]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq-sched: improve dispatching from sw queue
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
89 };
90
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
94 {
95 struct mq_inflight *mi = priv;
96
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 blk_mq_run_hw_queues(q, false);
129 }
130 }
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132
133 void blk_mq_freeze_queue_wait(struct request_queue *q)
134 {
135 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
140 unsigned long timeout)
141 {
142 return wait_event_timeout(q->mq_freeze_wq,
143 percpu_ref_is_zero(&q->q_usage_counter),
144 timeout);
145 }
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 void blk_freeze_queue(struct request_queue *q)
153 {
154 /*
155 * In the !blk_mq case we are only calling this to kill the
156 * q_usage_counter, otherwise this increases the freeze depth
157 * and waits for it to return to zero. For this reason there is
158 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159 * exported to drivers as the only user for unfreeze is blk_mq.
160 */
161 blk_freeze_queue_start(q);
162 blk_mq_freeze_queue_wait(q);
163 }
164
165 void blk_mq_freeze_queue(struct request_queue *q)
166 {
167 /*
168 * ...just an alias to keep freeze and unfreeze actions balanced
169 * in the blk_mq_* namespace
170 */
171 blk_freeze_queue(q);
172 }
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174
175 void blk_mq_unfreeze_queue(struct request_queue *q)
176 {
177 int freeze_depth;
178
179 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
180 WARN_ON_ONCE(freeze_depth < 0);
181 if (!freeze_depth) {
182 percpu_ref_reinit(&q->q_usage_counter);
183 wake_up_all(&q->mq_freeze_wq);
184 }
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187
188 /*
189 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
190 * mpt3sas driver such that this function can be removed.
191 */
192 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
193 {
194 unsigned long flags;
195
196 spin_lock_irqsave(q->queue_lock, flags);
197 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 spin_unlock_irqrestore(q->queue_lock, flags);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
201
202 /**
203 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 * @q: request queue.
205 *
206 * Note: this function does not prevent that the struct request end_io()
207 * callback function is invoked. Once this function is returned, we make
208 * sure no dispatch can happen until the queue is unquiesced via
209 * blk_mq_unquiesce_queue().
210 */
211 void blk_mq_quiesce_queue(struct request_queue *q)
212 {
213 struct blk_mq_hw_ctx *hctx;
214 unsigned int i;
215 bool rcu = false;
216
217 blk_mq_quiesce_queue_nowait(q);
218
219 queue_for_each_hw_ctx(q, hctx, i) {
220 if (hctx->flags & BLK_MQ_F_BLOCKING)
221 synchronize_srcu(hctx->queue_rq_srcu);
222 else
223 rcu = true;
224 }
225 if (rcu)
226 synchronize_rcu();
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
229
230 /*
231 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
232 * @q: request queue.
233 *
234 * This function recovers queue into the state before quiescing
235 * which is done by blk_mq_quiesce_queue.
236 */
237 void blk_mq_unquiesce_queue(struct request_queue *q)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(q->queue_lock, flags);
242 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243 spin_unlock_irqrestore(q->queue_lock, flags);
244
245 /* dispatch requests which are inserted during quiescing */
246 blk_mq_run_hw_queues(q, true);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
249
250 void blk_mq_wake_waiters(struct request_queue *q)
251 {
252 struct blk_mq_hw_ctx *hctx;
253 unsigned int i;
254
255 queue_for_each_hw_ctx(q, hctx, i)
256 if (blk_mq_hw_queue_mapped(hctx))
257 blk_mq_tag_wakeup_all(hctx->tags, true);
258
259 /*
260 * If we are called because the queue has now been marked as
261 * dying, we need to ensure that processes currently waiting on
262 * the queue are notified as well.
263 */
264 wake_up_all(&q->mq_freeze_wq);
265 }
266
267 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
268 {
269 return blk_mq_has_free_tags(hctx->tags);
270 }
271 EXPORT_SYMBOL(blk_mq_can_queue);
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 unsigned int tag, unsigned int op)
275 {
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
278
279 rq->rq_flags = 0;
280
281 if (data->flags & BLK_MQ_REQ_INTERNAL) {
282 rq->tag = -1;
283 rq->internal_tag = tag;
284 } else {
285 if (blk_mq_tag_busy(data->hctx)) {
286 rq->rq_flags = RQF_MQ_INFLIGHT;
287 atomic_inc(&data->hctx->nr_active);
288 }
289 rq->tag = tag;
290 rq->internal_tag = -1;
291 data->hctx->tags->rqs[rq->tag] = rq;
292 }
293
294 INIT_LIST_HEAD(&rq->queuelist);
295 /* csd/requeue_work/fifo_time is initialized before use */
296 rq->q = data->q;
297 rq->mq_ctx = data->ctx;
298 rq->cmd_flags = op;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 /* do not touch atomic flags, it needs atomic ops against the timer */
302 rq->cpu = -1;
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 rq->start_time = jiffies;
308 #ifdef CONFIG_BLK_CGROUP
309 rq->rl = NULL;
310 set_start_time_ns(rq);
311 rq->io_start_time_ns = 0;
312 #endif
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316 #endif
317 rq->special = NULL;
318 /* tag was already set */
319 rq->extra_len = 0;
320
321 INIT_LIST_HEAD(&rq->timeout_list);
322 rq->timeout = 0;
323
324 rq->end_io = NULL;
325 rq->end_io_data = NULL;
326 rq->next_rq = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(op)]++;
329 return rq;
330 }
331
332 static struct request *blk_mq_get_request(struct request_queue *q,
333 struct bio *bio, unsigned int op,
334 struct blk_mq_alloc_data *data)
335 {
336 struct elevator_queue *e = q->elevator;
337 struct request *rq;
338 unsigned int tag;
339 struct blk_mq_ctx *local_ctx = NULL;
340
341 blk_queue_enter_live(q);
342 data->q = q;
343 if (likely(!data->ctx))
344 data->ctx = local_ctx = blk_mq_get_ctx(q);
345 if (likely(!data->hctx))
346 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 if (op & REQ_NOWAIT)
348 data->flags |= BLK_MQ_REQ_NOWAIT;
349
350 if (e) {
351 data->flags |= BLK_MQ_REQ_INTERNAL;
352
353 /*
354 * Flush requests are special and go directly to the
355 * dispatch list.
356 */
357 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
358 e->type->ops.mq.limit_depth(op, data);
359 }
360
361 tag = blk_mq_get_tag(data);
362 if (tag == BLK_MQ_TAG_FAIL) {
363 if (local_ctx) {
364 blk_mq_put_ctx(local_ctx);
365 data->ctx = NULL;
366 }
367 blk_queue_exit(q);
368 return NULL;
369 }
370
371 rq = blk_mq_rq_ctx_init(data, tag, op);
372 if (!op_is_flush(op)) {
373 rq->elv.icq = NULL;
374 if (e && e->type->ops.mq.prepare_request) {
375 if (e->type->icq_cache && rq_ioc(bio))
376 blk_mq_sched_assign_ioc(rq, bio);
377
378 e->type->ops.mq.prepare_request(rq, bio);
379 rq->rq_flags |= RQF_ELVPRIV;
380 }
381 }
382 data->hctx->queued++;
383 return rq;
384 }
385
386 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387 unsigned int flags)
388 {
389 struct blk_mq_alloc_data alloc_data = { .flags = flags };
390 struct request *rq;
391 int ret;
392
393 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 if (ret)
395 return ERR_PTR(ret);
396
397 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398 blk_queue_exit(q);
399
400 if (!rq)
401 return ERR_PTR(-EWOULDBLOCK);
402
403 blk_mq_put_ctx(alloc_data.ctx);
404
405 rq->__data_len = 0;
406 rq->__sector = (sector_t) -1;
407 rq->bio = rq->biotail = NULL;
408 return rq;
409 }
410 EXPORT_SYMBOL(blk_mq_alloc_request);
411
412 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
413 unsigned int op, unsigned int flags, unsigned int hctx_idx)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags };
416 struct request *rq;
417 unsigned int cpu;
418 int ret;
419
420 /*
421 * If the tag allocator sleeps we could get an allocation for a
422 * different hardware context. No need to complicate the low level
423 * allocator for this for the rare use case of a command tied to
424 * a specific queue.
425 */
426 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
427 return ERR_PTR(-EINVAL);
428
429 if (hctx_idx >= q->nr_hw_queues)
430 return ERR_PTR(-EIO);
431
432 ret = blk_queue_enter(q, true);
433 if (ret)
434 return ERR_PTR(ret);
435
436 /*
437 * Check if the hardware context is actually mapped to anything.
438 * If not tell the caller that it should skip this queue.
439 */
440 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
441 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
442 blk_queue_exit(q);
443 return ERR_PTR(-EXDEV);
444 }
445 cpu = cpumask_first(alloc_data.hctx->cpumask);
446 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
447
448 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449 blk_queue_exit(q);
450
451 if (!rq)
452 return ERR_PTR(-EWOULDBLOCK);
453
454 return rq;
455 }
456 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
457
458 void blk_mq_free_request(struct request *rq)
459 {
460 struct request_queue *q = rq->q;
461 struct elevator_queue *e = q->elevator;
462 struct blk_mq_ctx *ctx = rq->mq_ctx;
463 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
464 const int sched_tag = rq->internal_tag;
465
466 if (rq->rq_flags & RQF_ELVPRIV) {
467 if (e && e->type->ops.mq.finish_request)
468 e->type->ops.mq.finish_request(rq);
469 if (rq->elv.icq) {
470 put_io_context(rq->elv.icq->ioc);
471 rq->elv.icq = NULL;
472 }
473 }
474
475 ctx->rq_completed[rq_is_sync(rq)]++;
476 if (rq->rq_flags & RQF_MQ_INFLIGHT)
477 atomic_dec(&hctx->nr_active);
478
479 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
480 laptop_io_completion(q->backing_dev_info);
481
482 wbt_done(q->rq_wb, &rq->issue_stat);
483
484 if (blk_rq_rl(rq))
485 blk_put_rl(blk_rq_rl(rq));
486
487 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
488 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
489 if (rq->tag != -1)
490 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491 if (sched_tag != -1)
492 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493 blk_mq_sched_restart(hctx);
494 blk_queue_exit(q);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 {
500 blk_account_io_done(rq);
501
502 if (rq->end_io) {
503 wbt_done(rq->q->rq_wb, &rq->issue_stat);
504 rq->end_io(rq, error);
505 } else {
506 if (unlikely(blk_bidi_rq(rq)))
507 blk_mq_free_request(rq->next_rq);
508 blk_mq_free_request(rq);
509 }
510 }
511 EXPORT_SYMBOL(__blk_mq_end_request);
512
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516 BUG();
517 __blk_mq_end_request(rq, error);
518 }
519 EXPORT_SYMBOL(blk_mq_end_request);
520
521 static void __blk_mq_complete_request_remote(void *data)
522 {
523 struct request *rq = data;
524
525 rq->q->softirq_done_fn(rq);
526 }
527
528 static void __blk_mq_complete_request(struct request *rq)
529 {
530 struct blk_mq_ctx *ctx = rq->mq_ctx;
531 bool shared = false;
532 int cpu;
533
534 if (rq->internal_tag != -1)
535 blk_mq_sched_completed_request(rq);
536 if (rq->rq_flags & RQF_STATS) {
537 blk_mq_poll_stats_start(rq->q);
538 blk_stat_add(rq);
539 }
540
541 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
542 rq->q->softirq_done_fn(rq);
543 return;
544 }
545
546 cpu = get_cpu();
547 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
548 shared = cpus_share_cache(cpu, ctx->cpu);
549
550 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
551 rq->csd.func = __blk_mq_complete_request_remote;
552 rq->csd.info = rq;
553 rq->csd.flags = 0;
554 smp_call_function_single_async(ctx->cpu, &rq->csd);
555 } else {
556 rq->q->softirq_done_fn(rq);
557 }
558 put_cpu();
559 }
560
561 /**
562 * blk_mq_complete_request - end I/O on a request
563 * @rq: the request being processed
564 *
565 * Description:
566 * Ends all I/O on a request. It does not handle partial completions.
567 * The actual completion happens out-of-order, through a IPI handler.
568 **/
569 void blk_mq_complete_request(struct request *rq)
570 {
571 struct request_queue *q = rq->q;
572
573 if (unlikely(blk_should_fake_timeout(q)))
574 return;
575 if (!blk_mark_rq_complete(rq))
576 __blk_mq_complete_request(rq);
577 }
578 EXPORT_SYMBOL(blk_mq_complete_request);
579
580 int blk_mq_request_started(struct request *rq)
581 {
582 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
583 }
584 EXPORT_SYMBOL_GPL(blk_mq_request_started);
585
586 void blk_mq_start_request(struct request *rq)
587 {
588 struct request_queue *q = rq->q;
589
590 blk_mq_sched_started_request(rq);
591
592 trace_block_rq_issue(q, rq);
593
594 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
595 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
596 rq->rq_flags |= RQF_STATS;
597 wbt_issue(q->rq_wb, &rq->issue_stat);
598 }
599
600 blk_add_timer(rq);
601
602 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
603
604 /*
605 * Mark us as started and clear complete. Complete might have been
606 * set if requeue raced with timeout, which then marked it as
607 * complete. So be sure to clear complete again when we start
608 * the request, otherwise we'll ignore the completion event.
609 *
610 * Ensure that ->deadline is visible before we set STARTED, such that
611 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
612 * it observes STARTED.
613 */
614 smp_wmb();
615 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
616 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
617 /*
618 * Coherence order guarantees these consecutive stores to a
619 * single variable propagate in the specified order. Thus the
620 * clear_bit() is ordered _after_ the set bit. See
621 * blk_mq_check_expired().
622 *
623 * (the bits must be part of the same byte for this to be
624 * true).
625 */
626 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
627 }
628
629 if (q->dma_drain_size && blk_rq_bytes(rq)) {
630 /*
631 * Make sure space for the drain appears. We know we can do
632 * this because max_hw_segments has been adjusted to be one
633 * fewer than the device can handle.
634 */
635 rq->nr_phys_segments++;
636 }
637 }
638 EXPORT_SYMBOL(blk_mq_start_request);
639
640 /*
641 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
642 * flag isn't set yet, so there may be race with timeout handler,
643 * but given rq->deadline is just set in .queue_rq() under
644 * this situation, the race won't be possible in reality because
645 * rq->timeout should be set as big enough to cover the window
646 * between blk_mq_start_request() called from .queue_rq() and
647 * clearing REQ_ATOM_STARTED here.
648 */
649 static void __blk_mq_requeue_request(struct request *rq)
650 {
651 struct request_queue *q = rq->q;
652
653 trace_block_rq_requeue(q, rq);
654 wbt_requeue(q->rq_wb, &rq->issue_stat);
655 blk_mq_sched_requeue_request(rq);
656
657 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
658 if (q->dma_drain_size && blk_rq_bytes(rq))
659 rq->nr_phys_segments--;
660 }
661 }
662
663 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
664 {
665 __blk_mq_requeue_request(rq);
666
667 BUG_ON(blk_queued_rq(rq));
668 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
669 }
670 EXPORT_SYMBOL(blk_mq_requeue_request);
671
672 static void blk_mq_requeue_work(struct work_struct *work)
673 {
674 struct request_queue *q =
675 container_of(work, struct request_queue, requeue_work.work);
676 LIST_HEAD(rq_list);
677 struct request *rq, *next;
678
679 spin_lock_irq(&q->requeue_lock);
680 list_splice_init(&q->requeue_list, &rq_list);
681 spin_unlock_irq(&q->requeue_lock);
682
683 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
684 if (!(rq->rq_flags & RQF_SOFTBARRIER))
685 continue;
686
687 rq->rq_flags &= ~RQF_SOFTBARRIER;
688 list_del_init(&rq->queuelist);
689 blk_mq_sched_insert_request(rq, true, false, false, true);
690 }
691
692 while (!list_empty(&rq_list)) {
693 rq = list_entry(rq_list.next, struct request, queuelist);
694 list_del_init(&rq->queuelist);
695 blk_mq_sched_insert_request(rq, false, false, false, true);
696 }
697
698 blk_mq_run_hw_queues(q, false);
699 }
700
701 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
702 bool kick_requeue_list)
703 {
704 struct request_queue *q = rq->q;
705 unsigned long flags;
706
707 /*
708 * We abuse this flag that is otherwise used by the I/O scheduler to
709 * request head insertation from the workqueue.
710 */
711 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
712
713 spin_lock_irqsave(&q->requeue_lock, flags);
714 if (at_head) {
715 rq->rq_flags |= RQF_SOFTBARRIER;
716 list_add(&rq->queuelist, &q->requeue_list);
717 } else {
718 list_add_tail(&rq->queuelist, &q->requeue_list);
719 }
720 spin_unlock_irqrestore(&q->requeue_lock, flags);
721
722 if (kick_requeue_list)
723 blk_mq_kick_requeue_list(q);
724 }
725 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
726
727 void blk_mq_kick_requeue_list(struct request_queue *q)
728 {
729 kblockd_schedule_delayed_work(&q->requeue_work, 0);
730 }
731 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
732
733 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
734 unsigned long msecs)
735 {
736 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
737 msecs_to_jiffies(msecs));
738 }
739 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
740
741 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
742 {
743 if (tag < tags->nr_tags) {
744 prefetch(tags->rqs[tag]);
745 return tags->rqs[tag];
746 }
747
748 return NULL;
749 }
750 EXPORT_SYMBOL(blk_mq_tag_to_rq);
751
752 struct blk_mq_timeout_data {
753 unsigned long next;
754 unsigned int next_set;
755 };
756
757 void blk_mq_rq_timed_out(struct request *req, bool reserved)
758 {
759 const struct blk_mq_ops *ops = req->q->mq_ops;
760 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
761
762 /*
763 * We know that complete is set at this point. If STARTED isn't set
764 * anymore, then the request isn't active and the "timeout" should
765 * just be ignored. This can happen due to the bitflag ordering.
766 * Timeout first checks if STARTED is set, and if it is, assumes
767 * the request is active. But if we race with completion, then
768 * both flags will get cleared. So check here again, and ignore
769 * a timeout event with a request that isn't active.
770 */
771 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
772 return;
773
774 if (ops->timeout)
775 ret = ops->timeout(req, reserved);
776
777 switch (ret) {
778 case BLK_EH_HANDLED:
779 __blk_mq_complete_request(req);
780 break;
781 case BLK_EH_RESET_TIMER:
782 blk_add_timer(req);
783 blk_clear_rq_complete(req);
784 break;
785 case BLK_EH_NOT_HANDLED:
786 break;
787 default:
788 printk(KERN_ERR "block: bad eh return: %d\n", ret);
789 break;
790 }
791 }
792
793 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
794 struct request *rq, void *priv, bool reserved)
795 {
796 struct blk_mq_timeout_data *data = priv;
797 unsigned long deadline;
798
799 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
800 return;
801
802 /*
803 * Ensures that if we see STARTED we must also see our
804 * up-to-date deadline, see blk_mq_start_request().
805 */
806 smp_rmb();
807
808 deadline = READ_ONCE(rq->deadline);
809
810 /*
811 * The rq being checked may have been freed and reallocated
812 * out already here, we avoid this race by checking rq->deadline
813 * and REQ_ATOM_COMPLETE flag together:
814 *
815 * - if rq->deadline is observed as new value because of
816 * reusing, the rq won't be timed out because of timing.
817 * - if rq->deadline is observed as previous value,
818 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
819 * because we put a barrier between setting rq->deadline
820 * and clearing the flag in blk_mq_start_request(), so
821 * this rq won't be timed out too.
822 */
823 if (time_after_eq(jiffies, deadline)) {
824 if (!blk_mark_rq_complete(rq)) {
825 /*
826 * Again coherence order ensures that consecutive reads
827 * from the same variable must be in that order. This
828 * ensures that if we see COMPLETE clear, we must then
829 * see STARTED set and we'll ignore this timeout.
830 *
831 * (There's also the MB implied by the test_and_clear())
832 */
833 blk_mq_rq_timed_out(rq, reserved);
834 }
835 } else if (!data->next_set || time_after(data->next, deadline)) {
836 data->next = deadline;
837 data->next_set = 1;
838 }
839 }
840
841 static void blk_mq_timeout_work(struct work_struct *work)
842 {
843 struct request_queue *q =
844 container_of(work, struct request_queue, timeout_work);
845 struct blk_mq_timeout_data data = {
846 .next = 0,
847 .next_set = 0,
848 };
849 int i;
850
851 /* A deadlock might occur if a request is stuck requiring a
852 * timeout at the same time a queue freeze is waiting
853 * completion, since the timeout code would not be able to
854 * acquire the queue reference here.
855 *
856 * That's why we don't use blk_queue_enter here; instead, we use
857 * percpu_ref_tryget directly, because we need to be able to
858 * obtain a reference even in the short window between the queue
859 * starting to freeze, by dropping the first reference in
860 * blk_freeze_queue_start, and the moment the last request is
861 * consumed, marked by the instant q_usage_counter reaches
862 * zero.
863 */
864 if (!percpu_ref_tryget(&q->q_usage_counter))
865 return;
866
867 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
868
869 if (data.next_set) {
870 data.next = blk_rq_timeout(round_jiffies_up(data.next));
871 mod_timer(&q->timeout, data.next);
872 } else {
873 struct blk_mq_hw_ctx *hctx;
874
875 queue_for_each_hw_ctx(q, hctx, i) {
876 /* the hctx may be unmapped, so check it here */
877 if (blk_mq_hw_queue_mapped(hctx))
878 blk_mq_tag_idle(hctx);
879 }
880 }
881 blk_queue_exit(q);
882 }
883
884 struct flush_busy_ctx_data {
885 struct blk_mq_hw_ctx *hctx;
886 struct list_head *list;
887 };
888
889 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
890 {
891 struct flush_busy_ctx_data *flush_data = data;
892 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
893 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
894
895 sbitmap_clear_bit(sb, bitnr);
896 spin_lock(&ctx->lock);
897 list_splice_tail_init(&ctx->rq_list, flush_data->list);
898 spin_unlock(&ctx->lock);
899 return true;
900 }
901
902 /*
903 * Process software queues that have been marked busy, splicing them
904 * to the for-dispatch
905 */
906 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
907 {
908 struct flush_busy_ctx_data data = {
909 .hctx = hctx,
910 .list = list,
911 };
912
913 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
914 }
915 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
916
917 struct dispatch_rq_data {
918 struct blk_mq_hw_ctx *hctx;
919 struct request *rq;
920 };
921
922 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
923 void *data)
924 {
925 struct dispatch_rq_data *dispatch_data = data;
926 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
927 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
928
929 spin_lock(&ctx->lock);
930 if (unlikely(!list_empty(&ctx->rq_list))) {
931 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
932 list_del_init(&dispatch_data->rq->queuelist);
933 if (list_empty(&ctx->rq_list))
934 sbitmap_clear_bit(sb, bitnr);
935 }
936 spin_unlock(&ctx->lock);
937
938 return !dispatch_data->rq;
939 }
940
941 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
942 struct blk_mq_ctx *start)
943 {
944 unsigned off = start ? start->index_hw : 0;
945 struct dispatch_rq_data data = {
946 .hctx = hctx,
947 .rq = NULL,
948 };
949
950 __sbitmap_for_each_set(&hctx->ctx_map, off,
951 dispatch_rq_from_ctx, &data);
952
953 return data.rq;
954 }
955
956 static inline unsigned int queued_to_index(unsigned int queued)
957 {
958 if (!queued)
959 return 0;
960
961 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
962 }
963
964 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
965 bool wait)
966 {
967 struct blk_mq_alloc_data data = {
968 .q = rq->q,
969 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
970 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
971 };
972
973 might_sleep_if(wait);
974
975 if (rq->tag != -1)
976 goto done;
977
978 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
979 data.flags |= BLK_MQ_REQ_RESERVED;
980
981 rq->tag = blk_mq_get_tag(&data);
982 if (rq->tag >= 0) {
983 if (blk_mq_tag_busy(data.hctx)) {
984 rq->rq_flags |= RQF_MQ_INFLIGHT;
985 atomic_inc(&data.hctx->nr_active);
986 }
987 data.hctx->tags->rqs[rq->tag] = rq;
988 }
989
990 done:
991 if (hctx)
992 *hctx = data.hctx;
993 return rq->tag != -1;
994 }
995
996 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
997 struct request *rq)
998 {
999 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
1000 rq->tag = -1;
1001
1002 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
1003 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
1004 atomic_dec(&hctx->nr_active);
1005 }
1006 }
1007
1008 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
1009 struct request *rq)
1010 {
1011 if (rq->tag == -1 || rq->internal_tag == -1)
1012 return;
1013
1014 __blk_mq_put_driver_tag(hctx, rq);
1015 }
1016
1017 static void blk_mq_put_driver_tag(struct request *rq)
1018 {
1019 struct blk_mq_hw_ctx *hctx;
1020
1021 if (rq->tag == -1 || rq->internal_tag == -1)
1022 return;
1023
1024 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1025 __blk_mq_put_driver_tag(hctx, rq);
1026 }
1027
1028 /*
1029 * If we fail getting a driver tag because all the driver tags are already
1030 * assigned and on the dispatch list, BUT the first entry does not have a
1031 * tag, then we could deadlock. For that case, move entries with assigned
1032 * driver tags to the front, leaving the set of tagged requests in the
1033 * same order, and the untagged set in the same order.
1034 */
1035 static bool reorder_tags_to_front(struct list_head *list)
1036 {
1037 struct request *rq, *tmp, *first = NULL;
1038
1039 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
1040 if (rq == first)
1041 break;
1042 if (rq->tag != -1) {
1043 list_move(&rq->queuelist, list);
1044 if (!first)
1045 first = rq;
1046 }
1047 }
1048
1049 return first != NULL;
1050 }
1051
1052 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1053 void *key)
1054 {
1055 struct blk_mq_hw_ctx *hctx;
1056
1057 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1058
1059 list_del(&wait->entry);
1060 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1061 blk_mq_run_hw_queue(hctx, true);
1062 return 1;
1063 }
1064
1065 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1066 {
1067 struct sbq_wait_state *ws;
1068
1069 /*
1070 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1071 * The thread which wins the race to grab this bit adds the hardware
1072 * queue to the wait queue.
1073 */
1074 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1075 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1076 return false;
1077
1078 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1079 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1080
1081 /*
1082 * As soon as this returns, it's no longer safe to fiddle with
1083 * hctx->dispatch_wait, since a completion can wake up the wait queue
1084 * and unlock the bit.
1085 */
1086 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1087 return true;
1088 }
1089
1090 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1091 bool got_budget)
1092 {
1093 struct blk_mq_hw_ctx *hctx;
1094 struct request *rq;
1095 int errors, queued;
1096
1097 if (list_empty(list))
1098 return false;
1099
1100 WARN_ON(!list_is_singular(list) && got_budget);
1101
1102 /*
1103 * Now process all the entries, sending them to the driver.
1104 */
1105 errors = queued = 0;
1106 do {
1107 struct blk_mq_queue_data bd;
1108 blk_status_t ret;
1109
1110 rq = list_first_entry(list, struct request, queuelist);
1111 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1112 if (!queued && reorder_tags_to_front(list))
1113 continue;
1114
1115 /*
1116 * The initial allocation attempt failed, so we need to
1117 * rerun the hardware queue when a tag is freed.
1118 */
1119 if (!blk_mq_dispatch_wait_add(hctx)) {
1120 if (got_budget)
1121 blk_mq_put_dispatch_budget(hctx);
1122 break;
1123 }
1124
1125 /*
1126 * It's possible that a tag was freed in the window
1127 * between the allocation failure and adding the
1128 * hardware queue to the wait queue.
1129 */
1130 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1131 if (got_budget)
1132 blk_mq_put_dispatch_budget(hctx);
1133 break;
1134 }
1135 }
1136
1137 if (!got_budget) {
1138 ret = blk_mq_get_dispatch_budget(hctx);
1139 if (ret == BLK_STS_RESOURCE)
1140 break;
1141 if (ret != BLK_STS_OK)
1142 goto fail_rq;
1143 }
1144
1145 list_del_init(&rq->queuelist);
1146
1147 bd.rq = rq;
1148
1149 /*
1150 * Flag last if we have no more requests, or if we have more
1151 * but can't assign a driver tag to it.
1152 */
1153 if (list_empty(list))
1154 bd.last = true;
1155 else {
1156 struct request *nxt;
1157
1158 nxt = list_first_entry(list, struct request, queuelist);
1159 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1160 }
1161
1162 ret = q->mq_ops->queue_rq(hctx, &bd);
1163 if (ret == BLK_STS_RESOURCE) {
1164 blk_mq_put_driver_tag_hctx(hctx, rq);
1165 list_add(&rq->queuelist, list);
1166 __blk_mq_requeue_request(rq);
1167 break;
1168 }
1169
1170 fail_rq:
1171 if (unlikely(ret != BLK_STS_OK)) {
1172 errors++;
1173 blk_mq_end_request(rq, BLK_STS_IOERR);
1174 continue;
1175 }
1176
1177 queued++;
1178 } while (!list_empty(list));
1179
1180 hctx->dispatched[queued_to_index(queued)]++;
1181
1182 /*
1183 * Any items that need requeuing? Stuff them into hctx->dispatch,
1184 * that is where we will continue on next queue run.
1185 */
1186 if (!list_empty(list)) {
1187 /*
1188 * If an I/O scheduler has been configured and we got a driver
1189 * tag for the next request already, free it again.
1190 */
1191 rq = list_first_entry(list, struct request, queuelist);
1192 blk_mq_put_driver_tag(rq);
1193
1194 spin_lock(&hctx->lock);
1195 list_splice_init(list, &hctx->dispatch);
1196 spin_unlock(&hctx->lock);
1197
1198 /*
1199 * If SCHED_RESTART was set by the caller of this function and
1200 * it is no longer set that means that it was cleared by another
1201 * thread and hence that a queue rerun is needed.
1202 *
1203 * If TAG_WAITING is set that means that an I/O scheduler has
1204 * been configured and another thread is waiting for a driver
1205 * tag. To guarantee fairness, do not rerun this hardware queue
1206 * but let the other thread grab the driver tag.
1207 *
1208 * If no I/O scheduler has been configured it is possible that
1209 * the hardware queue got stopped and restarted before requests
1210 * were pushed back onto the dispatch list. Rerun the queue to
1211 * avoid starvation. Notes:
1212 * - blk_mq_run_hw_queue() checks whether or not a queue has
1213 * been stopped before rerunning a queue.
1214 * - Some but not all block drivers stop a queue before
1215 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1216 * and dm-rq.
1217 */
1218 if (!blk_mq_sched_needs_restart(hctx) &&
1219 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1220 blk_mq_run_hw_queue(hctx, true);
1221 }
1222
1223 return (queued + errors) != 0;
1224 }
1225
1226 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1227 {
1228 int srcu_idx;
1229 bool run_queue;
1230
1231 /*
1232 * We should be running this queue from one of the CPUs that
1233 * are mapped to it.
1234 */
1235 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1236 cpu_online(hctx->next_cpu));
1237
1238 /*
1239 * We can't run the queue inline with ints disabled. Ensure that
1240 * we catch bad users of this early.
1241 */
1242 WARN_ON_ONCE(in_interrupt());
1243
1244 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1245 rcu_read_lock();
1246 run_queue = blk_mq_sched_dispatch_requests(hctx);
1247 rcu_read_unlock();
1248 } else {
1249 might_sleep();
1250
1251 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1252 run_queue = blk_mq_sched_dispatch_requests(hctx);
1253 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1254 }
1255
1256 if (run_queue)
1257 blk_mq_run_hw_queue(hctx, true);
1258 }
1259
1260 /*
1261 * It'd be great if the workqueue API had a way to pass
1262 * in a mask and had some smarts for more clever placement.
1263 * For now we just round-robin here, switching for every
1264 * BLK_MQ_CPU_WORK_BATCH queued items.
1265 */
1266 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1267 {
1268 if (hctx->queue->nr_hw_queues == 1)
1269 return WORK_CPU_UNBOUND;
1270
1271 if (--hctx->next_cpu_batch <= 0) {
1272 int next_cpu;
1273
1274 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1275 if (next_cpu >= nr_cpu_ids)
1276 next_cpu = cpumask_first(hctx->cpumask);
1277
1278 hctx->next_cpu = next_cpu;
1279 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1280 }
1281
1282 return hctx->next_cpu;
1283 }
1284
1285 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1286 unsigned long msecs)
1287 {
1288 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1289 return;
1290
1291 if (unlikely(blk_mq_hctx_stopped(hctx)))
1292 return;
1293
1294 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1295 int cpu = get_cpu();
1296 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1297 __blk_mq_run_hw_queue(hctx);
1298 put_cpu();
1299 return;
1300 }
1301
1302 put_cpu();
1303 }
1304
1305 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1306 &hctx->run_work,
1307 msecs_to_jiffies(msecs));
1308 }
1309
1310 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1311 {
1312 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1313 }
1314 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1315
1316 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1317 {
1318 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1319 }
1320 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1321
1322 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1323 {
1324 struct blk_mq_hw_ctx *hctx;
1325 int i;
1326
1327 queue_for_each_hw_ctx(q, hctx, i) {
1328 if (!blk_mq_hctx_has_pending(hctx) ||
1329 blk_mq_hctx_stopped(hctx))
1330 continue;
1331
1332 blk_mq_run_hw_queue(hctx, async);
1333 }
1334 }
1335 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1336
1337 /**
1338 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1339 * @q: request queue.
1340 *
1341 * The caller is responsible for serializing this function against
1342 * blk_mq_{start,stop}_hw_queue().
1343 */
1344 bool blk_mq_queue_stopped(struct request_queue *q)
1345 {
1346 struct blk_mq_hw_ctx *hctx;
1347 int i;
1348
1349 queue_for_each_hw_ctx(q, hctx, i)
1350 if (blk_mq_hctx_stopped(hctx))
1351 return true;
1352
1353 return false;
1354 }
1355 EXPORT_SYMBOL(blk_mq_queue_stopped);
1356
1357 /*
1358 * This function is often used for pausing .queue_rq() by driver when
1359 * there isn't enough resource or some conditions aren't satisfied, and
1360 * BLK_STS_RESOURCE is usually returned.
1361 *
1362 * We do not guarantee that dispatch can be drained or blocked
1363 * after blk_mq_stop_hw_queue() returns. Please use
1364 * blk_mq_quiesce_queue() for that requirement.
1365 */
1366 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1367 {
1368 cancel_delayed_work(&hctx->run_work);
1369
1370 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1371 }
1372 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1373
1374 /*
1375 * This function is often used for pausing .queue_rq() by driver when
1376 * there isn't enough resource or some conditions aren't satisfied, and
1377 * BLK_STS_RESOURCE is usually returned.
1378 *
1379 * We do not guarantee that dispatch can be drained or blocked
1380 * after blk_mq_stop_hw_queues() returns. Please use
1381 * blk_mq_quiesce_queue() for that requirement.
1382 */
1383 void blk_mq_stop_hw_queues(struct request_queue *q)
1384 {
1385 struct blk_mq_hw_ctx *hctx;
1386 int i;
1387
1388 queue_for_each_hw_ctx(q, hctx, i)
1389 blk_mq_stop_hw_queue(hctx);
1390 }
1391 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1392
1393 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1394 {
1395 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1396
1397 blk_mq_run_hw_queue(hctx, false);
1398 }
1399 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1400
1401 void blk_mq_start_hw_queues(struct request_queue *q)
1402 {
1403 struct blk_mq_hw_ctx *hctx;
1404 int i;
1405
1406 queue_for_each_hw_ctx(q, hctx, i)
1407 blk_mq_start_hw_queue(hctx);
1408 }
1409 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1410
1411 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1412 {
1413 if (!blk_mq_hctx_stopped(hctx))
1414 return;
1415
1416 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1417 blk_mq_run_hw_queue(hctx, async);
1418 }
1419 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1420
1421 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1422 {
1423 struct blk_mq_hw_ctx *hctx;
1424 int i;
1425
1426 queue_for_each_hw_ctx(q, hctx, i)
1427 blk_mq_start_stopped_hw_queue(hctx, async);
1428 }
1429 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1430
1431 static void blk_mq_run_work_fn(struct work_struct *work)
1432 {
1433 struct blk_mq_hw_ctx *hctx;
1434
1435 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1436
1437 /*
1438 * If we are stopped, don't run the queue. The exception is if
1439 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1440 * the STOPPED bit and run it.
1441 */
1442 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1443 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1444 return;
1445
1446 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1447 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1448 }
1449
1450 __blk_mq_run_hw_queue(hctx);
1451 }
1452
1453
1454 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1455 {
1456 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1457 return;
1458
1459 /*
1460 * Stop the hw queue, then modify currently delayed work.
1461 * This should prevent us from running the queue prematurely.
1462 * Mark the queue as auto-clearing STOPPED when it runs.
1463 */
1464 blk_mq_stop_hw_queue(hctx);
1465 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1466 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1467 &hctx->run_work,
1468 msecs_to_jiffies(msecs));
1469 }
1470 EXPORT_SYMBOL(blk_mq_delay_queue);
1471
1472 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1473 struct request *rq,
1474 bool at_head)
1475 {
1476 struct blk_mq_ctx *ctx = rq->mq_ctx;
1477
1478 lockdep_assert_held(&ctx->lock);
1479
1480 trace_block_rq_insert(hctx->queue, rq);
1481
1482 if (at_head)
1483 list_add(&rq->queuelist, &ctx->rq_list);
1484 else
1485 list_add_tail(&rq->queuelist, &ctx->rq_list);
1486 }
1487
1488 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1489 bool at_head)
1490 {
1491 struct blk_mq_ctx *ctx = rq->mq_ctx;
1492
1493 lockdep_assert_held(&ctx->lock);
1494
1495 __blk_mq_insert_req_list(hctx, rq, at_head);
1496 blk_mq_hctx_mark_pending(hctx, ctx);
1497 }
1498
1499 /*
1500 * Should only be used carefully, when the caller knows we want to
1501 * bypass a potential IO scheduler on the target device.
1502 */
1503 void blk_mq_request_bypass_insert(struct request *rq)
1504 {
1505 struct blk_mq_ctx *ctx = rq->mq_ctx;
1506 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1507
1508 spin_lock(&hctx->lock);
1509 list_add_tail(&rq->queuelist, &hctx->dispatch);
1510 spin_unlock(&hctx->lock);
1511
1512 blk_mq_run_hw_queue(hctx, false);
1513 }
1514
1515 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1516 struct list_head *list)
1517
1518 {
1519 /*
1520 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1521 * offline now
1522 */
1523 spin_lock(&ctx->lock);
1524 while (!list_empty(list)) {
1525 struct request *rq;
1526
1527 rq = list_first_entry(list, struct request, queuelist);
1528 BUG_ON(rq->mq_ctx != ctx);
1529 list_del_init(&rq->queuelist);
1530 __blk_mq_insert_req_list(hctx, rq, false);
1531 }
1532 blk_mq_hctx_mark_pending(hctx, ctx);
1533 spin_unlock(&ctx->lock);
1534 }
1535
1536 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1537 {
1538 struct request *rqa = container_of(a, struct request, queuelist);
1539 struct request *rqb = container_of(b, struct request, queuelist);
1540
1541 return !(rqa->mq_ctx < rqb->mq_ctx ||
1542 (rqa->mq_ctx == rqb->mq_ctx &&
1543 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1544 }
1545
1546 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1547 {
1548 struct blk_mq_ctx *this_ctx;
1549 struct request_queue *this_q;
1550 struct request *rq;
1551 LIST_HEAD(list);
1552 LIST_HEAD(ctx_list);
1553 unsigned int depth;
1554
1555 list_splice_init(&plug->mq_list, &list);
1556
1557 list_sort(NULL, &list, plug_ctx_cmp);
1558
1559 this_q = NULL;
1560 this_ctx = NULL;
1561 depth = 0;
1562
1563 while (!list_empty(&list)) {
1564 rq = list_entry_rq(list.next);
1565 list_del_init(&rq->queuelist);
1566 BUG_ON(!rq->q);
1567 if (rq->mq_ctx != this_ctx) {
1568 if (this_ctx) {
1569 trace_block_unplug(this_q, depth, from_schedule);
1570 blk_mq_sched_insert_requests(this_q, this_ctx,
1571 &ctx_list,
1572 from_schedule);
1573 }
1574
1575 this_ctx = rq->mq_ctx;
1576 this_q = rq->q;
1577 depth = 0;
1578 }
1579
1580 depth++;
1581 list_add_tail(&rq->queuelist, &ctx_list);
1582 }
1583
1584 /*
1585 * If 'this_ctx' is set, we know we have entries to complete
1586 * on 'ctx_list'. Do those.
1587 */
1588 if (this_ctx) {
1589 trace_block_unplug(this_q, depth, from_schedule);
1590 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1591 from_schedule);
1592 }
1593 }
1594
1595 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1596 {
1597 blk_init_request_from_bio(rq, bio);
1598
1599 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1600
1601 blk_account_io_start(rq, true);
1602 }
1603
1604 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1605 struct blk_mq_ctx *ctx,
1606 struct request *rq)
1607 {
1608 spin_lock(&ctx->lock);
1609 __blk_mq_insert_request(hctx, rq, false);
1610 spin_unlock(&ctx->lock);
1611 }
1612
1613 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1614 {
1615 if (rq->tag != -1)
1616 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1617
1618 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1619 }
1620
1621 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1622 struct request *rq,
1623 blk_qc_t *cookie, bool may_sleep)
1624 {
1625 struct request_queue *q = rq->q;
1626 struct blk_mq_queue_data bd = {
1627 .rq = rq,
1628 .last = true,
1629 };
1630 blk_qc_t new_cookie;
1631 blk_status_t ret;
1632 bool run_queue = true;
1633
1634 /* RCU or SRCU read lock is needed before checking quiesced flag */
1635 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1636 run_queue = false;
1637 goto insert;
1638 }
1639
1640 if (q->elevator)
1641 goto insert;
1642
1643 if (!blk_mq_get_driver_tag(rq, NULL, false))
1644 goto insert;
1645
1646 ret = blk_mq_get_dispatch_budget(hctx);
1647 if (ret == BLK_STS_RESOURCE) {
1648 blk_mq_put_driver_tag(rq);
1649 goto insert;
1650 } else if (ret != BLK_STS_OK)
1651 goto fail_rq;
1652
1653 new_cookie = request_to_qc_t(hctx, rq);
1654
1655 /*
1656 * For OK queue, we are done. For error, kill it. Any other
1657 * error (busy), just add it to our list as we previously
1658 * would have done
1659 */
1660 ret = q->mq_ops->queue_rq(hctx, &bd);
1661 switch (ret) {
1662 case BLK_STS_OK:
1663 *cookie = new_cookie;
1664 return;
1665 case BLK_STS_RESOURCE:
1666 __blk_mq_requeue_request(rq);
1667 goto insert;
1668 default:
1669 fail_rq:
1670 *cookie = BLK_QC_T_NONE;
1671 blk_mq_end_request(rq, ret);
1672 return;
1673 }
1674
1675 insert:
1676 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1677 }
1678
1679 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1680 struct request *rq, blk_qc_t *cookie)
1681 {
1682 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1683 rcu_read_lock();
1684 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1685 rcu_read_unlock();
1686 } else {
1687 unsigned int srcu_idx;
1688
1689 might_sleep();
1690
1691 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1692 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1693 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1694 }
1695 }
1696
1697 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1698 {
1699 const int is_sync = op_is_sync(bio->bi_opf);
1700 const int is_flush_fua = op_is_flush(bio->bi_opf);
1701 struct blk_mq_alloc_data data = { .flags = 0 };
1702 struct request *rq;
1703 unsigned int request_count = 0;
1704 struct blk_plug *plug;
1705 struct request *same_queue_rq = NULL;
1706 blk_qc_t cookie;
1707 unsigned int wb_acct;
1708
1709 blk_queue_bounce(q, &bio);
1710
1711 blk_queue_split(q, &bio);
1712
1713 if (!bio_integrity_prep(bio))
1714 return BLK_QC_T_NONE;
1715
1716 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1717 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1718 return BLK_QC_T_NONE;
1719
1720 if (blk_mq_sched_bio_merge(q, bio))
1721 return BLK_QC_T_NONE;
1722
1723 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1724
1725 trace_block_getrq(q, bio, bio->bi_opf);
1726
1727 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1728 if (unlikely(!rq)) {
1729 __wbt_done(q->rq_wb, wb_acct);
1730 if (bio->bi_opf & REQ_NOWAIT)
1731 bio_wouldblock_error(bio);
1732 return BLK_QC_T_NONE;
1733 }
1734
1735 wbt_track(&rq->issue_stat, wb_acct);
1736
1737 cookie = request_to_qc_t(data.hctx, rq);
1738
1739 plug = current->plug;
1740 if (unlikely(is_flush_fua)) {
1741 blk_mq_put_ctx(data.ctx);
1742 blk_mq_bio_to_request(rq, bio);
1743 if (q->elevator) {
1744 blk_mq_sched_insert_request(rq, false, true, true,
1745 true);
1746 } else {
1747 blk_insert_flush(rq);
1748 blk_mq_run_hw_queue(data.hctx, true);
1749 }
1750 } else if (plug && q->nr_hw_queues == 1) {
1751 struct request *last = NULL;
1752
1753 blk_mq_put_ctx(data.ctx);
1754 blk_mq_bio_to_request(rq, bio);
1755
1756 /*
1757 * @request_count may become stale because of schedule
1758 * out, so check the list again.
1759 */
1760 if (list_empty(&plug->mq_list))
1761 request_count = 0;
1762 else if (blk_queue_nomerges(q))
1763 request_count = blk_plug_queued_count(q);
1764
1765 if (!request_count)
1766 trace_block_plug(q);
1767 else
1768 last = list_entry_rq(plug->mq_list.prev);
1769
1770 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1771 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1772 blk_flush_plug_list(plug, false);
1773 trace_block_plug(q);
1774 }
1775
1776 list_add_tail(&rq->queuelist, &plug->mq_list);
1777 } else if (plug && !blk_queue_nomerges(q)) {
1778 blk_mq_bio_to_request(rq, bio);
1779
1780 /*
1781 * We do limited plugging. If the bio can be merged, do that.
1782 * Otherwise the existing request in the plug list will be
1783 * issued. So the plug list will have one request at most
1784 * The plug list might get flushed before this. If that happens,
1785 * the plug list is empty, and same_queue_rq is invalid.
1786 */
1787 if (list_empty(&plug->mq_list))
1788 same_queue_rq = NULL;
1789 if (same_queue_rq)
1790 list_del_init(&same_queue_rq->queuelist);
1791 list_add_tail(&rq->queuelist, &plug->mq_list);
1792
1793 blk_mq_put_ctx(data.ctx);
1794
1795 if (same_queue_rq) {
1796 data.hctx = blk_mq_map_queue(q,
1797 same_queue_rq->mq_ctx->cpu);
1798 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1799 &cookie);
1800 }
1801 } else if (q->nr_hw_queues > 1 && is_sync) {
1802 blk_mq_put_ctx(data.ctx);
1803 blk_mq_bio_to_request(rq, bio);
1804 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1805 } else if (q->elevator) {
1806 blk_mq_put_ctx(data.ctx);
1807 blk_mq_bio_to_request(rq, bio);
1808 blk_mq_sched_insert_request(rq, false, true, true, true);
1809 } else {
1810 blk_mq_put_ctx(data.ctx);
1811 blk_mq_bio_to_request(rq, bio);
1812 blk_mq_queue_io(data.hctx, data.ctx, rq);
1813 blk_mq_run_hw_queue(data.hctx, true);
1814 }
1815
1816 return cookie;
1817 }
1818
1819 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1820 unsigned int hctx_idx)
1821 {
1822 struct page *page;
1823
1824 if (tags->rqs && set->ops->exit_request) {
1825 int i;
1826
1827 for (i = 0; i < tags->nr_tags; i++) {
1828 struct request *rq = tags->static_rqs[i];
1829
1830 if (!rq)
1831 continue;
1832 set->ops->exit_request(set, rq, hctx_idx);
1833 tags->static_rqs[i] = NULL;
1834 }
1835 }
1836
1837 while (!list_empty(&tags->page_list)) {
1838 page = list_first_entry(&tags->page_list, struct page, lru);
1839 list_del_init(&page->lru);
1840 /*
1841 * Remove kmemleak object previously allocated in
1842 * blk_mq_init_rq_map().
1843 */
1844 kmemleak_free(page_address(page));
1845 __free_pages(page, page->private);
1846 }
1847 }
1848
1849 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1850 {
1851 kfree(tags->rqs);
1852 tags->rqs = NULL;
1853 kfree(tags->static_rqs);
1854 tags->static_rqs = NULL;
1855
1856 blk_mq_free_tags(tags);
1857 }
1858
1859 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1860 unsigned int hctx_idx,
1861 unsigned int nr_tags,
1862 unsigned int reserved_tags)
1863 {
1864 struct blk_mq_tags *tags;
1865 int node;
1866
1867 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1868 if (node == NUMA_NO_NODE)
1869 node = set->numa_node;
1870
1871 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1872 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1873 if (!tags)
1874 return NULL;
1875
1876 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1877 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1878 node);
1879 if (!tags->rqs) {
1880 blk_mq_free_tags(tags);
1881 return NULL;
1882 }
1883
1884 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1885 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1886 node);
1887 if (!tags->static_rqs) {
1888 kfree(tags->rqs);
1889 blk_mq_free_tags(tags);
1890 return NULL;
1891 }
1892
1893 return tags;
1894 }
1895
1896 static size_t order_to_size(unsigned int order)
1897 {
1898 return (size_t)PAGE_SIZE << order;
1899 }
1900
1901 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1902 unsigned int hctx_idx, unsigned int depth)
1903 {
1904 unsigned int i, j, entries_per_page, max_order = 4;
1905 size_t rq_size, left;
1906 int node;
1907
1908 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1909 if (node == NUMA_NO_NODE)
1910 node = set->numa_node;
1911
1912 INIT_LIST_HEAD(&tags->page_list);
1913
1914 /*
1915 * rq_size is the size of the request plus driver payload, rounded
1916 * to the cacheline size
1917 */
1918 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1919 cache_line_size());
1920 left = rq_size * depth;
1921
1922 for (i = 0; i < depth; ) {
1923 int this_order = max_order;
1924 struct page *page;
1925 int to_do;
1926 void *p;
1927
1928 while (this_order && left < order_to_size(this_order - 1))
1929 this_order--;
1930
1931 do {
1932 page = alloc_pages_node(node,
1933 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1934 this_order);
1935 if (page)
1936 break;
1937 if (!this_order--)
1938 break;
1939 if (order_to_size(this_order) < rq_size)
1940 break;
1941 } while (1);
1942
1943 if (!page)
1944 goto fail;
1945
1946 page->private = this_order;
1947 list_add_tail(&page->lru, &tags->page_list);
1948
1949 p = page_address(page);
1950 /*
1951 * Allow kmemleak to scan these pages as they contain pointers
1952 * to additional allocations like via ops->init_request().
1953 */
1954 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1955 entries_per_page = order_to_size(this_order) / rq_size;
1956 to_do = min(entries_per_page, depth - i);
1957 left -= to_do * rq_size;
1958 for (j = 0; j < to_do; j++) {
1959 struct request *rq = p;
1960
1961 tags->static_rqs[i] = rq;
1962 if (set->ops->init_request) {
1963 if (set->ops->init_request(set, rq, hctx_idx,
1964 node)) {
1965 tags->static_rqs[i] = NULL;
1966 goto fail;
1967 }
1968 }
1969
1970 p += rq_size;
1971 i++;
1972 }
1973 }
1974 return 0;
1975
1976 fail:
1977 blk_mq_free_rqs(set, tags, hctx_idx);
1978 return -ENOMEM;
1979 }
1980
1981 /*
1982 * 'cpu' is going away. splice any existing rq_list entries from this
1983 * software queue to the hw queue dispatch list, and ensure that it
1984 * gets run.
1985 */
1986 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1987 {
1988 struct blk_mq_hw_ctx *hctx;
1989 struct blk_mq_ctx *ctx;
1990 LIST_HEAD(tmp);
1991
1992 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1993 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1994
1995 spin_lock(&ctx->lock);
1996 if (!list_empty(&ctx->rq_list)) {
1997 list_splice_init(&ctx->rq_list, &tmp);
1998 blk_mq_hctx_clear_pending(hctx, ctx);
1999 }
2000 spin_unlock(&ctx->lock);
2001
2002 if (list_empty(&tmp))
2003 return 0;
2004
2005 spin_lock(&hctx->lock);
2006 list_splice_tail_init(&tmp, &hctx->dispatch);
2007 spin_unlock(&hctx->lock);
2008
2009 blk_mq_run_hw_queue(hctx, true);
2010 return 0;
2011 }
2012
2013 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2014 {
2015 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2016 &hctx->cpuhp_dead);
2017 }
2018
2019 /* hctx->ctxs will be freed in queue's release handler */
2020 static void blk_mq_exit_hctx(struct request_queue *q,
2021 struct blk_mq_tag_set *set,
2022 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2023 {
2024 blk_mq_debugfs_unregister_hctx(hctx);
2025
2026 blk_mq_tag_idle(hctx);
2027
2028 if (set->ops->exit_request)
2029 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2030
2031 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2032
2033 if (set->ops->exit_hctx)
2034 set->ops->exit_hctx(hctx, hctx_idx);
2035
2036 if (hctx->flags & BLK_MQ_F_BLOCKING)
2037 cleanup_srcu_struct(hctx->queue_rq_srcu);
2038
2039 blk_mq_remove_cpuhp(hctx);
2040 blk_free_flush_queue(hctx->fq);
2041 sbitmap_free(&hctx->ctx_map);
2042 }
2043
2044 static void blk_mq_exit_hw_queues(struct request_queue *q,
2045 struct blk_mq_tag_set *set, int nr_queue)
2046 {
2047 struct blk_mq_hw_ctx *hctx;
2048 unsigned int i;
2049
2050 queue_for_each_hw_ctx(q, hctx, i) {
2051 if (i == nr_queue)
2052 break;
2053 blk_mq_exit_hctx(q, set, hctx, i);
2054 }
2055 }
2056
2057 static int blk_mq_init_hctx(struct request_queue *q,
2058 struct blk_mq_tag_set *set,
2059 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2060 {
2061 int node;
2062
2063 node = hctx->numa_node;
2064 if (node == NUMA_NO_NODE)
2065 node = hctx->numa_node = set->numa_node;
2066
2067 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2068 spin_lock_init(&hctx->lock);
2069 INIT_LIST_HEAD(&hctx->dispatch);
2070 hctx->queue = q;
2071 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2072
2073 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2074
2075 hctx->tags = set->tags[hctx_idx];
2076
2077 /*
2078 * Allocate space for all possible cpus to avoid allocation at
2079 * runtime
2080 */
2081 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2082 GFP_KERNEL, node);
2083 if (!hctx->ctxs)
2084 goto unregister_cpu_notifier;
2085
2086 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2087 node))
2088 goto free_ctxs;
2089
2090 hctx->nr_ctx = 0;
2091
2092 if (set->ops->init_hctx &&
2093 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2094 goto free_bitmap;
2095
2096 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2097 goto exit_hctx;
2098
2099 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2100 if (!hctx->fq)
2101 goto sched_exit_hctx;
2102
2103 if (set->ops->init_request &&
2104 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2105 node))
2106 goto free_fq;
2107
2108 if (hctx->flags & BLK_MQ_F_BLOCKING)
2109 init_srcu_struct(hctx->queue_rq_srcu);
2110
2111 blk_mq_debugfs_register_hctx(q, hctx);
2112
2113 return 0;
2114
2115 free_fq:
2116 kfree(hctx->fq);
2117 sched_exit_hctx:
2118 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2119 exit_hctx:
2120 if (set->ops->exit_hctx)
2121 set->ops->exit_hctx(hctx, hctx_idx);
2122 free_bitmap:
2123 sbitmap_free(&hctx->ctx_map);
2124 free_ctxs:
2125 kfree(hctx->ctxs);
2126 unregister_cpu_notifier:
2127 blk_mq_remove_cpuhp(hctx);
2128 return -1;
2129 }
2130
2131 static void blk_mq_init_cpu_queues(struct request_queue *q,
2132 unsigned int nr_hw_queues)
2133 {
2134 unsigned int i;
2135
2136 for_each_possible_cpu(i) {
2137 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2138 struct blk_mq_hw_ctx *hctx;
2139
2140 __ctx->cpu = i;
2141 spin_lock_init(&__ctx->lock);
2142 INIT_LIST_HEAD(&__ctx->rq_list);
2143 __ctx->queue = q;
2144
2145 /* If the cpu isn't present, the cpu is mapped to first hctx */
2146 if (!cpu_present(i))
2147 continue;
2148
2149 hctx = blk_mq_map_queue(q, i);
2150
2151 /*
2152 * Set local node, IFF we have more than one hw queue. If
2153 * not, we remain on the home node of the device
2154 */
2155 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2156 hctx->numa_node = local_memory_node(cpu_to_node(i));
2157 }
2158 }
2159
2160 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2161 {
2162 int ret = 0;
2163
2164 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2165 set->queue_depth, set->reserved_tags);
2166 if (!set->tags[hctx_idx])
2167 return false;
2168
2169 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2170 set->queue_depth);
2171 if (!ret)
2172 return true;
2173
2174 blk_mq_free_rq_map(set->tags[hctx_idx]);
2175 set->tags[hctx_idx] = NULL;
2176 return false;
2177 }
2178
2179 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2180 unsigned int hctx_idx)
2181 {
2182 if (set->tags[hctx_idx]) {
2183 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2184 blk_mq_free_rq_map(set->tags[hctx_idx]);
2185 set->tags[hctx_idx] = NULL;
2186 }
2187 }
2188
2189 static void blk_mq_map_swqueue(struct request_queue *q)
2190 {
2191 unsigned int i, hctx_idx;
2192 struct blk_mq_hw_ctx *hctx;
2193 struct blk_mq_ctx *ctx;
2194 struct blk_mq_tag_set *set = q->tag_set;
2195
2196 /*
2197 * Avoid others reading imcomplete hctx->cpumask through sysfs
2198 */
2199 mutex_lock(&q->sysfs_lock);
2200
2201 queue_for_each_hw_ctx(q, hctx, i) {
2202 cpumask_clear(hctx->cpumask);
2203 hctx->nr_ctx = 0;
2204 }
2205
2206 /*
2207 * Map software to hardware queues.
2208 *
2209 * If the cpu isn't present, the cpu is mapped to first hctx.
2210 */
2211 for_each_present_cpu(i) {
2212 hctx_idx = q->mq_map[i];
2213 /* unmapped hw queue can be remapped after CPU topo changed */
2214 if (!set->tags[hctx_idx] &&
2215 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2216 /*
2217 * If tags initialization fail for some hctx,
2218 * that hctx won't be brought online. In this
2219 * case, remap the current ctx to hctx[0] which
2220 * is guaranteed to always have tags allocated
2221 */
2222 q->mq_map[i] = 0;
2223 }
2224
2225 ctx = per_cpu_ptr(q->queue_ctx, i);
2226 hctx = blk_mq_map_queue(q, i);
2227
2228 cpumask_set_cpu(i, hctx->cpumask);
2229 ctx->index_hw = hctx->nr_ctx;
2230 hctx->ctxs[hctx->nr_ctx++] = ctx;
2231 }
2232
2233 mutex_unlock(&q->sysfs_lock);
2234
2235 queue_for_each_hw_ctx(q, hctx, i) {
2236 /*
2237 * If no software queues are mapped to this hardware queue,
2238 * disable it and free the request entries.
2239 */
2240 if (!hctx->nr_ctx) {
2241 /* Never unmap queue 0. We need it as a
2242 * fallback in case of a new remap fails
2243 * allocation
2244 */
2245 if (i && set->tags[i])
2246 blk_mq_free_map_and_requests(set, i);
2247
2248 hctx->tags = NULL;
2249 continue;
2250 }
2251
2252 hctx->tags = set->tags[i];
2253 WARN_ON(!hctx->tags);
2254
2255 /*
2256 * Set the map size to the number of mapped software queues.
2257 * This is more accurate and more efficient than looping
2258 * over all possibly mapped software queues.
2259 */
2260 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2261
2262 /*
2263 * Initialize batch roundrobin counts
2264 */
2265 hctx->next_cpu = cpumask_first(hctx->cpumask);
2266 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2267 }
2268 }
2269
2270 /*
2271 * Caller needs to ensure that we're either frozen/quiesced, or that
2272 * the queue isn't live yet.
2273 */
2274 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2275 {
2276 struct blk_mq_hw_ctx *hctx;
2277 int i;
2278
2279 queue_for_each_hw_ctx(q, hctx, i) {
2280 if (shared) {
2281 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2282 atomic_inc(&q->shared_hctx_restart);
2283 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2284 } else {
2285 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2286 atomic_dec(&q->shared_hctx_restart);
2287 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2288 }
2289 }
2290 }
2291
2292 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2293 bool shared)
2294 {
2295 struct request_queue *q;
2296
2297 lockdep_assert_held(&set->tag_list_lock);
2298
2299 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2300 blk_mq_freeze_queue(q);
2301 queue_set_hctx_shared(q, shared);
2302 blk_mq_unfreeze_queue(q);
2303 }
2304 }
2305
2306 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2307 {
2308 struct blk_mq_tag_set *set = q->tag_set;
2309
2310 mutex_lock(&set->tag_list_lock);
2311 list_del_rcu(&q->tag_set_list);
2312 INIT_LIST_HEAD(&q->tag_set_list);
2313 if (list_is_singular(&set->tag_list)) {
2314 /* just transitioned to unshared */
2315 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2316 /* update existing queue */
2317 blk_mq_update_tag_set_depth(set, false);
2318 }
2319 mutex_unlock(&set->tag_list_lock);
2320
2321 synchronize_rcu();
2322 }
2323
2324 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2325 struct request_queue *q)
2326 {
2327 q->tag_set = set;
2328
2329 mutex_lock(&set->tag_list_lock);
2330
2331 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2332 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2333 set->flags |= BLK_MQ_F_TAG_SHARED;
2334 /* update existing queue */
2335 blk_mq_update_tag_set_depth(set, true);
2336 }
2337 if (set->flags & BLK_MQ_F_TAG_SHARED)
2338 queue_set_hctx_shared(q, true);
2339 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2340
2341 mutex_unlock(&set->tag_list_lock);
2342 }
2343
2344 /*
2345 * It is the actual release handler for mq, but we do it from
2346 * request queue's release handler for avoiding use-after-free
2347 * and headache because q->mq_kobj shouldn't have been introduced,
2348 * but we can't group ctx/kctx kobj without it.
2349 */
2350 void blk_mq_release(struct request_queue *q)
2351 {
2352 struct blk_mq_hw_ctx *hctx;
2353 unsigned int i;
2354
2355 /* hctx kobj stays in hctx */
2356 queue_for_each_hw_ctx(q, hctx, i) {
2357 if (!hctx)
2358 continue;
2359 kobject_put(&hctx->kobj);
2360 }
2361
2362 q->mq_map = NULL;
2363
2364 kfree(q->queue_hw_ctx);
2365
2366 /*
2367 * release .mq_kobj and sw queue's kobject now because
2368 * both share lifetime with request queue.
2369 */
2370 blk_mq_sysfs_deinit(q);
2371
2372 free_percpu(q->queue_ctx);
2373 }
2374
2375 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2376 {
2377 struct request_queue *uninit_q, *q;
2378
2379 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2380 if (!uninit_q)
2381 return ERR_PTR(-ENOMEM);
2382
2383 q = blk_mq_init_allocated_queue(set, uninit_q);
2384 if (IS_ERR(q))
2385 blk_cleanup_queue(uninit_q);
2386
2387 return q;
2388 }
2389 EXPORT_SYMBOL(blk_mq_init_queue);
2390
2391 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2392 {
2393 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2394
2395 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2396 __alignof__(struct blk_mq_hw_ctx)) !=
2397 sizeof(struct blk_mq_hw_ctx));
2398
2399 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2400 hw_ctx_size += sizeof(struct srcu_struct);
2401
2402 return hw_ctx_size;
2403 }
2404
2405 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2406 struct request_queue *q)
2407 {
2408 int i, j;
2409 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2410
2411 blk_mq_sysfs_unregister(q);
2412 for (i = 0; i < set->nr_hw_queues; i++) {
2413 int node;
2414
2415 if (hctxs[i])
2416 continue;
2417
2418 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2419 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2420 GFP_KERNEL, node);
2421 if (!hctxs[i])
2422 break;
2423
2424 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2425 node)) {
2426 kfree(hctxs[i]);
2427 hctxs[i] = NULL;
2428 break;
2429 }
2430
2431 atomic_set(&hctxs[i]->nr_active, 0);
2432 hctxs[i]->numa_node = node;
2433 hctxs[i]->queue_num = i;
2434
2435 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2436 free_cpumask_var(hctxs[i]->cpumask);
2437 kfree(hctxs[i]);
2438 hctxs[i] = NULL;
2439 break;
2440 }
2441 blk_mq_hctx_kobj_init(hctxs[i]);
2442 }
2443 for (j = i; j < q->nr_hw_queues; j++) {
2444 struct blk_mq_hw_ctx *hctx = hctxs[j];
2445
2446 if (hctx) {
2447 if (hctx->tags)
2448 blk_mq_free_map_and_requests(set, j);
2449 blk_mq_exit_hctx(q, set, hctx, j);
2450 kobject_put(&hctx->kobj);
2451 hctxs[j] = NULL;
2452
2453 }
2454 }
2455 q->nr_hw_queues = i;
2456 blk_mq_sysfs_register(q);
2457 }
2458
2459 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2460 struct request_queue *q)
2461 {
2462 /* mark the queue as mq asap */
2463 q->mq_ops = set->ops;
2464
2465 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2466 blk_mq_poll_stats_bkt,
2467 BLK_MQ_POLL_STATS_BKTS, q);
2468 if (!q->poll_cb)
2469 goto err_exit;
2470
2471 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2472 if (!q->queue_ctx)
2473 goto err_exit;
2474
2475 /* init q->mq_kobj and sw queues' kobjects */
2476 blk_mq_sysfs_init(q);
2477
2478 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2479 GFP_KERNEL, set->numa_node);
2480 if (!q->queue_hw_ctx)
2481 goto err_percpu;
2482
2483 q->mq_map = set->mq_map;
2484
2485 blk_mq_realloc_hw_ctxs(set, q);
2486 if (!q->nr_hw_queues)
2487 goto err_hctxs;
2488
2489 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2490 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2491
2492 q->nr_queues = nr_cpu_ids;
2493
2494 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2495
2496 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2497 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2498
2499 q->sg_reserved_size = INT_MAX;
2500
2501 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2502 INIT_LIST_HEAD(&q->requeue_list);
2503 spin_lock_init(&q->requeue_lock);
2504
2505 blk_queue_make_request(q, blk_mq_make_request);
2506
2507 /*
2508 * Do this after blk_queue_make_request() overrides it...
2509 */
2510 q->nr_requests = set->queue_depth;
2511
2512 /*
2513 * Default to classic polling
2514 */
2515 q->poll_nsec = -1;
2516
2517 if (set->ops->complete)
2518 blk_queue_softirq_done(q, set->ops->complete);
2519
2520 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2521 blk_mq_add_queue_tag_set(set, q);
2522 blk_mq_map_swqueue(q);
2523
2524 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2525 int ret;
2526
2527 ret = blk_mq_sched_init(q);
2528 if (ret)
2529 return ERR_PTR(ret);
2530 }
2531
2532 return q;
2533
2534 err_hctxs:
2535 kfree(q->queue_hw_ctx);
2536 err_percpu:
2537 free_percpu(q->queue_ctx);
2538 err_exit:
2539 q->mq_ops = NULL;
2540 return ERR_PTR(-ENOMEM);
2541 }
2542 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2543
2544 void blk_mq_free_queue(struct request_queue *q)
2545 {
2546 struct blk_mq_tag_set *set = q->tag_set;
2547
2548 blk_mq_del_queue_tag_set(q);
2549 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2550 }
2551
2552 /* Basically redo blk_mq_init_queue with queue frozen */
2553 static void blk_mq_queue_reinit(struct request_queue *q)
2554 {
2555 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2556
2557 blk_mq_debugfs_unregister_hctxs(q);
2558 blk_mq_sysfs_unregister(q);
2559
2560 /*
2561 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2562 * we should change hctx numa_node according to new topology (this
2563 * involves free and re-allocate memory, worthy doing?)
2564 */
2565
2566 blk_mq_map_swqueue(q);
2567
2568 blk_mq_sysfs_register(q);
2569 blk_mq_debugfs_register_hctxs(q);
2570 }
2571
2572 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2573 {
2574 int i;
2575
2576 for (i = 0; i < set->nr_hw_queues; i++)
2577 if (!__blk_mq_alloc_rq_map(set, i))
2578 goto out_unwind;
2579
2580 return 0;
2581
2582 out_unwind:
2583 while (--i >= 0)
2584 blk_mq_free_rq_map(set->tags[i]);
2585
2586 return -ENOMEM;
2587 }
2588
2589 /*
2590 * Allocate the request maps associated with this tag_set. Note that this
2591 * may reduce the depth asked for, if memory is tight. set->queue_depth
2592 * will be updated to reflect the allocated depth.
2593 */
2594 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2595 {
2596 unsigned int depth;
2597 int err;
2598
2599 depth = set->queue_depth;
2600 do {
2601 err = __blk_mq_alloc_rq_maps(set);
2602 if (!err)
2603 break;
2604
2605 set->queue_depth >>= 1;
2606 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2607 err = -ENOMEM;
2608 break;
2609 }
2610 } while (set->queue_depth);
2611
2612 if (!set->queue_depth || err) {
2613 pr_err("blk-mq: failed to allocate request map\n");
2614 return -ENOMEM;
2615 }
2616
2617 if (depth != set->queue_depth)
2618 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2619 depth, set->queue_depth);
2620
2621 return 0;
2622 }
2623
2624 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2625 {
2626 if (set->ops->map_queues)
2627 return set->ops->map_queues(set);
2628 else
2629 return blk_mq_map_queues(set);
2630 }
2631
2632 /*
2633 * Alloc a tag set to be associated with one or more request queues.
2634 * May fail with EINVAL for various error conditions. May adjust the
2635 * requested depth down, if if it too large. In that case, the set
2636 * value will be stored in set->queue_depth.
2637 */
2638 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2639 {
2640 int ret;
2641
2642 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2643
2644 if (!set->nr_hw_queues)
2645 return -EINVAL;
2646 if (!set->queue_depth)
2647 return -EINVAL;
2648 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2649 return -EINVAL;
2650
2651 if (!set->ops->queue_rq)
2652 return -EINVAL;
2653
2654 if (!set->ops->get_budget ^ !set->ops->put_budget)
2655 return -EINVAL;
2656
2657 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2658 pr_info("blk-mq: reduced tag depth to %u\n",
2659 BLK_MQ_MAX_DEPTH);
2660 set->queue_depth = BLK_MQ_MAX_DEPTH;
2661 }
2662
2663 /*
2664 * If a crashdump is active, then we are potentially in a very
2665 * memory constrained environment. Limit us to 1 queue and
2666 * 64 tags to prevent using too much memory.
2667 */
2668 if (is_kdump_kernel()) {
2669 set->nr_hw_queues = 1;
2670 set->queue_depth = min(64U, set->queue_depth);
2671 }
2672 /*
2673 * There is no use for more h/w queues than cpus.
2674 */
2675 if (set->nr_hw_queues > nr_cpu_ids)
2676 set->nr_hw_queues = nr_cpu_ids;
2677
2678 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2679 GFP_KERNEL, set->numa_node);
2680 if (!set->tags)
2681 return -ENOMEM;
2682
2683 ret = -ENOMEM;
2684 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2685 GFP_KERNEL, set->numa_node);
2686 if (!set->mq_map)
2687 goto out_free_tags;
2688
2689 ret = blk_mq_update_queue_map(set);
2690 if (ret)
2691 goto out_free_mq_map;
2692
2693 ret = blk_mq_alloc_rq_maps(set);
2694 if (ret)
2695 goto out_free_mq_map;
2696
2697 mutex_init(&set->tag_list_lock);
2698 INIT_LIST_HEAD(&set->tag_list);
2699
2700 return 0;
2701
2702 out_free_mq_map:
2703 kfree(set->mq_map);
2704 set->mq_map = NULL;
2705 out_free_tags:
2706 kfree(set->tags);
2707 set->tags = NULL;
2708 return ret;
2709 }
2710 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2711
2712 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2713 {
2714 int i;
2715
2716 for (i = 0; i < nr_cpu_ids; i++)
2717 blk_mq_free_map_and_requests(set, i);
2718
2719 kfree(set->mq_map);
2720 set->mq_map = NULL;
2721
2722 kfree(set->tags);
2723 set->tags = NULL;
2724 }
2725 EXPORT_SYMBOL(blk_mq_free_tag_set);
2726
2727 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2728 {
2729 struct blk_mq_tag_set *set = q->tag_set;
2730 struct blk_mq_hw_ctx *hctx;
2731 int i, ret;
2732
2733 if (!set)
2734 return -EINVAL;
2735
2736 blk_mq_freeze_queue(q);
2737
2738 ret = 0;
2739 queue_for_each_hw_ctx(q, hctx, i) {
2740 if (!hctx->tags)
2741 continue;
2742 /*
2743 * If we're using an MQ scheduler, just update the scheduler
2744 * queue depth. This is similar to what the old code would do.
2745 */
2746 if (!hctx->sched_tags) {
2747 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2748 min(nr, set->queue_depth),
2749 false);
2750 } else {
2751 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2752 nr, true);
2753 }
2754 if (ret)
2755 break;
2756 }
2757
2758 if (!ret)
2759 q->nr_requests = nr;
2760
2761 blk_mq_unfreeze_queue(q);
2762
2763 return ret;
2764 }
2765
2766 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2767 int nr_hw_queues)
2768 {
2769 struct request_queue *q;
2770
2771 lockdep_assert_held(&set->tag_list_lock);
2772
2773 if (nr_hw_queues > nr_cpu_ids)
2774 nr_hw_queues = nr_cpu_ids;
2775 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2776 return;
2777
2778 list_for_each_entry(q, &set->tag_list, tag_set_list)
2779 blk_mq_freeze_queue(q);
2780
2781 set->nr_hw_queues = nr_hw_queues;
2782 blk_mq_update_queue_map(set);
2783 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2784 blk_mq_realloc_hw_ctxs(set, q);
2785 blk_mq_queue_reinit(q);
2786 }
2787
2788 list_for_each_entry(q, &set->tag_list, tag_set_list)
2789 blk_mq_unfreeze_queue(q);
2790 }
2791
2792 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2793 {
2794 mutex_lock(&set->tag_list_lock);
2795 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2796 mutex_unlock(&set->tag_list_lock);
2797 }
2798 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2799
2800 /* Enable polling stats and return whether they were already enabled. */
2801 static bool blk_poll_stats_enable(struct request_queue *q)
2802 {
2803 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2804 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2805 return true;
2806 blk_stat_add_callback(q, q->poll_cb);
2807 return false;
2808 }
2809
2810 static void blk_mq_poll_stats_start(struct request_queue *q)
2811 {
2812 /*
2813 * We don't arm the callback if polling stats are not enabled or the
2814 * callback is already active.
2815 */
2816 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2817 blk_stat_is_active(q->poll_cb))
2818 return;
2819
2820 blk_stat_activate_msecs(q->poll_cb, 100);
2821 }
2822
2823 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2824 {
2825 struct request_queue *q = cb->data;
2826 int bucket;
2827
2828 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2829 if (cb->stat[bucket].nr_samples)
2830 q->poll_stat[bucket] = cb->stat[bucket];
2831 }
2832 }
2833
2834 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2835 struct blk_mq_hw_ctx *hctx,
2836 struct request *rq)
2837 {
2838 unsigned long ret = 0;
2839 int bucket;
2840
2841 /*
2842 * If stats collection isn't on, don't sleep but turn it on for
2843 * future users
2844 */
2845 if (!blk_poll_stats_enable(q))
2846 return 0;
2847
2848 /*
2849 * As an optimistic guess, use half of the mean service time
2850 * for this type of request. We can (and should) make this smarter.
2851 * For instance, if the completion latencies are tight, we can
2852 * get closer than just half the mean. This is especially
2853 * important on devices where the completion latencies are longer
2854 * than ~10 usec. We do use the stats for the relevant IO size
2855 * if available which does lead to better estimates.
2856 */
2857 bucket = blk_mq_poll_stats_bkt(rq);
2858 if (bucket < 0)
2859 return ret;
2860
2861 if (q->poll_stat[bucket].nr_samples)
2862 ret = (q->poll_stat[bucket].mean + 1) / 2;
2863
2864 return ret;
2865 }
2866
2867 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2868 struct blk_mq_hw_ctx *hctx,
2869 struct request *rq)
2870 {
2871 struct hrtimer_sleeper hs;
2872 enum hrtimer_mode mode;
2873 unsigned int nsecs;
2874 ktime_t kt;
2875
2876 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2877 return false;
2878
2879 /*
2880 * poll_nsec can be:
2881 *
2882 * -1: don't ever hybrid sleep
2883 * 0: use half of prev avg
2884 * >0: use this specific value
2885 */
2886 if (q->poll_nsec == -1)
2887 return false;
2888 else if (q->poll_nsec > 0)
2889 nsecs = q->poll_nsec;
2890 else
2891 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2892
2893 if (!nsecs)
2894 return false;
2895
2896 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2897
2898 /*
2899 * This will be replaced with the stats tracking code, using
2900 * 'avg_completion_time / 2' as the pre-sleep target.
2901 */
2902 kt = nsecs;
2903
2904 mode = HRTIMER_MODE_REL;
2905 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2906 hrtimer_set_expires(&hs.timer, kt);
2907
2908 hrtimer_init_sleeper(&hs, current);
2909 do {
2910 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2911 break;
2912 set_current_state(TASK_UNINTERRUPTIBLE);
2913 hrtimer_start_expires(&hs.timer, mode);
2914 if (hs.task)
2915 io_schedule();
2916 hrtimer_cancel(&hs.timer);
2917 mode = HRTIMER_MODE_ABS;
2918 } while (hs.task && !signal_pending(current));
2919
2920 __set_current_state(TASK_RUNNING);
2921 destroy_hrtimer_on_stack(&hs.timer);
2922 return true;
2923 }
2924
2925 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2926 {
2927 struct request_queue *q = hctx->queue;
2928 long state;
2929
2930 /*
2931 * If we sleep, have the caller restart the poll loop to reset
2932 * the state. Like for the other success return cases, the
2933 * caller is responsible for checking if the IO completed. If
2934 * the IO isn't complete, we'll get called again and will go
2935 * straight to the busy poll loop.
2936 */
2937 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2938 return true;
2939
2940 hctx->poll_considered++;
2941
2942 state = current->state;
2943 while (!need_resched()) {
2944 int ret;
2945
2946 hctx->poll_invoked++;
2947
2948 ret = q->mq_ops->poll(hctx, rq->tag);
2949 if (ret > 0) {
2950 hctx->poll_success++;
2951 set_current_state(TASK_RUNNING);
2952 return true;
2953 }
2954
2955 if (signal_pending_state(state, current))
2956 set_current_state(TASK_RUNNING);
2957
2958 if (current->state == TASK_RUNNING)
2959 return true;
2960 if (ret < 0)
2961 break;
2962 cpu_relax();
2963 }
2964
2965 return false;
2966 }
2967
2968 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2969 {
2970 struct blk_mq_hw_ctx *hctx;
2971 struct blk_plug *plug;
2972 struct request *rq;
2973
2974 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2975 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2976 return false;
2977
2978 plug = current->plug;
2979 if (plug)
2980 blk_flush_plug_list(plug, false);
2981
2982 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2983 if (!blk_qc_t_is_internal(cookie))
2984 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2985 else {
2986 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2987 /*
2988 * With scheduling, if the request has completed, we'll
2989 * get a NULL return here, as we clear the sched tag when
2990 * that happens. The request still remains valid, like always,
2991 * so we should be safe with just the NULL check.
2992 */
2993 if (!rq)
2994 return false;
2995 }
2996
2997 return __blk_mq_poll(hctx, rq);
2998 }
2999 EXPORT_SYMBOL_GPL(blk_mq_poll);
3000
3001 static int __init blk_mq_init(void)
3002 {
3003 /*
3004 * See comment in block/blk.h rq_atomic_flags enum
3005 */
3006 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3007 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3008
3009 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3010 blk_mq_hctx_notify_dead);
3011 return 0;
3012 }
3013 subsys_initcall(blk_mq_init);