]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq.c
vmxnet3: use correct intrConf reference when using extended queues
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct block_device *part;
99 unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 struct block_device *part)
117 {
118 struct mq_inflight mi = { .part = part };
119
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122 return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 unsigned int inflight[2])
127 {
128 struct mq_inflight mi = { .part = part };
129
130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 inflight[0] = mi.inflight[0];
132 inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 mutex_lock(&q->mq_freeze_lock);
138 if (++q->mq_freeze_depth == 1) {
139 percpu_ref_kill(&q->q_usage_counter);
140 mutex_unlock(&q->mq_freeze_lock);
141 if (queue_is_mq(q))
142 blk_mq_run_hw_queues(q, false);
143 } else {
144 mutex_unlock(&q->mq_freeze_lock);
145 }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 unsigned long timeout)
157 {
158 return wait_event_timeout(q->mq_freeze_wq,
159 percpu_ref_is_zero(&q->q_usage_counter),
160 timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
167 */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 /*
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
176 */
177 blk_freeze_queue_start(q);
178 blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 /*
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
186 */
187 blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193 mutex_lock(&q->mq_freeze_lock);
194 if (force_atomic)
195 q->q_usage_counter.data->force_atomic = true;
196 q->mq_freeze_depth--;
197 WARN_ON_ONCE(q->mq_freeze_depth < 0);
198 if (!q->mq_freeze_depth) {
199 percpu_ref_resurrect(&q->q_usage_counter);
200 wake_up_all(&q->mq_freeze_wq);
201 }
202 mutex_unlock(&q->mq_freeze_lock);
203 }
204
205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207 __blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223 * @q: request queue.
224 *
225 * Note: this function does not prevent that the struct request end_io()
226 * callback function is invoked. Once this function is returned, we make
227 * sure no dispatch can happen until the queue is unquiesced via
228 * blk_mq_unquiesce_queue().
229 */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 struct blk_mq_hw_ctx *hctx;
233 unsigned int i;
234 bool rcu = false;
235
236 blk_mq_quiesce_queue_nowait(q);
237
238 queue_for_each_hw_ctx(q, hctx, i) {
239 if (hctx->flags & BLK_MQ_F_BLOCKING)
240 synchronize_srcu(hctx->srcu);
241 else
242 rcu = true;
243 }
244 if (rcu)
245 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
252 *
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
255 */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260 /* dispatch requests which are inserted during quiescing */
261 blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 struct blk_mq_hw_ctx *hctx;
268 unsigned int i;
269
270 queue_for_each_hw_ctx(q, hctx, i)
271 if (blk_mq_hw_queue_mapped(hctx))
272 blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 /*
276 * Only need start/end time stamping if we have iostat or
277 * blk stats enabled, or using an IO scheduler.
278 */
279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285 unsigned int tag, u64 alloc_time_ns)
286 {
287 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288 struct request *rq = tags->static_rqs[tag];
289
290 if (data->q->elevator) {
291 rq->tag = BLK_MQ_NO_TAG;
292 rq->internal_tag = tag;
293 } else {
294 rq->tag = tag;
295 rq->internal_tag = BLK_MQ_NO_TAG;
296 }
297
298 /* csd/requeue_work/fifo_time is initialized before use */
299 rq->q = data->q;
300 rq->mq_ctx = data->ctx;
301 rq->mq_hctx = data->hctx;
302 rq->rq_flags = 0;
303 rq->cmd_flags = data->cmd_flags;
304 if (data->flags & BLK_MQ_REQ_PM)
305 rq->rq_flags |= RQF_PM;
306 if (blk_queue_io_stat(data->q))
307 rq->rq_flags |= RQF_IO_STAT;
308 INIT_LIST_HEAD(&rq->queuelist);
309 INIT_HLIST_NODE(&rq->hash);
310 RB_CLEAR_NODE(&rq->rb_node);
311 rq->rq_disk = NULL;
312 rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314 rq->alloc_time_ns = alloc_time_ns;
315 #endif
316 if (blk_mq_need_time_stamp(rq))
317 rq->start_time_ns = ktime_get_ns();
318 else
319 rq->start_time_ns = 0;
320 rq->io_start_time_ns = 0;
321 rq->stats_sectors = 0;
322 rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324 rq->nr_integrity_segments = 0;
325 #endif
326 blk_crypto_rq_set_defaults(rq);
327 /* tag was already set */
328 WRITE_ONCE(rq->deadline, 0);
329
330 rq->timeout = 0;
331
332 rq->end_io = NULL;
333 rq->end_io_data = NULL;
334
335 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336 refcount_set(&rq->ref, 1);
337
338 if (!op_is_flush(data->cmd_flags)) {
339 struct elevator_queue *e = data->q->elevator;
340
341 rq->elv.icq = NULL;
342 if (e && e->type->ops.prepare_request) {
343 if (e->type->icq_cache)
344 blk_mq_sched_assign_ioc(rq);
345
346 e->type->ops.prepare_request(rq);
347 rq->rq_flags |= RQF_ELVPRIV;
348 }
349 }
350
351 data->hctx->queued++;
352 return rq;
353 }
354
355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357 struct request_queue *q = data->q;
358 struct elevator_queue *e = q->elevator;
359 u64 alloc_time_ns = 0;
360 unsigned int tag;
361
362 /* alloc_time includes depth and tag waits */
363 if (blk_queue_rq_alloc_time(q))
364 alloc_time_ns = ktime_get_ns();
365
366 if (data->cmd_flags & REQ_NOWAIT)
367 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369 if (e) {
370 /*
371 * Flush/passthrough requests are special and go directly to the
372 * dispatch list. Don't include reserved tags in the
373 * limiting, as it isn't useful.
374 */
375 if (!op_is_flush(data->cmd_flags) &&
376 !blk_op_is_passthrough(data->cmd_flags) &&
377 e->type->ops.limit_depth &&
378 !(data->flags & BLK_MQ_REQ_RESERVED))
379 e->type->ops.limit_depth(data->cmd_flags, data);
380 }
381
382 retry:
383 data->ctx = blk_mq_get_ctx(q);
384 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385 if (!e)
386 blk_mq_tag_busy(data->hctx);
387
388 /*
389 * Waiting allocations only fail because of an inactive hctx. In that
390 * case just retry the hctx assignment and tag allocation as CPU hotplug
391 * should have migrated us to an online CPU by now.
392 */
393 tag = blk_mq_get_tag(data);
394 if (tag == BLK_MQ_NO_TAG) {
395 if (data->flags & BLK_MQ_REQ_NOWAIT)
396 return NULL;
397
398 /*
399 * Give up the CPU and sleep for a random short time to ensure
400 * that thread using a realtime scheduling class are migrated
401 * off the CPU, and thus off the hctx that is going away.
402 */
403 msleep(3);
404 goto retry;
405 }
406 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408
409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410 blk_mq_req_flags_t flags)
411 {
412 struct blk_mq_alloc_data data = {
413 .q = q,
414 .flags = flags,
415 .cmd_flags = op,
416 };
417 struct request *rq;
418 int ret;
419
420 ret = blk_queue_enter(q, flags);
421 if (ret)
422 return ERR_PTR(ret);
423
424 rq = __blk_mq_alloc_request(&data);
425 if (!rq)
426 goto out_queue_exit;
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431 out_queue_exit:
432 blk_queue_exit(q);
433 return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440 struct blk_mq_alloc_data data = {
441 .q = q,
442 .flags = flags,
443 .cmd_flags = op,
444 };
445 u64 alloc_time_ns = 0;
446 unsigned int cpu;
447 unsigned int tag;
448 int ret;
449
450 /* alloc_time includes depth and tag waits */
451 if (blk_queue_rq_alloc_time(q))
452 alloc_time_ns = ktime_get_ns();
453
454 /*
455 * If the tag allocator sleeps we could get an allocation for a
456 * different hardware context. No need to complicate the low level
457 * allocator for this for the rare use case of a command tied to
458 * a specific queue.
459 */
460 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461 return ERR_PTR(-EINVAL);
462
463 if (hctx_idx >= q->nr_hw_queues)
464 return ERR_PTR(-EIO);
465
466 ret = blk_queue_enter(q, flags);
467 if (ret)
468 return ERR_PTR(ret);
469
470 /*
471 * Check if the hardware context is actually mapped to anything.
472 * If not tell the caller that it should skip this queue.
473 */
474 ret = -EXDEV;
475 data.hctx = q->queue_hw_ctx[hctx_idx];
476 if (!blk_mq_hw_queue_mapped(data.hctx))
477 goto out_queue_exit;
478 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479 if (cpu >= nr_cpu_ids)
480 goto out_queue_exit;
481 data.ctx = __blk_mq_get_ctx(q, cpu);
482
483 if (!q->elevator)
484 blk_mq_tag_busy(data.hctx);
485
486 ret = -EWOULDBLOCK;
487 tag = blk_mq_get_tag(&data);
488 if (tag == BLK_MQ_NO_TAG)
489 goto out_queue_exit;
490 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
491
492 out_queue_exit:
493 blk_queue_exit(q);
494 return ERR_PTR(ret);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
497
498 static void __blk_mq_free_request(struct request *rq)
499 {
500 struct request_queue *q = rq->q;
501 struct blk_mq_ctx *ctx = rq->mq_ctx;
502 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
503 const int sched_tag = rq->internal_tag;
504
505 blk_crypto_free_request(rq);
506 blk_pm_mark_last_busy(rq);
507 rq->mq_hctx = NULL;
508 if (rq->tag != BLK_MQ_NO_TAG)
509 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
510 if (sched_tag != BLK_MQ_NO_TAG)
511 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
512 blk_mq_sched_restart(hctx);
513 blk_queue_exit(q);
514 }
515
516 void blk_mq_free_request(struct request *rq)
517 {
518 struct request_queue *q = rq->q;
519 struct elevator_queue *e = q->elevator;
520 struct blk_mq_ctx *ctx = rq->mq_ctx;
521 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
522
523 if (rq->rq_flags & RQF_ELVPRIV) {
524 if (e && e->type->ops.finish_request)
525 e->type->ops.finish_request(rq);
526 if (rq->elv.icq) {
527 put_io_context(rq->elv.icq->ioc);
528 rq->elv.icq = NULL;
529 }
530 }
531
532 ctx->rq_completed[rq_is_sync(rq)]++;
533 if (rq->rq_flags & RQF_MQ_INFLIGHT)
534 __blk_mq_dec_active_requests(hctx);
535
536 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
537 laptop_io_completion(q->disk->bdi);
538
539 rq_qos_done(q, rq);
540
541 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
542 if (refcount_dec_and_test(&rq->ref))
543 __blk_mq_free_request(rq);
544 }
545 EXPORT_SYMBOL_GPL(blk_mq_free_request);
546
547 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
548 {
549 u64 now = 0;
550
551 if (blk_mq_need_time_stamp(rq))
552 now = ktime_get_ns();
553
554 if (rq->rq_flags & RQF_STATS) {
555 blk_mq_poll_stats_start(rq->q);
556 blk_stat_add(rq, now);
557 }
558
559 blk_mq_sched_completed_request(rq, now);
560
561 blk_account_io_done(rq, now);
562
563 if (rq->end_io) {
564 rq_qos_done(rq->q, rq);
565 rq->end_io(rq, error);
566 } else {
567 blk_mq_free_request(rq);
568 }
569 }
570 EXPORT_SYMBOL(__blk_mq_end_request);
571
572 void blk_mq_end_request(struct request *rq, blk_status_t error)
573 {
574 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
575 BUG();
576 __blk_mq_end_request(rq, error);
577 }
578 EXPORT_SYMBOL(blk_mq_end_request);
579
580 static void blk_complete_reqs(struct llist_head *list)
581 {
582 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
583 struct request *rq, *next;
584
585 llist_for_each_entry_safe(rq, next, entry, ipi_list)
586 rq->q->mq_ops->complete(rq);
587 }
588
589 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
590 {
591 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
592 }
593
594 static int blk_softirq_cpu_dead(unsigned int cpu)
595 {
596 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
597 return 0;
598 }
599
600 static void __blk_mq_complete_request_remote(void *data)
601 {
602 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
603 }
604
605 static inline bool blk_mq_complete_need_ipi(struct request *rq)
606 {
607 int cpu = raw_smp_processor_id();
608
609 if (!IS_ENABLED(CONFIG_SMP) ||
610 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
611 return false;
612 /*
613 * With force threaded interrupts enabled, raising softirq from an SMP
614 * function call will always result in waking the ksoftirqd thread.
615 * This is probably worse than completing the request on a different
616 * cache domain.
617 */
618 if (force_irqthreads())
619 return false;
620
621 /* same CPU or cache domain? Complete locally */
622 if (cpu == rq->mq_ctx->cpu ||
623 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
624 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
625 return false;
626
627 /* don't try to IPI to an offline CPU */
628 return cpu_online(rq->mq_ctx->cpu);
629 }
630
631 static void blk_mq_complete_send_ipi(struct request *rq)
632 {
633 struct llist_head *list;
634 unsigned int cpu;
635
636 cpu = rq->mq_ctx->cpu;
637 list = &per_cpu(blk_cpu_done, cpu);
638 if (llist_add(&rq->ipi_list, list)) {
639 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
640 smp_call_function_single_async(cpu, &rq->csd);
641 }
642 }
643
644 static void blk_mq_raise_softirq(struct request *rq)
645 {
646 struct llist_head *list;
647
648 preempt_disable();
649 list = this_cpu_ptr(&blk_cpu_done);
650 if (llist_add(&rq->ipi_list, list))
651 raise_softirq(BLOCK_SOFTIRQ);
652 preempt_enable();
653 }
654
655 bool blk_mq_complete_request_remote(struct request *rq)
656 {
657 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658
659 /*
660 * For a polled request, always complete locallly, it's pointless
661 * to redirect the completion.
662 */
663 if (rq->cmd_flags & REQ_HIPRI)
664 return false;
665
666 if (blk_mq_complete_need_ipi(rq)) {
667 blk_mq_complete_send_ipi(rq);
668 return true;
669 }
670
671 if (rq->q->nr_hw_queues == 1) {
672 blk_mq_raise_softirq(rq);
673 return true;
674 }
675 return false;
676 }
677 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
678
679 /**
680 * blk_mq_complete_request - end I/O on a request
681 * @rq: the request being processed
682 *
683 * Description:
684 * Complete a request by scheduling the ->complete_rq operation.
685 **/
686 void blk_mq_complete_request(struct request *rq)
687 {
688 if (!blk_mq_complete_request_remote(rq))
689 rq->q->mq_ops->complete(rq);
690 }
691 EXPORT_SYMBOL(blk_mq_complete_request);
692
693 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
694 __releases(hctx->srcu)
695 {
696 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
697 rcu_read_unlock();
698 else
699 srcu_read_unlock(hctx->srcu, srcu_idx);
700 }
701
702 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
703 __acquires(hctx->srcu)
704 {
705 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
706 /* shut up gcc false positive */
707 *srcu_idx = 0;
708 rcu_read_lock();
709 } else
710 *srcu_idx = srcu_read_lock(hctx->srcu);
711 }
712
713 /**
714 * blk_mq_start_request - Start processing a request
715 * @rq: Pointer to request to be started
716 *
717 * Function used by device drivers to notify the block layer that a request
718 * is going to be processed now, so blk layer can do proper initializations
719 * such as starting the timeout timer.
720 */
721 void blk_mq_start_request(struct request *rq)
722 {
723 struct request_queue *q = rq->q;
724
725 trace_block_rq_issue(rq);
726
727 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
728 rq->io_start_time_ns = ktime_get_ns();
729 rq->stats_sectors = blk_rq_sectors(rq);
730 rq->rq_flags |= RQF_STATS;
731 rq_qos_issue(q, rq);
732 }
733
734 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
735
736 blk_add_timer(rq);
737 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
738
739 #ifdef CONFIG_BLK_DEV_INTEGRITY
740 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
741 q->integrity.profile->prepare_fn(rq);
742 #endif
743 }
744 EXPORT_SYMBOL(blk_mq_start_request);
745
746 static void __blk_mq_requeue_request(struct request *rq)
747 {
748 struct request_queue *q = rq->q;
749
750 blk_mq_put_driver_tag(rq);
751
752 trace_block_rq_requeue(rq);
753 rq_qos_requeue(q, rq);
754
755 if (blk_mq_request_started(rq)) {
756 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
757 rq->rq_flags &= ~RQF_TIMED_OUT;
758 }
759 }
760
761 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
762 {
763 __blk_mq_requeue_request(rq);
764
765 /* this request will be re-inserted to io scheduler queue */
766 blk_mq_sched_requeue_request(rq);
767
768 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
769 }
770 EXPORT_SYMBOL(blk_mq_requeue_request);
771
772 static void blk_mq_requeue_work(struct work_struct *work)
773 {
774 struct request_queue *q =
775 container_of(work, struct request_queue, requeue_work.work);
776 LIST_HEAD(rq_list);
777 struct request *rq, *next;
778
779 spin_lock_irq(&q->requeue_lock);
780 list_splice_init(&q->requeue_list, &rq_list);
781 spin_unlock_irq(&q->requeue_lock);
782
783 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
784 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
785 continue;
786
787 rq->rq_flags &= ~RQF_SOFTBARRIER;
788 list_del_init(&rq->queuelist);
789 /*
790 * If RQF_DONTPREP, rq has contained some driver specific
791 * data, so insert it to hctx dispatch list to avoid any
792 * merge.
793 */
794 if (rq->rq_flags & RQF_DONTPREP)
795 blk_mq_request_bypass_insert(rq, false, false);
796 else
797 blk_mq_sched_insert_request(rq, true, false, false);
798 }
799
800 while (!list_empty(&rq_list)) {
801 rq = list_entry(rq_list.next, struct request, queuelist);
802 list_del_init(&rq->queuelist);
803 blk_mq_sched_insert_request(rq, false, false, false);
804 }
805
806 blk_mq_run_hw_queues(q, false);
807 }
808
809 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
810 bool kick_requeue_list)
811 {
812 struct request_queue *q = rq->q;
813 unsigned long flags;
814
815 /*
816 * We abuse this flag that is otherwise used by the I/O scheduler to
817 * request head insertion from the workqueue.
818 */
819 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
820
821 spin_lock_irqsave(&q->requeue_lock, flags);
822 if (at_head) {
823 rq->rq_flags |= RQF_SOFTBARRIER;
824 list_add(&rq->queuelist, &q->requeue_list);
825 } else {
826 list_add_tail(&rq->queuelist, &q->requeue_list);
827 }
828 spin_unlock_irqrestore(&q->requeue_lock, flags);
829
830 if (kick_requeue_list)
831 blk_mq_kick_requeue_list(q);
832 }
833
834 void blk_mq_kick_requeue_list(struct request_queue *q)
835 {
836 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
837 }
838 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
839
840 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
841 unsigned long msecs)
842 {
843 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
844 msecs_to_jiffies(msecs));
845 }
846 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
847
848 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
849 {
850 if (tag < tags->nr_tags) {
851 prefetch(tags->rqs[tag]);
852 return tags->rqs[tag];
853 }
854
855 return NULL;
856 }
857 EXPORT_SYMBOL(blk_mq_tag_to_rq);
858
859 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
860 void *priv, bool reserved)
861 {
862 /*
863 * If we find a request that isn't idle and the queue matches,
864 * we know the queue is busy. Return false to stop the iteration.
865 */
866 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
867 bool *busy = priv;
868
869 *busy = true;
870 return false;
871 }
872
873 return true;
874 }
875
876 bool blk_mq_queue_inflight(struct request_queue *q)
877 {
878 bool busy = false;
879
880 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
881 return busy;
882 }
883 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
884
885 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
886 {
887 req->rq_flags |= RQF_TIMED_OUT;
888 if (req->q->mq_ops->timeout) {
889 enum blk_eh_timer_return ret;
890
891 ret = req->q->mq_ops->timeout(req, reserved);
892 if (ret == BLK_EH_DONE)
893 return;
894 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
895 }
896
897 blk_add_timer(req);
898 }
899
900 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
901 {
902 unsigned long deadline;
903
904 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
905 return false;
906 if (rq->rq_flags & RQF_TIMED_OUT)
907 return false;
908
909 deadline = READ_ONCE(rq->deadline);
910 if (time_after_eq(jiffies, deadline))
911 return true;
912
913 if (*next == 0)
914 *next = deadline;
915 else if (time_after(*next, deadline))
916 *next = deadline;
917 return false;
918 }
919
920 void blk_mq_put_rq_ref(struct request *rq)
921 {
922 if (is_flush_rq(rq))
923 rq->end_io(rq, 0);
924 else if (refcount_dec_and_test(&rq->ref))
925 __blk_mq_free_request(rq);
926 }
927
928 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
929 struct request *rq, void *priv, bool reserved)
930 {
931 unsigned long *next = priv;
932
933 /*
934 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
935 * be reallocated underneath the timeout handler's processing, then
936 * the expire check is reliable. If the request is not expired, then
937 * it was completed and reallocated as a new request after returning
938 * from blk_mq_check_expired().
939 */
940 if (blk_mq_req_expired(rq, next))
941 blk_mq_rq_timed_out(rq, reserved);
942 return true;
943 }
944
945 static void blk_mq_timeout_work(struct work_struct *work)
946 {
947 struct request_queue *q =
948 container_of(work, struct request_queue, timeout_work);
949 unsigned long next = 0;
950 struct blk_mq_hw_ctx *hctx;
951 int i;
952
953 /* A deadlock might occur if a request is stuck requiring a
954 * timeout at the same time a queue freeze is waiting
955 * completion, since the timeout code would not be able to
956 * acquire the queue reference here.
957 *
958 * That's why we don't use blk_queue_enter here; instead, we use
959 * percpu_ref_tryget directly, because we need to be able to
960 * obtain a reference even in the short window between the queue
961 * starting to freeze, by dropping the first reference in
962 * blk_freeze_queue_start, and the moment the last request is
963 * consumed, marked by the instant q_usage_counter reaches
964 * zero.
965 */
966 if (!percpu_ref_tryget(&q->q_usage_counter))
967 return;
968
969 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
970
971 if (next != 0) {
972 mod_timer(&q->timeout, next);
973 } else {
974 /*
975 * Request timeouts are handled as a forward rolling timer. If
976 * we end up here it means that no requests are pending and
977 * also that no request has been pending for a while. Mark
978 * each hctx as idle.
979 */
980 queue_for_each_hw_ctx(q, hctx, i) {
981 /* the hctx may be unmapped, so check it here */
982 if (blk_mq_hw_queue_mapped(hctx))
983 blk_mq_tag_idle(hctx);
984 }
985 }
986 blk_queue_exit(q);
987 }
988
989 struct flush_busy_ctx_data {
990 struct blk_mq_hw_ctx *hctx;
991 struct list_head *list;
992 };
993
994 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
995 {
996 struct flush_busy_ctx_data *flush_data = data;
997 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
998 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
999 enum hctx_type type = hctx->type;
1000
1001 spin_lock(&ctx->lock);
1002 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1003 sbitmap_clear_bit(sb, bitnr);
1004 spin_unlock(&ctx->lock);
1005 return true;
1006 }
1007
1008 /*
1009 * Process software queues that have been marked busy, splicing them
1010 * to the for-dispatch
1011 */
1012 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1013 {
1014 struct flush_busy_ctx_data data = {
1015 .hctx = hctx,
1016 .list = list,
1017 };
1018
1019 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1020 }
1021 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1022
1023 struct dispatch_rq_data {
1024 struct blk_mq_hw_ctx *hctx;
1025 struct request *rq;
1026 };
1027
1028 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1029 void *data)
1030 {
1031 struct dispatch_rq_data *dispatch_data = data;
1032 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1033 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1034 enum hctx_type type = hctx->type;
1035
1036 spin_lock(&ctx->lock);
1037 if (!list_empty(&ctx->rq_lists[type])) {
1038 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1039 list_del_init(&dispatch_data->rq->queuelist);
1040 if (list_empty(&ctx->rq_lists[type]))
1041 sbitmap_clear_bit(sb, bitnr);
1042 }
1043 spin_unlock(&ctx->lock);
1044
1045 return !dispatch_data->rq;
1046 }
1047
1048 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1049 struct blk_mq_ctx *start)
1050 {
1051 unsigned off = start ? start->index_hw[hctx->type] : 0;
1052 struct dispatch_rq_data data = {
1053 .hctx = hctx,
1054 .rq = NULL,
1055 };
1056
1057 __sbitmap_for_each_set(&hctx->ctx_map, off,
1058 dispatch_rq_from_ctx, &data);
1059
1060 return data.rq;
1061 }
1062
1063 static inline unsigned int queued_to_index(unsigned int queued)
1064 {
1065 if (!queued)
1066 return 0;
1067
1068 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1069 }
1070
1071 static bool __blk_mq_get_driver_tag(struct request *rq)
1072 {
1073 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1074 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1075 int tag;
1076
1077 blk_mq_tag_busy(rq->mq_hctx);
1078
1079 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1080 bt = rq->mq_hctx->tags->breserved_tags;
1081 tag_offset = 0;
1082 } else {
1083 if (!hctx_may_queue(rq->mq_hctx, bt))
1084 return false;
1085 }
1086
1087 tag = __sbitmap_queue_get(bt);
1088 if (tag == BLK_MQ_NO_TAG)
1089 return false;
1090
1091 rq->tag = tag + tag_offset;
1092 return true;
1093 }
1094
1095 bool blk_mq_get_driver_tag(struct request *rq)
1096 {
1097 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1098
1099 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1100 return false;
1101
1102 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1103 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1104 rq->rq_flags |= RQF_MQ_INFLIGHT;
1105 __blk_mq_inc_active_requests(hctx);
1106 }
1107 hctx->tags->rqs[rq->tag] = rq;
1108 return true;
1109 }
1110
1111 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1112 int flags, void *key)
1113 {
1114 struct blk_mq_hw_ctx *hctx;
1115
1116 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1117
1118 spin_lock(&hctx->dispatch_wait_lock);
1119 if (!list_empty(&wait->entry)) {
1120 struct sbitmap_queue *sbq;
1121
1122 list_del_init(&wait->entry);
1123 sbq = hctx->tags->bitmap_tags;
1124 atomic_dec(&sbq->ws_active);
1125 }
1126 spin_unlock(&hctx->dispatch_wait_lock);
1127
1128 blk_mq_run_hw_queue(hctx, true);
1129 return 1;
1130 }
1131
1132 /*
1133 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1134 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1135 * restart. For both cases, take care to check the condition again after
1136 * marking us as waiting.
1137 */
1138 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1139 struct request *rq)
1140 {
1141 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1142 struct wait_queue_head *wq;
1143 wait_queue_entry_t *wait;
1144 bool ret;
1145
1146 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1147 blk_mq_sched_mark_restart_hctx(hctx);
1148
1149 /*
1150 * It's possible that a tag was freed in the window between the
1151 * allocation failure and adding the hardware queue to the wait
1152 * queue.
1153 *
1154 * Don't clear RESTART here, someone else could have set it.
1155 * At most this will cost an extra queue run.
1156 */
1157 return blk_mq_get_driver_tag(rq);
1158 }
1159
1160 wait = &hctx->dispatch_wait;
1161 if (!list_empty_careful(&wait->entry))
1162 return false;
1163
1164 wq = &bt_wait_ptr(sbq, hctx)->wait;
1165
1166 spin_lock_irq(&wq->lock);
1167 spin_lock(&hctx->dispatch_wait_lock);
1168 if (!list_empty(&wait->entry)) {
1169 spin_unlock(&hctx->dispatch_wait_lock);
1170 spin_unlock_irq(&wq->lock);
1171 return false;
1172 }
1173
1174 atomic_inc(&sbq->ws_active);
1175 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1176 __add_wait_queue(wq, wait);
1177
1178 /*
1179 * It's possible that a tag was freed in the window between the
1180 * allocation failure and adding the hardware queue to the wait
1181 * queue.
1182 */
1183 ret = blk_mq_get_driver_tag(rq);
1184 if (!ret) {
1185 spin_unlock(&hctx->dispatch_wait_lock);
1186 spin_unlock_irq(&wq->lock);
1187 return false;
1188 }
1189
1190 /*
1191 * We got a tag, remove ourselves from the wait queue to ensure
1192 * someone else gets the wakeup.
1193 */
1194 list_del_init(&wait->entry);
1195 atomic_dec(&sbq->ws_active);
1196 spin_unlock(&hctx->dispatch_wait_lock);
1197 spin_unlock_irq(&wq->lock);
1198
1199 return true;
1200 }
1201
1202 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1203 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1204 /*
1205 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1206 * - EWMA is one simple way to compute running average value
1207 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1208 * - take 4 as factor for avoiding to get too small(0) result, and this
1209 * factor doesn't matter because EWMA decreases exponentially
1210 */
1211 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1212 {
1213 unsigned int ewma;
1214
1215 ewma = hctx->dispatch_busy;
1216
1217 if (!ewma && !busy)
1218 return;
1219
1220 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1221 if (busy)
1222 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1223 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1224
1225 hctx->dispatch_busy = ewma;
1226 }
1227
1228 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1229
1230 static void blk_mq_handle_dev_resource(struct request *rq,
1231 struct list_head *list)
1232 {
1233 struct request *next =
1234 list_first_entry_or_null(list, struct request, queuelist);
1235
1236 /*
1237 * If an I/O scheduler has been configured and we got a driver tag for
1238 * the next request already, free it.
1239 */
1240 if (next)
1241 blk_mq_put_driver_tag(next);
1242
1243 list_add(&rq->queuelist, list);
1244 __blk_mq_requeue_request(rq);
1245 }
1246
1247 static void blk_mq_handle_zone_resource(struct request *rq,
1248 struct list_head *zone_list)
1249 {
1250 /*
1251 * If we end up here it is because we cannot dispatch a request to a
1252 * specific zone due to LLD level zone-write locking or other zone
1253 * related resource not being available. In this case, set the request
1254 * aside in zone_list for retrying it later.
1255 */
1256 list_add(&rq->queuelist, zone_list);
1257 __blk_mq_requeue_request(rq);
1258 }
1259
1260 enum prep_dispatch {
1261 PREP_DISPATCH_OK,
1262 PREP_DISPATCH_NO_TAG,
1263 PREP_DISPATCH_NO_BUDGET,
1264 };
1265
1266 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1267 bool need_budget)
1268 {
1269 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1270 int budget_token = -1;
1271
1272 if (need_budget) {
1273 budget_token = blk_mq_get_dispatch_budget(rq->q);
1274 if (budget_token < 0) {
1275 blk_mq_put_driver_tag(rq);
1276 return PREP_DISPATCH_NO_BUDGET;
1277 }
1278 blk_mq_set_rq_budget_token(rq, budget_token);
1279 }
1280
1281 if (!blk_mq_get_driver_tag(rq)) {
1282 /*
1283 * The initial allocation attempt failed, so we need to
1284 * rerun the hardware queue when a tag is freed. The
1285 * waitqueue takes care of that. If the queue is run
1286 * before we add this entry back on the dispatch list,
1287 * we'll re-run it below.
1288 */
1289 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1290 /*
1291 * All budgets not got from this function will be put
1292 * together during handling partial dispatch
1293 */
1294 if (need_budget)
1295 blk_mq_put_dispatch_budget(rq->q, budget_token);
1296 return PREP_DISPATCH_NO_TAG;
1297 }
1298 }
1299
1300 return PREP_DISPATCH_OK;
1301 }
1302
1303 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1304 static void blk_mq_release_budgets(struct request_queue *q,
1305 struct list_head *list)
1306 {
1307 struct request *rq;
1308
1309 list_for_each_entry(rq, list, queuelist) {
1310 int budget_token = blk_mq_get_rq_budget_token(rq);
1311
1312 if (budget_token >= 0)
1313 blk_mq_put_dispatch_budget(q, budget_token);
1314 }
1315 }
1316
1317 /*
1318 * Returns true if we did some work AND can potentially do more.
1319 */
1320 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1321 unsigned int nr_budgets)
1322 {
1323 enum prep_dispatch prep;
1324 struct request_queue *q = hctx->queue;
1325 struct request *rq, *nxt;
1326 int errors, queued;
1327 blk_status_t ret = BLK_STS_OK;
1328 LIST_HEAD(zone_list);
1329 bool needs_resource = false;
1330
1331 if (list_empty(list))
1332 return false;
1333
1334 /*
1335 * Now process all the entries, sending them to the driver.
1336 */
1337 errors = queued = 0;
1338 do {
1339 struct blk_mq_queue_data bd;
1340
1341 rq = list_first_entry(list, struct request, queuelist);
1342
1343 WARN_ON_ONCE(hctx != rq->mq_hctx);
1344 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1345 if (prep != PREP_DISPATCH_OK)
1346 break;
1347
1348 list_del_init(&rq->queuelist);
1349
1350 bd.rq = rq;
1351
1352 /*
1353 * Flag last if we have no more requests, or if we have more
1354 * but can't assign a driver tag to it.
1355 */
1356 if (list_empty(list))
1357 bd.last = true;
1358 else {
1359 nxt = list_first_entry(list, struct request, queuelist);
1360 bd.last = !blk_mq_get_driver_tag(nxt);
1361 }
1362
1363 /*
1364 * once the request is queued to lld, no need to cover the
1365 * budget any more
1366 */
1367 if (nr_budgets)
1368 nr_budgets--;
1369 ret = q->mq_ops->queue_rq(hctx, &bd);
1370 switch (ret) {
1371 case BLK_STS_OK:
1372 queued++;
1373 break;
1374 case BLK_STS_RESOURCE:
1375 needs_resource = true;
1376 fallthrough;
1377 case BLK_STS_DEV_RESOURCE:
1378 blk_mq_handle_dev_resource(rq, list);
1379 goto out;
1380 case BLK_STS_ZONE_RESOURCE:
1381 /*
1382 * Move the request to zone_list and keep going through
1383 * the dispatch list to find more requests the drive can
1384 * accept.
1385 */
1386 blk_mq_handle_zone_resource(rq, &zone_list);
1387 needs_resource = true;
1388 break;
1389 default:
1390 errors++;
1391 blk_mq_end_request(rq, ret);
1392 }
1393 } while (!list_empty(list));
1394 out:
1395 if (!list_empty(&zone_list))
1396 list_splice_tail_init(&zone_list, list);
1397
1398 hctx->dispatched[queued_to_index(queued)]++;
1399
1400 /* If we didn't flush the entire list, we could have told the driver
1401 * there was more coming, but that turned out to be a lie.
1402 */
1403 if ((!list_empty(list) || errors || needs_resource ||
1404 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1405 q->mq_ops->commit_rqs(hctx);
1406 /*
1407 * Any items that need requeuing? Stuff them into hctx->dispatch,
1408 * that is where we will continue on next queue run.
1409 */
1410 if (!list_empty(list)) {
1411 bool needs_restart;
1412 /* For non-shared tags, the RESTART check will suffice */
1413 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1414 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1415
1416 if (nr_budgets)
1417 blk_mq_release_budgets(q, list);
1418
1419 spin_lock(&hctx->lock);
1420 list_splice_tail_init(list, &hctx->dispatch);
1421 spin_unlock(&hctx->lock);
1422
1423 /*
1424 * Order adding requests to hctx->dispatch and checking
1425 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1426 * in blk_mq_sched_restart(). Avoid restart code path to
1427 * miss the new added requests to hctx->dispatch, meantime
1428 * SCHED_RESTART is observed here.
1429 */
1430 smp_mb();
1431
1432 /*
1433 * If SCHED_RESTART was set by the caller of this function and
1434 * it is no longer set that means that it was cleared by another
1435 * thread and hence that a queue rerun is needed.
1436 *
1437 * If 'no_tag' is set, that means that we failed getting
1438 * a driver tag with an I/O scheduler attached. If our dispatch
1439 * waitqueue is no longer active, ensure that we run the queue
1440 * AFTER adding our entries back to the list.
1441 *
1442 * If no I/O scheduler has been configured it is possible that
1443 * the hardware queue got stopped and restarted before requests
1444 * were pushed back onto the dispatch list. Rerun the queue to
1445 * avoid starvation. Notes:
1446 * - blk_mq_run_hw_queue() checks whether or not a queue has
1447 * been stopped before rerunning a queue.
1448 * - Some but not all block drivers stop a queue before
1449 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1450 * and dm-rq.
1451 *
1452 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1453 * bit is set, run queue after a delay to avoid IO stalls
1454 * that could otherwise occur if the queue is idle. We'll do
1455 * similar if we couldn't get budget or couldn't lock a zone
1456 * and SCHED_RESTART is set.
1457 */
1458 needs_restart = blk_mq_sched_needs_restart(hctx);
1459 if (prep == PREP_DISPATCH_NO_BUDGET)
1460 needs_resource = true;
1461 if (!needs_restart ||
1462 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1463 blk_mq_run_hw_queue(hctx, true);
1464 else if (needs_restart && needs_resource)
1465 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1466
1467 blk_mq_update_dispatch_busy(hctx, true);
1468 return false;
1469 } else
1470 blk_mq_update_dispatch_busy(hctx, false);
1471
1472 return (queued + errors) != 0;
1473 }
1474
1475 /**
1476 * __blk_mq_run_hw_queue - Run a hardware queue.
1477 * @hctx: Pointer to the hardware queue to run.
1478 *
1479 * Send pending requests to the hardware.
1480 */
1481 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1482 {
1483 int srcu_idx;
1484
1485 /*
1486 * We can't run the queue inline with ints disabled. Ensure that
1487 * we catch bad users of this early.
1488 */
1489 WARN_ON_ONCE(in_interrupt());
1490
1491 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1492
1493 hctx_lock(hctx, &srcu_idx);
1494 blk_mq_sched_dispatch_requests(hctx);
1495 hctx_unlock(hctx, srcu_idx);
1496 }
1497
1498 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1499 {
1500 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1501
1502 if (cpu >= nr_cpu_ids)
1503 cpu = cpumask_first(hctx->cpumask);
1504 return cpu;
1505 }
1506
1507 /*
1508 * It'd be great if the workqueue API had a way to pass
1509 * in a mask and had some smarts for more clever placement.
1510 * For now we just round-robin here, switching for every
1511 * BLK_MQ_CPU_WORK_BATCH queued items.
1512 */
1513 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1514 {
1515 bool tried = false;
1516 int next_cpu = hctx->next_cpu;
1517
1518 if (hctx->queue->nr_hw_queues == 1)
1519 return WORK_CPU_UNBOUND;
1520
1521 if (--hctx->next_cpu_batch <= 0) {
1522 select_cpu:
1523 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1524 cpu_online_mask);
1525 if (next_cpu >= nr_cpu_ids)
1526 next_cpu = blk_mq_first_mapped_cpu(hctx);
1527 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1528 }
1529
1530 /*
1531 * Do unbound schedule if we can't find a online CPU for this hctx,
1532 * and it should only happen in the path of handling CPU DEAD.
1533 */
1534 if (!cpu_online(next_cpu)) {
1535 if (!tried) {
1536 tried = true;
1537 goto select_cpu;
1538 }
1539
1540 /*
1541 * Make sure to re-select CPU next time once after CPUs
1542 * in hctx->cpumask become online again.
1543 */
1544 hctx->next_cpu = next_cpu;
1545 hctx->next_cpu_batch = 1;
1546 return WORK_CPU_UNBOUND;
1547 }
1548
1549 hctx->next_cpu = next_cpu;
1550 return next_cpu;
1551 }
1552
1553 /**
1554 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1555 * @hctx: Pointer to the hardware queue to run.
1556 * @async: If we want to run the queue asynchronously.
1557 * @msecs: Milliseconds of delay to wait before running the queue.
1558 *
1559 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1560 * with a delay of @msecs.
1561 */
1562 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1563 unsigned long msecs)
1564 {
1565 if (unlikely(blk_mq_hctx_stopped(hctx)))
1566 return;
1567
1568 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1569 int cpu = get_cpu();
1570 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1571 __blk_mq_run_hw_queue(hctx);
1572 put_cpu();
1573 return;
1574 }
1575
1576 put_cpu();
1577 }
1578
1579 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1580 msecs_to_jiffies(msecs));
1581 }
1582
1583 /**
1584 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1585 * @hctx: Pointer to the hardware queue to run.
1586 * @msecs: Milliseconds of delay to wait before running the queue.
1587 *
1588 * Run a hardware queue asynchronously with a delay of @msecs.
1589 */
1590 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1591 {
1592 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1593 }
1594 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1595
1596 /**
1597 * blk_mq_run_hw_queue - Start to run a hardware queue.
1598 * @hctx: Pointer to the hardware queue to run.
1599 * @async: If we want to run the queue asynchronously.
1600 *
1601 * Check if the request queue is not in a quiesced state and if there are
1602 * pending requests to be sent. If this is true, run the queue to send requests
1603 * to hardware.
1604 */
1605 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1606 {
1607 int srcu_idx;
1608 bool need_run;
1609
1610 /*
1611 * When queue is quiesced, we may be switching io scheduler, or
1612 * updating nr_hw_queues, or other things, and we can't run queue
1613 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1614 *
1615 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1616 * quiesced.
1617 */
1618 hctx_lock(hctx, &srcu_idx);
1619 need_run = !blk_queue_quiesced(hctx->queue) &&
1620 blk_mq_hctx_has_pending(hctx);
1621 hctx_unlock(hctx, srcu_idx);
1622
1623 if (need_run)
1624 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1625 }
1626 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1627
1628 /*
1629 * Is the request queue handled by an IO scheduler that does not respect
1630 * hardware queues when dispatching?
1631 */
1632 static bool blk_mq_has_sqsched(struct request_queue *q)
1633 {
1634 struct elevator_queue *e = q->elevator;
1635
1636 if (e && e->type->ops.dispatch_request &&
1637 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1638 return true;
1639 return false;
1640 }
1641
1642 /*
1643 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1644 * scheduler.
1645 */
1646 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1647 {
1648 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
1649 /*
1650 * If the IO scheduler does not respect hardware queues when
1651 * dispatching, we just don't bother with multiple HW queues and
1652 * dispatch from hctx for the current CPU since running multiple queues
1653 * just causes lock contention inside the scheduler and pointless cache
1654 * bouncing.
1655 */
1656 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
1657
1658 if (!blk_mq_hctx_stopped(hctx))
1659 return hctx;
1660 return NULL;
1661 }
1662
1663 /**
1664 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1665 * @q: Pointer to the request queue to run.
1666 * @async: If we want to run the queue asynchronously.
1667 */
1668 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1669 {
1670 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1671 int i;
1672
1673 sq_hctx = NULL;
1674 if (blk_mq_has_sqsched(q))
1675 sq_hctx = blk_mq_get_sq_hctx(q);
1676 queue_for_each_hw_ctx(q, hctx, i) {
1677 if (blk_mq_hctx_stopped(hctx))
1678 continue;
1679 /*
1680 * Dispatch from this hctx either if there's no hctx preferred
1681 * by IO scheduler or if it has requests that bypass the
1682 * scheduler.
1683 */
1684 if (!sq_hctx || sq_hctx == hctx ||
1685 !list_empty_careful(&hctx->dispatch))
1686 blk_mq_run_hw_queue(hctx, async);
1687 }
1688 }
1689 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1690
1691 /**
1692 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1693 * @q: Pointer to the request queue to run.
1694 * @msecs: Milliseconds of delay to wait before running the queues.
1695 */
1696 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1697 {
1698 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1699 int i;
1700
1701 sq_hctx = NULL;
1702 if (blk_mq_has_sqsched(q))
1703 sq_hctx = blk_mq_get_sq_hctx(q);
1704 queue_for_each_hw_ctx(q, hctx, i) {
1705 if (blk_mq_hctx_stopped(hctx))
1706 continue;
1707 /*
1708 * Dispatch from this hctx either if there's no hctx preferred
1709 * by IO scheduler or if it has requests that bypass the
1710 * scheduler.
1711 */
1712 if (!sq_hctx || sq_hctx == hctx ||
1713 !list_empty_careful(&hctx->dispatch))
1714 blk_mq_delay_run_hw_queue(hctx, msecs);
1715 }
1716 }
1717 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1718
1719 /**
1720 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1721 * @q: request queue.
1722 *
1723 * The caller is responsible for serializing this function against
1724 * blk_mq_{start,stop}_hw_queue().
1725 */
1726 bool blk_mq_queue_stopped(struct request_queue *q)
1727 {
1728 struct blk_mq_hw_ctx *hctx;
1729 int i;
1730
1731 queue_for_each_hw_ctx(q, hctx, i)
1732 if (blk_mq_hctx_stopped(hctx))
1733 return true;
1734
1735 return false;
1736 }
1737 EXPORT_SYMBOL(blk_mq_queue_stopped);
1738
1739 /*
1740 * This function is often used for pausing .queue_rq() by driver when
1741 * there isn't enough resource or some conditions aren't satisfied, and
1742 * BLK_STS_RESOURCE is usually returned.
1743 *
1744 * We do not guarantee that dispatch can be drained or blocked
1745 * after blk_mq_stop_hw_queue() returns. Please use
1746 * blk_mq_quiesce_queue() for that requirement.
1747 */
1748 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1749 {
1750 cancel_delayed_work(&hctx->run_work);
1751
1752 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1753 }
1754 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1755
1756 /*
1757 * This function is often used for pausing .queue_rq() by driver when
1758 * there isn't enough resource or some conditions aren't satisfied, and
1759 * BLK_STS_RESOURCE is usually returned.
1760 *
1761 * We do not guarantee that dispatch can be drained or blocked
1762 * after blk_mq_stop_hw_queues() returns. Please use
1763 * blk_mq_quiesce_queue() for that requirement.
1764 */
1765 void blk_mq_stop_hw_queues(struct request_queue *q)
1766 {
1767 struct blk_mq_hw_ctx *hctx;
1768 int i;
1769
1770 queue_for_each_hw_ctx(q, hctx, i)
1771 blk_mq_stop_hw_queue(hctx);
1772 }
1773 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1774
1775 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1776 {
1777 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1778
1779 blk_mq_run_hw_queue(hctx, false);
1780 }
1781 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1782
1783 void blk_mq_start_hw_queues(struct request_queue *q)
1784 {
1785 struct blk_mq_hw_ctx *hctx;
1786 int i;
1787
1788 queue_for_each_hw_ctx(q, hctx, i)
1789 blk_mq_start_hw_queue(hctx);
1790 }
1791 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1792
1793 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1794 {
1795 if (!blk_mq_hctx_stopped(hctx))
1796 return;
1797
1798 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1799 blk_mq_run_hw_queue(hctx, async);
1800 }
1801 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1802
1803 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1804 {
1805 struct blk_mq_hw_ctx *hctx;
1806 int i;
1807
1808 queue_for_each_hw_ctx(q, hctx, i)
1809 blk_mq_start_stopped_hw_queue(hctx, async);
1810 }
1811 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1812
1813 static void blk_mq_run_work_fn(struct work_struct *work)
1814 {
1815 struct blk_mq_hw_ctx *hctx;
1816
1817 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1818
1819 /*
1820 * If we are stopped, don't run the queue.
1821 */
1822 if (blk_mq_hctx_stopped(hctx))
1823 return;
1824
1825 __blk_mq_run_hw_queue(hctx);
1826 }
1827
1828 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1829 struct request *rq,
1830 bool at_head)
1831 {
1832 struct blk_mq_ctx *ctx = rq->mq_ctx;
1833 enum hctx_type type = hctx->type;
1834
1835 lockdep_assert_held(&ctx->lock);
1836
1837 trace_block_rq_insert(rq);
1838
1839 if (at_head)
1840 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1841 else
1842 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1843 }
1844
1845 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1846 bool at_head)
1847 {
1848 struct blk_mq_ctx *ctx = rq->mq_ctx;
1849
1850 lockdep_assert_held(&ctx->lock);
1851
1852 __blk_mq_insert_req_list(hctx, rq, at_head);
1853 blk_mq_hctx_mark_pending(hctx, ctx);
1854 }
1855
1856 /**
1857 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1858 * @rq: Pointer to request to be inserted.
1859 * @at_head: true if the request should be inserted at the head of the list.
1860 * @run_queue: If we should run the hardware queue after inserting the request.
1861 *
1862 * Should only be used carefully, when the caller knows we want to
1863 * bypass a potential IO scheduler on the target device.
1864 */
1865 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1866 bool run_queue)
1867 {
1868 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1869
1870 spin_lock(&hctx->lock);
1871 if (at_head)
1872 list_add(&rq->queuelist, &hctx->dispatch);
1873 else
1874 list_add_tail(&rq->queuelist, &hctx->dispatch);
1875 spin_unlock(&hctx->lock);
1876
1877 if (run_queue)
1878 blk_mq_run_hw_queue(hctx, false);
1879 }
1880
1881 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1882 struct list_head *list)
1883
1884 {
1885 struct request *rq;
1886 enum hctx_type type = hctx->type;
1887
1888 /*
1889 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1890 * offline now
1891 */
1892 list_for_each_entry(rq, list, queuelist) {
1893 BUG_ON(rq->mq_ctx != ctx);
1894 trace_block_rq_insert(rq);
1895 }
1896
1897 spin_lock(&ctx->lock);
1898 list_splice_tail_init(list, &ctx->rq_lists[type]);
1899 blk_mq_hctx_mark_pending(hctx, ctx);
1900 spin_unlock(&ctx->lock);
1901 }
1902
1903 static int plug_rq_cmp(void *priv, const struct list_head *a,
1904 const struct list_head *b)
1905 {
1906 struct request *rqa = container_of(a, struct request, queuelist);
1907 struct request *rqb = container_of(b, struct request, queuelist);
1908
1909 if (rqa->mq_ctx != rqb->mq_ctx)
1910 return rqa->mq_ctx > rqb->mq_ctx;
1911 if (rqa->mq_hctx != rqb->mq_hctx)
1912 return rqa->mq_hctx > rqb->mq_hctx;
1913
1914 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1915 }
1916
1917 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1918 {
1919 LIST_HEAD(list);
1920
1921 if (list_empty(&plug->mq_list))
1922 return;
1923 list_splice_init(&plug->mq_list, &list);
1924
1925 if (plug->rq_count > 2 && plug->multiple_queues)
1926 list_sort(NULL, &list, plug_rq_cmp);
1927
1928 plug->rq_count = 0;
1929
1930 do {
1931 struct list_head rq_list;
1932 struct request *rq, *head_rq = list_entry_rq(list.next);
1933 struct list_head *pos = &head_rq->queuelist; /* skip first */
1934 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1935 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1936 unsigned int depth = 1;
1937
1938 list_for_each_continue(pos, &list) {
1939 rq = list_entry_rq(pos);
1940 BUG_ON(!rq->q);
1941 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1942 break;
1943 depth++;
1944 }
1945
1946 list_cut_before(&rq_list, &list, pos);
1947 trace_block_unplug(head_rq->q, depth, !from_schedule);
1948 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1949 from_schedule);
1950 } while(!list_empty(&list));
1951 }
1952
1953 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1954 unsigned int nr_segs)
1955 {
1956 int err;
1957
1958 if (bio->bi_opf & REQ_RAHEAD)
1959 rq->cmd_flags |= REQ_FAILFAST_MASK;
1960
1961 rq->__sector = bio->bi_iter.bi_sector;
1962 rq->write_hint = bio->bi_write_hint;
1963 blk_rq_bio_prep(rq, bio, nr_segs);
1964
1965 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1966 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1967 WARN_ON_ONCE(err);
1968
1969 blk_account_io_start(rq);
1970 }
1971
1972 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1973 struct request *rq,
1974 blk_qc_t *cookie, bool last)
1975 {
1976 struct request_queue *q = rq->q;
1977 struct blk_mq_queue_data bd = {
1978 .rq = rq,
1979 .last = last,
1980 };
1981 blk_qc_t new_cookie;
1982 blk_status_t ret;
1983
1984 new_cookie = request_to_qc_t(hctx, rq);
1985
1986 /*
1987 * For OK queue, we are done. For error, caller may kill it.
1988 * Any other error (busy), just add it to our list as we
1989 * previously would have done.
1990 */
1991 ret = q->mq_ops->queue_rq(hctx, &bd);
1992 switch (ret) {
1993 case BLK_STS_OK:
1994 blk_mq_update_dispatch_busy(hctx, false);
1995 *cookie = new_cookie;
1996 break;
1997 case BLK_STS_RESOURCE:
1998 case BLK_STS_DEV_RESOURCE:
1999 blk_mq_update_dispatch_busy(hctx, true);
2000 __blk_mq_requeue_request(rq);
2001 break;
2002 default:
2003 blk_mq_update_dispatch_busy(hctx, false);
2004 *cookie = BLK_QC_T_NONE;
2005 break;
2006 }
2007
2008 return ret;
2009 }
2010
2011 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2012 struct request *rq,
2013 blk_qc_t *cookie,
2014 bool bypass_insert, bool last)
2015 {
2016 struct request_queue *q = rq->q;
2017 bool run_queue = true;
2018 int budget_token;
2019
2020 /*
2021 * RCU or SRCU read lock is needed before checking quiesced flag.
2022 *
2023 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2024 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2025 * and avoid driver to try to dispatch again.
2026 */
2027 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2028 run_queue = false;
2029 bypass_insert = false;
2030 goto insert;
2031 }
2032
2033 if (q->elevator && !bypass_insert)
2034 goto insert;
2035
2036 budget_token = blk_mq_get_dispatch_budget(q);
2037 if (budget_token < 0)
2038 goto insert;
2039
2040 blk_mq_set_rq_budget_token(rq, budget_token);
2041
2042 if (!blk_mq_get_driver_tag(rq)) {
2043 blk_mq_put_dispatch_budget(q, budget_token);
2044 goto insert;
2045 }
2046
2047 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2048 insert:
2049 if (bypass_insert)
2050 return BLK_STS_RESOURCE;
2051
2052 blk_mq_sched_insert_request(rq, false, run_queue, false);
2053
2054 return BLK_STS_OK;
2055 }
2056
2057 /**
2058 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2059 * @hctx: Pointer of the associated hardware queue.
2060 * @rq: Pointer to request to be sent.
2061 * @cookie: Request queue cookie.
2062 *
2063 * If the device has enough resources to accept a new request now, send the
2064 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2065 * we can try send it another time in the future. Requests inserted at this
2066 * queue have higher priority.
2067 */
2068 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2069 struct request *rq, blk_qc_t *cookie)
2070 {
2071 blk_status_t ret;
2072 int srcu_idx;
2073
2074 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2075
2076 hctx_lock(hctx, &srcu_idx);
2077
2078 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2079 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2080 blk_mq_request_bypass_insert(rq, false, true);
2081 else if (ret != BLK_STS_OK)
2082 blk_mq_end_request(rq, ret);
2083
2084 hctx_unlock(hctx, srcu_idx);
2085 }
2086
2087 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2088 {
2089 blk_status_t ret;
2090 int srcu_idx;
2091 blk_qc_t unused_cookie;
2092 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2093
2094 hctx_lock(hctx, &srcu_idx);
2095 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2096 hctx_unlock(hctx, srcu_idx);
2097
2098 return ret;
2099 }
2100
2101 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2102 struct list_head *list)
2103 {
2104 int queued = 0;
2105 int errors = 0;
2106
2107 while (!list_empty(list)) {
2108 blk_status_t ret;
2109 struct request *rq = list_first_entry(list, struct request,
2110 queuelist);
2111
2112 list_del_init(&rq->queuelist);
2113 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2114 if (ret != BLK_STS_OK) {
2115 errors++;
2116 if (ret == BLK_STS_RESOURCE ||
2117 ret == BLK_STS_DEV_RESOURCE) {
2118 blk_mq_request_bypass_insert(rq, false,
2119 list_empty(list));
2120 break;
2121 }
2122 blk_mq_end_request(rq, ret);
2123 } else
2124 queued++;
2125 }
2126
2127 /*
2128 * If we didn't flush the entire list, we could have told
2129 * the driver there was more coming, but that turned out to
2130 * be a lie.
2131 */
2132 if ((!list_empty(list) || errors) &&
2133 hctx->queue->mq_ops->commit_rqs && queued)
2134 hctx->queue->mq_ops->commit_rqs(hctx);
2135 }
2136
2137 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2138 {
2139 list_add_tail(&rq->queuelist, &plug->mq_list);
2140 plug->rq_count++;
2141 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2142 struct request *tmp;
2143
2144 tmp = list_first_entry(&plug->mq_list, struct request,
2145 queuelist);
2146 if (tmp->q != rq->q)
2147 plug->multiple_queues = true;
2148 }
2149 }
2150
2151 /*
2152 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2153 * queues. This is important for md arrays to benefit from merging
2154 * requests.
2155 */
2156 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2157 {
2158 if (plug->multiple_queues)
2159 return BLK_MAX_REQUEST_COUNT * 2;
2160 return BLK_MAX_REQUEST_COUNT;
2161 }
2162
2163 /**
2164 * blk_mq_submit_bio - Create and send a request to block device.
2165 * @bio: Bio pointer.
2166 *
2167 * Builds up a request structure from @q and @bio and send to the device. The
2168 * request may not be queued directly to hardware if:
2169 * * This request can be merged with another one
2170 * * We want to place request at plug queue for possible future merging
2171 * * There is an IO scheduler active at this queue
2172 *
2173 * It will not queue the request if there is an error with the bio, or at the
2174 * request creation.
2175 *
2176 * Returns: Request queue cookie.
2177 */
2178 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2179 {
2180 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2181 const int is_sync = op_is_sync(bio->bi_opf);
2182 const int is_flush_fua = op_is_flush(bio->bi_opf);
2183 struct blk_mq_alloc_data data = {
2184 .q = q,
2185 };
2186 struct request *rq;
2187 struct blk_plug *plug;
2188 struct request *same_queue_rq = NULL;
2189 unsigned int nr_segs;
2190 blk_qc_t cookie;
2191 blk_status_t ret;
2192 bool hipri;
2193
2194 blk_queue_bounce(q, &bio);
2195 __blk_queue_split(&bio, &nr_segs);
2196
2197 if (!bio_integrity_prep(bio))
2198 goto queue_exit;
2199
2200 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2201 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2202 goto queue_exit;
2203
2204 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2205 goto queue_exit;
2206
2207 rq_qos_throttle(q, bio);
2208
2209 hipri = bio->bi_opf & REQ_HIPRI;
2210
2211 data.cmd_flags = bio->bi_opf;
2212 rq = __blk_mq_alloc_request(&data);
2213 if (unlikely(!rq)) {
2214 rq_qos_cleanup(q, bio);
2215 if (bio->bi_opf & REQ_NOWAIT)
2216 bio_wouldblock_error(bio);
2217 goto queue_exit;
2218 }
2219
2220 trace_block_getrq(bio);
2221
2222 rq_qos_track(q, rq, bio);
2223
2224 cookie = request_to_qc_t(data.hctx, rq);
2225
2226 blk_mq_bio_to_request(rq, bio, nr_segs);
2227
2228 ret = blk_crypto_init_request(rq);
2229 if (ret != BLK_STS_OK) {
2230 bio->bi_status = ret;
2231 bio_endio(bio);
2232 blk_mq_free_request(rq);
2233 return BLK_QC_T_NONE;
2234 }
2235
2236 plug = blk_mq_plug(q, bio);
2237 if (unlikely(is_flush_fua)) {
2238 /* Bypass scheduler for flush requests */
2239 blk_insert_flush(rq);
2240 blk_mq_run_hw_queue(data.hctx, true);
2241 } else if (plug && (q->nr_hw_queues == 1 ||
2242 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2243 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2244 /*
2245 * Use plugging if we have a ->commit_rqs() hook as well, as
2246 * we know the driver uses bd->last in a smart fashion.
2247 *
2248 * Use normal plugging if this disk is slow HDD, as sequential
2249 * IO may benefit a lot from plug merging.
2250 */
2251 unsigned int request_count = plug->rq_count;
2252 struct request *last = NULL;
2253
2254 if (!request_count)
2255 trace_block_plug(q);
2256 else
2257 last = list_entry_rq(plug->mq_list.prev);
2258
2259 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2260 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2261 blk_flush_plug_list(plug, false);
2262 trace_block_plug(q);
2263 }
2264
2265 blk_add_rq_to_plug(plug, rq);
2266 } else if (q->elevator) {
2267 /* Insert the request at the IO scheduler queue */
2268 blk_mq_sched_insert_request(rq, false, true, true);
2269 } else if (plug && !blk_queue_nomerges(q)) {
2270 /*
2271 * We do limited plugging. If the bio can be merged, do that.
2272 * Otherwise the existing request in the plug list will be
2273 * issued. So the plug list will have one request at most
2274 * The plug list might get flushed before this. If that happens,
2275 * the plug list is empty, and same_queue_rq is invalid.
2276 */
2277 if (list_empty(&plug->mq_list))
2278 same_queue_rq = NULL;
2279 if (same_queue_rq) {
2280 list_del_init(&same_queue_rq->queuelist);
2281 plug->rq_count--;
2282 }
2283 blk_add_rq_to_plug(plug, rq);
2284 trace_block_plug(q);
2285
2286 if (same_queue_rq) {
2287 data.hctx = same_queue_rq->mq_hctx;
2288 trace_block_unplug(q, 1, true);
2289 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2290 &cookie);
2291 }
2292 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2293 !data.hctx->dispatch_busy) {
2294 /*
2295 * There is no scheduler and we can try to send directly
2296 * to the hardware.
2297 */
2298 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2299 } else {
2300 /* Default case. */
2301 blk_mq_sched_insert_request(rq, false, true, true);
2302 }
2303
2304 if (!hipri)
2305 return BLK_QC_T_NONE;
2306 return cookie;
2307 queue_exit:
2308 blk_queue_exit(q);
2309 return BLK_QC_T_NONE;
2310 }
2311
2312 static size_t order_to_size(unsigned int order)
2313 {
2314 return (size_t)PAGE_SIZE << order;
2315 }
2316
2317 /* called before freeing request pool in @tags */
2318 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2319 struct blk_mq_tags *tags, unsigned int hctx_idx)
2320 {
2321 struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2322 struct page *page;
2323 unsigned long flags;
2324
2325 list_for_each_entry(page, &tags->page_list, lru) {
2326 unsigned long start = (unsigned long)page_address(page);
2327 unsigned long end = start + order_to_size(page->private);
2328 int i;
2329
2330 for (i = 0; i < set->queue_depth; i++) {
2331 struct request *rq = drv_tags->rqs[i];
2332 unsigned long rq_addr = (unsigned long)rq;
2333
2334 if (rq_addr >= start && rq_addr < end) {
2335 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2336 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2337 }
2338 }
2339 }
2340
2341 /*
2342 * Wait until all pending iteration is done.
2343 *
2344 * Request reference is cleared and it is guaranteed to be observed
2345 * after the ->lock is released.
2346 */
2347 spin_lock_irqsave(&drv_tags->lock, flags);
2348 spin_unlock_irqrestore(&drv_tags->lock, flags);
2349 }
2350
2351 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2352 unsigned int hctx_idx)
2353 {
2354 struct page *page;
2355
2356 if (tags->rqs && set->ops->exit_request) {
2357 int i;
2358
2359 for (i = 0; i < tags->nr_tags; i++) {
2360 struct request *rq = tags->static_rqs[i];
2361
2362 if (!rq)
2363 continue;
2364 set->ops->exit_request(set, rq, hctx_idx);
2365 tags->static_rqs[i] = NULL;
2366 }
2367 }
2368
2369 blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2370
2371 while (!list_empty(&tags->page_list)) {
2372 page = list_first_entry(&tags->page_list, struct page, lru);
2373 list_del_init(&page->lru);
2374 /*
2375 * Remove kmemleak object previously allocated in
2376 * blk_mq_alloc_rqs().
2377 */
2378 kmemleak_free(page_address(page));
2379 __free_pages(page, page->private);
2380 }
2381 }
2382
2383 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2384 {
2385 kfree(tags->rqs);
2386 tags->rqs = NULL;
2387 kfree(tags->static_rqs);
2388 tags->static_rqs = NULL;
2389
2390 blk_mq_free_tags(tags, flags);
2391 }
2392
2393 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2394 unsigned int hctx_idx,
2395 unsigned int nr_tags,
2396 unsigned int reserved_tags,
2397 unsigned int flags)
2398 {
2399 struct blk_mq_tags *tags;
2400 int node;
2401
2402 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2403 if (node == NUMA_NO_NODE)
2404 node = set->numa_node;
2405
2406 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2407 if (!tags)
2408 return NULL;
2409
2410 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2411 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2412 node);
2413 if (!tags->rqs) {
2414 blk_mq_free_tags(tags, flags);
2415 return NULL;
2416 }
2417
2418 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2419 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2420 node);
2421 if (!tags->static_rqs) {
2422 kfree(tags->rqs);
2423 blk_mq_free_tags(tags, flags);
2424 return NULL;
2425 }
2426
2427 return tags;
2428 }
2429
2430 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2431 unsigned int hctx_idx, int node)
2432 {
2433 int ret;
2434
2435 if (set->ops->init_request) {
2436 ret = set->ops->init_request(set, rq, hctx_idx, node);
2437 if (ret)
2438 return ret;
2439 }
2440
2441 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2442 return 0;
2443 }
2444
2445 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2446 unsigned int hctx_idx, unsigned int depth)
2447 {
2448 unsigned int i, j, entries_per_page, max_order = 4;
2449 size_t rq_size, left;
2450 int node;
2451
2452 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2453 if (node == NUMA_NO_NODE)
2454 node = set->numa_node;
2455
2456 INIT_LIST_HEAD(&tags->page_list);
2457
2458 /*
2459 * rq_size is the size of the request plus driver payload, rounded
2460 * to the cacheline size
2461 */
2462 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2463 cache_line_size());
2464 left = rq_size * depth;
2465
2466 for (i = 0; i < depth; ) {
2467 int this_order = max_order;
2468 struct page *page;
2469 int to_do;
2470 void *p;
2471
2472 while (this_order && left < order_to_size(this_order - 1))
2473 this_order--;
2474
2475 do {
2476 page = alloc_pages_node(node,
2477 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2478 this_order);
2479 if (page)
2480 break;
2481 if (!this_order--)
2482 break;
2483 if (order_to_size(this_order) < rq_size)
2484 break;
2485 } while (1);
2486
2487 if (!page)
2488 goto fail;
2489
2490 page->private = this_order;
2491 list_add_tail(&page->lru, &tags->page_list);
2492
2493 p = page_address(page);
2494 /*
2495 * Allow kmemleak to scan these pages as they contain pointers
2496 * to additional allocations like via ops->init_request().
2497 */
2498 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2499 entries_per_page = order_to_size(this_order) / rq_size;
2500 to_do = min(entries_per_page, depth - i);
2501 left -= to_do * rq_size;
2502 for (j = 0; j < to_do; j++) {
2503 struct request *rq = p;
2504
2505 tags->static_rqs[i] = rq;
2506 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2507 tags->static_rqs[i] = NULL;
2508 goto fail;
2509 }
2510
2511 p += rq_size;
2512 i++;
2513 }
2514 }
2515 return 0;
2516
2517 fail:
2518 blk_mq_free_rqs(set, tags, hctx_idx);
2519 return -ENOMEM;
2520 }
2521
2522 struct rq_iter_data {
2523 struct blk_mq_hw_ctx *hctx;
2524 bool has_rq;
2525 };
2526
2527 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2528 {
2529 struct rq_iter_data *iter_data = data;
2530
2531 if (rq->mq_hctx != iter_data->hctx)
2532 return true;
2533 iter_data->has_rq = true;
2534 return false;
2535 }
2536
2537 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2538 {
2539 struct blk_mq_tags *tags = hctx->sched_tags ?
2540 hctx->sched_tags : hctx->tags;
2541 struct rq_iter_data data = {
2542 .hctx = hctx,
2543 };
2544
2545 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2546 return data.has_rq;
2547 }
2548
2549 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2550 struct blk_mq_hw_ctx *hctx)
2551 {
2552 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2553 return false;
2554 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2555 return false;
2556 return true;
2557 }
2558
2559 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2560 {
2561 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2562 struct blk_mq_hw_ctx, cpuhp_online);
2563
2564 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2565 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2566 return 0;
2567
2568 /*
2569 * Prevent new request from being allocated on the current hctx.
2570 *
2571 * The smp_mb__after_atomic() Pairs with the implied barrier in
2572 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2573 * seen once we return from the tag allocator.
2574 */
2575 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2576 smp_mb__after_atomic();
2577
2578 /*
2579 * Try to grab a reference to the queue and wait for any outstanding
2580 * requests. If we could not grab a reference the queue has been
2581 * frozen and there are no requests.
2582 */
2583 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2584 while (blk_mq_hctx_has_requests(hctx))
2585 msleep(5);
2586 percpu_ref_put(&hctx->queue->q_usage_counter);
2587 }
2588
2589 return 0;
2590 }
2591
2592 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2593 {
2594 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2595 struct blk_mq_hw_ctx, cpuhp_online);
2596
2597 if (cpumask_test_cpu(cpu, hctx->cpumask))
2598 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2599 return 0;
2600 }
2601
2602 /*
2603 * 'cpu' is going away. splice any existing rq_list entries from this
2604 * software queue to the hw queue dispatch list, and ensure that it
2605 * gets run.
2606 */
2607 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2608 {
2609 struct blk_mq_hw_ctx *hctx;
2610 struct blk_mq_ctx *ctx;
2611 LIST_HEAD(tmp);
2612 enum hctx_type type;
2613
2614 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2615 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2616 return 0;
2617
2618 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2619 type = hctx->type;
2620
2621 spin_lock(&ctx->lock);
2622 if (!list_empty(&ctx->rq_lists[type])) {
2623 list_splice_init(&ctx->rq_lists[type], &tmp);
2624 blk_mq_hctx_clear_pending(hctx, ctx);
2625 }
2626 spin_unlock(&ctx->lock);
2627
2628 if (list_empty(&tmp))
2629 return 0;
2630
2631 spin_lock(&hctx->lock);
2632 list_splice_tail_init(&tmp, &hctx->dispatch);
2633 spin_unlock(&hctx->lock);
2634
2635 blk_mq_run_hw_queue(hctx, true);
2636 return 0;
2637 }
2638
2639 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2640 {
2641 if (!(hctx->flags & BLK_MQ_F_STACKING))
2642 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2643 &hctx->cpuhp_online);
2644 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2645 &hctx->cpuhp_dead);
2646 }
2647
2648 /*
2649 * Before freeing hw queue, clearing the flush request reference in
2650 * tags->rqs[] for avoiding potential UAF.
2651 */
2652 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2653 unsigned int queue_depth, struct request *flush_rq)
2654 {
2655 int i;
2656 unsigned long flags;
2657
2658 /* The hw queue may not be mapped yet */
2659 if (!tags)
2660 return;
2661
2662 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2663
2664 for (i = 0; i < queue_depth; i++)
2665 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2666
2667 /*
2668 * Wait until all pending iteration is done.
2669 *
2670 * Request reference is cleared and it is guaranteed to be observed
2671 * after the ->lock is released.
2672 */
2673 spin_lock_irqsave(&tags->lock, flags);
2674 spin_unlock_irqrestore(&tags->lock, flags);
2675 }
2676
2677 /* hctx->ctxs will be freed in queue's release handler */
2678 static void blk_mq_exit_hctx(struct request_queue *q,
2679 struct blk_mq_tag_set *set,
2680 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2681 {
2682 struct request *flush_rq = hctx->fq->flush_rq;
2683
2684 if (blk_mq_hw_queue_mapped(hctx))
2685 blk_mq_tag_idle(hctx);
2686
2687 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2688 set->queue_depth, flush_rq);
2689 if (set->ops->exit_request)
2690 set->ops->exit_request(set, flush_rq, hctx_idx);
2691
2692 if (set->ops->exit_hctx)
2693 set->ops->exit_hctx(hctx, hctx_idx);
2694
2695 blk_mq_remove_cpuhp(hctx);
2696
2697 spin_lock(&q->unused_hctx_lock);
2698 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2699 spin_unlock(&q->unused_hctx_lock);
2700 }
2701
2702 static void blk_mq_exit_hw_queues(struct request_queue *q,
2703 struct blk_mq_tag_set *set, int nr_queue)
2704 {
2705 struct blk_mq_hw_ctx *hctx;
2706 unsigned int i;
2707
2708 queue_for_each_hw_ctx(q, hctx, i) {
2709 if (i == nr_queue)
2710 break;
2711 blk_mq_debugfs_unregister_hctx(hctx);
2712 blk_mq_exit_hctx(q, set, hctx, i);
2713 }
2714 }
2715
2716 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2717 {
2718 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2719
2720 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2721 __alignof__(struct blk_mq_hw_ctx)) !=
2722 sizeof(struct blk_mq_hw_ctx));
2723
2724 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2725 hw_ctx_size += sizeof(struct srcu_struct);
2726
2727 return hw_ctx_size;
2728 }
2729
2730 static int blk_mq_init_hctx(struct request_queue *q,
2731 struct blk_mq_tag_set *set,
2732 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2733 {
2734 hctx->queue_num = hctx_idx;
2735
2736 if (!(hctx->flags & BLK_MQ_F_STACKING))
2737 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2738 &hctx->cpuhp_online);
2739 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2740
2741 hctx->tags = set->tags[hctx_idx];
2742
2743 if (set->ops->init_hctx &&
2744 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2745 goto unregister_cpu_notifier;
2746
2747 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2748 hctx->numa_node))
2749 goto exit_hctx;
2750 return 0;
2751
2752 exit_hctx:
2753 if (set->ops->exit_hctx)
2754 set->ops->exit_hctx(hctx, hctx_idx);
2755 unregister_cpu_notifier:
2756 blk_mq_remove_cpuhp(hctx);
2757 return -1;
2758 }
2759
2760 static struct blk_mq_hw_ctx *
2761 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2762 int node)
2763 {
2764 struct blk_mq_hw_ctx *hctx;
2765 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2766
2767 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2768 if (!hctx)
2769 goto fail_alloc_hctx;
2770
2771 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2772 goto free_hctx;
2773
2774 atomic_set(&hctx->nr_active, 0);
2775 if (node == NUMA_NO_NODE)
2776 node = set->numa_node;
2777 hctx->numa_node = node;
2778
2779 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2780 spin_lock_init(&hctx->lock);
2781 INIT_LIST_HEAD(&hctx->dispatch);
2782 hctx->queue = q;
2783 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2784
2785 INIT_LIST_HEAD(&hctx->hctx_list);
2786
2787 /*
2788 * Allocate space for all possible cpus to avoid allocation at
2789 * runtime
2790 */
2791 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2792 gfp, node);
2793 if (!hctx->ctxs)
2794 goto free_cpumask;
2795
2796 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2797 gfp, node, false, false))
2798 goto free_ctxs;
2799 hctx->nr_ctx = 0;
2800
2801 spin_lock_init(&hctx->dispatch_wait_lock);
2802 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2803 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2804
2805 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2806 if (!hctx->fq)
2807 goto free_bitmap;
2808
2809 if (hctx->flags & BLK_MQ_F_BLOCKING)
2810 init_srcu_struct(hctx->srcu);
2811 blk_mq_hctx_kobj_init(hctx);
2812
2813 return hctx;
2814
2815 free_bitmap:
2816 sbitmap_free(&hctx->ctx_map);
2817 free_ctxs:
2818 kfree(hctx->ctxs);
2819 free_cpumask:
2820 free_cpumask_var(hctx->cpumask);
2821 free_hctx:
2822 kfree(hctx);
2823 fail_alloc_hctx:
2824 return NULL;
2825 }
2826
2827 static void blk_mq_init_cpu_queues(struct request_queue *q,
2828 unsigned int nr_hw_queues)
2829 {
2830 struct blk_mq_tag_set *set = q->tag_set;
2831 unsigned int i, j;
2832
2833 for_each_possible_cpu(i) {
2834 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2835 struct blk_mq_hw_ctx *hctx;
2836 int k;
2837
2838 __ctx->cpu = i;
2839 spin_lock_init(&__ctx->lock);
2840 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2841 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2842
2843 __ctx->queue = q;
2844
2845 /*
2846 * Set local node, IFF we have more than one hw queue. If
2847 * not, we remain on the home node of the device
2848 */
2849 for (j = 0; j < set->nr_maps; j++) {
2850 hctx = blk_mq_map_queue_type(q, j, i);
2851 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2852 hctx->numa_node = cpu_to_node(i);
2853 }
2854 }
2855 }
2856
2857 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2858 int hctx_idx)
2859 {
2860 unsigned int flags = set->flags;
2861 int ret = 0;
2862
2863 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2864 set->queue_depth, set->reserved_tags, flags);
2865 if (!set->tags[hctx_idx])
2866 return false;
2867
2868 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2869 set->queue_depth);
2870 if (!ret)
2871 return true;
2872
2873 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2874 set->tags[hctx_idx] = NULL;
2875 return false;
2876 }
2877
2878 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2879 unsigned int hctx_idx)
2880 {
2881 unsigned int flags = set->flags;
2882
2883 if (set->tags && set->tags[hctx_idx]) {
2884 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2885 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2886 set->tags[hctx_idx] = NULL;
2887 }
2888 }
2889
2890 static void blk_mq_map_swqueue(struct request_queue *q)
2891 {
2892 unsigned int i, j, hctx_idx;
2893 struct blk_mq_hw_ctx *hctx;
2894 struct blk_mq_ctx *ctx;
2895 struct blk_mq_tag_set *set = q->tag_set;
2896
2897 queue_for_each_hw_ctx(q, hctx, i) {
2898 cpumask_clear(hctx->cpumask);
2899 hctx->nr_ctx = 0;
2900 hctx->dispatch_from = NULL;
2901 }
2902
2903 /*
2904 * Map software to hardware queues.
2905 *
2906 * If the cpu isn't present, the cpu is mapped to first hctx.
2907 */
2908 for_each_possible_cpu(i) {
2909
2910 ctx = per_cpu_ptr(q->queue_ctx, i);
2911 for (j = 0; j < set->nr_maps; j++) {
2912 if (!set->map[j].nr_queues) {
2913 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2914 HCTX_TYPE_DEFAULT, i);
2915 continue;
2916 }
2917 hctx_idx = set->map[j].mq_map[i];
2918 /* unmapped hw queue can be remapped after CPU topo changed */
2919 if (!set->tags[hctx_idx] &&
2920 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2921 /*
2922 * If tags initialization fail for some hctx,
2923 * that hctx won't be brought online. In this
2924 * case, remap the current ctx to hctx[0] which
2925 * is guaranteed to always have tags allocated
2926 */
2927 set->map[j].mq_map[i] = 0;
2928 }
2929
2930 hctx = blk_mq_map_queue_type(q, j, i);
2931 ctx->hctxs[j] = hctx;
2932 /*
2933 * If the CPU is already set in the mask, then we've
2934 * mapped this one already. This can happen if
2935 * devices share queues across queue maps.
2936 */
2937 if (cpumask_test_cpu(i, hctx->cpumask))
2938 continue;
2939
2940 cpumask_set_cpu(i, hctx->cpumask);
2941 hctx->type = j;
2942 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2943 hctx->ctxs[hctx->nr_ctx++] = ctx;
2944
2945 /*
2946 * If the nr_ctx type overflows, we have exceeded the
2947 * amount of sw queues we can support.
2948 */
2949 BUG_ON(!hctx->nr_ctx);
2950 }
2951
2952 for (; j < HCTX_MAX_TYPES; j++)
2953 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2954 HCTX_TYPE_DEFAULT, i);
2955 }
2956
2957 queue_for_each_hw_ctx(q, hctx, i) {
2958 /*
2959 * If no software queues are mapped to this hardware queue,
2960 * disable it and free the request entries.
2961 */
2962 if (!hctx->nr_ctx) {
2963 /* Never unmap queue 0. We need it as a
2964 * fallback in case of a new remap fails
2965 * allocation
2966 */
2967 if (i && set->tags[i])
2968 blk_mq_free_map_and_requests(set, i);
2969
2970 hctx->tags = NULL;
2971 continue;
2972 }
2973
2974 hctx->tags = set->tags[i];
2975 WARN_ON(!hctx->tags);
2976
2977 /*
2978 * Set the map size to the number of mapped software queues.
2979 * This is more accurate and more efficient than looping
2980 * over all possibly mapped software queues.
2981 */
2982 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2983
2984 /*
2985 * Initialize batch roundrobin counts
2986 */
2987 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2988 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2989 }
2990 }
2991
2992 /*
2993 * Caller needs to ensure that we're either frozen/quiesced, or that
2994 * the queue isn't live yet.
2995 */
2996 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2997 {
2998 struct blk_mq_hw_ctx *hctx;
2999 int i;
3000
3001 queue_for_each_hw_ctx(q, hctx, i) {
3002 if (shared) {
3003 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3004 } else {
3005 blk_mq_tag_idle(hctx);
3006 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3007 }
3008 }
3009 }
3010
3011 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3012 bool shared)
3013 {
3014 struct request_queue *q;
3015
3016 lockdep_assert_held(&set->tag_list_lock);
3017
3018 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3019 blk_mq_freeze_queue(q);
3020 queue_set_hctx_shared(q, shared);
3021 blk_mq_unfreeze_queue(q);
3022 }
3023 }
3024
3025 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3026 {
3027 struct blk_mq_tag_set *set = q->tag_set;
3028
3029 mutex_lock(&set->tag_list_lock);
3030 list_del(&q->tag_set_list);
3031 if (list_is_singular(&set->tag_list)) {
3032 /* just transitioned to unshared */
3033 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3034 /* update existing queue */
3035 blk_mq_update_tag_set_shared(set, false);
3036 }
3037 mutex_unlock(&set->tag_list_lock);
3038 INIT_LIST_HEAD(&q->tag_set_list);
3039 }
3040
3041 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3042 struct request_queue *q)
3043 {
3044 mutex_lock(&set->tag_list_lock);
3045
3046 /*
3047 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3048 */
3049 if (!list_empty(&set->tag_list) &&
3050 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3051 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3052 /* update existing queue */
3053 blk_mq_update_tag_set_shared(set, true);
3054 }
3055 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3056 queue_set_hctx_shared(q, true);
3057 list_add_tail(&q->tag_set_list, &set->tag_list);
3058
3059 mutex_unlock(&set->tag_list_lock);
3060 }
3061
3062 /* All allocations will be freed in release handler of q->mq_kobj */
3063 static int blk_mq_alloc_ctxs(struct request_queue *q)
3064 {
3065 struct blk_mq_ctxs *ctxs;
3066 int cpu;
3067
3068 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3069 if (!ctxs)
3070 return -ENOMEM;
3071
3072 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3073 if (!ctxs->queue_ctx)
3074 goto fail;
3075
3076 for_each_possible_cpu(cpu) {
3077 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3078 ctx->ctxs = ctxs;
3079 }
3080
3081 q->mq_kobj = &ctxs->kobj;
3082 q->queue_ctx = ctxs->queue_ctx;
3083
3084 return 0;
3085 fail:
3086 kfree(ctxs);
3087 return -ENOMEM;
3088 }
3089
3090 /*
3091 * It is the actual release handler for mq, but we do it from
3092 * request queue's release handler for avoiding use-after-free
3093 * and headache because q->mq_kobj shouldn't have been introduced,
3094 * but we can't group ctx/kctx kobj without it.
3095 */
3096 void blk_mq_release(struct request_queue *q)
3097 {
3098 struct blk_mq_hw_ctx *hctx, *next;
3099 int i;
3100
3101 queue_for_each_hw_ctx(q, hctx, i)
3102 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3103
3104 /* all hctx are in .unused_hctx_list now */
3105 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3106 list_del_init(&hctx->hctx_list);
3107 kobject_put(&hctx->kobj);
3108 }
3109
3110 kfree(q->queue_hw_ctx);
3111
3112 /*
3113 * release .mq_kobj and sw queue's kobject now because
3114 * both share lifetime with request queue.
3115 */
3116 blk_mq_sysfs_deinit(q);
3117 }
3118
3119 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3120 void *queuedata)
3121 {
3122 struct request_queue *q;
3123 int ret;
3124
3125 q = blk_alloc_queue(set->numa_node);
3126 if (!q)
3127 return ERR_PTR(-ENOMEM);
3128 q->queuedata = queuedata;
3129 ret = blk_mq_init_allocated_queue(set, q);
3130 if (ret) {
3131 blk_cleanup_queue(q);
3132 return ERR_PTR(ret);
3133 }
3134 return q;
3135 }
3136
3137 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3138 {
3139 return blk_mq_init_queue_data(set, NULL);
3140 }
3141 EXPORT_SYMBOL(blk_mq_init_queue);
3142
3143 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3144 struct lock_class_key *lkclass)
3145 {
3146 struct request_queue *q;
3147 struct gendisk *disk;
3148
3149 q = blk_mq_init_queue_data(set, queuedata);
3150 if (IS_ERR(q))
3151 return ERR_CAST(q);
3152
3153 disk = __alloc_disk_node(q, set->numa_node, lkclass);
3154 if (!disk) {
3155 blk_cleanup_queue(q);
3156 return ERR_PTR(-ENOMEM);
3157 }
3158 return disk;
3159 }
3160 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3161
3162 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3163 struct blk_mq_tag_set *set, struct request_queue *q,
3164 int hctx_idx, int node)
3165 {
3166 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3167
3168 /* reuse dead hctx first */
3169 spin_lock(&q->unused_hctx_lock);
3170 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3171 if (tmp->numa_node == node) {
3172 hctx = tmp;
3173 break;
3174 }
3175 }
3176 if (hctx)
3177 list_del_init(&hctx->hctx_list);
3178 spin_unlock(&q->unused_hctx_lock);
3179
3180 if (!hctx)
3181 hctx = blk_mq_alloc_hctx(q, set, node);
3182 if (!hctx)
3183 goto fail;
3184
3185 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3186 goto free_hctx;
3187
3188 return hctx;
3189
3190 free_hctx:
3191 kobject_put(&hctx->kobj);
3192 fail:
3193 return NULL;
3194 }
3195
3196 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3197 struct request_queue *q)
3198 {
3199 int i, j, end;
3200 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3201
3202 if (q->nr_hw_queues < set->nr_hw_queues) {
3203 struct blk_mq_hw_ctx **new_hctxs;
3204
3205 new_hctxs = kcalloc_node(set->nr_hw_queues,
3206 sizeof(*new_hctxs), GFP_KERNEL,
3207 set->numa_node);
3208 if (!new_hctxs)
3209 return;
3210 if (hctxs)
3211 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3212 sizeof(*hctxs));
3213 q->queue_hw_ctx = new_hctxs;
3214 kfree(hctxs);
3215 hctxs = new_hctxs;
3216 }
3217
3218 /* protect against switching io scheduler */
3219 mutex_lock(&q->sysfs_lock);
3220 for (i = 0; i < set->nr_hw_queues; i++) {
3221 int node;
3222 struct blk_mq_hw_ctx *hctx;
3223
3224 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3225 /*
3226 * If the hw queue has been mapped to another numa node,
3227 * we need to realloc the hctx. If allocation fails, fallback
3228 * to use the previous one.
3229 */
3230 if (hctxs[i] && (hctxs[i]->numa_node == node))
3231 continue;
3232
3233 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3234 if (hctx) {
3235 if (hctxs[i])
3236 blk_mq_exit_hctx(q, set, hctxs[i], i);
3237 hctxs[i] = hctx;
3238 } else {
3239 if (hctxs[i])
3240 pr_warn("Allocate new hctx on node %d fails,\
3241 fallback to previous one on node %d\n",
3242 node, hctxs[i]->numa_node);
3243 else
3244 break;
3245 }
3246 }
3247 /*
3248 * Increasing nr_hw_queues fails. Free the newly allocated
3249 * hctxs and keep the previous q->nr_hw_queues.
3250 */
3251 if (i != set->nr_hw_queues) {
3252 j = q->nr_hw_queues;
3253 end = i;
3254 } else {
3255 j = i;
3256 end = q->nr_hw_queues;
3257 q->nr_hw_queues = set->nr_hw_queues;
3258 }
3259
3260 for (; j < end; j++) {
3261 struct blk_mq_hw_ctx *hctx = hctxs[j];
3262
3263 if (hctx) {
3264 if (hctx->tags)
3265 blk_mq_free_map_and_requests(set, j);
3266 blk_mq_exit_hctx(q, set, hctx, j);
3267 hctxs[j] = NULL;
3268 }
3269 }
3270 mutex_unlock(&q->sysfs_lock);
3271 }
3272
3273 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3274 struct request_queue *q)
3275 {
3276 /* mark the queue as mq asap */
3277 q->mq_ops = set->ops;
3278
3279 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3280 blk_mq_poll_stats_bkt,
3281 BLK_MQ_POLL_STATS_BKTS, q);
3282 if (!q->poll_cb)
3283 goto err_exit;
3284
3285 if (blk_mq_alloc_ctxs(q))
3286 goto err_poll;
3287
3288 /* init q->mq_kobj and sw queues' kobjects */
3289 blk_mq_sysfs_init(q);
3290
3291 INIT_LIST_HEAD(&q->unused_hctx_list);
3292 spin_lock_init(&q->unused_hctx_lock);
3293
3294 blk_mq_realloc_hw_ctxs(set, q);
3295 if (!q->nr_hw_queues)
3296 goto err_hctxs;
3297
3298 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3299 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3300
3301 q->tag_set = set;
3302
3303 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3304 if (set->nr_maps > HCTX_TYPE_POLL &&
3305 set->map[HCTX_TYPE_POLL].nr_queues)
3306 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3307
3308 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3309 INIT_LIST_HEAD(&q->requeue_list);
3310 spin_lock_init(&q->requeue_lock);
3311
3312 q->nr_requests = set->queue_depth;
3313
3314 /*
3315 * Default to classic polling
3316 */
3317 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3318
3319 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3320 blk_mq_add_queue_tag_set(set, q);
3321 blk_mq_map_swqueue(q);
3322 return 0;
3323
3324 err_hctxs:
3325 kfree(q->queue_hw_ctx);
3326 q->nr_hw_queues = 0;
3327 blk_mq_sysfs_deinit(q);
3328 err_poll:
3329 blk_stat_free_callback(q->poll_cb);
3330 q->poll_cb = NULL;
3331 err_exit:
3332 q->mq_ops = NULL;
3333 return -ENOMEM;
3334 }
3335 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3336
3337 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3338 void blk_mq_exit_queue(struct request_queue *q)
3339 {
3340 struct blk_mq_tag_set *set = q->tag_set;
3341
3342 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3343 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3344 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3345 blk_mq_del_queue_tag_set(q);
3346 }
3347
3348 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3349 {
3350 int i;
3351
3352 for (i = 0; i < set->nr_hw_queues; i++) {
3353 if (!__blk_mq_alloc_map_and_request(set, i))
3354 goto out_unwind;
3355 cond_resched();
3356 }
3357
3358 return 0;
3359
3360 out_unwind:
3361 while (--i >= 0)
3362 blk_mq_free_map_and_requests(set, i);
3363
3364 return -ENOMEM;
3365 }
3366
3367 /*
3368 * Allocate the request maps associated with this tag_set. Note that this
3369 * may reduce the depth asked for, if memory is tight. set->queue_depth
3370 * will be updated to reflect the allocated depth.
3371 */
3372 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3373 {
3374 unsigned int depth;
3375 int err;
3376
3377 depth = set->queue_depth;
3378 do {
3379 err = __blk_mq_alloc_rq_maps(set);
3380 if (!err)
3381 break;
3382
3383 set->queue_depth >>= 1;
3384 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3385 err = -ENOMEM;
3386 break;
3387 }
3388 } while (set->queue_depth);
3389
3390 if (!set->queue_depth || err) {
3391 pr_err("blk-mq: failed to allocate request map\n");
3392 return -ENOMEM;
3393 }
3394
3395 if (depth != set->queue_depth)
3396 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3397 depth, set->queue_depth);
3398
3399 return 0;
3400 }
3401
3402 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3403 {
3404 /*
3405 * blk_mq_map_queues() and multiple .map_queues() implementations
3406 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3407 * number of hardware queues.
3408 */
3409 if (set->nr_maps == 1)
3410 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3411
3412 if (set->ops->map_queues && !is_kdump_kernel()) {
3413 int i;
3414
3415 /*
3416 * transport .map_queues is usually done in the following
3417 * way:
3418 *
3419 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3420 * mask = get_cpu_mask(queue)
3421 * for_each_cpu(cpu, mask)
3422 * set->map[x].mq_map[cpu] = queue;
3423 * }
3424 *
3425 * When we need to remap, the table has to be cleared for
3426 * killing stale mapping since one CPU may not be mapped
3427 * to any hw queue.
3428 */
3429 for (i = 0; i < set->nr_maps; i++)
3430 blk_mq_clear_mq_map(&set->map[i]);
3431
3432 return set->ops->map_queues(set);
3433 } else {
3434 BUG_ON(set->nr_maps > 1);
3435 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3436 }
3437 }
3438
3439 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3440 int cur_nr_hw_queues, int new_nr_hw_queues)
3441 {
3442 struct blk_mq_tags **new_tags;
3443
3444 if (cur_nr_hw_queues >= new_nr_hw_queues)
3445 return 0;
3446
3447 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3448 GFP_KERNEL, set->numa_node);
3449 if (!new_tags)
3450 return -ENOMEM;
3451
3452 if (set->tags)
3453 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3454 sizeof(*set->tags));
3455 kfree(set->tags);
3456 set->tags = new_tags;
3457 set->nr_hw_queues = new_nr_hw_queues;
3458
3459 return 0;
3460 }
3461
3462 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3463 int new_nr_hw_queues)
3464 {
3465 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3466 }
3467
3468 /*
3469 * Alloc a tag set to be associated with one or more request queues.
3470 * May fail with EINVAL for various error conditions. May adjust the
3471 * requested depth down, if it's too large. In that case, the set
3472 * value will be stored in set->queue_depth.
3473 */
3474 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3475 {
3476 int i, ret;
3477
3478 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3479
3480 if (!set->nr_hw_queues)
3481 return -EINVAL;
3482 if (!set->queue_depth)
3483 return -EINVAL;
3484 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3485 return -EINVAL;
3486
3487 if (!set->ops->queue_rq)
3488 return -EINVAL;
3489
3490 if (!set->ops->get_budget ^ !set->ops->put_budget)
3491 return -EINVAL;
3492
3493 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3494 pr_info("blk-mq: reduced tag depth to %u\n",
3495 BLK_MQ_MAX_DEPTH);
3496 set->queue_depth = BLK_MQ_MAX_DEPTH;
3497 }
3498
3499 if (!set->nr_maps)
3500 set->nr_maps = 1;
3501 else if (set->nr_maps > HCTX_MAX_TYPES)
3502 return -EINVAL;
3503
3504 /*
3505 * If a crashdump is active, then we are potentially in a very
3506 * memory constrained environment. Limit us to 1 queue and
3507 * 64 tags to prevent using too much memory.
3508 */
3509 if (is_kdump_kernel()) {
3510 set->nr_hw_queues = 1;
3511 set->nr_maps = 1;
3512 set->queue_depth = min(64U, set->queue_depth);
3513 }
3514 /*
3515 * There is no use for more h/w queues than cpus if we just have
3516 * a single map
3517 */
3518 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3519 set->nr_hw_queues = nr_cpu_ids;
3520
3521 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3522 return -ENOMEM;
3523
3524 ret = -ENOMEM;
3525 for (i = 0; i < set->nr_maps; i++) {
3526 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3527 sizeof(set->map[i].mq_map[0]),
3528 GFP_KERNEL, set->numa_node);
3529 if (!set->map[i].mq_map)
3530 goto out_free_mq_map;
3531 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3532 }
3533
3534 ret = blk_mq_update_queue_map(set);
3535 if (ret)
3536 goto out_free_mq_map;
3537
3538 ret = blk_mq_alloc_map_and_requests(set);
3539 if (ret)
3540 goto out_free_mq_map;
3541
3542 if (blk_mq_is_sbitmap_shared(set->flags)) {
3543 atomic_set(&set->active_queues_shared_sbitmap, 0);
3544
3545 if (blk_mq_init_shared_sbitmap(set)) {
3546 ret = -ENOMEM;
3547 goto out_free_mq_rq_maps;
3548 }
3549 }
3550
3551 mutex_init(&set->tag_list_lock);
3552 INIT_LIST_HEAD(&set->tag_list);
3553
3554 return 0;
3555
3556 out_free_mq_rq_maps:
3557 for (i = 0; i < set->nr_hw_queues; i++)
3558 blk_mq_free_map_and_requests(set, i);
3559 out_free_mq_map:
3560 for (i = 0; i < set->nr_maps; i++) {
3561 kfree(set->map[i].mq_map);
3562 set->map[i].mq_map = NULL;
3563 }
3564 kfree(set->tags);
3565 set->tags = NULL;
3566 return ret;
3567 }
3568 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3569
3570 /* allocate and initialize a tagset for a simple single-queue device */
3571 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3572 const struct blk_mq_ops *ops, unsigned int queue_depth,
3573 unsigned int set_flags)
3574 {
3575 memset(set, 0, sizeof(*set));
3576 set->ops = ops;
3577 set->nr_hw_queues = 1;
3578 set->nr_maps = 1;
3579 set->queue_depth = queue_depth;
3580 set->numa_node = NUMA_NO_NODE;
3581 set->flags = set_flags;
3582 return blk_mq_alloc_tag_set(set);
3583 }
3584 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3585
3586 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3587 {
3588 int i, j;
3589
3590 for (i = 0; i < set->nr_hw_queues; i++)
3591 blk_mq_free_map_and_requests(set, i);
3592
3593 if (blk_mq_is_sbitmap_shared(set->flags))
3594 blk_mq_exit_shared_sbitmap(set);
3595
3596 for (j = 0; j < set->nr_maps; j++) {
3597 kfree(set->map[j].mq_map);
3598 set->map[j].mq_map = NULL;
3599 }
3600
3601 kfree(set->tags);
3602 set->tags = NULL;
3603 }
3604 EXPORT_SYMBOL(blk_mq_free_tag_set);
3605
3606 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3607 {
3608 struct blk_mq_tag_set *set = q->tag_set;
3609 struct blk_mq_hw_ctx *hctx;
3610 int i, ret;
3611
3612 if (!set)
3613 return -EINVAL;
3614
3615 if (q->nr_requests == nr)
3616 return 0;
3617
3618 blk_mq_freeze_queue(q);
3619 blk_mq_quiesce_queue(q);
3620
3621 ret = 0;
3622 queue_for_each_hw_ctx(q, hctx, i) {
3623 if (!hctx->tags)
3624 continue;
3625 /*
3626 * If we're using an MQ scheduler, just update the scheduler
3627 * queue depth. This is similar to what the old code would do.
3628 */
3629 if (!hctx->sched_tags) {
3630 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3631 false);
3632 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3633 blk_mq_tag_resize_shared_sbitmap(set, nr);
3634 } else {
3635 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3636 nr, true);
3637 if (blk_mq_is_sbitmap_shared(set->flags)) {
3638 hctx->sched_tags->bitmap_tags =
3639 &q->sched_bitmap_tags;
3640 hctx->sched_tags->breserved_tags =
3641 &q->sched_breserved_tags;
3642 }
3643 }
3644 if (ret)
3645 break;
3646 if (q->elevator && q->elevator->type->ops.depth_updated)
3647 q->elevator->type->ops.depth_updated(hctx);
3648 }
3649 if (!ret) {
3650 q->nr_requests = nr;
3651 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3652 sbitmap_queue_resize(&q->sched_bitmap_tags,
3653 nr - set->reserved_tags);
3654 }
3655
3656 blk_mq_unquiesce_queue(q);
3657 blk_mq_unfreeze_queue(q);
3658
3659 return ret;
3660 }
3661
3662 /*
3663 * request_queue and elevator_type pair.
3664 * It is just used by __blk_mq_update_nr_hw_queues to cache
3665 * the elevator_type associated with a request_queue.
3666 */
3667 struct blk_mq_qe_pair {
3668 struct list_head node;
3669 struct request_queue *q;
3670 struct elevator_type *type;
3671 };
3672
3673 /*
3674 * Cache the elevator_type in qe pair list and switch the
3675 * io scheduler to 'none'
3676 */
3677 static bool blk_mq_elv_switch_none(struct list_head *head,
3678 struct request_queue *q)
3679 {
3680 struct blk_mq_qe_pair *qe;
3681
3682 if (!q->elevator)
3683 return true;
3684
3685 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3686 if (!qe)
3687 return false;
3688
3689 INIT_LIST_HEAD(&qe->node);
3690 qe->q = q;
3691 qe->type = q->elevator->type;
3692 list_add(&qe->node, head);
3693
3694 mutex_lock(&q->sysfs_lock);
3695 /*
3696 * After elevator_switch_mq, the previous elevator_queue will be
3697 * released by elevator_release. The reference of the io scheduler
3698 * module get by elevator_get will also be put. So we need to get
3699 * a reference of the io scheduler module here to prevent it to be
3700 * removed.
3701 */
3702 __module_get(qe->type->elevator_owner);
3703 elevator_switch_mq(q, NULL);
3704 mutex_unlock(&q->sysfs_lock);
3705
3706 return true;
3707 }
3708
3709 static void blk_mq_elv_switch_back(struct list_head *head,
3710 struct request_queue *q)
3711 {
3712 struct blk_mq_qe_pair *qe;
3713 struct elevator_type *t = NULL;
3714
3715 list_for_each_entry(qe, head, node)
3716 if (qe->q == q) {
3717 t = qe->type;
3718 break;
3719 }
3720
3721 if (!t)
3722 return;
3723
3724 list_del(&qe->node);
3725 kfree(qe);
3726
3727 mutex_lock(&q->sysfs_lock);
3728 elevator_switch_mq(q, t);
3729 mutex_unlock(&q->sysfs_lock);
3730 }
3731
3732 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3733 int nr_hw_queues)
3734 {
3735 struct request_queue *q;
3736 LIST_HEAD(head);
3737 int prev_nr_hw_queues;
3738
3739 lockdep_assert_held(&set->tag_list_lock);
3740
3741 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3742 nr_hw_queues = nr_cpu_ids;
3743 if (nr_hw_queues < 1)
3744 return;
3745 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3746 return;
3747
3748 list_for_each_entry(q, &set->tag_list, tag_set_list)
3749 blk_mq_freeze_queue(q);
3750 /*
3751 * Switch IO scheduler to 'none', cleaning up the data associated
3752 * with the previous scheduler. We will switch back once we are done
3753 * updating the new sw to hw queue mappings.
3754 */
3755 list_for_each_entry(q, &set->tag_list, tag_set_list)
3756 if (!blk_mq_elv_switch_none(&head, q))
3757 goto switch_back;
3758
3759 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3760 blk_mq_debugfs_unregister_hctxs(q);
3761 blk_mq_sysfs_unregister(q);
3762 }
3763
3764 prev_nr_hw_queues = set->nr_hw_queues;
3765 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3766 0)
3767 goto reregister;
3768
3769 set->nr_hw_queues = nr_hw_queues;
3770 fallback:
3771 blk_mq_update_queue_map(set);
3772 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3773 blk_mq_realloc_hw_ctxs(set, q);
3774 if (q->nr_hw_queues != set->nr_hw_queues) {
3775 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3776 nr_hw_queues, prev_nr_hw_queues);
3777 set->nr_hw_queues = prev_nr_hw_queues;
3778 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3779 goto fallback;
3780 }
3781 blk_mq_map_swqueue(q);
3782 }
3783
3784 reregister:
3785 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3786 blk_mq_sysfs_register(q);
3787 blk_mq_debugfs_register_hctxs(q);
3788 }
3789
3790 switch_back:
3791 list_for_each_entry(q, &set->tag_list, tag_set_list)
3792 blk_mq_elv_switch_back(&head, q);
3793
3794 list_for_each_entry(q, &set->tag_list, tag_set_list)
3795 blk_mq_unfreeze_queue(q);
3796 }
3797
3798 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3799 {
3800 mutex_lock(&set->tag_list_lock);
3801 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3802 mutex_unlock(&set->tag_list_lock);
3803 }
3804 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3805
3806 /* Enable polling stats and return whether they were already enabled. */
3807 static bool blk_poll_stats_enable(struct request_queue *q)
3808 {
3809 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3810 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3811 return true;
3812 blk_stat_add_callback(q, q->poll_cb);
3813 return false;
3814 }
3815
3816 static void blk_mq_poll_stats_start(struct request_queue *q)
3817 {
3818 /*
3819 * We don't arm the callback if polling stats are not enabled or the
3820 * callback is already active.
3821 */
3822 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3823 blk_stat_is_active(q->poll_cb))
3824 return;
3825
3826 blk_stat_activate_msecs(q->poll_cb, 100);
3827 }
3828
3829 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3830 {
3831 struct request_queue *q = cb->data;
3832 int bucket;
3833
3834 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3835 if (cb->stat[bucket].nr_samples)
3836 q->poll_stat[bucket] = cb->stat[bucket];
3837 }
3838 }
3839
3840 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3841 struct request *rq)
3842 {
3843 unsigned long ret = 0;
3844 int bucket;
3845
3846 /*
3847 * If stats collection isn't on, don't sleep but turn it on for
3848 * future users
3849 */
3850 if (!blk_poll_stats_enable(q))
3851 return 0;
3852
3853 /*
3854 * As an optimistic guess, use half of the mean service time
3855 * for this type of request. We can (and should) make this smarter.
3856 * For instance, if the completion latencies are tight, we can
3857 * get closer than just half the mean. This is especially
3858 * important on devices where the completion latencies are longer
3859 * than ~10 usec. We do use the stats for the relevant IO size
3860 * if available which does lead to better estimates.
3861 */
3862 bucket = blk_mq_poll_stats_bkt(rq);
3863 if (bucket < 0)
3864 return ret;
3865
3866 if (q->poll_stat[bucket].nr_samples)
3867 ret = (q->poll_stat[bucket].mean + 1) / 2;
3868
3869 return ret;
3870 }
3871
3872 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3873 struct request *rq)
3874 {
3875 struct hrtimer_sleeper hs;
3876 enum hrtimer_mode mode;
3877 unsigned int nsecs;
3878 ktime_t kt;
3879
3880 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3881 return false;
3882
3883 /*
3884 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3885 *
3886 * 0: use half of prev avg
3887 * >0: use this specific value
3888 */
3889 if (q->poll_nsec > 0)
3890 nsecs = q->poll_nsec;
3891 else
3892 nsecs = blk_mq_poll_nsecs(q, rq);
3893
3894 if (!nsecs)
3895 return false;
3896
3897 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3898
3899 /*
3900 * This will be replaced with the stats tracking code, using
3901 * 'avg_completion_time / 2' as the pre-sleep target.
3902 */
3903 kt = nsecs;
3904
3905 mode = HRTIMER_MODE_REL;
3906 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3907 hrtimer_set_expires(&hs.timer, kt);
3908
3909 do {
3910 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3911 break;
3912 set_current_state(TASK_UNINTERRUPTIBLE);
3913 hrtimer_sleeper_start_expires(&hs, mode);
3914 if (hs.task)
3915 io_schedule();
3916 hrtimer_cancel(&hs.timer);
3917 mode = HRTIMER_MODE_ABS;
3918 } while (hs.task && !signal_pending(current));
3919
3920 __set_current_state(TASK_RUNNING);
3921 destroy_hrtimer_on_stack(&hs.timer);
3922 return true;
3923 }
3924
3925 static bool blk_mq_poll_hybrid(struct request_queue *q,
3926 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3927 {
3928 struct request *rq;
3929
3930 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3931 return false;
3932
3933 if (!blk_qc_t_is_internal(cookie))
3934 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3935 else {
3936 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3937 /*
3938 * With scheduling, if the request has completed, we'll
3939 * get a NULL return here, as we clear the sched tag when
3940 * that happens. The request still remains valid, like always,
3941 * so we should be safe with just the NULL check.
3942 */
3943 if (!rq)
3944 return false;
3945 }
3946
3947 return blk_mq_poll_hybrid_sleep(q, rq);
3948 }
3949
3950 /**
3951 * blk_poll - poll for IO completions
3952 * @q: the queue
3953 * @cookie: cookie passed back at IO submission time
3954 * @spin: whether to spin for completions
3955 *
3956 * Description:
3957 * Poll for completions on the passed in queue. Returns number of
3958 * completed entries found. If @spin is true, then blk_poll will continue
3959 * looping until at least one completion is found, unless the task is
3960 * otherwise marked running (or we need to reschedule).
3961 */
3962 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3963 {
3964 struct blk_mq_hw_ctx *hctx;
3965 unsigned int state;
3966
3967 if (!blk_qc_t_valid(cookie) ||
3968 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3969 return 0;
3970
3971 if (current->plug)
3972 blk_flush_plug_list(current->plug, false);
3973
3974 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3975
3976 /*
3977 * If we sleep, have the caller restart the poll loop to reset
3978 * the state. Like for the other success return cases, the
3979 * caller is responsible for checking if the IO completed. If
3980 * the IO isn't complete, we'll get called again and will go
3981 * straight to the busy poll loop. If specified not to spin,
3982 * we also should not sleep.
3983 */
3984 if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3985 return 1;
3986
3987 hctx->poll_considered++;
3988
3989 state = get_current_state();
3990 do {
3991 int ret;
3992
3993 hctx->poll_invoked++;
3994
3995 ret = q->mq_ops->poll(hctx);
3996 if (ret > 0) {
3997 hctx->poll_success++;
3998 __set_current_state(TASK_RUNNING);
3999 return ret;
4000 }
4001
4002 if (signal_pending_state(state, current))
4003 __set_current_state(TASK_RUNNING);
4004
4005 if (task_is_running(current))
4006 return 1;
4007 if (ret < 0 || !spin)
4008 break;
4009 cpu_relax();
4010 } while (!need_resched());
4011
4012 __set_current_state(TASK_RUNNING);
4013 return 0;
4014 }
4015 EXPORT_SYMBOL_GPL(blk_poll);
4016
4017 unsigned int blk_mq_rq_cpu(struct request *rq)
4018 {
4019 return rq->mq_ctx->cpu;
4020 }
4021 EXPORT_SYMBOL(blk_mq_rq_cpu);
4022
4023 void blk_mq_cancel_work_sync(struct request_queue *q)
4024 {
4025 if (queue_is_mq(q)) {
4026 struct blk_mq_hw_ctx *hctx;
4027 int i;
4028
4029 cancel_delayed_work_sync(&q->requeue_work);
4030
4031 queue_for_each_hw_ctx(q, hctx, i)
4032 cancel_delayed_work_sync(&hctx->run_work);
4033 }
4034 }
4035
4036 static int __init blk_mq_init(void)
4037 {
4038 int i;
4039
4040 for_each_possible_cpu(i)
4041 init_llist_head(&per_cpu(blk_cpu_done, i));
4042 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4043
4044 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4045 "block/softirq:dead", NULL,
4046 blk_softirq_cpu_dead);
4047 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4048 blk_mq_hctx_notify_dead);
4049 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4050 blk_mq_hctx_notify_online,
4051 blk_mq_hctx_notify_offline);
4052 return 0;
4053 }
4054 subsys_initcall(blk_mq_init);