING is set that means that an I/O scheduler has
1075 * been configured and another thread is waiting for a driver
1076 * tag. To guarantee fairness, do not rerun this hardware queue
1077 * but let the other thread grab the driver tag.
1078 *
1079 * If no I/O scheduler has been configured it is possible that
1080 * the hardware queue got stopped and restarted before requests
1081 * were pushed back onto the dispatch list. Rerun the queue to
1082 * avoid starvation. Notes:
1083 * - blk_mq_run_hw_queue() checks whether or not a queue has
1084 * been stopped before rerunning a queue.
1085 * - Some but not all block drivers stop a queue before
1086 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1087 * and dm-rq.
1088 */
1089 if (!blk_mq_sched_needs_restart(hctx) &&
1090 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1091 blk_mq_run_hw_queue(hctx, true);
1092 }
1093
1094 return (queued + errors) != 0;
1095 }
1096
1097 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1098 {
1099 int srcu_idx;
1100
1101 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1102 cpu_online(hctx->next_cpu));
1103
1104 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1105 rcu_read_lock();
1106 blk_mq_sched_dispatch_requests(hctx);
1107 rcu_read_unlock();
1108 } else {
1109 might_sleep();
1110
1111 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1112 blk_mq_sched_dispatch_requests(hctx);
1113 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1114 }
1115 }
1116
1117 /*
1118 * It'd be great if the workqueue API had a way to pass
1119 * in a mask and had some smarts for more clever placement.
1120 * For now we just round-robin here, switching for every
1121 * BLK_MQ_CPU_WORK_BATCH queued items.
1122 */
1123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1124 {
1125 if (hctx->queue->nr_hw_queues == 1)
1126 return WORK_CPU_UNBOUND;
1127
1128 if (--hctx->next_cpu_batch <= 0) {
1129 int next_cpu;
1130
1131 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1132 if (next_cpu >= nr_cpu_ids)
1133 next_cpu = cpumask_first(hctx->cpumask);
1134
1135 hctx->next_cpu = next_cpu;
1136 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1137 }
1138
1139 return hctx->next_cpu;
1140 }
1141
1142 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1143 unsigned long msecs)
1144 {
1145 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1146 return;
1147
1148 if (unlikely(blk_mq_hctx_stopped(hctx)))
1149 return;
1150
1151 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1152 int cpu = get_cpu();
1153 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1154 __blk_mq_run_hw_queue(hctx);
1155 put_cpu();
1156 return;
1157 }
1158
1159 put_cpu();
1160 }
1161
1162 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1163 &hctx->run_work,
1164 msecs_to_jiffies(msecs));
1165 }
1166
1167 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1168 {
1169 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1170 }
1171 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1172
1173 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1174 {
1175 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1176 }
1177 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1178
1179 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1180 {
1181 struct blk_mq_hw_ctx *hctx;
1182 int i;
1183
1184 queue_for_each_hw_ctx(q, hctx, i) {
1185 if (!blk_mq_hctx_has_pending(hctx) ||
1186 blk_mq_hctx_stopped(hctx))
1187 continue;
1188
1189 blk_mq_run_hw_queue(hctx, async);
1190 }
1191 }
1192 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1193
1194 /**
1195 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1196 * @q: request queue.
1197 *
1198 * The caller is responsible for serializing this function against
1199 * blk_mq_{start,stop}_hw_queue().
1200 */
1201 bool blk_mq_queue_stopped(struct request_queue *q)
1202 {
1203 struct blk_mq_hw_ctx *hctx;
1204 int i;
1205
1206 queue_for_each_hw_ctx(q, hctx, i)
1207 if (blk_mq_hctx_stopped(hctx))
1208 return true;
1209
1210 return false;
1211 }
1212 EXPORT_SYMBOL(blk_mq_queue_stopped);
1213
1214 /*
1215 * This function is often used for pausing .queue_rq() by driver when
1216 * there isn't enough resource or some conditions aren't satisfied, and
1217 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1218 *
1219 * We do not guarantee that dispatch can be drained or blocked
1220 * after blk_mq_stop_hw_queue() returns. Please use
1221 * blk_mq_quiesce_queue() for that requirement.
1222 */
1223 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1224 {
1225 cancel_delayed_work(&hctx->run_work);
1226
1227 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1228 }
1229 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1230
1231 /*
1232 * This function is often used for pausing .queue_rq() by driver when
1233 * there isn't enough resource or some conditions aren't satisfied, and
1234 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1235 *
1236 * We do not guarantee that dispatch can be drained or blocked
1237 * after blk_mq_stop_hw_queues() returns. Please use
1238 * blk_mq_quiesce_queue() for that requirement.
1239 */
1240 void blk_mq_stop_hw_queues(struct request_queue *q)
1241 {
1242 struct blk_mq_hw_ctx *hctx;
1243 int i;
1244
1245 queue_for_each_hw_ctx(q, hctx, i)
1246 blk_mq_stop_hw_queue(hctx);
1247 }
1248 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1249
1250 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1251 {
1252 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1253
1254 blk_mq_run_hw_queue(hctx, false);
1255 }
1256 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1257
1258 void blk_mq_start_hw_queues(struct request_queue *q)
1259 {
1260 struct blk_mq_hw_ctx *hctx;
1261 int i;
1262
1263 queue_for_each_hw_ctx(q, hctx, i)
1264 blk_mq_start_hw_queue(hctx);
1265 }
1266 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1267
1268 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1269 {
1270 if (!blk_mq_hctx_stopped(hctx))
1271 return;
1272
1273 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1274 blk_mq_run_hw_queue(hctx, async);
1275 }
1276 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1277
1278 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1279 {
1280 struct blk_mq_hw_ctx *hctx;
1281 int i;
1282
1283 queue_for_each_hw_ctx(q, hctx, i)
1284 blk_mq_start_stopped_hw_queue(hctx, async);
1285 }
1286 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1287
1288 static void blk_mq_run_work_fn(struct work_struct *work)
1289 {
1290 struct blk_mq_hw_ctx *hctx;
1291
1292 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1293
1294 /*
1295 * If we are stopped, don't run the queue. The exception is if
1296 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1297 * the STOPPED bit and run it.
1298 */
1299 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1300 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1301 return;
1302
1303 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1304 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1305 }
1306
1307 __blk_mq_run_hw_queue(hctx);
1308 }
1309
1310
1311 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1312 {
1313 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1314 return;
1315
1316 /*
1317 * Stop the hw queue, then modify currently delayed work.
1318 * This should prevent us from running the queue prematurely.
1319 * Mark the queue as auto-clearing STOPPED when it runs.
1320 */
1321 blk_mq_stop_hw_queue(hctx);
1322 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1323 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1324 &hctx->run_work,
1325 msecs_to_jiffies(msecs));
1326 }
1327 EXPORT_SYMBOL(blk_mq_delay_queue);
1328
1329 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1330 struct request *rq,
1331 bool at_head)
1332 {
1333 struct blk_mq_ctx *ctx = rq->mq_ctx;
1334
1335 lockdep_assert_held(&ctx->lock);
1336
1337 trace_block_rq_insert(hctx->queue, rq);
1338
1339 if (at_head)
1340 list_add(&rq->queuelist, &ctx->rq_list);
1341 else
1342 list_add_tail(&rq->queuelist, &ctx->rq_list);
1343 }
1344
1345 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1346 bool at_head)
1347 {
1348 struct blk_mq_ctx *ctx = rq->mq_ctx;
1349
1350 lockdep_assert_held(&ctx->lock);
1351
1352 __blk_mq_insert_req_list(hctx, rq, at_head);
1353 blk_mq_hctx_mark_pending(hctx, ctx);
1354 }
1355
1356 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1357 struct list_head *list)
1358
1359 {
1360 /*
1361 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1362 * offline now
1363 */
1364 spin_lock(&ctx->lock);
1365 while (!list_empty(list)) {
1366 struct request *rq;
1367
1368 rq = list_first_entry(list, struct request, queuelist);
1369 BUG_ON(rq->mq_ctx != ctx);
1370 list_del_init(&rq->queuelist);
1371 __blk_mq_insert_req_list(hctx, rq, false);
1372 }
1373 blk_mq_hctx_mark_pending(hctx, ctx);
1374 spin_unlock(&ctx->lock);
1375 }
1376
1377 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1378 {
1379 struct request *rqa = container_of(a, struct request, queuelist);
1380 struct request *rqb = container_of(b, struct request, queuelist);
1381
1382 return !(rqa->mq_ctx < rqb->mq_ctx ||
1383 (rqa->mq_ctx == rqb->mq_ctx &&
1384 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1385 }
1386
1387 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1388 {
1389 struct blk_mq_ctx *this_ctx;
1390 struct request_queue *this_q;
1391 struct request *rq;
1392 LIST_HEAD(list);
1393 LIST_HEAD(ctx_list);
1394 unsigned int depth;
1395
1396 list_splice_init(&plug->mq_list, &list);
1397
1398 list_sort(NULL, &list, plug_ctx_cmp);
1399
1400 this_q = NULL;
1401 this_ctx = NULL;
1402 depth = 0;
1403
1404 while (!list_empty(&list)) {
1405 rq = list_entry_rq(list.next);
1406 list_del_init(&rq->queuelist);
1407 BUG_ON(!rq->q);
1408 if (rq->mq_ctx != this_ctx) {
1409 if (this_ctx) {
1410 trace_block_unplug(this_q, depth, from_schedule);
1411 blk_mq_sched_insert_requests(this_q, this_ctx,
1412 &ctx_list,
1413 from_schedule);
1414 }
1415
1416 this_ctx = rq->mq_ctx;
1417 this_q = rq->q;
1418 depth = 0;
1419 }
1420
1421 depth++;
1422 list_add_tail(&rq->queuelist, &ctx_list);
1423 }
1424
1425 /*
1426 * If 'this_ctx' is set, we know we have entries to complete
1427 * on 'ctx_list'. Do those.
1428 */
1429 if (this_ctx) {
1430 trace_block_unplug(this_q, depth, from_schedule);
1431 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1432 from_schedule);
1433 }
1434 }
1435
1436 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1437 {
1438 blk_init_request_from_bio(rq, bio);
1439
1440 blk_account_io_start(rq, true);
1441 }
1442
1443 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1444 {
1445 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1446 !blk_queue_nomerges(hctx->queue);
1447 }
1448
1449 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1450 struct blk_mq_ctx *ctx,
1451 struct request *rq)
1452 {
1453 spin_lock(&ctx->lock);
1454 __blk_mq_insert_request(hctx, rq, false);
1455 spin_unlock(&ctx->lock);
1456 }
1457
1458 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1459 {
1460 if (rq->tag != -1)
1461 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1462
1463 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1464 }
1465
1466 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1467 struct request *rq,
1468 blk_qc_t *cookie, bool may_sleep)
1469 {
1470 struct request_queue *q = rq->q;
1471 struct blk_mq_queue_data bd = {
1472 .rq = rq,
1473 .last = true,
1474 };
1475 blk_qc_t new_cookie;
1476 blk_status_t ret;
1477 bool run_queue = true;
1478
1479 /* RCU or SRCU read lock is needed before checking quiesced flag */
1480 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1481 run_queue = false;
1482 goto insert;
1483 }
1484
1485 if (q->elevator)
1486 goto insert;
1487
1488 if (!blk_mq_get_driver_tag(rq, NULL, false))
1489 goto insert;
1490
1491 new_cookie = request_to_qc_t(hctx, rq);
1492
1493 /*
1494 * For OK queue, we are done. For error, kill it. Any other
1495 * error (busy), just add it to our list as we previously
1496 * would have done
1497 */
1498 ret = q->mq_ops->queue_rq(hctx, &bd);
1499 switch (ret) {
1500 case BLK_STS_OK:
1501 *cookie = new_cookie;
1502 return;
1503 case BLK_STS_RESOURCE:
1504 __blk_mq_requeue_request(rq);
1505 goto insert;
1506 default:
1507 *cookie = BLK_QC_T_NONE;
1508 blk_mq_end_request(rq, ret);
1509 return;
1510 }
1511
1512 insert:
1513 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1514 }
1515
1516 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1517 struct request *rq, blk_qc_t *cookie)
1518 {
1519 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1520 rcu_read_lock();
1521 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1522 rcu_read_unlock();
1523 } else {
1524 unsigned int srcu_idx;
1525
1526 might_sleep();
1527
1528 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1529 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1530 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1531 }
1532 }
1533
1534 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1535 {
1536 const int is_sync = op_is_sync(bio->bi_opf);
1537 const int is_flush_fua = op_is_flush(bio->bi_opf);
1538 struct blk_mq_alloc_data data = { .flags = 0 };
1539 struct request *rq;
1540 unsigned int request_count = 0;
1541 struct blk_plug *plug;
1542 struct request *same_queue_rq = NULL;
1543 blk_qc_t cookie;
1544 unsigned int wb_acct;
1545
1546 blk_queue_bounce(q, &bio);
1547
1548 blk_queue_split(q, &bio);
1549
1550 if (!bio_integrity_prep(bio))
1551 return BLK_QC_T_NONE;
1552
1553 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1554 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1555 return BLK_QC_T_NONE;
1556
1557 if (blk_mq_sched_bio_merge(q, bio))
1558 return BLK_QC_T_NONE;
1559
1560 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1561
1562 trace_block_getrq(q, bio, bio->bi_opf);
1563
1564 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1565 if (unlikely(!rq)) {
1566 __wbt_done(q->rq_wb, wb_acct);
1567 if (bio->bi_opf & REQ_NOWAIT)
1568 bio_wouldblock_error(bio);
1569 return BLK_QC_T_NONE;
1570 }
1571
1572 wbt_track(&rq->issue_stat, wb_acct);
1573
1574 cookie = request_to_qc_t(data.hctx, rq);
1575
1576 plug = current->plug;
1577 if (unlikely(is_flush_fua)) {
1578 blk_mq_put_ctx(data.ctx);
1579 blk_mq_bio_to_request(rq, bio);
1580 if (q->elevator) {
1581 blk_mq_sched_insert_request(rq, false, true, true,
1582 true);
1583 } else {
1584 blk_insert_flush(rq);
1585 blk_mq_run_hw_queue(data.hctx, true);
1586 }
1587 } else if (plug && q->nr_hw_queues == 1) {
1588 struct request *last = NULL;
1589
1590 blk_mq_put_ctx(data.ctx);
1591 blk_mq_bio_to_request(rq, bio);
1592
1593 /*
1594 * @request_count may become stale because of schedule
1595 * out, so check the list again.
1596 */
1597 if (list_empty(&plug->mq_list))
1598 request_count = 0;
1599 else if (blk_queue_nomerges(q))
1600 request_count = blk_plug_queued_count(q);
1601
1602 if (!request_count)
1603 trace_block_plug(q);
1604 else
1605 last = list_entry_rq(plug->mq_list.prev);
1606
1607 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1608 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1609 blk_flush_plug_list(plug, false);
1610 trace_block_plug(q);
1611 }
1612
1613 list_add_tail(&rq->queuelist, &plug->mq_list);
1614 } else if (plug && !blk_queue_nomerges(q)) {
1615 blk_mq_bio_to_request(rq, bio);
1616
1617 /*
1618 * We do limited plugging. If the bio can be merged, do that.
1619 * Otherwise the existing request in the plug list will be
1620 * issued. So the plug list will have one request at most
1621 * The plug list might get flushed before this. If that happens,
1622 * the plug list is empty, and same_queue_rq is invalid.
1623 */
1624 if (list_empty(&plug->mq_list))
1625 same_queue_rq = NULL;
1626 if (same_queue_rq)
1627 list_del_init(&same_queue_rq->queuelist);
1628 list_add_tail(&rq->queuelist, &plug->mq_list);
1629
1630 blk_mq_put_ctx(data.ctx);
1631
1632 if (same_queue_rq) {
1633 data.hctx = blk_mq_map_queue(q,
1634 same_queue_rq->mq_ctx->cpu);
1635 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1636 &cookie);
1637 }
1638 } else if (q->nr_hw_queues > 1 && is_sync) {
1639 blk_mq_put_ctx(data.ctx);
1640 blk_mq_bio_to_request(rq, bio);
1641 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1642 } else if (q->elevator) {
1643 blk_mq_put_ctx(data.ctx);
1644 blk_mq_bio_to_request(rq, bio);
1645 blk_mq_sched_insert_request(rq, false, true, true, true);
1646 } else {
1647 blk_mq_put_ctx(data.ctx);
1648 blk_mq_bio_to_request(rq, bio);
1649 blk_mq_queue_io(data.hctx, data.ctx, rq);
1650 blk_mq_run_hw_queue(data.hctx, true);
1651 }
1652
1653 return cookie;
1654 }
1655
1656 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1657 unsigned int hctx_idx)
1658 {
1659 struct page *page;
1660
1661 if (tags->rqs && set->ops->exit_request) {
1662 int i;
1663
1664 for (i = 0; i < tags->nr_tags; i++) {
1665 struct request *rq = tags->static_rqs[i];
1666
1667 if (!rq)
1668 continue;
1669 set->ops->exit_request(set, rq, hctx_idx);
1670 tags->static_rqs[i] = NULL;
1671 }
1672 }
1673
1674 while (!list_empty(&tags->page_list)) {
1675 page = list_first_entry(&tags->page_list, struct page, lru);
1676 list_del_init(&page->lru);
1677 /*
1678 * Remove kmemleak object previously allocated in
1679 * blk_mq_init_rq_map().
1680 */
1681 kmemleak_free(page_address(page));
1682 __free_pages(page, page->private);
1683 }
1684 }
1685
1686 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1687 {
1688 kfree(tags->rqs);
1689 tags->rqs = NULL;
1690 kfree(tags->static_rqs);
1691 tags->static_rqs = NULL;
1692
1693 blk_mq_free_tags(tags);
1694 }
1695
1696 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1697 unsigned int hctx_idx,
1698 unsigned int nr_tags,
1699 unsigned int reserved_tags)
1700 {
1701 struct blk_mq_tags *tags;
1702 int node;
1703
1704 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1705 if (node == NUMA_NO_NODE)
1706 node = set->numa_node;
1707
1708 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1709 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1710 if (!tags)
1711 return NULL;
1712
1713 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1714 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1715 node);
1716 if (!tags->rqs) {
1717 blk_mq_free_tags(tags);
1718 return NULL;
1719 }
1720
1721 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1722 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1723 node);
1724 if (!tags->static_rqs) {
1725 kfree(tags->rqs);
1726 blk_mq_free_tags(tags);
1727 return NULL;
1728 }
1729
1730 return tags;
1731 }
1732
1733 static size_t order_to_size(unsigned int order)
1734 {
1735 return (size_t)PAGE_SIZE << order;
1736 }
1737
1738 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1739 unsigned int hctx_idx, unsigned int depth)
1740 {
1741 unsigned int i, j, entries_per_page, max_order = 4;
1742 size_t rq_size, left;
1743 int node;
1744
1745 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1746 if (node == NUMA_NO_NODE)
1747 node = set->numa_node;
1748
1749 INIT_LIST_HEAD(&tags->page_list);
1750
1751 /*
1752 * rq_size is the size of the request plus driver payload, rounded
1753 * to the cacheline size
1754 */
1755 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1756 cache_line_size());
1757 left = rq_size * depth;
1758
1759 for (i = 0; i < depth; ) {
1760 int this_order = max_order;
1761 struct page *page;
1762 int to_do;
1763 void *p;
1764
1765 while (this_order && left < order_to_size(this_order - 1))
1766 this_order--;
1767
1768 do {
1769 page = alloc_pages_node(node,
1770 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1771 this_order);
1772 if (page)
1773 break;
1774 if (!this_order--)
1775 break;
1776 if (order_to_size(this_order) < rq_size)
1777 break;
1778 } while (1);
1779
1780 if (!page)
1781 goto fail;
1782
1783 page->private = this_order;
1784 list_add_tail(&page->lru, &tags->page_list);
1785
1786 p = page_address(page);
1787 /*
1788 * Allow kmemleak to scan these pages as they contain pointers
1789 * to additional allocations like via ops->init_request().
1790 */
1791 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1792 entries_per_page = order_to_size(this_order) / rq_size;
1793 to_do = min(entries_per_page, depth - i);
1794 left -= to_do * rq_size;
1795 for (j = 0; j < to_do; j++) {
1796 struct request *rq = p;
1797
1798 tags->static_rqs[i] = rq;
1799 if (set->ops->init_request) {
1800 if (set->ops->init_request(set, rq, hctx_idx,
1801 node)) {
1802 tags->static_rqs[i] = NULL;
1803 goto fail;
1804 }
1805 }
1806
1807 p += rq_size;
1808 i++;
1809 }
1810 }
1811 return 0;
1812
1813 fail:
1814 blk_mq_free_rqs(set, tags, hctx_idx);
1815 return -ENOMEM;
1816 }
1817
1818 /*
1819 * 'cpu' is going away. splice any existing rq_list entries from this
1820 * software queue to the hw queue dispatch list, and ensure that it
1821 * gets run.
1822 */
1823 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1824 {
1825 struct blk_mq_hw_ctx *hctx;
1826 struct blk_mq_ctx *ctx;
1827 LIST_HEAD(tmp);
1828
1829 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1830 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1831
1832 spin_lock(&ctx->lock);
1833 if (!list_empty(&ctx->rq_list)) {
1834 list_splice_init(&ctx->rq_list, &tmp);
1835 blk_mq_hctx_clear_pending(hctx, ctx);
1836 }
1837 spin_unlock(&ctx->lock);
1838
1839 if (list_empty(&tmp))
1840 return 0;
1841
1842 spin_lock(&hctx->lock);
1843 list_splice_tail_init(&tmp, &hctx->dispatch);
1844 spin_unlock(&hctx->lock);
1845
1846 blk_mq_run_hw_queue(hctx, true);
1847 return 0;
1848 }
1849
1850 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1851 {
1852 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1853 &hctx->cpuhp_dead);
1854 }
1855
1856 /* hctx->ctxs will be freed in queue's release handler */
1857 static void blk_mq_exit_hctx(struct request_queue *q,
1858 struct blk_mq_tag_set *set,
1859 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1860 {
1861 blk_mq_debugfs_unregister_hctx(hctx);
1862
1863 blk_mq_tag_idle(hctx);
1864
1865 if (set->ops->exit_request)
1866 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1867
1868 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1869
1870 if (set->ops->exit_hctx)
1871 set->ops->exit_hctx(hctx, hctx_idx);
1872
1873 if (hctx->flags & BLK_MQ_F_BLOCKING)
1874 cleanup_srcu_struct(hctx->queue_rq_srcu);
1875
1876 blk_mq_remove_cpuhp(hctx);
1877 blk_free_flush_queue(hctx->fq);
1878 sbitmap_free(&hctx->ctx_map);
1879 }
1880
1881 static void blk_mq_exit_hw_queues(struct request_queue *q,
1882 struct blk_mq_tag_set *set, int nr_queue)
1883 {
1884 struct blk_mq_hw_ctx *hctx;
1885 unsigned int i;
1886
1887 queue_for_each_hw_ctx(q, hctx, i) {
1888 if (i == nr_queue)
1889 break;
1890 blk_mq_exit_hctx(q, set, hctx, i);
1891 }
1892 }
1893
1894 static int blk_mq_init_hctx(struct request_queue *q,
1895 struct blk_mq_tag_set *set,
1896 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1897 {
1898 int node;
1899
1900 node = hctx->numa_node;
1901 if (node == NUMA_NO_NODE)
1902 node = hctx->numa_node = set->numa_node;
1903
1904 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1905 spin_lock_init(&hctx->lock);
1906 INIT_LIST_HEAD(&hctx->dispatch);
1907 hctx->queue = q;
1908 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1909
1910 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1911
1912 hctx->tags = set->tags[hctx_idx];
1913
1914 /*
1915 * Allocate space for all possible cpus to avoid allocation at
1916 * runtime
1917 */
1918 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1919 GFP_KERNEL, node);
1920 if (!hctx->ctxs)
1921 goto unregister_cpu_notifier;
1922
1923 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1924 node))
1925 goto free_ctxs;
1926
1927 hctx->nr_ctx = 0;
1928
1929 if (set->ops->init_hctx &&
1930 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1931 goto free_bitmap;
1932
1933 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1934 goto exit_hctx;
1935
1936 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1937 if (!hctx->fq)
1938 goto sched_exit_hctx;
1939
1940 if (set->ops->init_request &&
1941 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1942 node))
1943 goto free_fq;
1944
1945 if (hctx->flags & BLK_MQ_F_BLOCKING)
1946 init_srcu_struct(hctx->queue_rq_srcu);
1947
1948 blk_mq_debugfs_register_hctx(q, hctx);
1949
1950 return 0;
1951
1952 free_fq:
1953 kfree(hctx->fq);
1954 sched_exit_hctx:
1955 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1956 exit_hctx:
1957 if (set->ops->exit_hctx)
1958 set->ops->exit_hctx(hctx, hctx_idx);
1959 free_bitmap:
1960 sbitmap_free(&hctx->ctx_map);
1961 free_ctxs:
1962 kfree(hctx->ctxs);
1963 unregister_cpu_notifier:
1964 blk_mq_remove_cpuhp(hctx);
1965 return -1;
1966 }
1967
1968 static void blk_mq_init_cpu_queues(struct request_queue *q,
1969 unsigned int nr_hw_queues)
1970 {
1971 unsigned int i;
1972
1973 for_each_possible_cpu(i) {
1974 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1975 struct blk_mq_hw_ctx *hctx;
1976
1977 __ctx->cpu = i;
1978 spin_lock_init(&__ctx->lock);
1979 INIT_LIST_HEAD(&__ctx->rq_list);
1980 __ctx->queue = q;
1981
1982 /* If the cpu isn't present, the cpu is mapped to first hctx */
1983 if (!cpu_present(i))
1984 continue;
1985
1986 hctx = blk_mq_map_queue(q, i);
1987
1988 /*
1989 * Set local node, IFF we have more than one hw queue. If
1990 * not, we remain on the home node of the device
1991 */
1992 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1993 hctx->numa_node = local_memory_node(cpu_to_node(i));
1994 }
1995 }
1996
1997 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1998 {
1999 int ret = 0;
2000
2001 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2002 set->queue_depth, set->reserved_tags);
2003 if (!set->tags[hctx_idx])
2004 return false;
2005
2006 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2007 set->queue_depth);
2008 if (!ret)
2009 return true;
2010
2011 blk_mq_free_rq_map(set->tags[hctx_idx]);
2012 set->tags[hctx_idx] = NULL;
2013 return false;
2014 }
2015
2016 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2017 unsigned int hctx_idx)
2018 {
2019 if (set->tags[hctx_idx]) {
2020 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2021 blk_mq_free_rq_map(set->tags[hctx_idx]);
2022 set->tags[hctx_idx] = NULL;
2023 }
2024 }
2025
2026 static void blk_mq_map_swqueue(struct request_queue *q)
2027 {
2028 unsigned int i, hctx_idx;
2029 struct blk_mq_hw_ctx *hctx;
2030 struct blk_mq_ctx *ctx;
2031 struct blk_mq_tag_set *set = q->tag_set;
2032
2033 /*
2034 * Avoid others reading imcomplete hctx->cpumask through sysfs
2035 */
2036 mutex_lock(&q->sysfs_lock);
2037
2038 queue_for_each_hw_ctx(q, hctx, i) {
2039 cpumask_clear(hctx->cpumask);
2040 hctx->nr_ctx = 0;
2041 }
2042
2043 /*
2044 * Map software to hardware queues.
2045 *
2046 * If the cpu isn't present, the cpu is mapped to first hctx.
2047 */
2048 for_each_present_cpu(i) {
2049 hctx_idx = q->mq_map[i];
2050 /* unmapped hw queue can be remapped after CPU topo changed */
2051 if (!set->tags[hctx_idx] &&
2052 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2053 /*
2054 * If tags initialization fail for some hctx,
2055 * that hctx won't be brought online. In this
2056 * case, remap the current ctx to hctx[0] which
2057 * is guaranteed to always have tags allocated
2058 */
2059 q->mq_map[i] = 0;
2060 }
2061
2062 ctx = per_cpu_ptr(q->queue_ctx, i);
2063 hctx = blk_mq_map_queue(q, i);
2064
2065 cpumask_set_cpu(i, hctx->cpumask);
2066 ctx->index_hw = hctx->nr_ctx;
2067 hctx->ctxs[hctx->nr_ctx++] = ctx;
2068 }
2069
2070 mutex_unlock(&q->sysfs_lock);
2071
2072 queue_for_each_hw_ctx(q, hctx, i) {
2073 /*
2074 * If no software queues are mapped to this hardware queue,
2075 * disable it and free the request entries.
2076 */
2077 if (!hctx->nr_ctx) {
2078 /* Never unmap queue 0. We need it as a
2079 * fallback in case of a new remap fails
2080 * allocation
2081 */
2082 if (i && set->tags[i])
2083 blk_mq_free_map_and_requests(set, i);
2084
2085 hctx->tags = NULL;
2086 continue;
2087 }
2088
2089 hctx->tags = set->tags[i];
2090 WARN_ON(!hctx->tags);
2091
2092 /*
2093 * Set the map size to the number of mapped software queues.
2094 * This is more accurate and more efficient than looping
2095 * over all possibly mapped software queues.
2096 */
2097 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2098
2099 /*
2100 * Initialize batch roundrobin counts
2101 */
2102 hctx->next_cpu = cpumask_first(hctx->cpumask);
2103 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2104 }
2105 }
2106
2107 /*
2108 * Caller needs to ensure that we're either frozen/quiesced, or that
2109 * the queue isn't live yet.
2110 */
2111 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2112 {
2113 struct blk_mq_hw_ctx *hctx;
2114 int i;
2115
2116 queue_for_each_hw_ctx(q, hctx, i) {
2117 if (shared) {
2118 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2119 atomic_inc(&q->shared_hctx_restart);
2120 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2121 } else {
2122 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2123 atomic_dec(&q->shared_hctx_restart);
2124 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2125 }
2126 }
2127 }
2128
2129 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2130 bool shared)
2131 {
2132 struct request_queue *q;
2133
2134 lockdep_assert_held(&set->tag_list_lock);
2135
2136 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2137 blk_mq_freeze_queue(q);
2138 queue_set_hctx_shared(q, shared);
2139 blk_mq_unfreeze_queue(q);
2140 }
2141 }
2142
2143 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2144 {
2145 struct blk_mq_tag_set *set = q->tag_set;
2146
2147 mutex_lock(&set->tag_list_lock);
2148 list_del_rcu(&q->tag_set_list);
2149 INIT_LIST_HEAD(&q->tag_set_list);
2150 if (list_is_singular(&set->tag_list)) {
2151 /* just transitioned to unshared */
2152 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2153 /* update existing queue */
2154 blk_mq_update_tag_set_depth(set, false);
2155 }
2156 mutex_unlock(&set->tag_list_lock);
2157
2158 synchronize_rcu();
2159 }
2160
2161 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2162 struct request_queue *q)
2163 {
2164 q->tag_set = set;
2165
2166 mutex_lock(&set->tag_list_lock);
2167
2168 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2169 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2170 set->flags |= BLK_MQ_F_TAG_SHARED;
2171 /* update existing queue */
2172 blk_mq_update_tag_set_depth(set, true);
2173 }
2174 if (set->flags & BLK_MQ_F_TAG_SHARED)
2175 queue_set_hctx_shared(q, true);
2176 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2177
2178 mutex_unlock(&set->tag_list_lock);
2179 }
2180
2181 /*
2182 * It is the actual release handler for mq, but we do it from
2183 * request queue's release handler for avoiding use-after-free
2184 * and headache because q->mq_kobj shouldn't have been introduced,
2185 * but we can't group ctx/kctx kobj without it.
2186 */
2187 void blk_mq_release(struct request_queue *q)
2188 {
2189 struct blk_mq_hw_ctx *hctx;
2190 unsigned int i;
2191
2192 /* hctx kobj stays in hctx */
2193 queue_for_each_hw_ctx(q, hctx, i) {
2194 if (!hctx)
2195 continue;
2196 kobject_put(&hctx->kobj);
2197 }
2198
2199 q->mq_map = NULL;
2200
2201 kfree(q->queue_hw_ctx);
2202
2203 /*
2204 * release .mq_kobj and sw queue's kobject now because
2205 * both share lifetime with request queue.
2206 */
2207 blk_mq_sysfs_deinit(q);
2208
2209 free_percpu(q->queue_ctx);
2210 }
2211
2212 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2213 {
2214 struct request_queue *uninit_q, *q;
2215
2216 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2217 if (!uninit_q)
2218 return ERR_PTR(-ENOMEM);
2219
2220 q = blk_mq_init_allocated_queue(set, uninit_q);
2221 if (IS_ERR(q))
2222 blk_cleanup_queue(uninit_q);
2223
2224 return q;
2225 }
2226 EXPORT_SYMBOL(blk_mq_init_queue);
2227
2228 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2229 {
2230 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2231
2232 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2233 __alignof__(struct blk_mq_hw_ctx)) !=
2234 sizeof(struct blk_mq_hw_ctx));
2235
2236 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2237 hw_ctx_size += sizeof(struct srcu_struct);
2238
2239 return hw_ctx_size;
2240 }
2241
2242 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2243 struct request_queue *q)
2244 {
2245 int i, j;
2246 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2247
2248 blk_mq_sysfs_unregister(q);
2249 for (i = 0; i < set->nr_hw_queues; i++) {
2250 int node;
2251
2252 if (hctxs[i])
2253 continue;
2254
2255 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2256 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2257 GFP_KERNEL, node);
2258 if (!hctxs[i])
2259 break;
2260
2261 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2262 node)) {
2263 kfree(hctxs[i]);
2264 hctxs[i] = NULL;
2265 break;
2266 }
2267
2268 atomic_set(&hctxs[i]->nr_active, 0);
2269 hctxs[i]->numa_node = node;
2270 hctxs[i]->queue_num = i;
2271
2272 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2273 free_cpumask_var(hctxs[i]->cpumask);
2274 kfree(hctxs[i]);
2275 hctxs[i] = NULL;
2276 break;
2277 }
2278 blk_mq_hctx_kobj_init(hctxs[i]);
2279 }
2280 for (j = i; j < q->nr_hw_queues; j++) {
2281 struct blk_mq_hw_ctx *hctx = hctxs[j];
2282
2283 if (hctx) {
2284 if (hctx->tags)
2285 blk_mq_free_map_and_requests(set, j);
2286 blk_mq_exit_hctx(q, set, hctx, j);
2287 kobject_put(&hctx->kobj);
2288 hctxs[j] = NULL;
2289
2290 }
2291 }
2292 q->nr_hw_queues = i;
2293 blk_mq_sysfs_register(q);
2294 }
2295
2296 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2297 struct request_queue *q)
2298 {
2299 /* mark the queue as mq asap */
2300 q->mq_ops = set->ops;
2301
2302 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2303 blk_mq_poll_stats_bkt,
2304 BLK_MQ_POLL_STATS_BKTS, q);
2305 if (!q->poll_cb)
2306 goto err_exit;
2307
2308 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2309 if (!q->queue_ctx)
2310 goto err_exit;
2311
2312 /* init q->mq_kobj and sw queues' kobjects */
2313 blk_mq_sysfs_init(q);
2314
2315 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2316 GFP_KERNEL, set->numa_node);
2317 if (!q->queue_hw_ctx)
2318 goto err_percpu;
2319
2320 q->mq_map = set->mq_map;
2321
2322 blk_mq_realloc_hw_ctxs(set, q);
2323 if (!q->nr_hw_queues)
2324 goto err_hctxs;
2325
2326 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2327 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2328
2329 q->nr_queues = nr_cpu_ids;
2330
2331 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2332
2333 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2334 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2335
2336 q->sg_reserved_size = INT_MAX;
2337
2338 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2339 INIT_LIST_HEAD(&q->requeue_list);
2340 spin_lock_init(&q->requeue_lock);
2341
2342 blk_queue_make_request(q, blk_mq_make_request);
2343
2344 /*
2345 * Do this after blk_queue_make_request() overrides it...
2346 */
2347 q->nr_requests = set->queue_depth;
2348
2349 /*
2350 * Default to classic polling
2351 */
2352 q->poll_nsec = -1;
2353
2354 if (set->ops->complete)
2355 blk_queue_softirq_done(q, set->ops->complete);
2356
2357 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2358 blk_mq_add_queue_tag_set(set, q);
2359 blk_mq_map_swqueue(q);
2360
2361 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2362 int ret;
2363
2364 ret = blk_mq_sched_init(q);
2365 if (ret)
2366 return ERR_PTR(ret);
2367 }
2368
2369 return q;
2370
2371 err_hctxs:
2372 kfree(q->queue_hw_ctx);
2373 err_percpu:
2374 free_percpu(q->queue_ctx);
2375 err_exit:
2376 q->mq_ops = NULL;
2377 return ERR_PTR(-ENOMEM);
2378 }
2379 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2380
2381 void blk_mq_free_queue(struct request_queue *q)
2382 {
2383 struct blk_mq_tag_set *set = q->tag_set;
2384
2385 blk_mq_del_queue_tag_set(q);
2386 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2387 }
2388
2389 /* Basically redo blk_mq_init_queue with queue frozen */
2390 static void blk_mq_queue_reinit(struct request_queue *q)
2391 {
2392 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2393
2394 blk_mq_debugfs_unregister_hctxs(q);
2395 blk_mq_sysfs_unregister(q);
2396
2397 /*
2398 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2399 * we should change hctx numa_node according to new topology (this
2400 * involves free and re-allocate memory, worthy doing?)
2401 */
2402
2403 blk_mq_map_swqueue(q);
2404
2405 blk_mq_sysfs_register(q);
2406 blk_mq_debugfs_register_hctxs(q);
2407 }
2408
2409 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2410 {
2411 int i;
2412
2413 for (i = 0; i < set->nr_hw_queues; i++)
2414 if (!__blk_mq_alloc_rq_map(set, i))
2415 goto out_unwind;
2416
2417 return 0;
2418
2419 out_unwind:
2420 while (--i >= 0)
2421 blk_mq_free_rq_map(set->tags[i]);
2422
2423 return -ENOMEM;
2424 }
2425
2426 /*
2427 * Allocate the request maps associated with this tag_set. Note that this
2428 * may reduce the depth asked for, if memory is tight. set->queue_depth
2429 * will be updated to reflect the allocated depth.
2430 */
2431 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2432 {
2433 unsigned int depth;
2434 int err;
2435
2436 depth = set->queue_depth;
2437 do {
2438 err = __blk_mq_alloc_rq_maps(set);
2439 if (!err)
2440 break;
2441
2442 set->queue_depth >>= 1;
2443 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2444 err = -ENOMEM;
2445 break;
2446 }
2447 } while (set->queue_depth);
2448
2449 if (!set->queue_depth || err) {
2450 pr_err("blk-mq: failed to allocate request map\n");
2451 return -ENOMEM;
2452 }
2453
2454 if (depth != set->queue_depth)
2455 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2456 depth, set->queue_depth);
2457
2458 return 0;
2459 }
2460
2461 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2462 {
2463 if (set->ops->map_queues)
2464 return set->ops->map_queues(set);
2465 else
2466 return blk_mq_map_queues(set);
2467 }
2468
2469 /*
2470 * Alloc a tag set to be associated with one or more request queues.
2471 * May fail with EINVAL for various error conditions. May adjust the
2472 * requested depth down, if if it too large. In that case, the set
2473 * value will be stored in set->queue_depth.
2474 */
2475 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2476 {
2477 int ret;
2478
2479 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2480
2481 if (!set->nr_hw_queues)
2482 return -EINVAL;
2483 if (!set->queue_depth)
2484 return -EINVAL;
2485 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2486 return -EINVAL;
2487
2488 if (!set->ops->queue_rq)
2489 return -EINVAL;
2490
2491 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2492 pr_info("blk-mq: reduced tag depth to %u\n",
2493 BLK_MQ_MAX_DEPTH);
2494 set->queue_depth = BLK_MQ_MAX_DEPTH;
2495 }
2496
2497 /*
2498 * If a crashdump is active, then we are potentially in a very
2499 * memory constrained environment. Limit us to 1 queue and
2500 * 64 tags to prevent using too much memory.
2501 */
2502 if (is_kdump_kernel()) {
2503 set->nr_hw_queues = 1;
2504 set->queue_depth = min(64U, set->queue_depth);
2505 }
2506 /*
2507 * There is no use for more h/w queues than cpus.
2508 */
2509 if (set->nr_hw_queues > nr_cpu_ids)
2510 set->nr_hw_queues = nr_cpu_ids;
2511
2512 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2513 GFP_KERNEL, set->numa_node);
2514 if (!set->tags)
2515 return -ENOMEM;
2516
2517 ret = -ENOMEM;
2518 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2519 GFP_KERNEL, set->numa_node);
2520 if (!set->mq_map)
2521 goto out_free_tags;
2522
2523 ret = blk_mq_update_queue_map(set);
2524 if (ret)
2525 goto out_free_mq_map;
2526
2527 ret = blk_mq_alloc_rq_maps(set);
2528 if (ret)
2529 goto out_free_mq_map;
2530
2531 mutex_init(&set->tag_list_lock);
2532 INIT_LIST_HEAD(&set->tag_list);
2533
2534 return 0;
2535
2536 out_free_mq_map:
2537 kfree(set->mq_map);
2538 set->mq_map = NULL;
2539 out_free_tags:
2540 kfree(set->tags);
2541 set->tags = NULL;
2542 return ret;
2543 }
2544 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2545
2546 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2547 {
2548 int i;
2549
2550 for (i = 0; i < nr_cpu_ids; i++)
2551 blk_mq_free_map_and_requests(set, i);
2552
2553 kfree(set->mq_map);
2554 set->mq_map = NULL;
2555
2556 kfree(set->tags);
2557 set->tags = NULL;
2558 }
2559 EXPORT_SYMBOL(blk_mq_free_tag_set);
2560
2561 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2562 {
2563 struct blk_mq_tag_set *set = q->tag_set;
2564 struct blk_mq_hw_ctx *hctx;
2565 int i, ret;
2566
2567 if (!set)
2568 return -EINVAL;
2569
2570 blk_mq_freeze_queue(q);
2571
2572 ret = 0;
2573 queue_for_each_hw_ctx(q, hctx, i) {
2574 if (!hctx->tags)
2575 continue;
2576 /*
2577 * If we're using an MQ scheduler, just update the scheduler
2578 * queue depth. This is similar to what the old code would do.
2579 */
2580 if (!hctx->sched_tags) {
2581 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2582 min(nr, set->queue_depth),
2583 false);
2584 } else {
2585 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2586 nr, true);
2587 }
2588 if (ret)
2589 break;
2590 }
2591
2592 if (!ret)
2593 q->nr_requests = nr;
2594
2595 blk_mq_unfreeze_queue(q);
2596
2597 return ret;
2598 }
2599
2600 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2601 int nr_hw_queues)
2602 {
2603 struct request_queue *q;
2604
2605 lockdep_assert_held(&set->tag_list_lock);
2606
2607 if (nr_hw_queues > nr_cpu_ids)
2608 nr_hw_queues = nr_cpu_ids;
2609 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2610 return;
2611
2612 list_for_each_entry(q, &set->tag_list, tag_set_list)
2613 blk_mq_freeze_queue(q);
2614
2615 set->nr_hw_queues = nr_hw_queues;
2616 blk_mq_update_queue_map(set);
2617 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2618 blk_mq_realloc_hw_ctxs(set, q);
2619 blk_mq_queue_reinit(q);
2620 }
2621
2622 list_for_each_entry(q, &set->tag_list, tag_set_list)
2623 blk_mq_unfreeze_queue(q);
2624 }
2625
2626 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2627 {
2628 mutex_lock(&set->tag_list_lock);
2629 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2630 mutex_unlock(&set->tag_list_lock);
2631 }
2632 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2633
2634 /* Enable polling stats and return whether they were already enabled. */
2635 static bool blk_poll_stats_enable(struct request_queue *q)
2636 {
2637 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2638 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2639 return true;
2640 blk_stat_add_callback(q, q->poll_cb);
2641 return false;
2642 }
2643
2644 static void blk_mq_poll_stats_start(struct request_queue *q)
2645 {
2646 /*
2647 * We don't arm the callback if polling stats are not enabled or the
2648 * callback is already active.
2649 */
2650 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2651 blk_stat_is_active(q->poll_cb))
2652 return;
2653
2654 blk_stat_activate_msecs(q->poll_cb, 100);
2655 }
2656
2657 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2658 {
2659 struct request_queue *q = cb->data;
2660 int bucket;
2661
2662 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2663 if (cb->stat[bucket].nr_samples)
2664 q->poll_stat[bucket] = cb->stat[bucket];
2665 }
2666 }
2667
2668 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2669 struct blk_mq_hw_ctx *hctx,
2670 struct request *rq)
2671 {
2672 unsigned long ret = 0;
2673 int bucket;
2674
2675 /*
2676 * If stats collection isn't on, don't sleep but turn it on for
2677 * future users
2678 */
2679 if (!blk_poll_stats_enable(q))
2680 return 0;
2681
2682 /*
2683 * As an optimistic guess, use half of the mean service time
2684 * for this type of request. We can (and should) make this smarter.
2685 * For instance, if the completion latencies are tight, we can
2686 * get closer than just half the mean. This is especially
2687 * important on devices where the completion latencies are longer
2688 * than ~10 usec. We do use the stats for the relevant IO size
2689 * if available which does lead to better estimates.
2690 */
2691 bucket = blk_mq_poll_stats_bkt(rq);
2692 if (bucket < 0)
2693 return ret;
2694
2695 if (q->poll_stat[bucket].nr_samples)
2696 ret = (q->poll_stat[bucket].mean + 1) / 2;
2697
2698 return ret;
2699 }
2700
2701 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2702 struct blk_mq_hw_ctx *hctx,
2703 struct request *rq)
2704 {
2705 struct hrtimer_sleeper hs;
2706 enum hrtimer_mode mode;
2707 unsigned int nsecs;
2708 ktime_t kt;
2709
2710 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2711 return false;
2712
2713 /*
2714 * poll_nsec can be:
2715 *
2716 * -1: don't ever hybrid sleep
2717 * 0: use half of prev avg
2718 * >0: use this specific value
2719 */
2720 if (q->poll_nsec == -1)
2721 return false;
2722 else if (q->poll_nsec > 0)
2723 nsecs = q->poll_nsec;
2724 else
2725 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2726
2727 if (!nsecs)
2728 return false;
2729
2730 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2731
2732 /*
2733 * This will be replaced with the stats tracking code, using
2734 * 'avg_completion_time / 2' as the pre-sleep target.
2735 */
2736 kt = nsecs;
2737
2738 mode = HRTIMER_MODE_REL;
2739 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2740 hrtimer_set_expires(&hs.timer, kt);
2741
2742 hrtimer_init_sleeper(&hs, current);
2743 do {
2744 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2745 break;
2746 set_current_state(TASK_UNINTERRUPTIBLE);
2747 hrtimer_start_expires(&hs.timer, mode);
2748 if (hs.task)
2749 io_schedule();
2750 hrtimer_cancel(&hs.timer);
2751 mode = HRTIMER_MODE_ABS;
2752 } while (hs.task && !signal_pending(current));
2753
2754 __set_current_state(TASK_RUNNING);
2755 destroy_hrtimer_on_stack(&hs.timer);
2756 return true;
2757 }
2758
2759 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2760 {
2761 struct request_queue *q = hctx->queue;
2762 long state;
2763
2764 /*
2765 * If we sleep, have the caller restart the poll loop to reset
2766 * the state. Like for the other success return cases, the
2767 * caller is responsible for checking if the IO completed. If
2768 * the IO isn't complete, we'll get called again and will go
2769 * straight to the busy poll loop.
2770 */
2771 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2772 return true;
2773
2774 hctx->poll_considered++;
2775
2776 state = current->state;
2777 while (!need_resched()) {
2778 int ret;
2779
2780 hctx->poll_invoked++;
2781
2782 ret = q->mq_ops->poll(hctx, rq->tag);
2783 if (ret > 0) {
2784 hctx->poll_success++;
2785 set_current_state(TASK_RUNNING);
2786 return true;
2787 }
2788
2789 if (signal_pending_state(state, current))
2790 set_current_state(TASK_RUNNING);
2791
2792 if (current->state == TASK_RUNNING)
2793 return true;
2794 if (ret < 0)
2795 break;
2796 cpu_relax();
2797 }
2798
2799 return false;
2800 }
2801
2802 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2803 {
2804 struct blk_mq_hw_ctx *hctx;
2805 struct blk_plug *plug;
2806 struct request *rq;
2807
2808 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2809 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2810 return false;
2811
2812 plug = current->plug;
2813 if (plug)
2814 blk_flush_plug_list(plug, false);
2815
2816 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2817 if (!blk_qc_t_is_internal(cookie))
2818 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2819 else {
2820 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2821 /*
2822 * With scheduling, if the request has completed, we'll
2823 * get a NULL return here, as we clear the sched tag when
2824 * that happens. The request still remains valid, like always,
2825 * so we should be safe with just the NULL check.
2826 */
2827 if (!rq)
2828 return false;
2829 }
2830
2831 return __blk_mq_poll(hctx, rq);
2832 }
2833 EXPORT_SYMBOL_GPL(blk_mq_poll);
2834
2835 static int __init blk_mq_init(void)
2836 {
2837 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2838 blk_mq_hctx_notify_dead);
2839 return 0;
2840 }
2841 subsys_initcall(blk_mq_init);