]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
block, scsi: Make SCSI quiesce and resume work reliably
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return sbitmap_any_bit_set(&hctx->ctx_map) ||
67 !list_empty_careful(&hctx->dispatch) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 {
137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 }
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143 {
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149
150 /*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
154 void blk_freeze_queue(struct request_queue *q)
155 {
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
163 blk_freeze_queue_start(q);
164 blk_mq_freeze_queue_wait(q);
165 }
166
167 void blk_mq_freeze_queue(struct request_queue *q)
168 {
169 /*
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
172 */
173 blk_freeze_queue(q);
174 }
175 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176
177 void blk_mq_unfreeze_queue(struct request_queue *q)
178 {
179 int freeze_depth;
180
181 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 WARN_ON_ONCE(freeze_depth < 0);
183 if (!freeze_depth) {
184 percpu_ref_reinit(&q->q_usage_counter);
185 wake_up_all(&q->mq_freeze_wq);
186 }
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189
190 /*
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
193 */
194 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
195 {
196 unsigned long flags;
197
198 spin_lock_irqsave(q->queue_lock, flags);
199 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 spin_unlock_irqrestore(q->queue_lock, flags);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
203
204 /**
205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 * @q: request queue.
207 *
208 * Note: this function does not prevent that the struct request end_io()
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
212 */
213 void blk_mq_quiesce_queue(struct request_queue *q)
214 {
215 struct blk_mq_hw_ctx *hctx;
216 unsigned int i;
217 bool rcu = false;
218
219 blk_mq_quiesce_queue_nowait(q);
220
221 queue_for_each_hw_ctx(q, hctx, i) {
222 if (hctx->flags & BLK_MQ_F_BLOCKING)
223 synchronize_srcu(hctx->queue_rq_srcu);
224 else
225 rcu = true;
226 }
227 if (rcu)
228 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
231
232 /*
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * @q: request queue.
235 *
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
238 */
239 void blk_mq_unquiesce_queue(struct request_queue *q)
240 {
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
244 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245 spin_unlock_irqrestore(q->queue_lock, flags);
246
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q, true);
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
251
252 void blk_mq_wake_waiters(struct request_queue *q)
253 {
254 struct blk_mq_hw_ctx *hctx;
255 unsigned int i;
256
257 queue_for_each_hw_ctx(q, hctx, i)
258 if (blk_mq_hw_queue_mapped(hctx))
259 blk_mq_tag_wakeup_all(hctx->tags, true);
260 }
261
262 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
263 {
264 return blk_mq_has_free_tags(hctx->tags);
265 }
266 EXPORT_SYMBOL(blk_mq_can_queue);
267
268 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
269 unsigned int tag, unsigned int op)
270 {
271 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
272 struct request *rq = tags->static_rqs[tag];
273
274 rq->rq_flags = 0;
275
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq->rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
283 }
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
287 }
288
289 INIT_LIST_HEAD(&rq->queuelist);
290 /* csd/requeue_work/fifo_time is initialized before use */
291 rq->q = data->q;
292 rq->mq_ctx = data->ctx;
293 rq->cmd_flags = op;
294 if (data->flags & BLK_MQ_REQ_PREEMPT)
295 rq->rq_flags |= RQF_PREEMPT;
296 if (blk_queue_io_stat(data->q))
297 rq->rq_flags |= RQF_IO_STAT;
298 /* do not touch atomic flags, it needs atomic ops against the timer */
299 rq->cpu = -1;
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
302 rq->rq_disk = NULL;
303 rq->part = NULL;
304 rq->start_time = jiffies;
305 #ifdef CONFIG_BLK_CGROUP
306 rq->rl = NULL;
307 set_start_time_ns(rq);
308 rq->io_start_time_ns = 0;
309 #endif
310 rq->nr_phys_segments = 0;
311 #if defined(CONFIG_BLK_DEV_INTEGRITY)
312 rq->nr_integrity_segments = 0;
313 #endif
314 rq->special = NULL;
315 /* tag was already set */
316 rq->extra_len = 0;
317
318 INIT_LIST_HEAD(&rq->timeout_list);
319 rq->timeout = 0;
320
321 rq->end_io = NULL;
322 rq->end_io_data = NULL;
323 rq->next_rq = NULL;
324
325 data->ctx->rq_dispatched[op_is_sync(op)]++;
326 return rq;
327 }
328
329 static struct request *blk_mq_get_request(struct request_queue *q,
330 struct bio *bio, unsigned int op,
331 struct blk_mq_alloc_data *data)
332 {
333 struct elevator_queue *e = q->elevator;
334 struct request *rq;
335 unsigned int tag;
336 bool put_ctx_on_error = false;
337
338 blk_queue_enter_live(q);
339 data->q = q;
340 if (likely(!data->ctx)) {
341 data->ctx = blk_mq_get_ctx(q);
342 put_ctx_on_error = true;
343 }
344 if (likely(!data->hctx))
345 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 if (op & REQ_NOWAIT)
347 data->flags |= BLK_MQ_REQ_NOWAIT;
348
349 if (e) {
350 data->flags |= BLK_MQ_REQ_INTERNAL;
351
352 /*
353 * Flush requests are special and go directly to the
354 * dispatch list.
355 */
356 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
357 e->type->ops.mq.limit_depth(op, data);
358 }
359
360 tag = blk_mq_get_tag(data);
361 if (tag == BLK_MQ_TAG_FAIL) {
362 if (put_ctx_on_error) {
363 blk_mq_put_ctx(data->ctx);
364 data->ctx = NULL;
365 }
366 blk_queue_exit(q);
367 return NULL;
368 }
369
370 rq = blk_mq_rq_ctx_init(data, tag, op);
371 if (!op_is_flush(op)) {
372 rq->elv.icq = NULL;
373 if (e && e->type->ops.mq.prepare_request) {
374 if (e->type->icq_cache && rq_ioc(bio))
375 blk_mq_sched_assign_ioc(rq, bio);
376
377 e->type->ops.mq.prepare_request(rq, bio);
378 rq->rq_flags |= RQF_ELVPRIV;
379 }
380 }
381 data->hctx->queued++;
382 return rq;
383 }
384
385 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386 unsigned int flags)
387 {
388 struct blk_mq_alloc_data alloc_data = { .flags = flags };
389 struct request *rq;
390 int ret;
391
392 ret = blk_queue_enter(q, flags);
393 if (ret)
394 return ERR_PTR(ret);
395
396 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397 blk_queue_exit(q);
398
399 if (!rq)
400 return ERR_PTR(-EWOULDBLOCK);
401
402 blk_mq_put_ctx(alloc_data.ctx);
403
404 rq->__data_len = 0;
405 rq->__sector = (sector_t) -1;
406 rq->bio = rq->biotail = NULL;
407 return rq;
408 }
409 EXPORT_SYMBOL(blk_mq_alloc_request);
410
411 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412 unsigned int op, unsigned int flags, unsigned int hctx_idx)
413 {
414 struct blk_mq_alloc_data alloc_data = { .flags = flags };
415 struct request *rq;
416 unsigned int cpu;
417 int ret;
418
419 /*
420 * If the tag allocator sleeps we could get an allocation for a
421 * different hardware context. No need to complicate the low level
422 * allocator for this for the rare use case of a command tied to
423 * a specific queue.
424 */
425 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
426 return ERR_PTR(-EINVAL);
427
428 if (hctx_idx >= q->nr_hw_queues)
429 return ERR_PTR(-EIO);
430
431 ret = blk_queue_enter(q, flags);
432 if (ret)
433 return ERR_PTR(ret);
434
435 /*
436 * Check if the hardware context is actually mapped to anything.
437 * If not tell the caller that it should skip this queue.
438 */
439 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
440 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
441 blk_queue_exit(q);
442 return ERR_PTR(-EXDEV);
443 }
444 cpu = cpumask_first(alloc_data.hctx->cpumask);
445 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
446
447 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448 blk_queue_exit(q);
449
450 if (!rq)
451 return ERR_PTR(-EWOULDBLOCK);
452
453 return rq;
454 }
455 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
456
457 void blk_mq_free_request(struct request *rq)
458 {
459 struct request_queue *q = rq->q;
460 struct elevator_queue *e = q->elevator;
461 struct blk_mq_ctx *ctx = rq->mq_ctx;
462 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
463 const int sched_tag = rq->internal_tag;
464
465 if (rq->rq_flags & RQF_ELVPRIV) {
466 if (e && e->type->ops.mq.finish_request)
467 e->type->ops.mq.finish_request(rq);
468 if (rq->elv.icq) {
469 put_io_context(rq->elv.icq->ioc);
470 rq->elv.icq = NULL;
471 }
472 }
473
474 ctx->rq_completed[rq_is_sync(rq)]++;
475 if (rq->rq_flags & RQF_MQ_INFLIGHT)
476 atomic_dec(&hctx->nr_active);
477
478 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
479 laptop_io_completion(q->backing_dev_info);
480
481 wbt_done(q->rq_wb, &rq->issue_stat);
482
483 if (blk_rq_rl(rq))
484 blk_put_rl(blk_rq_rl(rq));
485
486 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
487 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
488 if (rq->tag != -1)
489 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
490 if (sched_tag != -1)
491 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
492 blk_mq_sched_restart(hctx);
493 blk_queue_exit(q);
494 }
495 EXPORT_SYMBOL_GPL(blk_mq_free_request);
496
497 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
498 {
499 blk_account_io_done(rq);
500
501 if (rq->end_io) {
502 wbt_done(rq->q->rq_wb, &rq->issue_stat);
503 rq->end_io(rq, error);
504 } else {
505 if (unlikely(blk_bidi_rq(rq)))
506 blk_mq_free_request(rq->next_rq);
507 blk_mq_free_request(rq);
508 }
509 }
510 EXPORT_SYMBOL(__blk_mq_end_request);
511
512 void blk_mq_end_request(struct request *rq, blk_status_t error)
513 {
514 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
515 BUG();
516 __blk_mq_end_request(rq, error);
517 }
518 EXPORT_SYMBOL(blk_mq_end_request);
519
520 static void __blk_mq_complete_request_remote(void *data)
521 {
522 struct request *rq = data;
523
524 rq->q->softirq_done_fn(rq);
525 }
526
527 static void __blk_mq_complete_request(struct request *rq)
528 {
529 struct blk_mq_ctx *ctx = rq->mq_ctx;
530 bool shared = false;
531 int cpu;
532
533 if (rq->internal_tag != -1)
534 blk_mq_sched_completed_request(rq);
535 if (rq->rq_flags & RQF_STATS) {
536 blk_mq_poll_stats_start(rq->q);
537 blk_stat_add(rq);
538 }
539
540 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
541 rq->q->softirq_done_fn(rq);
542 return;
543 }
544
545 cpu = get_cpu();
546 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
547 shared = cpus_share_cache(cpu, ctx->cpu);
548
549 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
550 rq->csd.func = __blk_mq_complete_request_remote;
551 rq->csd.info = rq;
552 rq->csd.flags = 0;
553 smp_call_function_single_async(ctx->cpu, &rq->csd);
554 } else {
555 rq->q->softirq_done_fn(rq);
556 }
557 put_cpu();
558 }
559
560 /**
561 * blk_mq_complete_request - end I/O on a request
562 * @rq: the request being processed
563 *
564 * Description:
565 * Ends all I/O on a request. It does not handle partial completions.
566 * The actual completion happens out-of-order, through a IPI handler.
567 **/
568 void blk_mq_complete_request(struct request *rq)
569 {
570 struct request_queue *q = rq->q;
571
572 if (unlikely(blk_should_fake_timeout(q)))
573 return;
574 if (!blk_mark_rq_complete(rq))
575 __blk_mq_complete_request(rq);
576 }
577 EXPORT_SYMBOL(blk_mq_complete_request);
578
579 int blk_mq_request_started(struct request *rq)
580 {
581 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
582 }
583 EXPORT_SYMBOL_GPL(blk_mq_request_started);
584
585 void blk_mq_start_request(struct request *rq)
586 {
587 struct request_queue *q = rq->q;
588
589 blk_mq_sched_started_request(rq);
590
591 trace_block_rq_issue(q, rq);
592
593 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
594 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
595 rq->rq_flags |= RQF_STATS;
596 wbt_issue(q->rq_wb, &rq->issue_stat);
597 }
598
599 blk_add_timer(rq);
600
601 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
602
603 /*
604 * Mark us as started and clear complete. Complete might have been
605 * set if requeue raced with timeout, which then marked it as
606 * complete. So be sure to clear complete again when we start
607 * the request, otherwise we'll ignore the completion event.
608 *
609 * Ensure that ->deadline is visible before we set STARTED, such that
610 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
611 * it observes STARTED.
612 */
613 smp_wmb();
614 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
615 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
616 /*
617 * Coherence order guarantees these consecutive stores to a
618 * single variable propagate in the specified order. Thus the
619 * clear_bit() is ordered _after_ the set bit. See
620 * blk_mq_check_expired().
621 *
622 * (the bits must be part of the same byte for this to be
623 * true).
624 */
625 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
626 }
627
628 if (q->dma_drain_size && blk_rq_bytes(rq)) {
629 /*
630 * Make sure space for the drain appears. We know we can do
631 * this because max_hw_segments has been adjusted to be one
632 * fewer than the device can handle.
633 */
634 rq->nr_phys_segments++;
635 }
636 }
637 EXPORT_SYMBOL(blk_mq_start_request);
638
639 /*
640 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
641 * flag isn't set yet, so there may be race with timeout handler,
642 * but given rq->deadline is just set in .queue_rq() under
643 * this situation, the race won't be possible in reality because
644 * rq->timeout should be set as big enough to cover the window
645 * between blk_mq_start_request() called from .queue_rq() and
646 * clearing REQ_ATOM_STARTED here.
647 */
648 static void __blk_mq_requeue_request(struct request *rq)
649 {
650 struct request_queue *q = rq->q;
651
652 blk_mq_put_driver_tag(rq);
653
654 trace_block_rq_requeue(q, rq);
655 wbt_requeue(q->rq_wb, &rq->issue_stat);
656 blk_mq_sched_requeue_request(rq);
657
658 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
659 if (q->dma_drain_size && blk_rq_bytes(rq))
660 rq->nr_phys_segments--;
661 }
662 }
663
664 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
665 {
666 __blk_mq_requeue_request(rq);
667
668 BUG_ON(blk_queued_rq(rq));
669 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
670 }
671 EXPORT_SYMBOL(blk_mq_requeue_request);
672
673 static void blk_mq_requeue_work(struct work_struct *work)
674 {
675 struct request_queue *q =
676 container_of(work, struct request_queue, requeue_work.work);
677 LIST_HEAD(rq_list);
678 struct request *rq, *next;
679
680 spin_lock_irq(&q->requeue_lock);
681 list_splice_init(&q->requeue_list, &rq_list);
682 spin_unlock_irq(&q->requeue_lock);
683
684 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
685 if (!(rq->rq_flags & RQF_SOFTBARRIER))
686 continue;
687
688 rq->rq_flags &= ~RQF_SOFTBARRIER;
689 list_del_init(&rq->queuelist);
690 blk_mq_sched_insert_request(rq, true, false, false, true);
691 }
692
693 while (!list_empty(&rq_list)) {
694 rq = list_entry(rq_list.next, struct request, queuelist);
695 list_del_init(&rq->queuelist);
696 blk_mq_sched_insert_request(rq, false, false, false, true);
697 }
698
699 blk_mq_run_hw_queues(q, false);
700 }
701
702 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
703 bool kick_requeue_list)
704 {
705 struct request_queue *q = rq->q;
706 unsigned long flags;
707
708 /*
709 * We abuse this flag that is otherwise used by the I/O scheduler to
710 * request head insertation from the workqueue.
711 */
712 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
713
714 spin_lock_irqsave(&q->requeue_lock, flags);
715 if (at_head) {
716 rq->rq_flags |= RQF_SOFTBARRIER;
717 list_add(&rq->queuelist, &q->requeue_list);
718 } else {
719 list_add_tail(&rq->queuelist, &q->requeue_list);
720 }
721 spin_unlock_irqrestore(&q->requeue_lock, flags);
722
723 if (kick_requeue_list)
724 blk_mq_kick_requeue_list(q);
725 }
726 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
727
728 void blk_mq_kick_requeue_list(struct request_queue *q)
729 {
730 kblockd_schedule_delayed_work(&q->requeue_work, 0);
731 }
732 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
733
734 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
735 unsigned long msecs)
736 {
737 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
738 msecs_to_jiffies(msecs));
739 }
740 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
741
742 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
743 {
744 if (tag < tags->nr_tags) {
745 prefetch(tags->rqs[tag]);
746 return tags->rqs[tag];
747 }
748
749 return NULL;
750 }
751 EXPORT_SYMBOL(blk_mq_tag_to_rq);
752
753 struct blk_mq_timeout_data {
754 unsigned long next;
755 unsigned int next_set;
756 };
757
758 void blk_mq_rq_timed_out(struct request *req, bool reserved)
759 {
760 const struct blk_mq_ops *ops = req->q->mq_ops;
761 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
762
763 /*
764 * We know that complete is set at this point. If STARTED isn't set
765 * anymore, then the request isn't active and the "timeout" should
766 * just be ignored. This can happen due to the bitflag ordering.
767 * Timeout first checks if STARTED is set, and if it is, assumes
768 * the request is active. But if we race with completion, then
769 * both flags will get cleared. So check here again, and ignore
770 * a timeout event with a request that isn't active.
771 */
772 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
773 return;
774
775 if (ops->timeout)
776 ret = ops->timeout(req, reserved);
777
778 switch (ret) {
779 case BLK_EH_HANDLED:
780 __blk_mq_complete_request(req);
781 break;
782 case BLK_EH_RESET_TIMER:
783 blk_add_timer(req);
784 blk_clear_rq_complete(req);
785 break;
786 case BLK_EH_NOT_HANDLED:
787 break;
788 default:
789 printk(KERN_ERR "block: bad eh return: %d\n", ret);
790 break;
791 }
792 }
793
794 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
795 struct request *rq, void *priv, bool reserved)
796 {
797 struct blk_mq_timeout_data *data = priv;
798 unsigned long deadline;
799
800 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
801 return;
802
803 /*
804 * Ensures that if we see STARTED we must also see our
805 * up-to-date deadline, see blk_mq_start_request().
806 */
807 smp_rmb();
808
809 deadline = READ_ONCE(rq->deadline);
810
811 /*
812 * The rq being checked may have been freed and reallocated
813 * out already here, we avoid this race by checking rq->deadline
814 * and REQ_ATOM_COMPLETE flag together:
815 *
816 * - if rq->deadline is observed as new value because of
817 * reusing, the rq won't be timed out because of timing.
818 * - if rq->deadline is observed as previous value,
819 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
820 * because we put a barrier between setting rq->deadline
821 * and clearing the flag in blk_mq_start_request(), so
822 * this rq won't be timed out too.
823 */
824 if (time_after_eq(jiffies, deadline)) {
825 if (!blk_mark_rq_complete(rq)) {
826 /*
827 * Again coherence order ensures that consecutive reads
828 * from the same variable must be in that order. This
829 * ensures that if we see COMPLETE clear, we must then
830 * see STARTED set and we'll ignore this timeout.
831 *
832 * (There's also the MB implied by the test_and_clear())
833 */
834 blk_mq_rq_timed_out(rq, reserved);
835 }
836 } else if (!data->next_set || time_after(data->next, deadline)) {
837 data->next = deadline;
838 data->next_set = 1;
839 }
840 }
841
842 static void blk_mq_timeout_work(struct work_struct *work)
843 {
844 struct request_queue *q =
845 container_of(work, struct request_queue, timeout_work);
846 struct blk_mq_timeout_data data = {
847 .next = 0,
848 .next_set = 0,
849 };
850 int i;
851
852 /* A deadlock might occur if a request is stuck requiring a
853 * timeout at the same time a queue freeze is waiting
854 * completion, since the timeout code would not be able to
855 * acquire the queue reference here.
856 *
857 * That's why we don't use blk_queue_enter here; instead, we use
858 * percpu_ref_tryget directly, because we need to be able to
859 * obtain a reference even in the short window between the queue
860 * starting to freeze, by dropping the first reference in
861 * blk_freeze_queue_start, and the moment the last request is
862 * consumed, marked by the instant q_usage_counter reaches
863 * zero.
864 */
865 if (!percpu_ref_tryget(&q->q_usage_counter))
866 return;
867
868 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
869
870 if (data.next_set) {
871 data.next = blk_rq_timeout(round_jiffies_up(data.next));
872 mod_timer(&q->timeout, data.next);
873 } else {
874 struct blk_mq_hw_ctx *hctx;
875
876 queue_for_each_hw_ctx(q, hctx, i) {
877 /* the hctx may be unmapped, so check it here */
878 if (blk_mq_hw_queue_mapped(hctx))
879 blk_mq_tag_idle(hctx);
880 }
881 }
882 blk_queue_exit(q);
883 }
884
885 struct flush_busy_ctx_data {
886 struct blk_mq_hw_ctx *hctx;
887 struct list_head *list;
888 };
889
890 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
891 {
892 struct flush_busy_ctx_data *flush_data = data;
893 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
894 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
895
896 sbitmap_clear_bit(sb, bitnr);
897 spin_lock(&ctx->lock);
898 list_splice_tail_init(&ctx->rq_list, flush_data->list);
899 spin_unlock(&ctx->lock);
900 return true;
901 }
902
903 /*
904 * Process software queues that have been marked busy, splicing them
905 * to the for-dispatch
906 */
907 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908 {
909 struct flush_busy_ctx_data data = {
910 .hctx = hctx,
911 .list = list,
912 };
913
914 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
915 }
916 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
917
918 struct dispatch_rq_data {
919 struct blk_mq_hw_ctx *hctx;
920 struct request *rq;
921 };
922
923 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
924 void *data)
925 {
926 struct dispatch_rq_data *dispatch_data = data;
927 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
928 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
929
930 spin_lock(&ctx->lock);
931 if (unlikely(!list_empty(&ctx->rq_list))) {
932 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
933 list_del_init(&dispatch_data->rq->queuelist);
934 if (list_empty(&ctx->rq_list))
935 sbitmap_clear_bit(sb, bitnr);
936 }
937 spin_unlock(&ctx->lock);
938
939 return !dispatch_data->rq;
940 }
941
942 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
943 struct blk_mq_ctx *start)
944 {
945 unsigned off = start ? start->index_hw : 0;
946 struct dispatch_rq_data data = {
947 .hctx = hctx,
948 .rq = NULL,
949 };
950
951 __sbitmap_for_each_set(&hctx->ctx_map, off,
952 dispatch_rq_from_ctx, &data);
953
954 return data.rq;
955 }
956
957 static inline unsigned int queued_to_index(unsigned int queued)
958 {
959 if (!queued)
960 return 0;
961
962 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
963 }
964
965 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
966 bool wait)
967 {
968 struct blk_mq_alloc_data data = {
969 .q = rq->q,
970 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
971 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
972 };
973
974 might_sleep_if(wait);
975
976 if (rq->tag != -1)
977 goto done;
978
979 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 data.flags |= BLK_MQ_REQ_RESERVED;
981
982 rq->tag = blk_mq_get_tag(&data);
983 if (rq->tag >= 0) {
984 if (blk_mq_tag_busy(data.hctx)) {
985 rq->rq_flags |= RQF_MQ_INFLIGHT;
986 atomic_inc(&data.hctx->nr_active);
987 }
988 data.hctx->tags->rqs[rq->tag] = rq;
989 }
990
991 done:
992 if (hctx)
993 *hctx = data.hctx;
994 return rq->tag != -1;
995 }
996
997 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
998 int flags, void *key)
999 {
1000 struct blk_mq_hw_ctx *hctx;
1001
1002 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1003
1004 list_del_init(&wait->entry);
1005 blk_mq_run_hw_queue(hctx, true);
1006 return 1;
1007 }
1008
1009 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx **hctx,
1010 struct request *rq)
1011 {
1012 struct blk_mq_hw_ctx *this_hctx = *hctx;
1013 wait_queue_entry_t *wait = &this_hctx->dispatch_wait;
1014 struct sbq_wait_state *ws;
1015
1016 if (!list_empty_careful(&wait->entry))
1017 return false;
1018
1019 spin_lock(&this_hctx->lock);
1020 if (!list_empty(&wait->entry)) {
1021 spin_unlock(&this_hctx->lock);
1022 return false;
1023 }
1024
1025 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1026 add_wait_queue(&ws->wait, wait);
1027
1028 /*
1029 * It's possible that a tag was freed in the window between the
1030 * allocation failure and adding the hardware queue to the wait
1031 * queue.
1032 */
1033 if (!blk_mq_get_driver_tag(rq, hctx, false)) {
1034 spin_unlock(&this_hctx->lock);
1035 return false;
1036 }
1037
1038 /*
1039 * We got a tag, remove ourselves from the wait queue to ensure
1040 * someone else gets the wakeup.
1041 */
1042 spin_lock_irq(&ws->wait.lock);
1043 list_del_init(&wait->entry);
1044 spin_unlock_irq(&ws->wait.lock);
1045 spin_unlock(&this_hctx->lock);
1046 return true;
1047 }
1048
1049 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1050 bool got_budget)
1051 {
1052 struct blk_mq_hw_ctx *hctx;
1053 struct request *rq, *nxt;
1054 bool no_tag = false;
1055 int errors, queued;
1056
1057 if (list_empty(list))
1058 return false;
1059
1060 WARN_ON(!list_is_singular(list) && got_budget);
1061
1062 /*
1063 * Now process all the entries, sending them to the driver.
1064 */
1065 errors = queued = 0;
1066 do {
1067 struct blk_mq_queue_data bd;
1068 blk_status_t ret;
1069
1070 rq = list_first_entry(list, struct request, queuelist);
1071 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1072 /*
1073 * The initial allocation attempt failed, so we need to
1074 * rerun the hardware queue when a tag is freed. The
1075 * waitqueue takes care of that. If the queue is run
1076 * before we add this entry back on the dispatch list,
1077 * we'll re-run it below.
1078 */
1079 if (!blk_mq_dispatch_wait_add(&hctx, rq)) {
1080 if (got_budget)
1081 blk_mq_put_dispatch_budget(hctx);
1082 no_tag = true;
1083 break;
1084 }
1085 }
1086
1087 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1088 blk_mq_put_driver_tag(rq);
1089 break;
1090 }
1091
1092 list_del_init(&rq->queuelist);
1093
1094 bd.rq = rq;
1095
1096 /*
1097 * Flag last if we have no more requests, or if we have more
1098 * but can't assign a driver tag to it.
1099 */
1100 if (list_empty(list))
1101 bd.last = true;
1102 else {
1103 nxt = list_first_entry(list, struct request, queuelist);
1104 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1105 }
1106
1107 ret = q->mq_ops->queue_rq(hctx, &bd);
1108 if (ret == BLK_STS_RESOURCE) {
1109 /*
1110 * If an I/O scheduler has been configured and we got a
1111 * driver tag for the next request already, free it again.
1112 */
1113 if (!list_empty(list)) {
1114 nxt = list_first_entry(list, struct request, queuelist);
1115 blk_mq_put_driver_tag(nxt);
1116 }
1117 list_add(&rq->queuelist, list);
1118 __blk_mq_requeue_request(rq);
1119 break;
1120 }
1121
1122 if (unlikely(ret != BLK_STS_OK)) {
1123 errors++;
1124 blk_mq_end_request(rq, BLK_STS_IOERR);
1125 continue;
1126 }
1127
1128 queued++;
1129 } while (!list_empty(list));
1130
1131 hctx->dispatched[queued_to_index(queued)]++;
1132
1133 /*
1134 * Any items that need requeuing? Stuff them into hctx->dispatch,
1135 * that is where we will continue on next queue run.
1136 */
1137 if (!list_empty(list)) {
1138 spin_lock(&hctx->lock);
1139 list_splice_init(list, &hctx->dispatch);
1140 spin_unlock(&hctx->lock);
1141
1142 /*
1143 * If SCHED_RESTART was set by the caller of this function and
1144 * it is no longer set that means that it was cleared by another
1145 * thread and hence that a queue rerun is needed.
1146 *
1147 * If 'no_tag' is set, that means that we failed getting
1148 * a driver tag with an I/O scheduler attached. If our dispatch
1149 * waitqueue is no longer active, ensure that we run the queue
1150 * AFTER adding our entries back to the list.
1151 *
1152 * If no I/O scheduler has been configured it is possible that
1153 * the hardware queue got stopped and restarted before requests
1154 * were pushed back onto the dispatch list. Rerun the queue to
1155 * avoid starvation. Notes:
1156 * - blk_mq_run_hw_queue() checks whether or not a queue has
1157 * been stopped before rerunning a queue.
1158 * - Some but not all block drivers stop a queue before
1159 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1160 * and dm-rq.
1161 */
1162 if (!blk_mq_sched_needs_restart(hctx) ||
1163 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1164 blk_mq_run_hw_queue(hctx, true);
1165 }
1166
1167 return (queued + errors) != 0;
1168 }
1169
1170 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1171 {
1172 int srcu_idx;
1173
1174 /*
1175 * We should be running this queue from one of the CPUs that
1176 * are mapped to it.
1177 */
1178 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1179 cpu_online(hctx->next_cpu));
1180
1181 /*
1182 * We can't run the queue inline with ints disabled. Ensure that
1183 * we catch bad users of this early.
1184 */
1185 WARN_ON_ONCE(in_interrupt());
1186
1187 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1188 rcu_read_lock();
1189 blk_mq_sched_dispatch_requests(hctx);
1190 rcu_read_unlock();
1191 } else {
1192 might_sleep();
1193
1194 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1195 blk_mq_sched_dispatch_requests(hctx);
1196 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1197 }
1198 }
1199
1200 /*
1201 * It'd be great if the workqueue API had a way to pass
1202 * in a mask and had some smarts for more clever placement.
1203 * For now we just round-robin here, switching for every
1204 * BLK_MQ_CPU_WORK_BATCH queued items.
1205 */
1206 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1207 {
1208 if (hctx->queue->nr_hw_queues == 1)
1209 return WORK_CPU_UNBOUND;
1210
1211 if (--hctx->next_cpu_batch <= 0) {
1212 int next_cpu;
1213
1214 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1215 if (next_cpu >= nr_cpu_ids)
1216 next_cpu = cpumask_first(hctx->cpumask);
1217
1218 hctx->next_cpu = next_cpu;
1219 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1220 }
1221
1222 return hctx->next_cpu;
1223 }
1224
1225 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1226 unsigned long msecs)
1227 {
1228 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1229 return;
1230
1231 if (unlikely(blk_mq_hctx_stopped(hctx)))
1232 return;
1233
1234 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1235 int cpu = get_cpu();
1236 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1237 __blk_mq_run_hw_queue(hctx);
1238 put_cpu();
1239 return;
1240 }
1241
1242 put_cpu();
1243 }
1244
1245 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1246 &hctx->run_work,
1247 msecs_to_jiffies(msecs));
1248 }
1249
1250 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1251 {
1252 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1253 }
1254 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1255
1256 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1257 {
1258 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1259 }
1260 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1261
1262 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1263 {
1264 struct blk_mq_hw_ctx *hctx;
1265 int i;
1266
1267 queue_for_each_hw_ctx(q, hctx, i) {
1268 if (!blk_mq_hctx_has_pending(hctx) ||
1269 blk_mq_hctx_stopped(hctx))
1270 continue;
1271
1272 blk_mq_run_hw_queue(hctx, async);
1273 }
1274 }
1275 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1276
1277 /**
1278 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1279 * @q: request queue.
1280 *
1281 * The caller is responsible for serializing this function against
1282 * blk_mq_{start,stop}_hw_queue().
1283 */
1284 bool blk_mq_queue_stopped(struct request_queue *q)
1285 {
1286 struct blk_mq_hw_ctx *hctx;
1287 int i;
1288
1289 queue_for_each_hw_ctx(q, hctx, i)
1290 if (blk_mq_hctx_stopped(hctx))
1291 return true;
1292
1293 return false;
1294 }
1295 EXPORT_SYMBOL(blk_mq_queue_stopped);
1296
1297 /*
1298 * This function is often used for pausing .queue_rq() by driver when
1299 * there isn't enough resource or some conditions aren't satisfied, and
1300 * BLK_STS_RESOURCE is usually returned.
1301 *
1302 * We do not guarantee that dispatch can be drained or blocked
1303 * after blk_mq_stop_hw_queue() returns. Please use
1304 * blk_mq_quiesce_queue() for that requirement.
1305 */
1306 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1307 {
1308 cancel_delayed_work(&hctx->run_work);
1309
1310 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1311 }
1312 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1313
1314 /*
1315 * This function is often used for pausing .queue_rq() by driver when
1316 * there isn't enough resource or some conditions aren't satisfied, and
1317 * BLK_STS_RESOURCE is usually returned.
1318 *
1319 * We do not guarantee that dispatch can be drained or blocked
1320 * after blk_mq_stop_hw_queues() returns. Please use
1321 * blk_mq_quiesce_queue() for that requirement.
1322 */
1323 void blk_mq_stop_hw_queues(struct request_queue *q)
1324 {
1325 struct blk_mq_hw_ctx *hctx;
1326 int i;
1327
1328 queue_for_each_hw_ctx(q, hctx, i)
1329 blk_mq_stop_hw_queue(hctx);
1330 }
1331 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1332
1333 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1334 {
1335 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1336
1337 blk_mq_run_hw_queue(hctx, false);
1338 }
1339 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1340
1341 void blk_mq_start_hw_queues(struct request_queue *q)
1342 {
1343 struct blk_mq_hw_ctx *hctx;
1344 int i;
1345
1346 queue_for_each_hw_ctx(q, hctx, i)
1347 blk_mq_start_hw_queue(hctx);
1348 }
1349 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1350
1351 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1352 {
1353 if (!blk_mq_hctx_stopped(hctx))
1354 return;
1355
1356 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1357 blk_mq_run_hw_queue(hctx, async);
1358 }
1359 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1360
1361 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1362 {
1363 struct blk_mq_hw_ctx *hctx;
1364 int i;
1365
1366 queue_for_each_hw_ctx(q, hctx, i)
1367 blk_mq_start_stopped_hw_queue(hctx, async);
1368 }
1369 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1370
1371 static void blk_mq_run_work_fn(struct work_struct *work)
1372 {
1373 struct blk_mq_hw_ctx *hctx;
1374
1375 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1376
1377 /*
1378 * If we are stopped, don't run the queue. The exception is if
1379 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1380 * the STOPPED bit and run it.
1381 */
1382 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1383 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1384 return;
1385
1386 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1387 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1388 }
1389
1390 __blk_mq_run_hw_queue(hctx);
1391 }
1392
1393
1394 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1395 {
1396 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1397 return;
1398
1399 /*
1400 * Stop the hw queue, then modify currently delayed work.
1401 * This should prevent us from running the queue prematurely.
1402 * Mark the queue as auto-clearing STOPPED when it runs.
1403 */
1404 blk_mq_stop_hw_queue(hctx);
1405 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1406 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1407 &hctx->run_work,
1408 msecs_to_jiffies(msecs));
1409 }
1410 EXPORT_SYMBOL(blk_mq_delay_queue);
1411
1412 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1413 struct request *rq,
1414 bool at_head)
1415 {
1416 struct blk_mq_ctx *ctx = rq->mq_ctx;
1417
1418 lockdep_assert_held(&ctx->lock);
1419
1420 trace_block_rq_insert(hctx->queue, rq);
1421
1422 if (at_head)
1423 list_add(&rq->queuelist, &ctx->rq_list);
1424 else
1425 list_add_tail(&rq->queuelist, &ctx->rq_list);
1426 }
1427
1428 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1429 bool at_head)
1430 {
1431 struct blk_mq_ctx *ctx = rq->mq_ctx;
1432
1433 lockdep_assert_held(&ctx->lock);
1434
1435 __blk_mq_insert_req_list(hctx, rq, at_head);
1436 blk_mq_hctx_mark_pending(hctx, ctx);
1437 }
1438
1439 /*
1440 * Should only be used carefully, when the caller knows we want to
1441 * bypass a potential IO scheduler on the target device.
1442 */
1443 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1444 {
1445 struct blk_mq_ctx *ctx = rq->mq_ctx;
1446 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1447
1448 spin_lock(&hctx->lock);
1449 list_add_tail(&rq->queuelist, &hctx->dispatch);
1450 spin_unlock(&hctx->lock);
1451
1452 if (run_queue)
1453 blk_mq_run_hw_queue(hctx, false);
1454 }
1455
1456 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1457 struct list_head *list)
1458
1459 {
1460 /*
1461 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1462 * offline now
1463 */
1464 spin_lock(&ctx->lock);
1465 while (!list_empty(list)) {
1466 struct request *rq;
1467
1468 rq = list_first_entry(list, struct request, queuelist);
1469 BUG_ON(rq->mq_ctx != ctx);
1470 list_del_init(&rq->queuelist);
1471 __blk_mq_insert_req_list(hctx, rq, false);
1472 }
1473 blk_mq_hctx_mark_pending(hctx, ctx);
1474 spin_unlock(&ctx->lock);
1475 }
1476
1477 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1478 {
1479 struct request *rqa = container_of(a, struct request, queuelist);
1480 struct request *rqb = container_of(b, struct request, queuelist);
1481
1482 return !(rqa->mq_ctx < rqb->mq_ctx ||
1483 (rqa->mq_ctx == rqb->mq_ctx &&
1484 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1485 }
1486
1487 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1488 {
1489 struct blk_mq_ctx *this_ctx;
1490 struct request_queue *this_q;
1491 struct request *rq;
1492 LIST_HEAD(list);
1493 LIST_HEAD(ctx_list);
1494 unsigned int depth;
1495
1496 list_splice_init(&plug->mq_list, &list);
1497
1498 list_sort(NULL, &list, plug_ctx_cmp);
1499
1500 this_q = NULL;
1501 this_ctx = NULL;
1502 depth = 0;
1503
1504 while (!list_empty(&list)) {
1505 rq = list_entry_rq(list.next);
1506 list_del_init(&rq->queuelist);
1507 BUG_ON(!rq->q);
1508 if (rq->mq_ctx != this_ctx) {
1509 if (this_ctx) {
1510 trace_block_unplug(this_q, depth, from_schedule);
1511 blk_mq_sched_insert_requests(this_q, this_ctx,
1512 &ctx_list,
1513 from_schedule);
1514 }
1515
1516 this_ctx = rq->mq_ctx;
1517 this_q = rq->q;
1518 depth = 0;
1519 }
1520
1521 depth++;
1522 list_add_tail(&rq->queuelist, &ctx_list);
1523 }
1524
1525 /*
1526 * If 'this_ctx' is set, we know we have entries to complete
1527 * on 'ctx_list'. Do those.
1528 */
1529 if (this_ctx) {
1530 trace_block_unplug(this_q, depth, from_schedule);
1531 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1532 from_schedule);
1533 }
1534 }
1535
1536 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1537 {
1538 blk_init_request_from_bio(rq, bio);
1539
1540 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1541
1542 blk_account_io_start(rq, true);
1543 }
1544
1545 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1546 struct blk_mq_ctx *ctx,
1547 struct request *rq)
1548 {
1549 spin_lock(&ctx->lock);
1550 __blk_mq_insert_request(hctx, rq, false);
1551 spin_unlock(&ctx->lock);
1552 }
1553
1554 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1555 {
1556 if (rq->tag != -1)
1557 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1558
1559 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1560 }
1561
1562 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1563 struct request *rq,
1564 blk_qc_t *cookie, bool may_sleep)
1565 {
1566 struct request_queue *q = rq->q;
1567 struct blk_mq_queue_data bd = {
1568 .rq = rq,
1569 .last = true,
1570 };
1571 blk_qc_t new_cookie;
1572 blk_status_t ret;
1573 bool run_queue = true;
1574
1575 /* RCU or SRCU read lock is needed before checking quiesced flag */
1576 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1577 run_queue = false;
1578 goto insert;
1579 }
1580
1581 if (q->elevator)
1582 goto insert;
1583
1584 if (!blk_mq_get_driver_tag(rq, NULL, false))
1585 goto insert;
1586
1587 if (!blk_mq_get_dispatch_budget(hctx)) {
1588 blk_mq_put_driver_tag(rq);
1589 goto insert;
1590 }
1591
1592 new_cookie = request_to_qc_t(hctx, rq);
1593
1594 /*
1595 * For OK queue, we are done. For error, kill it. Any other
1596 * error (busy), just add it to our list as we previously
1597 * would have done
1598 */
1599 ret = q->mq_ops->queue_rq(hctx, &bd);
1600 switch (ret) {
1601 case BLK_STS_OK:
1602 *cookie = new_cookie;
1603 return;
1604 case BLK_STS_RESOURCE:
1605 __blk_mq_requeue_request(rq);
1606 goto insert;
1607 default:
1608 *cookie = BLK_QC_T_NONE;
1609 blk_mq_end_request(rq, ret);
1610 return;
1611 }
1612
1613 insert:
1614 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1615 }
1616
1617 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1618 struct request *rq, blk_qc_t *cookie)
1619 {
1620 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1621 rcu_read_lock();
1622 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1623 rcu_read_unlock();
1624 } else {
1625 unsigned int srcu_idx;
1626
1627 might_sleep();
1628
1629 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1630 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1631 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1632 }
1633 }
1634
1635 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1636 {
1637 const int is_sync = op_is_sync(bio->bi_opf);
1638 const int is_flush_fua = op_is_flush(bio->bi_opf);
1639 struct blk_mq_alloc_data data = { .flags = 0 };
1640 struct request *rq;
1641 unsigned int request_count = 0;
1642 struct blk_plug *plug;
1643 struct request *same_queue_rq = NULL;
1644 blk_qc_t cookie;
1645 unsigned int wb_acct;
1646
1647 blk_queue_bounce(q, &bio);
1648
1649 blk_queue_split(q, &bio);
1650
1651 if (!bio_integrity_prep(bio))
1652 return BLK_QC_T_NONE;
1653
1654 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1655 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1656 return BLK_QC_T_NONE;
1657
1658 if (blk_mq_sched_bio_merge(q, bio))
1659 return BLK_QC_T_NONE;
1660
1661 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1662
1663 trace_block_getrq(q, bio, bio->bi_opf);
1664
1665 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1666 if (unlikely(!rq)) {
1667 __wbt_done(q->rq_wb, wb_acct);
1668 if (bio->bi_opf & REQ_NOWAIT)
1669 bio_wouldblock_error(bio);
1670 return BLK_QC_T_NONE;
1671 }
1672
1673 wbt_track(&rq->issue_stat, wb_acct);
1674
1675 cookie = request_to_qc_t(data.hctx, rq);
1676
1677 plug = current->plug;
1678 if (unlikely(is_flush_fua)) {
1679 blk_mq_put_ctx(data.ctx);
1680 blk_mq_bio_to_request(rq, bio);
1681
1682 /* bypass scheduler for flush rq */
1683 blk_insert_flush(rq);
1684 blk_mq_run_hw_queue(data.hctx, true);
1685 } else if (plug && q->nr_hw_queues == 1) {
1686 struct request *last = NULL;
1687
1688 blk_mq_put_ctx(data.ctx);
1689 blk_mq_bio_to_request(rq, bio);
1690
1691 /*
1692 * @request_count may become stale because of schedule
1693 * out, so check the list again.
1694 */
1695 if (list_empty(&plug->mq_list))
1696 request_count = 0;
1697 else if (blk_queue_nomerges(q))
1698 request_count = blk_plug_queued_count(q);
1699
1700 if (!request_count)
1701 trace_block_plug(q);
1702 else
1703 last = list_entry_rq(plug->mq_list.prev);
1704
1705 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1706 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1707 blk_flush_plug_list(plug, false);
1708 trace_block_plug(q);
1709 }
1710
1711 list_add_tail(&rq->queuelist, &plug->mq_list);
1712 } else if (plug && !blk_queue_nomerges(q)) {
1713 blk_mq_bio_to_request(rq, bio);
1714
1715 /*
1716 * We do limited plugging. If the bio can be merged, do that.
1717 * Otherwise the existing request in the plug list will be
1718 * issued. So the plug list will have one request at most
1719 * The plug list might get flushed before this. If that happens,
1720 * the plug list is empty, and same_queue_rq is invalid.
1721 */
1722 if (list_empty(&plug->mq_list))
1723 same_queue_rq = NULL;
1724 if (same_queue_rq)
1725 list_del_init(&same_queue_rq->queuelist);
1726 list_add_tail(&rq->queuelist, &plug->mq_list);
1727
1728 blk_mq_put_ctx(data.ctx);
1729
1730 if (same_queue_rq) {
1731 data.hctx = blk_mq_map_queue(q,
1732 same_queue_rq->mq_ctx->cpu);
1733 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1734 &cookie);
1735 }
1736 } else if (q->nr_hw_queues > 1 && is_sync) {
1737 blk_mq_put_ctx(data.ctx);
1738 blk_mq_bio_to_request(rq, bio);
1739 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1740 } else if (q->elevator) {
1741 blk_mq_put_ctx(data.ctx);
1742 blk_mq_bio_to_request(rq, bio);
1743 blk_mq_sched_insert_request(rq, false, true, true, true);
1744 } else {
1745 blk_mq_put_ctx(data.ctx);
1746 blk_mq_bio_to_request(rq, bio);
1747 blk_mq_queue_io(data.hctx, data.ctx, rq);
1748 blk_mq_run_hw_queue(data.hctx, true);
1749 }
1750
1751 return cookie;
1752 }
1753
1754 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1755 unsigned int hctx_idx)
1756 {
1757 struct page *page;
1758
1759 if (tags->rqs && set->ops->exit_request) {
1760 int i;
1761
1762 for (i = 0; i < tags->nr_tags; i++) {
1763 struct request *rq = tags->static_rqs[i];
1764
1765 if (!rq)
1766 continue;
1767 set->ops->exit_request(set, rq, hctx_idx);
1768 tags->static_rqs[i] = NULL;
1769 }
1770 }
1771
1772 while (!list_empty(&tags->page_list)) {
1773 page = list_first_entry(&tags->page_list, struct page, lru);
1774 list_del_init(&page->lru);
1775 /*
1776 * Remove kmemleak object previously allocated in
1777 * blk_mq_init_rq_map().
1778 */
1779 kmemleak_free(page_address(page));
1780 __free_pages(page, page->private);
1781 }
1782 }
1783
1784 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1785 {
1786 kfree(tags->rqs);
1787 tags->rqs = NULL;
1788 kfree(tags->static_rqs);
1789 tags->static_rqs = NULL;
1790
1791 blk_mq_free_tags(tags);
1792 }
1793
1794 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1795 unsigned int hctx_idx,
1796 unsigned int nr_tags,
1797 unsigned int reserved_tags)
1798 {
1799 struct blk_mq_tags *tags;
1800 int node;
1801
1802 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1803 if (node == NUMA_NO_NODE)
1804 node = set->numa_node;
1805
1806 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1807 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1808 if (!tags)
1809 return NULL;
1810
1811 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1812 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1813 node);
1814 if (!tags->rqs) {
1815 blk_mq_free_tags(tags);
1816 return NULL;
1817 }
1818
1819 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1820 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1821 node);
1822 if (!tags->static_rqs) {
1823 kfree(tags->rqs);
1824 blk_mq_free_tags(tags);
1825 return NULL;
1826 }
1827
1828 return tags;
1829 }
1830
1831 static size_t order_to_size(unsigned int order)
1832 {
1833 return (size_t)PAGE_SIZE << order;
1834 }
1835
1836 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1837 unsigned int hctx_idx, unsigned int depth)
1838 {
1839 unsigned int i, j, entries_per_page, max_order = 4;
1840 size_t rq_size, left;
1841 int node;
1842
1843 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1844 if (node == NUMA_NO_NODE)
1845 node = set->numa_node;
1846
1847 INIT_LIST_HEAD(&tags->page_list);
1848
1849 /*
1850 * rq_size is the size of the request plus driver payload, rounded
1851 * to the cacheline size
1852 */
1853 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1854 cache_line_size());
1855 left = rq_size * depth;
1856
1857 for (i = 0; i < depth; ) {
1858 int this_order = max_order;
1859 struct page *page;
1860 int to_do;
1861 void *p;
1862
1863 while (this_order && left < order_to_size(this_order - 1))
1864 this_order--;
1865
1866 do {
1867 page = alloc_pages_node(node,
1868 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1869 this_order);
1870 if (page)
1871 break;
1872 if (!this_order--)
1873 break;
1874 if (order_to_size(this_order) < rq_size)
1875 break;
1876 } while (1);
1877
1878 if (!page)
1879 goto fail;
1880
1881 page->private = this_order;
1882 list_add_tail(&page->lru, &tags->page_list);
1883
1884 p = page_address(page);
1885 /*
1886 * Allow kmemleak to scan these pages as they contain pointers
1887 * to additional allocations like via ops->init_request().
1888 */
1889 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1890 entries_per_page = order_to_size(this_order) / rq_size;
1891 to_do = min(entries_per_page, depth - i);
1892 left -= to_do * rq_size;
1893 for (j = 0; j < to_do; j++) {
1894 struct request *rq = p;
1895
1896 tags->static_rqs[i] = rq;
1897 if (set->ops->init_request) {
1898 if (set->ops->init_request(set, rq, hctx_idx,
1899 node)) {
1900 tags->static_rqs[i] = NULL;
1901 goto fail;
1902 }
1903 }
1904
1905 p += rq_size;
1906 i++;
1907 }
1908 }
1909 return 0;
1910
1911 fail:
1912 blk_mq_free_rqs(set, tags, hctx_idx);
1913 return -ENOMEM;
1914 }
1915
1916 /*
1917 * 'cpu' is going away. splice any existing rq_list entries from this
1918 * software queue to the hw queue dispatch list, and ensure that it
1919 * gets run.
1920 */
1921 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1922 {
1923 struct blk_mq_hw_ctx *hctx;
1924 struct blk_mq_ctx *ctx;
1925 LIST_HEAD(tmp);
1926
1927 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1928 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1929
1930 spin_lock(&ctx->lock);
1931 if (!list_empty(&ctx->rq_list)) {
1932 list_splice_init(&ctx->rq_list, &tmp);
1933 blk_mq_hctx_clear_pending(hctx, ctx);
1934 }
1935 spin_unlock(&ctx->lock);
1936
1937 if (list_empty(&tmp))
1938 return 0;
1939
1940 spin_lock(&hctx->lock);
1941 list_splice_tail_init(&tmp, &hctx->dispatch);
1942 spin_unlock(&hctx->lock);
1943
1944 blk_mq_run_hw_queue(hctx, true);
1945 return 0;
1946 }
1947
1948 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1949 {
1950 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1951 &hctx->cpuhp_dead);
1952 }
1953
1954 /* hctx->ctxs will be freed in queue's release handler */
1955 static void blk_mq_exit_hctx(struct request_queue *q,
1956 struct blk_mq_tag_set *set,
1957 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1958 {
1959 blk_mq_debugfs_unregister_hctx(hctx);
1960
1961 blk_mq_tag_idle(hctx);
1962
1963 if (set->ops->exit_request)
1964 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1965
1966 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1967
1968 if (set->ops->exit_hctx)
1969 set->ops->exit_hctx(hctx, hctx_idx);
1970
1971 if (hctx->flags & BLK_MQ_F_BLOCKING)
1972 cleanup_srcu_struct(hctx->queue_rq_srcu);
1973
1974 blk_mq_remove_cpuhp(hctx);
1975 blk_free_flush_queue(hctx->fq);
1976 sbitmap_free(&hctx->ctx_map);
1977 }
1978
1979 static void blk_mq_exit_hw_queues(struct request_queue *q,
1980 struct blk_mq_tag_set *set, int nr_queue)
1981 {
1982 struct blk_mq_hw_ctx *hctx;
1983 unsigned int i;
1984
1985 queue_for_each_hw_ctx(q, hctx, i) {
1986 if (i == nr_queue)
1987 break;
1988 blk_mq_exit_hctx(q, set, hctx, i);
1989 }
1990 }
1991
1992 static int blk_mq_init_hctx(struct request_queue *q,
1993 struct blk_mq_tag_set *set,
1994 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1995 {
1996 int node;
1997
1998 node = hctx->numa_node;
1999 if (node == NUMA_NO_NODE)
2000 node = hctx->numa_node = set->numa_node;
2001
2002 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2003 spin_lock_init(&hctx->lock);
2004 INIT_LIST_HEAD(&hctx->dispatch);
2005 hctx->queue = q;
2006 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2007
2008 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2009
2010 hctx->tags = set->tags[hctx_idx];
2011
2012 /*
2013 * Allocate space for all possible cpus to avoid allocation at
2014 * runtime
2015 */
2016 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2017 GFP_KERNEL, node);
2018 if (!hctx->ctxs)
2019 goto unregister_cpu_notifier;
2020
2021 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2022 node))
2023 goto free_ctxs;
2024
2025 hctx->nr_ctx = 0;
2026
2027 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2028 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2029
2030 if (set->ops->init_hctx &&
2031 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2032 goto free_bitmap;
2033
2034 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2035 goto exit_hctx;
2036
2037 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2038 if (!hctx->fq)
2039 goto sched_exit_hctx;
2040
2041 if (set->ops->init_request &&
2042 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2043 node))
2044 goto free_fq;
2045
2046 if (hctx->flags & BLK_MQ_F_BLOCKING)
2047 init_srcu_struct(hctx->queue_rq_srcu);
2048
2049 blk_mq_debugfs_register_hctx(q, hctx);
2050
2051 return 0;
2052
2053 free_fq:
2054 kfree(hctx->fq);
2055 sched_exit_hctx:
2056 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2057 exit_hctx:
2058 if (set->ops->exit_hctx)
2059 set->ops->exit_hctx(hctx, hctx_idx);
2060 free_bitmap:
2061 sbitmap_free(&hctx->ctx_map);
2062 free_ctxs:
2063 kfree(hctx->ctxs);
2064 unregister_cpu_notifier:
2065 blk_mq_remove_cpuhp(hctx);
2066 return -1;
2067 }
2068
2069 static void blk_mq_init_cpu_queues(struct request_queue *q,
2070 unsigned int nr_hw_queues)
2071 {
2072 unsigned int i;
2073
2074 for_each_possible_cpu(i) {
2075 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2076 struct blk_mq_hw_ctx *hctx;
2077
2078 __ctx->cpu = i;
2079 spin_lock_init(&__ctx->lock);
2080 INIT_LIST_HEAD(&__ctx->rq_list);
2081 __ctx->queue = q;
2082
2083 /* If the cpu isn't present, the cpu is mapped to first hctx */
2084 if (!cpu_present(i))
2085 continue;
2086
2087 hctx = blk_mq_map_queue(q, i);
2088
2089 /*
2090 * Set local node, IFF we have more than one hw queue. If
2091 * not, we remain on the home node of the device
2092 */
2093 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2094 hctx->numa_node = local_memory_node(cpu_to_node(i));
2095 }
2096 }
2097
2098 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2099 {
2100 int ret = 0;
2101
2102 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2103 set->queue_depth, set->reserved_tags);
2104 if (!set->tags[hctx_idx])
2105 return false;
2106
2107 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2108 set->queue_depth);
2109 if (!ret)
2110 return true;
2111
2112 blk_mq_free_rq_map(set->tags[hctx_idx]);
2113 set->tags[hctx_idx] = NULL;
2114 return false;
2115 }
2116
2117 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2118 unsigned int hctx_idx)
2119 {
2120 if (set->tags[hctx_idx]) {
2121 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2122 blk_mq_free_rq_map(set->tags[hctx_idx]);
2123 set->tags[hctx_idx] = NULL;
2124 }
2125 }
2126
2127 static void blk_mq_map_swqueue(struct request_queue *q)
2128 {
2129 unsigned int i, hctx_idx;
2130 struct blk_mq_hw_ctx *hctx;
2131 struct blk_mq_ctx *ctx;
2132 struct blk_mq_tag_set *set = q->tag_set;
2133
2134 /*
2135 * Avoid others reading imcomplete hctx->cpumask through sysfs
2136 */
2137 mutex_lock(&q->sysfs_lock);
2138
2139 queue_for_each_hw_ctx(q, hctx, i) {
2140 cpumask_clear(hctx->cpumask);
2141 hctx->nr_ctx = 0;
2142 }
2143
2144 /*
2145 * Map software to hardware queues.
2146 *
2147 * If the cpu isn't present, the cpu is mapped to first hctx.
2148 */
2149 for_each_present_cpu(i) {
2150 hctx_idx = q->mq_map[i];
2151 /* unmapped hw queue can be remapped after CPU topo changed */
2152 if (!set->tags[hctx_idx] &&
2153 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2154 /*
2155 * If tags initialization fail for some hctx,
2156 * that hctx won't be brought online. In this
2157 * case, remap the current ctx to hctx[0] which
2158 * is guaranteed to always have tags allocated
2159 */
2160 q->mq_map[i] = 0;
2161 }
2162
2163 ctx = per_cpu_ptr(q->queue_ctx, i);
2164 hctx = blk_mq_map_queue(q, i);
2165
2166 cpumask_set_cpu(i, hctx->cpumask);
2167 ctx->index_hw = hctx->nr_ctx;
2168 hctx->ctxs[hctx->nr_ctx++] = ctx;
2169 }
2170
2171 mutex_unlock(&q->sysfs_lock);
2172
2173 queue_for_each_hw_ctx(q, hctx, i) {
2174 /*
2175 * If no software queues are mapped to this hardware queue,
2176 * disable it and free the request entries.
2177 */
2178 if (!hctx->nr_ctx) {
2179 /* Never unmap queue 0. We need it as a
2180 * fallback in case of a new remap fails
2181 * allocation
2182 */
2183 if (i && set->tags[i])
2184 blk_mq_free_map_and_requests(set, i);
2185
2186 hctx->tags = NULL;
2187 continue;
2188 }
2189
2190 hctx->tags = set->tags[i];
2191 WARN_ON(!hctx->tags);
2192
2193 /*
2194 * Set the map size to the number of mapped software queues.
2195 * This is more accurate and more efficient than looping
2196 * over all possibly mapped software queues.
2197 */
2198 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2199
2200 /*
2201 * Initialize batch roundrobin counts
2202 */
2203 hctx->next_cpu = cpumask_first(hctx->cpumask);
2204 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2205 }
2206 }
2207
2208 /*
2209 * Caller needs to ensure that we're either frozen/quiesced, or that
2210 * the queue isn't live yet.
2211 */
2212 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2213 {
2214 struct blk_mq_hw_ctx *hctx;
2215 int i;
2216
2217 queue_for_each_hw_ctx(q, hctx, i) {
2218 if (shared) {
2219 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2220 atomic_inc(&q->shared_hctx_restart);
2221 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2222 } else {
2223 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2224 atomic_dec(&q->shared_hctx_restart);
2225 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2226 }
2227 }
2228 }
2229
2230 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2231 bool shared)
2232 {
2233 struct request_queue *q;
2234
2235 lockdep_assert_held(&set->tag_list_lock);
2236
2237 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2238 blk_mq_freeze_queue(q);
2239 queue_set_hctx_shared(q, shared);
2240 blk_mq_unfreeze_queue(q);
2241 }
2242 }
2243
2244 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2245 {
2246 struct blk_mq_tag_set *set = q->tag_set;
2247
2248 mutex_lock(&set->tag_list_lock);
2249 list_del_rcu(&q->tag_set_list);
2250 INIT_LIST_HEAD(&q->tag_set_list);
2251 if (list_is_singular(&set->tag_list)) {
2252 /* just transitioned to unshared */
2253 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2254 /* update existing queue */
2255 blk_mq_update_tag_set_depth(set, false);
2256 }
2257 mutex_unlock(&set->tag_list_lock);
2258
2259 synchronize_rcu();
2260 }
2261
2262 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2263 struct request_queue *q)
2264 {
2265 q->tag_set = set;
2266
2267 mutex_lock(&set->tag_list_lock);
2268
2269 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2270 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2271 set->flags |= BLK_MQ_F_TAG_SHARED;
2272 /* update existing queue */
2273 blk_mq_update_tag_set_depth(set, true);
2274 }
2275 if (set->flags & BLK_MQ_F_TAG_SHARED)
2276 queue_set_hctx_shared(q, true);
2277 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2278
2279 mutex_unlock(&set->tag_list_lock);
2280 }
2281
2282 /*
2283 * It is the actual release handler for mq, but we do it from
2284 * request queue's release handler for avoiding use-after-free
2285 * and headache because q->mq_kobj shouldn't have been introduced,
2286 * but we can't group ctx/kctx kobj without it.
2287 */
2288 void blk_mq_release(struct request_queue *q)
2289 {
2290 struct blk_mq_hw_ctx *hctx;
2291 unsigned int i;
2292
2293 /* hctx kobj stays in hctx */
2294 queue_for_each_hw_ctx(q, hctx, i) {
2295 if (!hctx)
2296 continue;
2297 kobject_put(&hctx->kobj);
2298 }
2299
2300 q->mq_map = NULL;
2301
2302 kfree(q->queue_hw_ctx);
2303
2304 /*
2305 * release .mq_kobj and sw queue's kobject now because
2306 * both share lifetime with request queue.
2307 */
2308 blk_mq_sysfs_deinit(q);
2309
2310 free_percpu(q->queue_ctx);
2311 }
2312
2313 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2314 {
2315 struct request_queue *uninit_q, *q;
2316
2317 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2318 if (!uninit_q)
2319 return ERR_PTR(-ENOMEM);
2320
2321 q = blk_mq_init_allocated_queue(set, uninit_q);
2322 if (IS_ERR(q))
2323 blk_cleanup_queue(uninit_q);
2324
2325 return q;
2326 }
2327 EXPORT_SYMBOL(blk_mq_init_queue);
2328
2329 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2330 {
2331 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2332
2333 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2334 __alignof__(struct blk_mq_hw_ctx)) !=
2335 sizeof(struct blk_mq_hw_ctx));
2336
2337 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2338 hw_ctx_size += sizeof(struct srcu_struct);
2339
2340 return hw_ctx_size;
2341 }
2342
2343 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2344 struct request_queue *q)
2345 {
2346 int i, j;
2347 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2348
2349 blk_mq_sysfs_unregister(q);
2350 for (i = 0; i < set->nr_hw_queues; i++) {
2351 int node;
2352
2353 if (hctxs[i])
2354 continue;
2355
2356 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2357 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2358 GFP_KERNEL, node);
2359 if (!hctxs[i])
2360 break;
2361
2362 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2363 node)) {
2364 kfree(hctxs[i]);
2365 hctxs[i] = NULL;
2366 break;
2367 }
2368
2369 atomic_set(&hctxs[i]->nr_active, 0);
2370 hctxs[i]->numa_node = node;
2371 hctxs[i]->queue_num = i;
2372
2373 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2374 free_cpumask_var(hctxs[i]->cpumask);
2375 kfree(hctxs[i]);
2376 hctxs[i] = NULL;
2377 break;
2378 }
2379 blk_mq_hctx_kobj_init(hctxs[i]);
2380 }
2381 for (j = i; j < q->nr_hw_queues; j++) {
2382 struct blk_mq_hw_ctx *hctx = hctxs[j];
2383
2384 if (hctx) {
2385 if (hctx->tags)
2386 blk_mq_free_map_and_requests(set, j);
2387 blk_mq_exit_hctx(q, set, hctx, j);
2388 kobject_put(&hctx->kobj);
2389 hctxs[j] = NULL;
2390
2391 }
2392 }
2393 q->nr_hw_queues = i;
2394 blk_mq_sysfs_register(q);
2395 }
2396
2397 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2398 struct request_queue *q)
2399 {
2400 /* mark the queue as mq asap */
2401 q->mq_ops = set->ops;
2402
2403 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2404 blk_mq_poll_stats_bkt,
2405 BLK_MQ_POLL_STATS_BKTS, q);
2406 if (!q->poll_cb)
2407 goto err_exit;
2408
2409 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2410 if (!q->queue_ctx)
2411 goto err_exit;
2412
2413 /* init q->mq_kobj and sw queues' kobjects */
2414 blk_mq_sysfs_init(q);
2415
2416 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2417 GFP_KERNEL, set->numa_node);
2418 if (!q->queue_hw_ctx)
2419 goto err_percpu;
2420
2421 q->mq_map = set->mq_map;
2422
2423 blk_mq_realloc_hw_ctxs(set, q);
2424 if (!q->nr_hw_queues)
2425 goto err_hctxs;
2426
2427 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2428 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2429
2430 q->nr_queues = nr_cpu_ids;
2431
2432 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2433
2434 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2435 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2436
2437 q->sg_reserved_size = INT_MAX;
2438
2439 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2440 INIT_LIST_HEAD(&q->requeue_list);
2441 spin_lock_init(&q->requeue_lock);
2442
2443 blk_queue_make_request(q, blk_mq_make_request);
2444 if (q->mq_ops->poll)
2445 q->poll_fn = blk_mq_poll;
2446
2447 /*
2448 * Do this after blk_queue_make_request() overrides it...
2449 */
2450 q->nr_requests = set->queue_depth;
2451
2452 /*
2453 * Default to classic polling
2454 */
2455 q->poll_nsec = -1;
2456
2457 if (set->ops->complete)
2458 blk_queue_softirq_done(q, set->ops->complete);
2459
2460 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2461 blk_mq_add_queue_tag_set(set, q);
2462 blk_mq_map_swqueue(q);
2463
2464 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2465 int ret;
2466
2467 ret = blk_mq_sched_init(q);
2468 if (ret)
2469 return ERR_PTR(ret);
2470 }
2471
2472 return q;
2473
2474 err_hctxs:
2475 kfree(q->queue_hw_ctx);
2476 err_percpu:
2477 free_percpu(q->queue_ctx);
2478 err_exit:
2479 q->mq_ops = NULL;
2480 return ERR_PTR(-ENOMEM);
2481 }
2482 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2483
2484 void blk_mq_free_queue(struct request_queue *q)
2485 {
2486 struct blk_mq_tag_set *set = q->tag_set;
2487
2488 blk_mq_del_queue_tag_set(q);
2489 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2490 }
2491
2492 /* Basically redo blk_mq_init_queue with queue frozen */
2493 static void blk_mq_queue_reinit(struct request_queue *q)
2494 {
2495 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2496
2497 blk_mq_debugfs_unregister_hctxs(q);
2498 blk_mq_sysfs_unregister(q);
2499
2500 /*
2501 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2502 * we should change hctx numa_node according to new topology (this
2503 * involves free and re-allocate memory, worthy doing?)
2504 */
2505
2506 blk_mq_map_swqueue(q);
2507
2508 blk_mq_sysfs_register(q);
2509 blk_mq_debugfs_register_hctxs(q);
2510 }
2511
2512 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2513 {
2514 int i;
2515
2516 for (i = 0; i < set->nr_hw_queues; i++)
2517 if (!__blk_mq_alloc_rq_map(set, i))
2518 goto out_unwind;
2519
2520 return 0;
2521
2522 out_unwind:
2523 while (--i >= 0)
2524 blk_mq_free_rq_map(set->tags[i]);
2525
2526 return -ENOMEM;
2527 }
2528
2529 /*
2530 * Allocate the request maps associated with this tag_set. Note that this
2531 * may reduce the depth asked for, if memory is tight. set->queue_depth
2532 * will be updated to reflect the allocated depth.
2533 */
2534 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2535 {
2536 unsigned int depth;
2537 int err;
2538
2539 depth = set->queue_depth;
2540 do {
2541 err = __blk_mq_alloc_rq_maps(set);
2542 if (!err)
2543 break;
2544
2545 set->queue_depth >>= 1;
2546 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2547 err = -ENOMEM;
2548 break;
2549 }
2550 } while (set->queue_depth);
2551
2552 if (!set->queue_depth || err) {
2553 pr_err("blk-mq: failed to allocate request map\n");
2554 return -ENOMEM;
2555 }
2556
2557 if (depth != set->queue_depth)
2558 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2559 depth, set->queue_depth);
2560
2561 return 0;
2562 }
2563
2564 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2565 {
2566 if (set->ops->map_queues)
2567 return set->ops->map_queues(set);
2568 else
2569 return blk_mq_map_queues(set);
2570 }
2571
2572 /*
2573 * Alloc a tag set to be associated with one or more request queues.
2574 * May fail with EINVAL for various error conditions. May adjust the
2575 * requested depth down, if if it too large. In that case, the set
2576 * value will be stored in set->queue_depth.
2577 */
2578 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2579 {
2580 int ret;
2581
2582 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2583
2584 if (!set->nr_hw_queues)
2585 return -EINVAL;
2586 if (!set->queue_depth)
2587 return -EINVAL;
2588 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2589 return -EINVAL;
2590
2591 if (!set->ops->queue_rq)
2592 return -EINVAL;
2593
2594 if (!set->ops->get_budget ^ !set->ops->put_budget)
2595 return -EINVAL;
2596
2597 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2598 pr_info("blk-mq: reduced tag depth to %u\n",
2599 BLK_MQ_MAX_DEPTH);
2600 set->queue_depth = BLK_MQ_MAX_DEPTH;
2601 }
2602
2603 /*
2604 * If a crashdump is active, then we are potentially in a very
2605 * memory constrained environment. Limit us to 1 queue and
2606 * 64 tags to prevent using too much memory.
2607 */
2608 if (is_kdump_kernel()) {
2609 set->nr_hw_queues = 1;
2610 set->queue_depth = min(64U, set->queue_depth);
2611 }
2612 /*
2613 * There is no use for more h/w queues than cpus.
2614 */
2615 if (set->nr_hw_queues > nr_cpu_ids)
2616 set->nr_hw_queues = nr_cpu_ids;
2617
2618 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2619 GFP_KERNEL, set->numa_node);
2620 if (!set->tags)
2621 return -ENOMEM;
2622
2623 ret = -ENOMEM;
2624 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2625 GFP_KERNEL, set->numa_node);
2626 if (!set->mq_map)
2627 goto out_free_tags;
2628
2629 ret = blk_mq_update_queue_map(set);
2630 if (ret)
2631 goto out_free_mq_map;
2632
2633 ret = blk_mq_alloc_rq_maps(set);
2634 if (ret)
2635 goto out_free_mq_map;
2636
2637 mutex_init(&set->tag_list_lock);
2638 INIT_LIST_HEAD(&set->tag_list);
2639
2640 return 0;
2641
2642 out_free_mq_map:
2643 kfree(set->mq_map);
2644 set->mq_map = NULL;
2645 out_free_tags:
2646 kfree(set->tags);
2647 set->tags = NULL;
2648 return ret;
2649 }
2650 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2651
2652 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2653 {
2654 int i;
2655
2656 for (i = 0; i < nr_cpu_ids; i++)
2657 blk_mq_free_map_and_requests(set, i);
2658
2659 kfree(set->mq_map);
2660 set->mq_map = NULL;
2661
2662 kfree(set->tags);
2663 set->tags = NULL;
2664 }
2665 EXPORT_SYMBOL(blk_mq_free_tag_set);
2666
2667 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2668 {
2669 struct blk_mq_tag_set *set = q->tag_set;
2670 struct blk_mq_hw_ctx *hctx;
2671 int i, ret;
2672
2673 if (!set)
2674 return -EINVAL;
2675
2676 blk_mq_freeze_queue(q);
2677
2678 ret = 0;
2679 queue_for_each_hw_ctx(q, hctx, i) {
2680 if (!hctx->tags)
2681 continue;
2682 /*
2683 * If we're using an MQ scheduler, just update the scheduler
2684 * queue depth. This is similar to what the old code would do.
2685 */
2686 if (!hctx->sched_tags) {
2687 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2688 false);
2689 } else {
2690 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2691 nr, true);
2692 }
2693 if (ret)
2694 break;
2695 }
2696
2697 if (!ret)
2698 q->nr_requests = nr;
2699
2700 blk_mq_unfreeze_queue(q);
2701
2702 return ret;
2703 }
2704
2705 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2706 int nr_hw_queues)
2707 {
2708 struct request_queue *q;
2709
2710 lockdep_assert_held(&set->tag_list_lock);
2711
2712 if (nr_hw_queues > nr_cpu_ids)
2713 nr_hw_queues = nr_cpu_ids;
2714 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2715 return;
2716
2717 list_for_each_entry(q, &set->tag_list, tag_set_list)
2718 blk_mq_freeze_queue(q);
2719
2720 set->nr_hw_queues = nr_hw_queues;
2721 blk_mq_update_queue_map(set);
2722 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2723 blk_mq_realloc_hw_ctxs(set, q);
2724 blk_mq_queue_reinit(q);
2725 }
2726
2727 list_for_each_entry(q, &set->tag_list, tag_set_list)
2728 blk_mq_unfreeze_queue(q);
2729 }
2730
2731 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2732 {
2733 mutex_lock(&set->tag_list_lock);
2734 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2735 mutex_unlock(&set->tag_list_lock);
2736 }
2737 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2738
2739 /* Enable polling stats and return whether they were already enabled. */
2740 static bool blk_poll_stats_enable(struct request_queue *q)
2741 {
2742 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2743 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2744 return true;
2745 blk_stat_add_callback(q, q->poll_cb);
2746 return false;
2747 }
2748
2749 static void blk_mq_poll_stats_start(struct request_queue *q)
2750 {
2751 /*
2752 * We don't arm the callback if polling stats are not enabled or the
2753 * callback is already active.
2754 */
2755 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2756 blk_stat_is_active(q->poll_cb))
2757 return;
2758
2759 blk_stat_activate_msecs(q->poll_cb, 100);
2760 }
2761
2762 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2763 {
2764 struct request_queue *q = cb->data;
2765 int bucket;
2766
2767 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2768 if (cb->stat[bucket].nr_samples)
2769 q->poll_stat[bucket] = cb->stat[bucket];
2770 }
2771 }
2772
2773 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2774 struct blk_mq_hw_ctx *hctx,
2775 struct request *rq)
2776 {
2777 unsigned long ret = 0;
2778 int bucket;
2779
2780 /*
2781 * If stats collection isn't on, don't sleep but turn it on for
2782 * future users
2783 */
2784 if (!blk_poll_stats_enable(q))
2785 return 0;
2786
2787 /*
2788 * As an optimistic guess, use half of the mean service time
2789 * for this type of request. We can (and should) make this smarter.
2790 * For instance, if the completion latencies are tight, we can
2791 * get closer than just half the mean. This is especially
2792 * important on devices where the completion latencies are longer
2793 * than ~10 usec. We do use the stats for the relevant IO size
2794 * if available which does lead to better estimates.
2795 */
2796 bucket = blk_mq_poll_stats_bkt(rq);
2797 if (bucket < 0)
2798 return ret;
2799
2800 if (q->poll_stat[bucket].nr_samples)
2801 ret = (q->poll_stat[bucket].mean + 1) / 2;
2802
2803 return ret;
2804 }
2805
2806 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2807 struct blk_mq_hw_ctx *hctx,
2808 struct request *rq)
2809 {
2810 struct hrtimer_sleeper hs;
2811 enum hrtimer_mode mode;
2812 unsigned int nsecs;
2813 ktime_t kt;
2814
2815 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2816 return false;
2817
2818 /*
2819 * poll_nsec can be:
2820 *
2821 * -1: don't ever hybrid sleep
2822 * 0: use half of prev avg
2823 * >0: use this specific value
2824 */
2825 if (q->poll_nsec == -1)
2826 return false;
2827 else if (q->poll_nsec > 0)
2828 nsecs = q->poll_nsec;
2829 else
2830 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2831
2832 if (!nsecs)
2833 return false;
2834
2835 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2836
2837 /*
2838 * This will be replaced with the stats tracking code, using
2839 * 'avg_completion_time / 2' as the pre-sleep target.
2840 */
2841 kt = nsecs;
2842
2843 mode = HRTIMER_MODE_REL;
2844 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2845 hrtimer_set_expires(&hs.timer, kt);
2846
2847 hrtimer_init_sleeper(&hs, current);
2848 do {
2849 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2850 break;
2851 set_current_state(TASK_UNINTERRUPTIBLE);
2852 hrtimer_start_expires(&hs.timer, mode);
2853 if (hs.task)
2854 io_schedule();
2855 hrtimer_cancel(&hs.timer);
2856 mode = HRTIMER_MODE_ABS;
2857 } while (hs.task && !signal_pending(current));
2858
2859 __set_current_state(TASK_RUNNING);
2860 destroy_hrtimer_on_stack(&hs.timer);
2861 return true;
2862 }
2863
2864 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2865 {
2866 struct request_queue *q = hctx->queue;
2867 long state;
2868
2869 /*
2870 * If we sleep, have the caller restart the poll loop to reset
2871 * the state. Like for the other success return cases, the
2872 * caller is responsible for checking if the IO completed. If
2873 * the IO isn't complete, we'll get called again and will go
2874 * straight to the busy poll loop.
2875 */
2876 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2877 return true;
2878
2879 hctx->poll_considered++;
2880
2881 state = current->state;
2882 while (!need_resched()) {
2883 int ret;
2884
2885 hctx->poll_invoked++;
2886
2887 ret = q->mq_ops->poll(hctx, rq->tag);
2888 if (ret > 0) {
2889 hctx->poll_success++;
2890 set_current_state(TASK_RUNNING);
2891 return true;
2892 }
2893
2894 if (signal_pending_state(state, current))
2895 set_current_state(TASK_RUNNING);
2896
2897 if (current->state == TASK_RUNNING)
2898 return true;
2899 if (ret < 0)
2900 break;
2901 cpu_relax();
2902 }
2903
2904 return false;
2905 }
2906
2907 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2908 {
2909 struct blk_mq_hw_ctx *hctx;
2910 struct request *rq;
2911
2912 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2913 return false;
2914
2915 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2916 if (!blk_qc_t_is_internal(cookie))
2917 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2918 else {
2919 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2920 /*
2921 * With scheduling, if the request has completed, we'll
2922 * get a NULL return here, as we clear the sched tag when
2923 * that happens. The request still remains valid, like always,
2924 * so we should be safe with just the NULL check.
2925 */
2926 if (!rq)
2927 return false;
2928 }
2929
2930 return __blk_mq_poll(hctx, rq);
2931 }
2932
2933 static int __init blk_mq_init(void)
2934 {
2935 /*
2936 * See comment in block/blk.h rq_atomic_flags enum
2937 */
2938 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2939 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2940
2941 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2942 blk_mq_hctx_notify_dead);
2943 return 0;
2944 }
2945 subsys_initcall(blk_mq_init);