]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/blk-mq.c
sparc: remove unused wp_works_ok macro
[mirror_ubuntu-eoan-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 /*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46 {
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
50 }
51
52 /*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 }
61
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 }
67
68 void blk_mq_freeze_queue_start(struct request_queue *q)
69 {
70 int freeze_depth;
71
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
74 percpu_ref_kill(&q->q_usage_counter);
75 blk_mq_run_hw_queues(q, false);
76 }
77 }
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
81 {
82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83 }
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88 {
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92 }
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94
95 /*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
99 void blk_freeze_queue(struct request_queue *q)
100 {
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110 }
111
112 void blk_mq_freeze_queue(struct request_queue *q)
113 {
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119 }
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121
122 void blk_mq_unfreeze_queue(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
129 percpu_ref_reinit(&q->q_usage_counter);
130 wake_up_all(&q->mq_freeze_wq);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134
135 /**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143 void blk_mq_quiesce_queue(struct request_queue *q)
144 {
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
162 void blk_mq_wake_waiters(struct request_queue *q)
163 {
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
177 }
178
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181 return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
187 {
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
191 rq->mq_ctx = ctx;
192 rq->cmd_flags = op;
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
199 rq->rq_disk = NULL;
200 rq->part = NULL;
201 rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
204 set_start_time_ns(rq);
205 rq->io_start_time_ns = 0;
206 #endif
207 rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210 #endif
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
214 rq->extra_len = 0;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[op_is_sync(op)]++;
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
229 {
230 struct request *rq;
231 unsigned int tag;
232
233 tag = blk_mq_get_tag(data);
234 if (tag != BLK_MQ_TAG_FAIL) {
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
238
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
247 rq->tag = tag;
248 rq->internal_tag = -1;
249 data->hctx->tags->rqs[rq->tag] = rq;
250 }
251
252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 return rq;
254 }
255
256 return NULL;
257 }
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
262 {
263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
264 struct request *rq;
265 int ret;
266
267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 if (ret)
269 return ERR_PTR(ret);
270
271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
277 return ERR_PTR(-EWOULDBLOCK);
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
282 return rq;
283 }
284 EXPORT_SYMBOL(blk_mq_alloc_request);
285
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288 {
289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
290 struct request *rq;
291 unsigned int cpu;
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
318 }
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
321
322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323
324 blk_mq_put_ctx(alloc_data.ctx);
325 blk_queue_exit(q);
326
327 if (!rq)
328 return ERR_PTR(-EWOULDBLOCK);
329
330 return rq;
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333
334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
335 struct request *rq)
336 {
337 const int sched_tag = rq->internal_tag;
338 struct request_queue *q = rq->q;
339
340 if (rq->rq_flags & RQF_MQ_INFLIGHT)
341 atomic_dec(&hctx->nr_active);
342
343 wbt_done(q->rq_wb, &rq->issue_stat);
344 rq->rq_flags = 0;
345
346 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
347 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
348 if (rq->tag != -1)
349 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
350 if (sched_tag != -1)
351 blk_mq_sched_completed_request(hctx, rq);
352 blk_mq_sched_restart_queues(hctx);
353 blk_queue_exit(q);
354 }
355
356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
357 struct request *rq)
358 {
359 struct blk_mq_ctx *ctx = rq->mq_ctx;
360
361 ctx->rq_completed[rq_is_sync(rq)]++;
362 __blk_mq_finish_request(hctx, ctx, rq);
363 }
364
365 void blk_mq_finish_request(struct request *rq)
366 {
367 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
368 }
369
370 void blk_mq_free_request(struct request *rq)
371 {
372 blk_mq_sched_put_request(rq);
373 }
374 EXPORT_SYMBOL_GPL(blk_mq_free_request);
375
376 inline void __blk_mq_end_request(struct request *rq, int error)
377 {
378 blk_account_io_done(rq);
379
380 if (rq->end_io) {
381 wbt_done(rq->q->rq_wb, &rq->issue_stat);
382 rq->end_io(rq, error);
383 } else {
384 if (unlikely(blk_bidi_rq(rq)))
385 blk_mq_free_request(rq->next_rq);
386 blk_mq_free_request(rq);
387 }
388 }
389 EXPORT_SYMBOL(__blk_mq_end_request);
390
391 void blk_mq_end_request(struct request *rq, int error)
392 {
393 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
394 BUG();
395 __blk_mq_end_request(rq, error);
396 }
397 EXPORT_SYMBOL(blk_mq_end_request);
398
399 static void __blk_mq_complete_request_remote(void *data)
400 {
401 struct request *rq = data;
402
403 rq->q->softirq_done_fn(rq);
404 }
405
406 static void blk_mq_ipi_complete_request(struct request *rq)
407 {
408 struct blk_mq_ctx *ctx = rq->mq_ctx;
409 bool shared = false;
410 int cpu;
411
412 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
413 rq->q->softirq_done_fn(rq);
414 return;
415 }
416
417 cpu = get_cpu();
418 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
419 shared = cpus_share_cache(cpu, ctx->cpu);
420
421 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
422 rq->csd.func = __blk_mq_complete_request_remote;
423 rq->csd.info = rq;
424 rq->csd.flags = 0;
425 smp_call_function_single_async(ctx->cpu, &rq->csd);
426 } else {
427 rq->q->softirq_done_fn(rq);
428 }
429 put_cpu();
430 }
431
432 static void blk_mq_stat_add(struct request *rq)
433 {
434 if (rq->rq_flags & RQF_STATS) {
435 /*
436 * We could rq->mq_ctx here, but there's less of a risk
437 * of races if we have the completion event add the stats
438 * to the local software queue.
439 */
440 struct blk_mq_ctx *ctx;
441
442 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
443 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
444 }
445 }
446
447 static void __blk_mq_complete_request(struct request *rq)
448 {
449 struct request_queue *q = rq->q;
450
451 blk_mq_stat_add(rq);
452
453 if (!q->softirq_done_fn)
454 blk_mq_end_request(rq, rq->errors);
455 else
456 blk_mq_ipi_complete_request(rq);
457 }
458
459 /**
460 * blk_mq_complete_request - end I/O on a request
461 * @rq: the request being processed
462 *
463 * Description:
464 * Ends all I/O on a request. It does not handle partial completions.
465 * The actual completion happens out-of-order, through a IPI handler.
466 **/
467 void blk_mq_complete_request(struct request *rq, int error)
468 {
469 struct request_queue *q = rq->q;
470
471 if (unlikely(blk_should_fake_timeout(q)))
472 return;
473 if (!blk_mark_rq_complete(rq)) {
474 rq->errors = error;
475 __blk_mq_complete_request(rq);
476 }
477 }
478 EXPORT_SYMBOL(blk_mq_complete_request);
479
480 int blk_mq_request_started(struct request *rq)
481 {
482 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_request_started);
485
486 void blk_mq_start_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489
490 blk_mq_sched_started_request(rq);
491
492 trace_block_rq_issue(q, rq);
493
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
497 wbt_issue(q->rq_wb, &rq->issue_stat);
498 }
499
500 blk_add_timer(rq);
501
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
535 wbt_requeue(q->rq_wb, &rq->issue_stat);
536 blk_mq_sched_requeue_request(rq);
537
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 __blk_mq_requeue_request(rq);
547
548 BUG_ON(blk_queued_rq(rq));
549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 struct request_queue *q =
556 container_of(work, struct request_queue, requeue_work.work);
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 continue;
568
569 rq->rq_flags &= ~RQF_SOFTBARRIER;
570 list_del_init(&rq->queuelist);
571 blk_mq_sched_insert_request(rq, true, false, false, true);
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
577 blk_mq_sched_insert_request(rq, false, false, false, true);
578 }
579
580 blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
585 {
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
597 rq->rq_flags |= RQF_SOFTBARRIER;
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617 {
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
647 return tags->rqs[tag];
648 }
649
650 return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655 unsigned long next;
656 unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 const struct blk_mq_ops *ops = req->q->mq_ops;
662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
675
676 if (ops->timeout)
677 ret = ops->timeout(req, reserved);
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697 {
698 struct blk_mq_timeout_data *data = priv;
699
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
701 return;
702
703 if (time_after_eq(jiffies, rq->deadline)) {
704 if (!blk_mark_rq_complete(rq))
705 blk_mq_rq_timed_out(rq, reserved);
706 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
707 data->next = rq->deadline;
708 data->next_set = 1;
709 }
710 }
711
712 static void blk_mq_timeout_work(struct work_struct *work)
713 {
714 struct request_queue *q =
715 container_of(work, struct request_queue, timeout_work);
716 struct blk_mq_timeout_data data = {
717 .next = 0,
718 .next_set = 0,
719 };
720 int i;
721
722 /* A deadlock might occur if a request is stuck requiring a
723 * timeout at the same time a queue freeze is waiting
724 * completion, since the timeout code would not be able to
725 * acquire the queue reference here.
726 *
727 * That's why we don't use blk_queue_enter here; instead, we use
728 * percpu_ref_tryget directly, because we need to be able to
729 * obtain a reference even in the short window between the queue
730 * starting to freeze, by dropping the first reference in
731 * blk_mq_freeze_queue_start, and the moment the last request is
732 * consumed, marked by the instant q_usage_counter reaches
733 * zero.
734 */
735 if (!percpu_ref_tryget(&q->q_usage_counter))
736 return;
737
738 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739
740 if (data.next_set) {
741 data.next = blk_rq_timeout(round_jiffies_up(data.next));
742 mod_timer(&q->timeout, data.next);
743 } else {
744 struct blk_mq_hw_ctx *hctx;
745
746 queue_for_each_hw_ctx(q, hctx, i) {
747 /* the hctx may be unmapped, so check it here */
748 if (blk_mq_hw_queue_mapped(hctx))
749 blk_mq_tag_idle(hctx);
750 }
751 }
752 blk_queue_exit(q);
753 }
754
755 /*
756 * Reverse check our software queue for entries that we could potentially
757 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
758 * too much time checking for merges.
759 */
760 static bool blk_mq_attempt_merge(struct request_queue *q,
761 struct blk_mq_ctx *ctx, struct bio *bio)
762 {
763 struct request *rq;
764 int checked = 8;
765
766 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
767 bool merged = false;
768
769 if (!checked--)
770 break;
771
772 if (!blk_rq_merge_ok(rq, bio))
773 continue;
774
775 switch (blk_try_merge(rq, bio)) {
776 case ELEVATOR_BACK_MERGE:
777 if (blk_mq_sched_allow_merge(q, rq, bio))
778 merged = bio_attempt_back_merge(q, rq, bio);
779 break;
780 case ELEVATOR_FRONT_MERGE:
781 if (blk_mq_sched_allow_merge(q, rq, bio))
782 merged = bio_attempt_front_merge(q, rq, bio);
783 break;
784 case ELEVATOR_DISCARD_MERGE:
785 merged = bio_attempt_discard_merge(q, rq, bio);
786 break;
787 default:
788 continue;
789 }
790
791 if (merged)
792 ctx->rq_merged++;
793 return merged;
794 }
795
796 return false;
797 }
798
799 struct flush_busy_ctx_data {
800 struct blk_mq_hw_ctx *hctx;
801 struct list_head *list;
802 };
803
804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 {
806 struct flush_busy_ctx_data *flush_data = data;
807 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809
810 sbitmap_clear_bit(sb, bitnr);
811 spin_lock(&ctx->lock);
812 list_splice_tail_init(&ctx->rq_list, flush_data->list);
813 spin_unlock(&ctx->lock);
814 return true;
815 }
816
817 /*
818 * Process software queues that have been marked busy, splicing them
819 * to the for-dispatch
820 */
821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 {
823 struct flush_busy_ctx_data data = {
824 .hctx = hctx,
825 .list = list,
826 };
827
828 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 }
830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831
832 static inline unsigned int queued_to_index(unsigned int queued)
833 {
834 if (!queued)
835 return 0;
836
837 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 }
839
840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841 bool wait)
842 {
843 struct blk_mq_alloc_data data = {
844 .q = rq->q,
845 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847 };
848
849 if (rq->tag != -1) {
850 done:
851 if (hctx)
852 *hctx = data.hctx;
853 return true;
854 }
855
856 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
857 data.flags |= BLK_MQ_REQ_RESERVED;
858
859 rq->tag = blk_mq_get_tag(&data);
860 if (rq->tag >= 0) {
861 if (blk_mq_tag_busy(data.hctx)) {
862 rq->rq_flags |= RQF_MQ_INFLIGHT;
863 atomic_inc(&data.hctx->nr_active);
864 }
865 data.hctx->tags->rqs[rq->tag] = rq;
866 goto done;
867 }
868
869 return false;
870 }
871
872 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
873 struct request *rq)
874 {
875 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876 rq->tag = -1;
877
878 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880 atomic_dec(&hctx->nr_active);
881 }
882 }
883
884 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
885 struct request *rq)
886 {
887 if (rq->tag == -1 || rq->internal_tag == -1)
888 return;
889
890 __blk_mq_put_driver_tag(hctx, rq);
891 }
892
893 static void blk_mq_put_driver_tag(struct request *rq)
894 {
895 struct blk_mq_hw_ctx *hctx;
896
897 if (rq->tag == -1 || rq->internal_tag == -1)
898 return;
899
900 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
901 __blk_mq_put_driver_tag(hctx, rq);
902 }
903
904 /*
905 * If we fail getting a driver tag because all the driver tags are already
906 * assigned and on the dispatch list, BUT the first entry does not have a
907 * tag, then we could deadlock. For that case, move entries with assigned
908 * driver tags to the front, leaving the set of tagged requests in the
909 * same order, and the untagged set in the same order.
910 */
911 static bool reorder_tags_to_front(struct list_head *list)
912 {
913 struct request *rq, *tmp, *first = NULL;
914
915 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
916 if (rq == first)
917 break;
918 if (rq->tag != -1) {
919 list_move(&rq->queuelist, list);
920 if (!first)
921 first = rq;
922 }
923 }
924
925 return first != NULL;
926 }
927
928 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
929 void *key)
930 {
931 struct blk_mq_hw_ctx *hctx;
932
933 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
934
935 list_del(&wait->task_list);
936 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
937 blk_mq_run_hw_queue(hctx, true);
938 return 1;
939 }
940
941 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
942 {
943 struct sbq_wait_state *ws;
944
945 /*
946 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
947 * The thread which wins the race to grab this bit adds the hardware
948 * queue to the wait queue.
949 */
950 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
951 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
952 return false;
953
954 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
955 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
956
957 /*
958 * As soon as this returns, it's no longer safe to fiddle with
959 * hctx->dispatch_wait, since a completion can wake up the wait queue
960 * and unlock the bit.
961 */
962 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
963 return true;
964 }
965
966 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
967 {
968 struct request_queue *q = hctx->queue;
969 struct request *rq;
970 LIST_HEAD(driver_list);
971 struct list_head *dptr;
972 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
973
974 /*
975 * Start off with dptr being NULL, so we start the first request
976 * immediately, even if we have more pending.
977 */
978 dptr = NULL;
979
980 /*
981 * Now process all the entries, sending them to the driver.
982 */
983 queued = 0;
984 while (!list_empty(list)) {
985 struct blk_mq_queue_data bd;
986
987 rq = list_first_entry(list, struct request, queuelist);
988 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
989 if (!queued && reorder_tags_to_front(list))
990 continue;
991
992 /*
993 * The initial allocation attempt failed, so we need to
994 * rerun the hardware queue when a tag is freed.
995 */
996 if (blk_mq_dispatch_wait_add(hctx)) {
997 /*
998 * It's possible that a tag was freed in the
999 * window between the allocation failure and
1000 * adding the hardware queue to the wait queue.
1001 */
1002 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1003 break;
1004 } else {
1005 break;
1006 }
1007 }
1008
1009 list_del_init(&rq->queuelist);
1010
1011 bd.rq = rq;
1012 bd.list = dptr;
1013
1014 /*
1015 * Flag last if we have no more requests, or if we have more
1016 * but can't assign a driver tag to it.
1017 */
1018 if (list_empty(list))
1019 bd.last = true;
1020 else {
1021 struct request *nxt;
1022
1023 nxt = list_first_entry(list, struct request, queuelist);
1024 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1025 }
1026
1027 ret = q->mq_ops->queue_rq(hctx, &bd);
1028 switch (ret) {
1029 case BLK_MQ_RQ_QUEUE_OK:
1030 queued++;
1031 break;
1032 case BLK_MQ_RQ_QUEUE_BUSY:
1033 blk_mq_put_driver_tag_hctx(hctx, rq);
1034 list_add(&rq->queuelist, list);
1035 __blk_mq_requeue_request(rq);
1036 break;
1037 default:
1038 pr_err("blk-mq: bad return on queue: %d\n", ret);
1039 case BLK_MQ_RQ_QUEUE_ERROR:
1040 rq->errors = -EIO;
1041 blk_mq_end_request(rq, rq->errors);
1042 break;
1043 }
1044
1045 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1046 break;
1047
1048 /*
1049 * We've done the first request. If we have more than 1
1050 * left in the list, set dptr to defer issue.
1051 */
1052 if (!dptr && list->next != list->prev)
1053 dptr = &driver_list;
1054 }
1055
1056 hctx->dispatched[queued_to_index(queued)]++;
1057
1058 /*
1059 * Any items that need requeuing? Stuff them into hctx->dispatch,
1060 * that is where we will continue on next queue run.
1061 */
1062 if (!list_empty(list)) {
1063 /*
1064 * If we got a driver tag for the next request already,
1065 * free it again.
1066 */
1067 rq = list_first_entry(list, struct request, queuelist);
1068 blk_mq_put_driver_tag(rq);
1069
1070 spin_lock(&hctx->lock);
1071 list_splice_init(list, &hctx->dispatch);
1072 spin_unlock(&hctx->lock);
1073
1074 /*
1075 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1076 * it's possible the queue is stopped and restarted again
1077 * before this. Queue restart will dispatch requests. And since
1078 * requests in rq_list aren't added into hctx->dispatch yet,
1079 * the requests in rq_list might get lost.
1080 *
1081 * blk_mq_run_hw_queue() already checks the STOPPED bit
1082 *
1083 * If RESTART or TAG_WAITING is set, then let completion restart
1084 * the queue instead of potentially looping here.
1085 */
1086 if (!blk_mq_sched_needs_restart(hctx) &&
1087 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1088 blk_mq_run_hw_queue(hctx, true);
1089 }
1090
1091 return queued != 0;
1092 }
1093
1094 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1095 {
1096 int srcu_idx;
1097
1098 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1099 cpu_online(hctx->next_cpu));
1100
1101 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1102 rcu_read_lock();
1103 blk_mq_sched_dispatch_requests(hctx);
1104 rcu_read_unlock();
1105 } else {
1106 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1107 blk_mq_sched_dispatch_requests(hctx);
1108 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1109 }
1110 }
1111
1112 /*
1113 * It'd be great if the workqueue API had a way to pass
1114 * in a mask and had some smarts for more clever placement.
1115 * For now we just round-robin here, switching for every
1116 * BLK_MQ_CPU_WORK_BATCH queued items.
1117 */
1118 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1119 {
1120 if (hctx->queue->nr_hw_queues == 1)
1121 return WORK_CPU_UNBOUND;
1122
1123 if (--hctx->next_cpu_batch <= 0) {
1124 int next_cpu;
1125
1126 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1127 if (next_cpu >= nr_cpu_ids)
1128 next_cpu = cpumask_first(hctx->cpumask);
1129
1130 hctx->next_cpu = next_cpu;
1131 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1132 }
1133
1134 return hctx->next_cpu;
1135 }
1136
1137 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1138 {
1139 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1140 !blk_mq_hw_queue_mapped(hctx)))
1141 return;
1142
1143 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1144 int cpu = get_cpu();
1145 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1146 __blk_mq_run_hw_queue(hctx);
1147 put_cpu();
1148 return;
1149 }
1150
1151 put_cpu();
1152 }
1153
1154 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1155 }
1156
1157 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1158 {
1159 struct blk_mq_hw_ctx *hctx;
1160 int i;
1161
1162 queue_for_each_hw_ctx(q, hctx, i) {
1163 if (!blk_mq_hctx_has_pending(hctx) ||
1164 blk_mq_hctx_stopped(hctx))
1165 continue;
1166
1167 blk_mq_run_hw_queue(hctx, async);
1168 }
1169 }
1170 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1171
1172 /**
1173 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1174 * @q: request queue.
1175 *
1176 * The caller is responsible for serializing this function against
1177 * blk_mq_{start,stop}_hw_queue().
1178 */
1179 bool blk_mq_queue_stopped(struct request_queue *q)
1180 {
1181 struct blk_mq_hw_ctx *hctx;
1182 int i;
1183
1184 queue_for_each_hw_ctx(q, hctx, i)
1185 if (blk_mq_hctx_stopped(hctx))
1186 return true;
1187
1188 return false;
1189 }
1190 EXPORT_SYMBOL(blk_mq_queue_stopped);
1191
1192 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1193 {
1194 cancel_work(&hctx->run_work);
1195 cancel_delayed_work(&hctx->delay_work);
1196 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1197 }
1198 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1199
1200 void blk_mq_stop_hw_queues(struct request_queue *q)
1201 {
1202 struct blk_mq_hw_ctx *hctx;
1203 int i;
1204
1205 queue_for_each_hw_ctx(q, hctx, i)
1206 blk_mq_stop_hw_queue(hctx);
1207 }
1208 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1209
1210 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1211 {
1212 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1213
1214 blk_mq_run_hw_queue(hctx, false);
1215 }
1216 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1217
1218 void blk_mq_start_hw_queues(struct request_queue *q)
1219 {
1220 struct blk_mq_hw_ctx *hctx;
1221 int i;
1222
1223 queue_for_each_hw_ctx(q, hctx, i)
1224 blk_mq_start_hw_queue(hctx);
1225 }
1226 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1227
1228 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1229 {
1230 if (!blk_mq_hctx_stopped(hctx))
1231 return;
1232
1233 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1234 blk_mq_run_hw_queue(hctx, async);
1235 }
1236 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1237
1238 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1239 {
1240 struct blk_mq_hw_ctx *hctx;
1241 int i;
1242
1243 queue_for_each_hw_ctx(q, hctx, i)
1244 blk_mq_start_stopped_hw_queue(hctx, async);
1245 }
1246 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1247
1248 static void blk_mq_run_work_fn(struct work_struct *work)
1249 {
1250 struct blk_mq_hw_ctx *hctx;
1251
1252 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1253
1254 __blk_mq_run_hw_queue(hctx);
1255 }
1256
1257 static void blk_mq_delay_work_fn(struct work_struct *work)
1258 {
1259 struct blk_mq_hw_ctx *hctx;
1260
1261 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1262
1263 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1264 __blk_mq_run_hw_queue(hctx);
1265 }
1266
1267 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1268 {
1269 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1270 return;
1271
1272 blk_mq_stop_hw_queue(hctx);
1273 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1274 &hctx->delay_work, msecs_to_jiffies(msecs));
1275 }
1276 EXPORT_SYMBOL(blk_mq_delay_queue);
1277
1278 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1279 struct request *rq,
1280 bool at_head)
1281 {
1282 struct blk_mq_ctx *ctx = rq->mq_ctx;
1283
1284 trace_block_rq_insert(hctx->queue, rq);
1285
1286 if (at_head)
1287 list_add(&rq->queuelist, &ctx->rq_list);
1288 else
1289 list_add_tail(&rq->queuelist, &ctx->rq_list);
1290 }
1291
1292 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1293 bool at_head)
1294 {
1295 struct blk_mq_ctx *ctx = rq->mq_ctx;
1296
1297 __blk_mq_insert_req_list(hctx, rq, at_head);
1298 blk_mq_hctx_mark_pending(hctx, ctx);
1299 }
1300
1301 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1302 struct list_head *list)
1303
1304 {
1305 /*
1306 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1307 * offline now
1308 */
1309 spin_lock(&ctx->lock);
1310 while (!list_empty(list)) {
1311 struct request *rq;
1312
1313 rq = list_first_entry(list, struct request, queuelist);
1314 BUG_ON(rq->mq_ctx != ctx);
1315 list_del_init(&rq->queuelist);
1316 __blk_mq_insert_req_list(hctx, rq, false);
1317 }
1318 blk_mq_hctx_mark_pending(hctx, ctx);
1319 spin_unlock(&ctx->lock);
1320 }
1321
1322 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1323 {
1324 struct request *rqa = container_of(a, struct request, queuelist);
1325 struct request *rqb = container_of(b, struct request, queuelist);
1326
1327 return !(rqa->mq_ctx < rqb->mq_ctx ||
1328 (rqa->mq_ctx == rqb->mq_ctx &&
1329 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1330 }
1331
1332 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1333 {
1334 struct blk_mq_ctx *this_ctx;
1335 struct request_queue *this_q;
1336 struct request *rq;
1337 LIST_HEAD(list);
1338 LIST_HEAD(ctx_list);
1339 unsigned int depth;
1340
1341 list_splice_init(&plug->mq_list, &list);
1342
1343 list_sort(NULL, &list, plug_ctx_cmp);
1344
1345 this_q = NULL;
1346 this_ctx = NULL;
1347 depth = 0;
1348
1349 while (!list_empty(&list)) {
1350 rq = list_entry_rq(list.next);
1351 list_del_init(&rq->queuelist);
1352 BUG_ON(!rq->q);
1353 if (rq->mq_ctx != this_ctx) {
1354 if (this_ctx) {
1355 trace_block_unplug(this_q, depth, from_schedule);
1356 blk_mq_sched_insert_requests(this_q, this_ctx,
1357 &ctx_list,
1358 from_schedule);
1359 }
1360
1361 this_ctx = rq->mq_ctx;
1362 this_q = rq->q;
1363 depth = 0;
1364 }
1365
1366 depth++;
1367 list_add_tail(&rq->queuelist, &ctx_list);
1368 }
1369
1370 /*
1371 * If 'this_ctx' is set, we know we have entries to complete
1372 * on 'ctx_list'. Do those.
1373 */
1374 if (this_ctx) {
1375 trace_block_unplug(this_q, depth, from_schedule);
1376 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1377 from_schedule);
1378 }
1379 }
1380
1381 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1382 {
1383 init_request_from_bio(rq, bio);
1384
1385 blk_account_io_start(rq, true);
1386 }
1387
1388 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1389 {
1390 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1391 !blk_queue_nomerges(hctx->queue);
1392 }
1393
1394 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1395 struct blk_mq_ctx *ctx,
1396 struct request *rq, struct bio *bio)
1397 {
1398 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1399 blk_mq_bio_to_request(rq, bio);
1400 spin_lock(&ctx->lock);
1401 insert_rq:
1402 __blk_mq_insert_request(hctx, rq, false);
1403 spin_unlock(&ctx->lock);
1404 return false;
1405 } else {
1406 struct request_queue *q = hctx->queue;
1407
1408 spin_lock(&ctx->lock);
1409 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1410 blk_mq_bio_to_request(rq, bio);
1411 goto insert_rq;
1412 }
1413
1414 spin_unlock(&ctx->lock);
1415 __blk_mq_finish_request(hctx, ctx, rq);
1416 return true;
1417 }
1418 }
1419
1420 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1421 {
1422 if (rq->tag != -1)
1423 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1424
1425 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1426 }
1427
1428 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1429 bool may_sleep)
1430 {
1431 struct request_queue *q = rq->q;
1432 struct blk_mq_queue_data bd = {
1433 .rq = rq,
1434 .list = NULL,
1435 .last = 1
1436 };
1437 struct blk_mq_hw_ctx *hctx;
1438 blk_qc_t new_cookie;
1439 int ret;
1440
1441 if (q->elevator)
1442 goto insert;
1443
1444 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1445 goto insert;
1446
1447 new_cookie = request_to_qc_t(hctx, rq);
1448
1449 /*
1450 * For OK queue, we are done. For error, kill it. Any other
1451 * error (busy), just add it to our list as we previously
1452 * would have done
1453 */
1454 ret = q->mq_ops->queue_rq(hctx, &bd);
1455 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1456 *cookie = new_cookie;
1457 return;
1458 }
1459
1460 __blk_mq_requeue_request(rq);
1461
1462 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1463 *cookie = BLK_QC_T_NONE;
1464 rq->errors = -EIO;
1465 blk_mq_end_request(rq, rq->errors);
1466 return;
1467 }
1468
1469 insert:
1470 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1471 }
1472
1473 /*
1474 * Multiple hardware queue variant. This will not use per-process plugs,
1475 * but will attempt to bypass the hctx queueing if we can go straight to
1476 * hardware for SYNC IO.
1477 */
1478 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1479 {
1480 const int is_sync = op_is_sync(bio->bi_opf);
1481 const int is_flush_fua = op_is_flush(bio->bi_opf);
1482 struct blk_mq_alloc_data data = { .flags = 0 };
1483 struct request *rq;
1484 unsigned int request_count = 0, srcu_idx;
1485 struct blk_plug *plug;
1486 struct request *same_queue_rq = NULL;
1487 blk_qc_t cookie;
1488 unsigned int wb_acct;
1489
1490 blk_queue_bounce(q, &bio);
1491
1492 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1493 bio_io_error(bio);
1494 return BLK_QC_T_NONE;
1495 }
1496
1497 blk_queue_split(q, &bio, q->bio_split);
1498
1499 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1500 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1501 return BLK_QC_T_NONE;
1502
1503 if (blk_mq_sched_bio_merge(q, bio))
1504 return BLK_QC_T_NONE;
1505
1506 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1507
1508 trace_block_getrq(q, bio, bio->bi_opf);
1509
1510 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1511 if (unlikely(!rq)) {
1512 __wbt_done(q->rq_wb, wb_acct);
1513 return BLK_QC_T_NONE;
1514 }
1515
1516 wbt_track(&rq->issue_stat, wb_acct);
1517
1518 cookie = request_to_qc_t(data.hctx, rq);
1519
1520 if (unlikely(is_flush_fua)) {
1521 if (q->elevator)
1522 goto elv_insert;
1523 blk_mq_bio_to_request(rq, bio);
1524 blk_insert_flush(rq);
1525 goto run_queue;
1526 }
1527
1528 plug = current->plug;
1529 /*
1530 * If the driver supports defer issued based on 'last', then
1531 * queue it up like normal since we can potentially save some
1532 * CPU this way.
1533 */
1534 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1535 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1536 struct request *old_rq = NULL;
1537
1538 blk_mq_bio_to_request(rq, bio);
1539
1540 /*
1541 * We do limited plugging. If the bio can be merged, do that.
1542 * Otherwise the existing request in the plug list will be
1543 * issued. So the plug list will have one request at most
1544 */
1545 if (plug) {
1546 /*
1547 * The plug list might get flushed before this. If that
1548 * happens, same_queue_rq is invalid and plug list is
1549 * empty
1550 */
1551 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1552 old_rq = same_queue_rq;
1553 list_del_init(&old_rq->queuelist);
1554 }
1555 list_add_tail(&rq->queuelist, &plug->mq_list);
1556 } else /* is_sync */
1557 old_rq = rq;
1558 blk_mq_put_ctx(data.ctx);
1559 if (!old_rq)
1560 goto done;
1561
1562 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1563 rcu_read_lock();
1564 blk_mq_try_issue_directly(old_rq, &cookie, false);
1565 rcu_read_unlock();
1566 } else {
1567 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1568 blk_mq_try_issue_directly(old_rq, &cookie, true);
1569 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1570 }
1571 goto done;
1572 }
1573
1574 if (q->elevator) {
1575 elv_insert:
1576 blk_mq_put_ctx(data.ctx);
1577 blk_mq_bio_to_request(rq, bio);
1578 blk_mq_sched_insert_request(rq, false, true,
1579 !is_sync || is_flush_fua, true);
1580 goto done;
1581 }
1582 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1583 /*
1584 * For a SYNC request, send it to the hardware immediately. For
1585 * an ASYNC request, just ensure that we run it later on. The
1586 * latter allows for merging opportunities and more efficient
1587 * dispatching.
1588 */
1589 run_queue:
1590 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1591 }
1592 blk_mq_put_ctx(data.ctx);
1593 done:
1594 return cookie;
1595 }
1596
1597 /*
1598 * Single hardware queue variant. This will attempt to use any per-process
1599 * plug for merging and IO deferral.
1600 */
1601 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1602 {
1603 const int is_sync = op_is_sync(bio->bi_opf);
1604 const int is_flush_fua = op_is_flush(bio->bi_opf);
1605 struct blk_plug *plug;
1606 unsigned int request_count = 0;
1607 struct blk_mq_alloc_data data = { .flags = 0 };
1608 struct request *rq;
1609 blk_qc_t cookie;
1610 unsigned int wb_acct;
1611
1612 blk_queue_bounce(q, &bio);
1613
1614 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1615 bio_io_error(bio);
1616 return BLK_QC_T_NONE;
1617 }
1618
1619 blk_queue_split(q, &bio, q->bio_split);
1620
1621 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1622 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1623 return BLK_QC_T_NONE;
1624 } else
1625 request_count = blk_plug_queued_count(q);
1626
1627 if (blk_mq_sched_bio_merge(q, bio))
1628 return BLK_QC_T_NONE;
1629
1630 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1631
1632 trace_block_getrq(q, bio, bio->bi_opf);
1633
1634 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1635 if (unlikely(!rq)) {
1636 __wbt_done(q->rq_wb, wb_acct);
1637 return BLK_QC_T_NONE;
1638 }
1639
1640 wbt_track(&rq->issue_stat, wb_acct);
1641
1642 cookie = request_to_qc_t(data.hctx, rq);
1643
1644 if (unlikely(is_flush_fua)) {
1645 if (q->elevator)
1646 goto elv_insert;
1647 blk_mq_bio_to_request(rq, bio);
1648 blk_insert_flush(rq);
1649 goto run_queue;
1650 }
1651
1652 /*
1653 * A task plug currently exists. Since this is completely lockless,
1654 * utilize that to temporarily store requests until the task is
1655 * either done or scheduled away.
1656 */
1657 plug = current->plug;
1658 if (plug) {
1659 struct request *last = NULL;
1660
1661 blk_mq_bio_to_request(rq, bio);
1662
1663 /*
1664 * @request_count may become stale because of schedule
1665 * out, so check the list again.
1666 */
1667 if (list_empty(&plug->mq_list))
1668 request_count = 0;
1669 if (!request_count)
1670 trace_block_plug(q);
1671 else
1672 last = list_entry_rq(plug->mq_list.prev);
1673
1674 blk_mq_put_ctx(data.ctx);
1675
1676 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1677 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1678 blk_flush_plug_list(plug, false);
1679 trace_block_plug(q);
1680 }
1681
1682 list_add_tail(&rq->queuelist, &plug->mq_list);
1683 return cookie;
1684 }
1685
1686 if (q->elevator) {
1687 elv_insert:
1688 blk_mq_put_ctx(data.ctx);
1689 blk_mq_bio_to_request(rq, bio);
1690 blk_mq_sched_insert_request(rq, false, true,
1691 !is_sync || is_flush_fua, true);
1692 goto done;
1693 }
1694 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1695 /*
1696 * For a SYNC request, send it to the hardware immediately. For
1697 * an ASYNC request, just ensure that we run it later on. The
1698 * latter allows for merging opportunities and more efficient
1699 * dispatching.
1700 */
1701 run_queue:
1702 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1703 }
1704
1705 blk_mq_put_ctx(data.ctx);
1706 done:
1707 return cookie;
1708 }
1709
1710 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1711 unsigned int hctx_idx)
1712 {
1713 struct page *page;
1714
1715 if (tags->rqs && set->ops->exit_request) {
1716 int i;
1717
1718 for (i = 0; i < tags->nr_tags; i++) {
1719 struct request *rq = tags->static_rqs[i];
1720
1721 if (!rq)
1722 continue;
1723 set->ops->exit_request(set->driver_data, rq,
1724 hctx_idx, i);
1725 tags->static_rqs[i] = NULL;
1726 }
1727 }
1728
1729 while (!list_empty(&tags->page_list)) {
1730 page = list_first_entry(&tags->page_list, struct page, lru);
1731 list_del_init(&page->lru);
1732 /*
1733 * Remove kmemleak object previously allocated in
1734 * blk_mq_init_rq_map().
1735 */
1736 kmemleak_free(page_address(page));
1737 __free_pages(page, page->private);
1738 }
1739 }
1740
1741 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1742 {
1743 kfree(tags->rqs);
1744 tags->rqs = NULL;
1745 kfree(tags->static_rqs);
1746 tags->static_rqs = NULL;
1747
1748 blk_mq_free_tags(tags);
1749 }
1750
1751 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1752 unsigned int hctx_idx,
1753 unsigned int nr_tags,
1754 unsigned int reserved_tags)
1755 {
1756 struct blk_mq_tags *tags;
1757 int node;
1758
1759 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1760 if (node == NUMA_NO_NODE)
1761 node = set->numa_node;
1762
1763 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1764 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1765 if (!tags)
1766 return NULL;
1767
1768 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1769 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1770 node);
1771 if (!tags->rqs) {
1772 blk_mq_free_tags(tags);
1773 return NULL;
1774 }
1775
1776 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1777 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1778 node);
1779 if (!tags->static_rqs) {
1780 kfree(tags->rqs);
1781 blk_mq_free_tags(tags);
1782 return NULL;
1783 }
1784
1785 return tags;
1786 }
1787
1788 static size_t order_to_size(unsigned int order)
1789 {
1790 return (size_t)PAGE_SIZE << order;
1791 }
1792
1793 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1794 unsigned int hctx_idx, unsigned int depth)
1795 {
1796 unsigned int i, j, entries_per_page, max_order = 4;
1797 size_t rq_size, left;
1798 int node;
1799
1800 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1801 if (node == NUMA_NO_NODE)
1802 node = set->numa_node;
1803
1804 INIT_LIST_HEAD(&tags->page_list);
1805
1806 /*
1807 * rq_size is the size of the request plus driver payload, rounded
1808 * to the cacheline size
1809 */
1810 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1811 cache_line_size());
1812 left = rq_size * depth;
1813
1814 for (i = 0; i < depth; ) {
1815 int this_order = max_order;
1816 struct page *page;
1817 int to_do;
1818 void *p;
1819
1820 while (this_order && left < order_to_size(this_order - 1))
1821 this_order--;
1822
1823 do {
1824 page = alloc_pages_node(node,
1825 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1826 this_order);
1827 if (page)
1828 break;
1829 if (!this_order--)
1830 break;
1831 if (order_to_size(this_order) < rq_size)
1832 break;
1833 } while (1);
1834
1835 if (!page)
1836 goto fail;
1837
1838 page->private = this_order;
1839 list_add_tail(&page->lru, &tags->page_list);
1840
1841 p = page_address(page);
1842 /*
1843 * Allow kmemleak to scan these pages as they contain pointers
1844 * to additional allocations like via ops->init_request().
1845 */
1846 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1847 entries_per_page = order_to_size(this_order) / rq_size;
1848 to_do = min(entries_per_page, depth - i);
1849 left -= to_do * rq_size;
1850 for (j = 0; j < to_do; j++) {
1851 struct request *rq = p;
1852
1853 tags->static_rqs[i] = rq;
1854 if (set->ops->init_request) {
1855 if (set->ops->init_request(set->driver_data,
1856 rq, hctx_idx, i,
1857 node)) {
1858 tags->static_rqs[i] = NULL;
1859 goto fail;
1860 }
1861 }
1862
1863 p += rq_size;
1864 i++;
1865 }
1866 }
1867 return 0;
1868
1869 fail:
1870 blk_mq_free_rqs(set, tags, hctx_idx);
1871 return -ENOMEM;
1872 }
1873
1874 /*
1875 * 'cpu' is going away. splice any existing rq_list entries from this
1876 * software queue to the hw queue dispatch list, and ensure that it
1877 * gets run.
1878 */
1879 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1880 {
1881 struct blk_mq_hw_ctx *hctx;
1882 struct blk_mq_ctx *ctx;
1883 LIST_HEAD(tmp);
1884
1885 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1886 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1887
1888 spin_lock(&ctx->lock);
1889 if (!list_empty(&ctx->rq_list)) {
1890 list_splice_init(&ctx->rq_list, &tmp);
1891 blk_mq_hctx_clear_pending(hctx, ctx);
1892 }
1893 spin_unlock(&ctx->lock);
1894
1895 if (list_empty(&tmp))
1896 return 0;
1897
1898 spin_lock(&hctx->lock);
1899 list_splice_tail_init(&tmp, &hctx->dispatch);
1900 spin_unlock(&hctx->lock);
1901
1902 blk_mq_run_hw_queue(hctx, true);
1903 return 0;
1904 }
1905
1906 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1907 {
1908 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1909 &hctx->cpuhp_dead);
1910 }
1911
1912 /* hctx->ctxs will be freed in queue's release handler */
1913 static void blk_mq_exit_hctx(struct request_queue *q,
1914 struct blk_mq_tag_set *set,
1915 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1916 {
1917 unsigned flush_start_tag = set->queue_depth;
1918
1919 blk_mq_tag_idle(hctx);
1920
1921 if (set->ops->exit_request)
1922 set->ops->exit_request(set->driver_data,
1923 hctx->fq->flush_rq, hctx_idx,
1924 flush_start_tag + hctx_idx);
1925
1926 if (set->ops->exit_hctx)
1927 set->ops->exit_hctx(hctx, hctx_idx);
1928
1929 if (hctx->flags & BLK_MQ_F_BLOCKING)
1930 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1931
1932 blk_mq_remove_cpuhp(hctx);
1933 blk_free_flush_queue(hctx->fq);
1934 sbitmap_free(&hctx->ctx_map);
1935 }
1936
1937 static void blk_mq_exit_hw_queues(struct request_queue *q,
1938 struct blk_mq_tag_set *set, int nr_queue)
1939 {
1940 struct blk_mq_hw_ctx *hctx;
1941 unsigned int i;
1942
1943 queue_for_each_hw_ctx(q, hctx, i) {
1944 if (i == nr_queue)
1945 break;
1946 blk_mq_exit_hctx(q, set, hctx, i);
1947 }
1948 }
1949
1950 static int blk_mq_init_hctx(struct request_queue *q,
1951 struct blk_mq_tag_set *set,
1952 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1953 {
1954 int node;
1955 unsigned flush_start_tag = set->queue_depth;
1956
1957 node = hctx->numa_node;
1958 if (node == NUMA_NO_NODE)
1959 node = hctx->numa_node = set->numa_node;
1960
1961 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1962 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1963 spin_lock_init(&hctx->lock);
1964 INIT_LIST_HEAD(&hctx->dispatch);
1965 hctx->queue = q;
1966 hctx->queue_num = hctx_idx;
1967 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1968
1969 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1970
1971 hctx->tags = set->tags[hctx_idx];
1972
1973 /*
1974 * Allocate space for all possible cpus to avoid allocation at
1975 * runtime
1976 */
1977 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1978 GFP_KERNEL, node);
1979 if (!hctx->ctxs)
1980 goto unregister_cpu_notifier;
1981
1982 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1983 node))
1984 goto free_ctxs;
1985
1986 hctx->nr_ctx = 0;
1987
1988 if (set->ops->init_hctx &&
1989 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1990 goto free_bitmap;
1991
1992 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1993 if (!hctx->fq)
1994 goto exit_hctx;
1995
1996 if (set->ops->init_request &&
1997 set->ops->init_request(set->driver_data,
1998 hctx->fq->flush_rq, hctx_idx,
1999 flush_start_tag + hctx_idx, node))
2000 goto free_fq;
2001
2002 if (hctx->flags & BLK_MQ_F_BLOCKING)
2003 init_srcu_struct(&hctx->queue_rq_srcu);
2004
2005 return 0;
2006
2007 free_fq:
2008 kfree(hctx->fq);
2009 exit_hctx:
2010 if (set->ops->exit_hctx)
2011 set->ops->exit_hctx(hctx, hctx_idx);
2012 free_bitmap:
2013 sbitmap_free(&hctx->ctx_map);
2014 free_ctxs:
2015 kfree(hctx->ctxs);
2016 unregister_cpu_notifier:
2017 blk_mq_remove_cpuhp(hctx);
2018 return -1;
2019 }
2020
2021 static void blk_mq_init_cpu_queues(struct request_queue *q,
2022 unsigned int nr_hw_queues)
2023 {
2024 unsigned int i;
2025
2026 for_each_possible_cpu(i) {
2027 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2028 struct blk_mq_hw_ctx *hctx;
2029
2030 __ctx->cpu = i;
2031 spin_lock_init(&__ctx->lock);
2032 INIT_LIST_HEAD(&__ctx->rq_list);
2033 __ctx->queue = q;
2034 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2035 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2036
2037 /* If the cpu isn't online, the cpu is mapped to first hctx */
2038 if (!cpu_online(i))
2039 continue;
2040
2041 hctx = blk_mq_map_queue(q, i);
2042
2043 /*
2044 * Set local node, IFF we have more than one hw queue. If
2045 * not, we remain on the home node of the device
2046 */
2047 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2048 hctx->numa_node = local_memory_node(cpu_to_node(i));
2049 }
2050 }
2051
2052 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2053 {
2054 int ret = 0;
2055
2056 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2057 set->queue_depth, set->reserved_tags);
2058 if (!set->tags[hctx_idx])
2059 return false;
2060
2061 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2062 set->queue_depth);
2063 if (!ret)
2064 return true;
2065
2066 blk_mq_free_rq_map(set->tags[hctx_idx]);
2067 set->tags[hctx_idx] = NULL;
2068 return false;
2069 }
2070
2071 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2072 unsigned int hctx_idx)
2073 {
2074 if (set->tags[hctx_idx]) {
2075 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2076 blk_mq_free_rq_map(set->tags[hctx_idx]);
2077 set->tags[hctx_idx] = NULL;
2078 }
2079 }
2080
2081 static void blk_mq_map_swqueue(struct request_queue *q,
2082 const struct cpumask *online_mask)
2083 {
2084 unsigned int i, hctx_idx;
2085 struct blk_mq_hw_ctx *hctx;
2086 struct blk_mq_ctx *ctx;
2087 struct blk_mq_tag_set *set = q->tag_set;
2088
2089 /*
2090 * Avoid others reading imcomplete hctx->cpumask through sysfs
2091 */
2092 mutex_lock(&q->sysfs_lock);
2093
2094 queue_for_each_hw_ctx(q, hctx, i) {
2095 cpumask_clear(hctx->cpumask);
2096 hctx->nr_ctx = 0;
2097 }
2098
2099 /*
2100 * Map software to hardware queues
2101 */
2102 for_each_possible_cpu(i) {
2103 /* If the cpu isn't online, the cpu is mapped to first hctx */
2104 if (!cpumask_test_cpu(i, online_mask))
2105 continue;
2106
2107 hctx_idx = q->mq_map[i];
2108 /* unmapped hw queue can be remapped after CPU topo changed */
2109 if (!set->tags[hctx_idx] &&
2110 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2111 /*
2112 * If tags initialization fail for some hctx,
2113 * that hctx won't be brought online. In this
2114 * case, remap the current ctx to hctx[0] which
2115 * is guaranteed to always have tags allocated
2116 */
2117 q->mq_map[i] = 0;
2118 }
2119
2120 ctx = per_cpu_ptr(q->queue_ctx, i);
2121 hctx = blk_mq_map_queue(q, i);
2122
2123 cpumask_set_cpu(i, hctx->cpumask);
2124 ctx->index_hw = hctx->nr_ctx;
2125 hctx->ctxs[hctx->nr_ctx++] = ctx;
2126 }
2127
2128 mutex_unlock(&q->sysfs_lock);
2129
2130 queue_for_each_hw_ctx(q, hctx, i) {
2131 /*
2132 * If no software queues are mapped to this hardware queue,
2133 * disable it and free the request entries.
2134 */
2135 if (!hctx->nr_ctx) {
2136 /* Never unmap queue 0. We need it as a
2137 * fallback in case of a new remap fails
2138 * allocation
2139 */
2140 if (i && set->tags[i])
2141 blk_mq_free_map_and_requests(set, i);
2142
2143 hctx->tags = NULL;
2144 continue;
2145 }
2146
2147 hctx->tags = set->tags[i];
2148 WARN_ON(!hctx->tags);
2149
2150 /*
2151 * Set the map size to the number of mapped software queues.
2152 * This is more accurate and more efficient than looping
2153 * over all possibly mapped software queues.
2154 */
2155 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2156
2157 /*
2158 * Initialize batch roundrobin counts
2159 */
2160 hctx->next_cpu = cpumask_first(hctx->cpumask);
2161 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2162 }
2163 }
2164
2165 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2166 {
2167 struct blk_mq_hw_ctx *hctx;
2168 int i;
2169
2170 queue_for_each_hw_ctx(q, hctx, i) {
2171 if (shared)
2172 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2173 else
2174 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2175 }
2176 }
2177
2178 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2179 {
2180 struct request_queue *q;
2181
2182 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2183 blk_mq_freeze_queue(q);
2184 queue_set_hctx_shared(q, shared);
2185 blk_mq_unfreeze_queue(q);
2186 }
2187 }
2188
2189 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2190 {
2191 struct blk_mq_tag_set *set = q->tag_set;
2192
2193 mutex_lock(&set->tag_list_lock);
2194 list_del_init(&q->tag_set_list);
2195 if (list_is_singular(&set->tag_list)) {
2196 /* just transitioned to unshared */
2197 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2198 /* update existing queue */
2199 blk_mq_update_tag_set_depth(set, false);
2200 }
2201 mutex_unlock(&set->tag_list_lock);
2202 }
2203
2204 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2205 struct request_queue *q)
2206 {
2207 q->tag_set = set;
2208
2209 mutex_lock(&set->tag_list_lock);
2210
2211 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2212 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2213 set->flags |= BLK_MQ_F_TAG_SHARED;
2214 /* update existing queue */
2215 blk_mq_update_tag_set_depth(set, true);
2216 }
2217 if (set->flags & BLK_MQ_F_TAG_SHARED)
2218 queue_set_hctx_shared(q, true);
2219 list_add_tail(&q->tag_set_list, &set->tag_list);
2220
2221 mutex_unlock(&set->tag_list_lock);
2222 }
2223
2224 /*
2225 * It is the actual release handler for mq, but we do it from
2226 * request queue's release handler for avoiding use-after-free
2227 * and headache because q->mq_kobj shouldn't have been introduced,
2228 * but we can't group ctx/kctx kobj without it.
2229 */
2230 void blk_mq_release(struct request_queue *q)
2231 {
2232 struct blk_mq_hw_ctx *hctx;
2233 unsigned int i;
2234
2235 blk_mq_sched_teardown(q);
2236
2237 /* hctx kobj stays in hctx */
2238 queue_for_each_hw_ctx(q, hctx, i) {
2239 if (!hctx)
2240 continue;
2241 kobject_put(&hctx->kobj);
2242 }
2243
2244 q->mq_map = NULL;
2245
2246 kfree(q->queue_hw_ctx);
2247
2248 /*
2249 * release .mq_kobj and sw queue's kobject now because
2250 * both share lifetime with request queue.
2251 */
2252 blk_mq_sysfs_deinit(q);
2253
2254 free_percpu(q->queue_ctx);
2255 }
2256
2257 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2258 {
2259 struct request_queue *uninit_q, *q;
2260
2261 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2262 if (!uninit_q)
2263 return ERR_PTR(-ENOMEM);
2264
2265 q = blk_mq_init_allocated_queue(set, uninit_q);
2266 if (IS_ERR(q))
2267 blk_cleanup_queue(uninit_q);
2268
2269 return q;
2270 }
2271 EXPORT_SYMBOL(blk_mq_init_queue);
2272
2273 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2274 struct request_queue *q)
2275 {
2276 int i, j;
2277 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2278
2279 blk_mq_sysfs_unregister(q);
2280 for (i = 0; i < set->nr_hw_queues; i++) {
2281 int node;
2282
2283 if (hctxs[i])
2284 continue;
2285
2286 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2287 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2288 GFP_KERNEL, node);
2289 if (!hctxs[i])
2290 break;
2291
2292 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2293 node)) {
2294 kfree(hctxs[i]);
2295 hctxs[i] = NULL;
2296 break;
2297 }
2298
2299 atomic_set(&hctxs[i]->nr_active, 0);
2300 hctxs[i]->numa_node = node;
2301 hctxs[i]->queue_num = i;
2302
2303 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2304 free_cpumask_var(hctxs[i]->cpumask);
2305 kfree(hctxs[i]);
2306 hctxs[i] = NULL;
2307 break;
2308 }
2309 blk_mq_hctx_kobj_init(hctxs[i]);
2310 }
2311 for (j = i; j < q->nr_hw_queues; j++) {
2312 struct blk_mq_hw_ctx *hctx = hctxs[j];
2313
2314 if (hctx) {
2315 if (hctx->tags)
2316 blk_mq_free_map_and_requests(set, j);
2317 blk_mq_exit_hctx(q, set, hctx, j);
2318 kobject_put(&hctx->kobj);
2319 hctxs[j] = NULL;
2320
2321 }
2322 }
2323 q->nr_hw_queues = i;
2324 blk_mq_sysfs_register(q);
2325 }
2326
2327 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2328 struct request_queue *q)
2329 {
2330 /* mark the queue as mq asap */
2331 q->mq_ops = set->ops;
2332
2333 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2334 if (!q->queue_ctx)
2335 goto err_exit;
2336
2337 /* init q->mq_kobj and sw queues' kobjects */
2338 blk_mq_sysfs_init(q);
2339
2340 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2341 GFP_KERNEL, set->numa_node);
2342 if (!q->queue_hw_ctx)
2343 goto err_percpu;
2344
2345 q->mq_map = set->mq_map;
2346
2347 blk_mq_realloc_hw_ctxs(set, q);
2348 if (!q->nr_hw_queues)
2349 goto err_hctxs;
2350
2351 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2352 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2353
2354 q->nr_queues = nr_cpu_ids;
2355
2356 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2357
2358 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2359 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2360
2361 q->sg_reserved_size = INT_MAX;
2362
2363 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2364 INIT_LIST_HEAD(&q->requeue_list);
2365 spin_lock_init(&q->requeue_lock);
2366
2367 if (q->nr_hw_queues > 1)
2368 blk_queue_make_request(q, blk_mq_make_request);
2369 else
2370 blk_queue_make_request(q, blk_sq_make_request);
2371
2372 /*
2373 * Do this after blk_queue_make_request() overrides it...
2374 */
2375 q->nr_requests = set->queue_depth;
2376
2377 /*
2378 * Default to classic polling
2379 */
2380 q->poll_nsec = -1;
2381
2382 if (set->ops->complete)
2383 blk_queue_softirq_done(q, set->ops->complete);
2384
2385 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2386
2387 get_online_cpus();
2388 mutex_lock(&all_q_mutex);
2389
2390 list_add_tail(&q->all_q_node, &all_q_list);
2391 blk_mq_add_queue_tag_set(set, q);
2392 blk_mq_map_swqueue(q, cpu_online_mask);
2393
2394 mutex_unlock(&all_q_mutex);
2395 put_online_cpus();
2396
2397 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2398 int ret;
2399
2400 ret = blk_mq_sched_init(q);
2401 if (ret)
2402 return ERR_PTR(ret);
2403 }
2404
2405 return q;
2406
2407 err_hctxs:
2408 kfree(q->queue_hw_ctx);
2409 err_percpu:
2410 free_percpu(q->queue_ctx);
2411 err_exit:
2412 q->mq_ops = NULL;
2413 return ERR_PTR(-ENOMEM);
2414 }
2415 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2416
2417 void blk_mq_free_queue(struct request_queue *q)
2418 {
2419 struct blk_mq_tag_set *set = q->tag_set;
2420
2421 mutex_lock(&all_q_mutex);
2422 list_del_init(&q->all_q_node);
2423 mutex_unlock(&all_q_mutex);
2424
2425 wbt_exit(q);
2426
2427 blk_mq_del_queue_tag_set(q);
2428
2429 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2430 }
2431
2432 /* Basically redo blk_mq_init_queue with queue frozen */
2433 static void blk_mq_queue_reinit(struct request_queue *q,
2434 const struct cpumask *online_mask)
2435 {
2436 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2437
2438 blk_mq_sysfs_unregister(q);
2439
2440 /*
2441 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2442 * we should change hctx numa_node according to new topology (this
2443 * involves free and re-allocate memory, worthy doing?)
2444 */
2445
2446 blk_mq_map_swqueue(q, online_mask);
2447
2448 blk_mq_sysfs_register(q);
2449 }
2450
2451 /*
2452 * New online cpumask which is going to be set in this hotplug event.
2453 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2454 * one-by-one and dynamically allocating this could result in a failure.
2455 */
2456 static struct cpumask cpuhp_online_new;
2457
2458 static void blk_mq_queue_reinit_work(void)
2459 {
2460 struct request_queue *q;
2461
2462 mutex_lock(&all_q_mutex);
2463 /*
2464 * We need to freeze and reinit all existing queues. Freezing
2465 * involves synchronous wait for an RCU grace period and doing it
2466 * one by one may take a long time. Start freezing all queues in
2467 * one swoop and then wait for the completions so that freezing can
2468 * take place in parallel.
2469 */
2470 list_for_each_entry(q, &all_q_list, all_q_node)
2471 blk_mq_freeze_queue_start(q);
2472 list_for_each_entry(q, &all_q_list, all_q_node)
2473 blk_mq_freeze_queue_wait(q);
2474
2475 list_for_each_entry(q, &all_q_list, all_q_node)
2476 blk_mq_queue_reinit(q, &cpuhp_online_new);
2477
2478 list_for_each_entry(q, &all_q_list, all_q_node)
2479 blk_mq_unfreeze_queue(q);
2480
2481 mutex_unlock(&all_q_mutex);
2482 }
2483
2484 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2485 {
2486 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2487 blk_mq_queue_reinit_work();
2488 return 0;
2489 }
2490
2491 /*
2492 * Before hotadded cpu starts handling requests, new mappings must be
2493 * established. Otherwise, these requests in hw queue might never be
2494 * dispatched.
2495 *
2496 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2497 * for CPU0, and ctx1 for CPU1).
2498 *
2499 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2500 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2501 *
2502 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2503 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2504 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2505 * ignored.
2506 */
2507 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2508 {
2509 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2510 cpumask_set_cpu(cpu, &cpuhp_online_new);
2511 blk_mq_queue_reinit_work();
2512 return 0;
2513 }
2514
2515 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2516 {
2517 int i;
2518
2519 for (i = 0; i < set->nr_hw_queues; i++)
2520 if (!__blk_mq_alloc_rq_map(set, i))
2521 goto out_unwind;
2522
2523 return 0;
2524
2525 out_unwind:
2526 while (--i >= 0)
2527 blk_mq_free_rq_map(set->tags[i]);
2528
2529 return -ENOMEM;
2530 }
2531
2532 /*
2533 * Allocate the request maps associated with this tag_set. Note that this
2534 * may reduce the depth asked for, if memory is tight. set->queue_depth
2535 * will be updated to reflect the allocated depth.
2536 */
2537 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2538 {
2539 unsigned int depth;
2540 int err;
2541
2542 depth = set->queue_depth;
2543 do {
2544 err = __blk_mq_alloc_rq_maps(set);
2545 if (!err)
2546 break;
2547
2548 set->queue_depth >>= 1;
2549 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2550 err = -ENOMEM;
2551 break;
2552 }
2553 } while (set->queue_depth);
2554
2555 if (!set->queue_depth || err) {
2556 pr_err("blk-mq: failed to allocate request map\n");
2557 return -ENOMEM;
2558 }
2559
2560 if (depth != set->queue_depth)
2561 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2562 depth, set->queue_depth);
2563
2564 return 0;
2565 }
2566
2567 /*
2568 * Alloc a tag set to be associated with one or more request queues.
2569 * May fail with EINVAL for various error conditions. May adjust the
2570 * requested depth down, if if it too large. In that case, the set
2571 * value will be stored in set->queue_depth.
2572 */
2573 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2574 {
2575 int ret;
2576
2577 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2578
2579 if (!set->nr_hw_queues)
2580 return -EINVAL;
2581 if (!set->queue_depth)
2582 return -EINVAL;
2583 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2584 return -EINVAL;
2585
2586 if (!set->ops->queue_rq)
2587 return -EINVAL;
2588
2589 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2590 pr_info("blk-mq: reduced tag depth to %u\n",
2591 BLK_MQ_MAX_DEPTH);
2592 set->queue_depth = BLK_MQ_MAX_DEPTH;
2593 }
2594
2595 /*
2596 * If a crashdump is active, then we are potentially in a very
2597 * memory constrained environment. Limit us to 1 queue and
2598 * 64 tags to prevent using too much memory.
2599 */
2600 if (is_kdump_kernel()) {
2601 set->nr_hw_queues = 1;
2602 set->queue_depth = min(64U, set->queue_depth);
2603 }
2604 /*
2605 * There is no use for more h/w queues than cpus.
2606 */
2607 if (set->nr_hw_queues > nr_cpu_ids)
2608 set->nr_hw_queues = nr_cpu_ids;
2609
2610 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2611 GFP_KERNEL, set->numa_node);
2612 if (!set->tags)
2613 return -ENOMEM;
2614
2615 ret = -ENOMEM;
2616 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2617 GFP_KERNEL, set->numa_node);
2618 if (!set->mq_map)
2619 goto out_free_tags;
2620
2621 if (set->ops->map_queues)
2622 ret = set->ops->map_queues(set);
2623 else
2624 ret = blk_mq_map_queues(set);
2625 if (ret)
2626 goto out_free_mq_map;
2627
2628 ret = blk_mq_alloc_rq_maps(set);
2629 if (ret)
2630 goto out_free_mq_map;
2631
2632 mutex_init(&set->tag_list_lock);
2633 INIT_LIST_HEAD(&set->tag_list);
2634
2635 return 0;
2636
2637 out_free_mq_map:
2638 kfree(set->mq_map);
2639 set->mq_map = NULL;
2640 out_free_tags:
2641 kfree(set->tags);
2642 set->tags = NULL;
2643 return ret;
2644 }
2645 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2646
2647 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2648 {
2649 int i;
2650
2651 for (i = 0; i < nr_cpu_ids; i++)
2652 blk_mq_free_map_and_requests(set, i);
2653
2654 kfree(set->mq_map);
2655 set->mq_map = NULL;
2656
2657 kfree(set->tags);
2658 set->tags = NULL;
2659 }
2660 EXPORT_SYMBOL(blk_mq_free_tag_set);
2661
2662 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2663 {
2664 struct blk_mq_tag_set *set = q->tag_set;
2665 struct blk_mq_hw_ctx *hctx;
2666 int i, ret;
2667
2668 if (!set)
2669 return -EINVAL;
2670
2671 blk_mq_freeze_queue(q);
2672 blk_mq_quiesce_queue(q);
2673
2674 ret = 0;
2675 queue_for_each_hw_ctx(q, hctx, i) {
2676 if (!hctx->tags)
2677 continue;
2678 /*
2679 * If we're using an MQ scheduler, just update the scheduler
2680 * queue depth. This is similar to what the old code would do.
2681 */
2682 if (!hctx->sched_tags) {
2683 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2684 min(nr, set->queue_depth),
2685 false);
2686 } else {
2687 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2688 nr, true);
2689 }
2690 if (ret)
2691 break;
2692 }
2693
2694 if (!ret)
2695 q->nr_requests = nr;
2696
2697 blk_mq_unfreeze_queue(q);
2698 blk_mq_start_stopped_hw_queues(q, true);
2699
2700 return ret;
2701 }
2702
2703 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2704 {
2705 struct request_queue *q;
2706
2707 if (nr_hw_queues > nr_cpu_ids)
2708 nr_hw_queues = nr_cpu_ids;
2709 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2710 return;
2711
2712 list_for_each_entry(q, &set->tag_list, tag_set_list)
2713 blk_mq_freeze_queue(q);
2714
2715 set->nr_hw_queues = nr_hw_queues;
2716 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2717 blk_mq_realloc_hw_ctxs(set, q);
2718
2719 /*
2720 * Manually set the make_request_fn as blk_queue_make_request
2721 * resets a lot of the queue settings.
2722 */
2723 if (q->nr_hw_queues > 1)
2724 q->make_request_fn = blk_mq_make_request;
2725 else
2726 q->make_request_fn = blk_sq_make_request;
2727
2728 blk_mq_queue_reinit(q, cpu_online_mask);
2729 }
2730
2731 list_for_each_entry(q, &set->tag_list, tag_set_list)
2732 blk_mq_unfreeze_queue(q);
2733 }
2734 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2735
2736 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2737 struct blk_mq_hw_ctx *hctx,
2738 struct request *rq)
2739 {
2740 struct blk_rq_stat stat[2];
2741 unsigned long ret = 0;
2742
2743 /*
2744 * If stats collection isn't on, don't sleep but turn it on for
2745 * future users
2746 */
2747 if (!blk_stat_enable(q))
2748 return 0;
2749
2750 /*
2751 * We don't have to do this once per IO, should optimize this
2752 * to just use the current window of stats until it changes
2753 */
2754 memset(&stat, 0, sizeof(stat));
2755 blk_hctx_stat_get(hctx, stat);
2756
2757 /*
2758 * As an optimistic guess, use half of the mean service time
2759 * for this type of request. We can (and should) make this smarter.
2760 * For instance, if the completion latencies are tight, we can
2761 * get closer than just half the mean. This is especially
2762 * important on devices where the completion latencies are longer
2763 * than ~10 usec.
2764 */
2765 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2766 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2767 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2768 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2769
2770 return ret;
2771 }
2772
2773 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2774 struct blk_mq_hw_ctx *hctx,
2775 struct request *rq)
2776 {
2777 struct hrtimer_sleeper hs;
2778 enum hrtimer_mode mode;
2779 unsigned int nsecs;
2780 ktime_t kt;
2781
2782 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2783 return false;
2784
2785 /*
2786 * poll_nsec can be:
2787 *
2788 * -1: don't ever hybrid sleep
2789 * 0: use half of prev avg
2790 * >0: use this specific value
2791 */
2792 if (q->poll_nsec == -1)
2793 return false;
2794 else if (q->poll_nsec > 0)
2795 nsecs = q->poll_nsec;
2796 else
2797 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2798
2799 if (!nsecs)
2800 return false;
2801
2802 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2803
2804 /*
2805 * This will be replaced with the stats tracking code, using
2806 * 'avg_completion_time / 2' as the pre-sleep target.
2807 */
2808 kt = nsecs;
2809
2810 mode = HRTIMER_MODE_REL;
2811 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2812 hrtimer_set_expires(&hs.timer, kt);
2813
2814 hrtimer_init_sleeper(&hs, current);
2815 do {
2816 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2817 break;
2818 set_current_state(TASK_UNINTERRUPTIBLE);
2819 hrtimer_start_expires(&hs.timer, mode);
2820 if (hs.task)
2821 io_schedule();
2822 hrtimer_cancel(&hs.timer);
2823 mode = HRTIMER_MODE_ABS;
2824 } while (hs.task && !signal_pending(current));
2825
2826 __set_current_state(TASK_RUNNING);
2827 destroy_hrtimer_on_stack(&hs.timer);
2828 return true;
2829 }
2830
2831 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2832 {
2833 struct request_queue *q = hctx->queue;
2834 long state;
2835
2836 /*
2837 * If we sleep, have the caller restart the poll loop to reset
2838 * the state. Like for the other success return cases, the
2839 * caller is responsible for checking if the IO completed. If
2840 * the IO isn't complete, we'll get called again and will go
2841 * straight to the busy poll loop.
2842 */
2843 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2844 return true;
2845
2846 hctx->poll_considered++;
2847
2848 state = current->state;
2849 while (!need_resched()) {
2850 int ret;
2851
2852 hctx->poll_invoked++;
2853
2854 ret = q->mq_ops->poll(hctx, rq->tag);
2855 if (ret > 0) {
2856 hctx->poll_success++;
2857 set_current_state(TASK_RUNNING);
2858 return true;
2859 }
2860
2861 if (signal_pending_state(state, current))
2862 set_current_state(TASK_RUNNING);
2863
2864 if (current->state == TASK_RUNNING)
2865 return true;
2866 if (ret < 0)
2867 break;
2868 cpu_relax();
2869 }
2870
2871 return false;
2872 }
2873
2874 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2875 {
2876 struct blk_mq_hw_ctx *hctx;
2877 struct blk_plug *plug;
2878 struct request *rq;
2879
2880 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2881 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2882 return false;
2883
2884 plug = current->plug;
2885 if (plug)
2886 blk_flush_plug_list(plug, false);
2887
2888 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2889 if (!blk_qc_t_is_internal(cookie))
2890 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2891 else
2892 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2893
2894 return __blk_mq_poll(hctx, rq);
2895 }
2896 EXPORT_SYMBOL_GPL(blk_mq_poll);
2897
2898 void blk_mq_disable_hotplug(void)
2899 {
2900 mutex_lock(&all_q_mutex);
2901 }
2902
2903 void blk_mq_enable_hotplug(void)
2904 {
2905 mutex_unlock(&all_q_mutex);
2906 }
2907
2908 static int __init blk_mq_init(void)
2909 {
2910 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2911 blk_mq_hctx_notify_dead);
2912
2913 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2914 blk_mq_queue_reinit_prepare,
2915 blk_mq_queue_reinit_dead);
2916 return 0;
2917 }
2918 subsys_initcall(blk_mq_init);