]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - block/blk-mq.c
Merge tag 'nfsd-5.14' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-kernels.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct block_device *part;
99 unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 struct block_device *part)
117 {
118 struct mq_inflight mi = { .part = part };
119
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122 return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 unsigned int inflight[2])
127 {
128 struct mq_inflight mi = { .part = part };
129
130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 inflight[0] = mi.inflight[0];
132 inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 mutex_lock(&q->mq_freeze_lock);
138 if (++q->mq_freeze_depth == 1) {
139 percpu_ref_kill(&q->q_usage_counter);
140 mutex_unlock(&q->mq_freeze_lock);
141 if (queue_is_mq(q))
142 blk_mq_run_hw_queues(q, false);
143 } else {
144 mutex_unlock(&q->mq_freeze_lock);
145 }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 unsigned long timeout)
157 {
158 return wait_event_timeout(q->mq_freeze_wq,
159 percpu_ref_is_zero(&q->q_usage_counter),
160 timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
167 */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 /*
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
176 */
177 blk_freeze_queue_start(q);
178 blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 /*
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
186 */
187 blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 mutex_lock(&q->mq_freeze_lock);
194 q->mq_freeze_depth--;
195 WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 if (!q->mq_freeze_depth) {
197 percpu_ref_resurrect(&q->q_usage_counter);
198 wake_up_all(&q->mq_freeze_wq);
199 }
200 mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206 * mpt3sas driver such that this function can be removed.
207 */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216 * @q: request queue.
217 *
218 * Note: this function does not prevent that the struct request end_io()
219 * callback function is invoked. Once this function is returned, we make
220 * sure no dispatch can happen until the queue is unquiesced via
221 * blk_mq_unquiesce_queue().
222 */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 struct blk_mq_hw_ctx *hctx;
226 unsigned int i;
227 bool rcu = false;
228
229 blk_mq_quiesce_queue_nowait(q);
230
231 queue_for_each_hw_ctx(q, hctx, i) {
232 if (hctx->flags & BLK_MQ_F_BLOCKING)
233 synchronize_srcu(hctx->srcu);
234 else
235 rcu = true;
236 }
237 if (rcu)
238 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244 * @q: request queue.
245 *
246 * This function recovers queue into the state before quiescing
247 * which is done by blk_mq_quiesce_queue.
248 */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253 /* dispatch requests which are inserted during quiescing */
254 blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 struct blk_mq_hw_ctx *hctx;
261 unsigned int i;
262
263 queue_for_each_hw_ctx(q, hctx, i)
264 if (blk_mq_hw_queue_mapped(hctx))
265 blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269 * Only need start/end time stamping if we have iostat or
270 * blk stats enabled, or using an IO scheduler.
271 */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, u64 alloc_time_ns)
279 {
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282
283 if (data->q->elevator) {
284 rq->tag = BLK_MQ_NO_TAG;
285 rq->internal_tag = tag;
286 } else {
287 rq->tag = tag;
288 rq->internal_tag = BLK_MQ_NO_TAG;
289 }
290
291 /* csd/requeue_work/fifo_time is initialized before use */
292 rq->q = data->q;
293 rq->mq_ctx = data->ctx;
294 rq->mq_hctx = data->hctx;
295 rq->rq_flags = 0;
296 rq->cmd_flags = data->cmd_flags;
297 if (data->flags & BLK_MQ_REQ_PM)
298 rq->rq_flags |= RQF_PM;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 INIT_LIST_HEAD(&rq->queuelist);
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 if (blk_mq_need_time_stamp(rq))
310 rq->start_time_ns = ktime_get_ns();
311 else
312 rq->start_time_ns = 0;
313 rq->io_start_time_ns = 0;
314 rq->stats_sectors = 0;
315 rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318 #endif
319 blk_crypto_rq_set_defaults(rq);
320 /* tag was already set */
321 WRITE_ONCE(rq->deadline, 0);
322
323 rq->timeout = 0;
324
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 refcount_set(&rq->ref, 1);
330
331 if (!op_is_flush(data->cmd_flags)) {
332 struct elevator_queue *e = data->q->elevator;
333
334 rq->elv.icq = NULL;
335 if (e && e->type->ops.prepare_request) {
336 if (e->type->icq_cache)
337 blk_mq_sched_assign_ioc(rq);
338
339 e->type->ops.prepare_request(rq);
340 rq->rq_flags |= RQF_ELVPRIV;
341 }
342 }
343
344 data->hctx->queued++;
345 return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 struct request_queue *q = data->q;
351 struct elevator_queue *e = q->elevator;
352 u64 alloc_time_ns = 0;
353 unsigned int tag;
354
355 /* alloc_time includes depth and tag waits */
356 if (blk_queue_rq_alloc_time(q))
357 alloc_time_ns = ktime_get_ns();
358
359 if (data->cmd_flags & REQ_NOWAIT)
360 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362 if (e) {
363 /*
364 * Flush/passthrough requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
367 */
368 if (!op_is_flush(data->cmd_flags) &&
369 !blk_op_is_passthrough(data->cmd_flags) &&
370 e->type->ops.limit_depth &&
371 !(data->flags & BLK_MQ_REQ_RESERVED))
372 e->type->ops.limit_depth(data->cmd_flags, data);
373 }
374
375 retry:
376 data->ctx = blk_mq_get_ctx(q);
377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378 if (!e)
379 blk_mq_tag_busy(data->hctx);
380
381 /*
382 * Waiting allocations only fail because of an inactive hctx. In that
383 * case just retry the hctx assignment and tag allocation as CPU hotplug
384 * should have migrated us to an online CPU by now.
385 */
386 tag = blk_mq_get_tag(data);
387 if (tag == BLK_MQ_NO_TAG) {
388 if (data->flags & BLK_MQ_REQ_NOWAIT)
389 return NULL;
390
391 /*
392 * Give up the CPU and sleep for a random short time to ensure
393 * that thread using a realtime scheduling class are migrated
394 * off the CPU, and thus off the hctx that is going away.
395 */
396 msleep(3);
397 goto retry;
398 }
399 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403 blk_mq_req_flags_t flags)
404 {
405 struct blk_mq_alloc_data data = {
406 .q = q,
407 .flags = flags,
408 .cmd_flags = op,
409 };
410 struct request *rq;
411 int ret;
412
413 ret = blk_queue_enter(q, flags);
414 if (ret)
415 return ERR_PTR(ret);
416
417 rq = __blk_mq_alloc_request(&data);
418 if (!rq)
419 goto out_queue_exit;
420 rq->__data_len = 0;
421 rq->__sector = (sector_t) -1;
422 rq->bio = rq->biotail = NULL;
423 return rq;
424 out_queue_exit:
425 blk_queue_exit(q);
426 return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433 struct blk_mq_alloc_data data = {
434 .q = q,
435 .flags = flags,
436 .cmd_flags = op,
437 };
438 u64 alloc_time_ns = 0;
439 unsigned int cpu;
440 unsigned int tag;
441 int ret;
442
443 /* alloc_time includes depth and tag waits */
444 if (blk_queue_rq_alloc_time(q))
445 alloc_time_ns = ktime_get_ns();
446
447 /*
448 * If the tag allocator sleeps we could get an allocation for a
449 * different hardware context. No need to complicate the low level
450 * allocator for this for the rare use case of a command tied to
451 * a specific queue.
452 */
453 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454 return ERR_PTR(-EINVAL);
455
456 if (hctx_idx >= q->nr_hw_queues)
457 return ERR_PTR(-EIO);
458
459 ret = blk_queue_enter(q, flags);
460 if (ret)
461 return ERR_PTR(ret);
462
463 /*
464 * Check if the hardware context is actually mapped to anything.
465 * If not tell the caller that it should skip this queue.
466 */
467 ret = -EXDEV;
468 data.hctx = q->queue_hw_ctx[hctx_idx];
469 if (!blk_mq_hw_queue_mapped(data.hctx))
470 goto out_queue_exit;
471 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472 data.ctx = __blk_mq_get_ctx(q, cpu);
473
474 if (!q->elevator)
475 blk_mq_tag_busy(data.hctx);
476
477 ret = -EWOULDBLOCK;
478 tag = blk_mq_get_tag(&data);
479 if (tag == BLK_MQ_NO_TAG)
480 goto out_queue_exit;
481 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484 blk_queue_exit(q);
485 return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491 struct request_queue *q = rq->q;
492 struct blk_mq_ctx *ctx = rq->mq_ctx;
493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 const int sched_tag = rq->internal_tag;
495
496 blk_crypto_free_request(rq);
497 blk_pm_mark_last_busy(rq);
498 rq->mq_hctx = NULL;
499 if (rq->tag != BLK_MQ_NO_TAG)
500 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501 if (sched_tag != BLK_MQ_NO_TAG)
502 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503 blk_mq_sched_restart(hctx);
504 blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509 struct request_queue *q = rq->q;
510 struct elevator_queue *e = q->elevator;
511 struct blk_mq_ctx *ctx = rq->mq_ctx;
512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514 if (rq->rq_flags & RQF_ELVPRIV) {
515 if (e && e->type->ops.finish_request)
516 e->type->ops.finish_request(rq);
517 if (rq->elv.icq) {
518 put_io_context(rq->elv.icq->ioc);
519 rq->elv.icq = NULL;
520 }
521 }
522
523 ctx->rq_completed[rq_is_sync(rq)]++;
524 if (rq->rq_flags & RQF_MQ_INFLIGHT)
525 __blk_mq_dec_active_requests(hctx);
526
527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 laptop_io_completion(q->backing_dev_info);
529
530 rq_qos_done(q, rq);
531
532 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 if (refcount_dec_and_test(&rq->ref))
534 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540 u64 now = 0;
541
542 if (blk_mq_need_time_stamp(rq))
543 now = ktime_get_ns();
544
545 if (rq->rq_flags & RQF_STATS) {
546 blk_mq_poll_stats_start(rq->q);
547 blk_stat_add(rq, now);
548 }
549
550 blk_mq_sched_completed_request(rq, now);
551
552 blk_account_io_done(rq, now);
553
554 if (rq->end_io) {
555 rq_qos_done(rq->q, rq);
556 rq->end_io(rq, error);
557 } else {
558 blk_mq_free_request(rq);
559 }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566 BUG();
567 __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574 struct request *rq, *next;
575
576 llist_for_each_entry_safe(rq, next, entry, ipi_list)
577 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588 return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598 int cpu = raw_smp_processor_id();
599
600 if (!IS_ENABLED(CONFIG_SMP) ||
601 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602 return false;
603 /*
604 * With force threaded interrupts enabled, raising softirq from an SMP
605 * function call will always result in waking the ksoftirqd thread.
606 * This is probably worse than completing the request on a different
607 * cache domain.
608 */
609 if (force_irqthreads)
610 return false;
611
612 /* same CPU or cache domain? Complete locally */
613 if (cpu == rq->mq_ctx->cpu ||
614 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616 return false;
617
618 /* don't try to IPI to an offline CPU */
619 return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624 struct llist_head *list;
625 unsigned int cpu;
626
627 cpu = rq->mq_ctx->cpu;
628 list = &per_cpu(blk_cpu_done, cpu);
629 if (llist_add(&rq->ipi_list, list)) {
630 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631 smp_call_function_single_async(cpu, &rq->csd);
632 }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637 struct llist_head *list;
638
639 preempt_disable();
640 list = this_cpu_ptr(&blk_cpu_done);
641 if (llist_add(&rq->ipi_list, list))
642 raise_softirq(BLOCK_SOFTIRQ);
643 preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650 /*
651 * For a polled request, always complete locallly, it's pointless
652 * to redirect the completion.
653 */
654 if (rq->cmd_flags & REQ_HIPRI)
655 return false;
656
657 if (blk_mq_complete_need_ipi(rq)) {
658 blk_mq_complete_send_ipi(rq);
659 return true;
660 }
661
662 if (rq->q->nr_hw_queues == 1) {
663 blk_mq_raise_softirq(rq);
664 return true;
665 }
666 return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671 * blk_mq_complete_request - end I/O on a request
672 * @rq: the request being processed
673 *
674 * Description:
675 * Complete a request by scheduling the ->complete_rq operation.
676 **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679 if (!blk_mq_complete_request_remote(rq))
680 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685 __releases(hctx->srcu)
686 {
687 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688 rcu_read_unlock();
689 else
690 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694 __acquires(hctx->srcu)
695 {
696 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697 /* shut up gcc false positive */
698 *srcu_idx = 0;
699 rcu_read_lock();
700 } else
701 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705 * blk_mq_start_request - Start processing a request
706 * @rq: Pointer to request to be started
707 *
708 * Function used by device drivers to notify the block layer that a request
709 * is going to be processed now, so blk layer can do proper initializations
710 * such as starting the timeout timer.
711 */
712 void blk_mq_start_request(struct request *rq)
713 {
714 struct request_queue *q = rq->q;
715
716 trace_block_rq_issue(rq);
717
718 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719 rq->io_start_time_ns = ktime_get_ns();
720 rq->stats_sectors = blk_rq_sectors(rq);
721 rq->rq_flags |= RQF_STATS;
722 rq_qos_issue(q, rq);
723 }
724
725 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727 blk_add_timer(rq);
728 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739 struct request_queue *q = rq->q;
740
741 blk_mq_put_driver_tag(rq);
742
743 trace_block_rq_requeue(rq);
744 rq_qos_requeue(q, rq);
745
746 if (blk_mq_request_started(rq)) {
747 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748 rq->rq_flags &= ~RQF_TIMED_OUT;
749 }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754 __blk_mq_requeue_request(rq);
755
756 /* this request will be re-inserted to io scheduler queue */
757 blk_mq_sched_requeue_request(rq);
758
759 BUG_ON(!list_empty(&rq->queuelist));
760 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766 struct request_queue *q =
767 container_of(work, struct request_queue, requeue_work.work);
768 LIST_HEAD(rq_list);
769 struct request *rq, *next;
770
771 spin_lock_irq(&q->requeue_lock);
772 list_splice_init(&q->requeue_list, &rq_list);
773 spin_unlock_irq(&q->requeue_lock);
774
775 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777 continue;
778
779 rq->rq_flags &= ~RQF_SOFTBARRIER;
780 list_del_init(&rq->queuelist);
781 /*
782 * If RQF_DONTPREP, rq has contained some driver specific
783 * data, so insert it to hctx dispatch list to avoid any
784 * merge.
785 */
786 if (rq->rq_flags & RQF_DONTPREP)
787 blk_mq_request_bypass_insert(rq, false, false);
788 else
789 blk_mq_sched_insert_request(rq, true, false, false);
790 }
791
792 while (!list_empty(&rq_list)) {
793 rq = list_entry(rq_list.next, struct request, queuelist);
794 list_del_init(&rq->queuelist);
795 blk_mq_sched_insert_request(rq, false, false, false);
796 }
797
798 blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802 bool kick_requeue_list)
803 {
804 struct request_queue *q = rq->q;
805 unsigned long flags;
806
807 /*
808 * We abuse this flag that is otherwise used by the I/O scheduler to
809 * request head insertion from the workqueue.
810 */
811 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813 spin_lock_irqsave(&q->requeue_lock, flags);
814 if (at_head) {
815 rq->rq_flags |= RQF_SOFTBARRIER;
816 list_add(&rq->queuelist, &q->requeue_list);
817 } else {
818 list_add_tail(&rq->queuelist, &q->requeue_list);
819 }
820 spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822 if (kick_requeue_list)
823 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833 unsigned long msecs)
834 {
835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836 msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842 if (tag < tags->nr_tags) {
843 prefetch(tags->rqs[tag]);
844 return tags->rqs[tag];
845 }
846
847 return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852 void *priv, bool reserved)
853 {
854 /*
855 * If we find a request that isn't idle and the queue matches,
856 * we know the queue is busy. Return false to stop the iteration.
857 */
858 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859 bool *busy = priv;
860
861 *busy = true;
862 return false;
863 }
864
865 return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870 bool busy = false;
871
872 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873 return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879 req->rq_flags |= RQF_TIMED_OUT;
880 if (req->q->mq_ops->timeout) {
881 enum blk_eh_timer_return ret;
882
883 ret = req->q->mq_ops->timeout(req, reserved);
884 if (ret == BLK_EH_DONE)
885 return;
886 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887 }
888
889 blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894 unsigned long deadline;
895
896 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897 return false;
898 if (rq->rq_flags & RQF_TIMED_OUT)
899 return false;
900
901 deadline = READ_ONCE(rq->deadline);
902 if (time_after_eq(jiffies, deadline))
903 return true;
904
905 if (*next == 0)
906 *next = deadline;
907 else if (time_after(*next, deadline))
908 *next = deadline;
909 return false;
910 }
911
912 void blk_mq_put_rq_ref(struct request *rq)
913 {
914 if (is_flush_rq(rq, rq->mq_hctx))
915 rq->end_io(rq, 0);
916 else if (refcount_dec_and_test(&rq->ref))
917 __blk_mq_free_request(rq);
918 }
919
920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
921 struct request *rq, void *priv, bool reserved)
922 {
923 unsigned long *next = priv;
924
925 /*
926 * Just do a quick check if it is expired before locking the request in
927 * so we're not unnecessarilly synchronizing across CPUs.
928 */
929 if (!blk_mq_req_expired(rq, next))
930 return true;
931
932 /*
933 * We have reason to believe the request may be expired. Take a
934 * reference on the request to lock this request lifetime into its
935 * currently allocated context to prevent it from being reallocated in
936 * the event the completion by-passes this timeout handler.
937 *
938 * If the reference was already released, then the driver beat the
939 * timeout handler to posting a natural completion.
940 */
941 if (!refcount_inc_not_zero(&rq->ref))
942 return true;
943
944 /*
945 * The request is now locked and cannot be reallocated underneath the
946 * timeout handler's processing. Re-verify this exact request is truly
947 * expired; if it is not expired, then the request was completed and
948 * reallocated as a new request.
949 */
950 if (blk_mq_req_expired(rq, next))
951 blk_mq_rq_timed_out(rq, reserved);
952
953 blk_mq_put_rq_ref(rq);
954 return true;
955 }
956
957 static void blk_mq_timeout_work(struct work_struct *work)
958 {
959 struct request_queue *q =
960 container_of(work, struct request_queue, timeout_work);
961 unsigned long next = 0;
962 struct blk_mq_hw_ctx *hctx;
963 int i;
964
965 /* A deadlock might occur if a request is stuck requiring a
966 * timeout at the same time a queue freeze is waiting
967 * completion, since the timeout code would not be able to
968 * acquire the queue reference here.
969 *
970 * That's why we don't use blk_queue_enter here; instead, we use
971 * percpu_ref_tryget directly, because we need to be able to
972 * obtain a reference even in the short window between the queue
973 * starting to freeze, by dropping the first reference in
974 * blk_freeze_queue_start, and the moment the last request is
975 * consumed, marked by the instant q_usage_counter reaches
976 * zero.
977 */
978 if (!percpu_ref_tryget(&q->q_usage_counter))
979 return;
980
981 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
982
983 if (next != 0) {
984 mod_timer(&q->timeout, next);
985 } else {
986 /*
987 * Request timeouts are handled as a forward rolling timer. If
988 * we end up here it means that no requests are pending and
989 * also that no request has been pending for a while. Mark
990 * each hctx as idle.
991 */
992 queue_for_each_hw_ctx(q, hctx, i) {
993 /* the hctx may be unmapped, so check it here */
994 if (blk_mq_hw_queue_mapped(hctx))
995 blk_mq_tag_idle(hctx);
996 }
997 }
998 blk_queue_exit(q);
999 }
1000
1001 struct flush_busy_ctx_data {
1002 struct blk_mq_hw_ctx *hctx;
1003 struct list_head *list;
1004 };
1005
1006 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1007 {
1008 struct flush_busy_ctx_data *flush_data = data;
1009 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1010 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1011 enum hctx_type type = hctx->type;
1012
1013 spin_lock(&ctx->lock);
1014 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1015 sbitmap_clear_bit(sb, bitnr);
1016 spin_unlock(&ctx->lock);
1017 return true;
1018 }
1019
1020 /*
1021 * Process software queues that have been marked busy, splicing them
1022 * to the for-dispatch
1023 */
1024 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1025 {
1026 struct flush_busy_ctx_data data = {
1027 .hctx = hctx,
1028 .list = list,
1029 };
1030
1031 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1032 }
1033 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1034
1035 struct dispatch_rq_data {
1036 struct blk_mq_hw_ctx *hctx;
1037 struct request *rq;
1038 };
1039
1040 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1041 void *data)
1042 {
1043 struct dispatch_rq_data *dispatch_data = data;
1044 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1045 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1046 enum hctx_type type = hctx->type;
1047
1048 spin_lock(&ctx->lock);
1049 if (!list_empty(&ctx->rq_lists[type])) {
1050 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1051 list_del_init(&dispatch_data->rq->queuelist);
1052 if (list_empty(&ctx->rq_lists[type]))
1053 sbitmap_clear_bit(sb, bitnr);
1054 }
1055 spin_unlock(&ctx->lock);
1056
1057 return !dispatch_data->rq;
1058 }
1059
1060 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1061 struct blk_mq_ctx *start)
1062 {
1063 unsigned off = start ? start->index_hw[hctx->type] : 0;
1064 struct dispatch_rq_data data = {
1065 .hctx = hctx,
1066 .rq = NULL,
1067 };
1068
1069 __sbitmap_for_each_set(&hctx->ctx_map, off,
1070 dispatch_rq_from_ctx, &data);
1071
1072 return data.rq;
1073 }
1074
1075 static inline unsigned int queued_to_index(unsigned int queued)
1076 {
1077 if (!queued)
1078 return 0;
1079
1080 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1081 }
1082
1083 static bool __blk_mq_get_driver_tag(struct request *rq)
1084 {
1085 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1086 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1087 int tag;
1088
1089 blk_mq_tag_busy(rq->mq_hctx);
1090
1091 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1092 bt = rq->mq_hctx->tags->breserved_tags;
1093 tag_offset = 0;
1094 } else {
1095 if (!hctx_may_queue(rq->mq_hctx, bt))
1096 return false;
1097 }
1098
1099 tag = __sbitmap_queue_get(bt);
1100 if (tag == BLK_MQ_NO_TAG)
1101 return false;
1102
1103 rq->tag = tag + tag_offset;
1104 return true;
1105 }
1106
1107 bool blk_mq_get_driver_tag(struct request *rq)
1108 {
1109 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1110
1111 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1112 return false;
1113
1114 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1115 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1116 rq->rq_flags |= RQF_MQ_INFLIGHT;
1117 __blk_mq_inc_active_requests(hctx);
1118 }
1119 hctx->tags->rqs[rq->tag] = rq;
1120 return true;
1121 }
1122
1123 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1124 int flags, void *key)
1125 {
1126 struct blk_mq_hw_ctx *hctx;
1127
1128 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1129
1130 spin_lock(&hctx->dispatch_wait_lock);
1131 if (!list_empty(&wait->entry)) {
1132 struct sbitmap_queue *sbq;
1133
1134 list_del_init(&wait->entry);
1135 sbq = hctx->tags->bitmap_tags;
1136 atomic_dec(&sbq->ws_active);
1137 }
1138 spin_unlock(&hctx->dispatch_wait_lock);
1139
1140 blk_mq_run_hw_queue(hctx, true);
1141 return 1;
1142 }
1143
1144 /*
1145 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1146 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1147 * restart. For both cases, take care to check the condition again after
1148 * marking us as waiting.
1149 */
1150 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1151 struct request *rq)
1152 {
1153 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1154 struct wait_queue_head *wq;
1155 wait_queue_entry_t *wait;
1156 bool ret;
1157
1158 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1159 blk_mq_sched_mark_restart_hctx(hctx);
1160
1161 /*
1162 * It's possible that a tag was freed in the window between the
1163 * allocation failure and adding the hardware queue to the wait
1164 * queue.
1165 *
1166 * Don't clear RESTART here, someone else could have set it.
1167 * At most this will cost an extra queue run.
1168 */
1169 return blk_mq_get_driver_tag(rq);
1170 }
1171
1172 wait = &hctx->dispatch_wait;
1173 if (!list_empty_careful(&wait->entry))
1174 return false;
1175
1176 wq = &bt_wait_ptr(sbq, hctx)->wait;
1177
1178 spin_lock_irq(&wq->lock);
1179 spin_lock(&hctx->dispatch_wait_lock);
1180 if (!list_empty(&wait->entry)) {
1181 spin_unlock(&hctx->dispatch_wait_lock);
1182 spin_unlock_irq(&wq->lock);
1183 return false;
1184 }
1185
1186 atomic_inc(&sbq->ws_active);
1187 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1188 __add_wait_queue(wq, wait);
1189
1190 /*
1191 * It's possible that a tag was freed in the window between the
1192 * allocation failure and adding the hardware queue to the wait
1193 * queue.
1194 */
1195 ret = blk_mq_get_driver_tag(rq);
1196 if (!ret) {
1197 spin_unlock(&hctx->dispatch_wait_lock);
1198 spin_unlock_irq(&wq->lock);
1199 return false;
1200 }
1201
1202 /*
1203 * We got a tag, remove ourselves from the wait queue to ensure
1204 * someone else gets the wakeup.
1205 */
1206 list_del_init(&wait->entry);
1207 atomic_dec(&sbq->ws_active);
1208 spin_unlock(&hctx->dispatch_wait_lock);
1209 spin_unlock_irq(&wq->lock);
1210
1211 return true;
1212 }
1213
1214 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1215 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1216 /*
1217 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1218 * - EWMA is one simple way to compute running average value
1219 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1220 * - take 4 as factor for avoiding to get too small(0) result, and this
1221 * factor doesn't matter because EWMA decreases exponentially
1222 */
1223 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1224 {
1225 unsigned int ewma;
1226
1227 ewma = hctx->dispatch_busy;
1228
1229 if (!ewma && !busy)
1230 return;
1231
1232 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1233 if (busy)
1234 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1235 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1236
1237 hctx->dispatch_busy = ewma;
1238 }
1239
1240 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1241
1242 static void blk_mq_handle_dev_resource(struct request *rq,
1243 struct list_head *list)
1244 {
1245 struct request *next =
1246 list_first_entry_or_null(list, struct request, queuelist);
1247
1248 /*
1249 * If an I/O scheduler has been configured and we got a driver tag for
1250 * the next request already, free it.
1251 */
1252 if (next)
1253 blk_mq_put_driver_tag(next);
1254
1255 list_add(&rq->queuelist, list);
1256 __blk_mq_requeue_request(rq);
1257 }
1258
1259 static void blk_mq_handle_zone_resource(struct request *rq,
1260 struct list_head *zone_list)
1261 {
1262 /*
1263 * If we end up here it is because we cannot dispatch a request to a
1264 * specific zone due to LLD level zone-write locking or other zone
1265 * related resource not being available. In this case, set the request
1266 * aside in zone_list for retrying it later.
1267 */
1268 list_add(&rq->queuelist, zone_list);
1269 __blk_mq_requeue_request(rq);
1270 }
1271
1272 enum prep_dispatch {
1273 PREP_DISPATCH_OK,
1274 PREP_DISPATCH_NO_TAG,
1275 PREP_DISPATCH_NO_BUDGET,
1276 };
1277
1278 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1279 bool need_budget)
1280 {
1281 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1282 int budget_token = -1;
1283
1284 if (need_budget) {
1285 budget_token = blk_mq_get_dispatch_budget(rq->q);
1286 if (budget_token < 0) {
1287 blk_mq_put_driver_tag(rq);
1288 return PREP_DISPATCH_NO_BUDGET;
1289 }
1290 blk_mq_set_rq_budget_token(rq, budget_token);
1291 }
1292
1293 if (!blk_mq_get_driver_tag(rq)) {
1294 /*
1295 * The initial allocation attempt failed, so we need to
1296 * rerun the hardware queue when a tag is freed. The
1297 * waitqueue takes care of that. If the queue is run
1298 * before we add this entry back on the dispatch list,
1299 * we'll re-run it below.
1300 */
1301 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1302 /*
1303 * All budgets not got from this function will be put
1304 * together during handling partial dispatch
1305 */
1306 if (need_budget)
1307 blk_mq_put_dispatch_budget(rq->q, budget_token);
1308 return PREP_DISPATCH_NO_TAG;
1309 }
1310 }
1311
1312 return PREP_DISPATCH_OK;
1313 }
1314
1315 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1316 static void blk_mq_release_budgets(struct request_queue *q,
1317 struct list_head *list)
1318 {
1319 struct request *rq;
1320
1321 list_for_each_entry(rq, list, queuelist) {
1322 int budget_token = blk_mq_get_rq_budget_token(rq);
1323
1324 if (budget_token >= 0)
1325 blk_mq_put_dispatch_budget(q, budget_token);
1326 }
1327 }
1328
1329 /*
1330 * Returns true if we did some work AND can potentially do more.
1331 */
1332 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1333 unsigned int nr_budgets)
1334 {
1335 enum prep_dispatch prep;
1336 struct request_queue *q = hctx->queue;
1337 struct request *rq, *nxt;
1338 int errors, queued;
1339 blk_status_t ret = BLK_STS_OK;
1340 LIST_HEAD(zone_list);
1341
1342 if (list_empty(list))
1343 return false;
1344
1345 /*
1346 * Now process all the entries, sending them to the driver.
1347 */
1348 errors = queued = 0;
1349 do {
1350 struct blk_mq_queue_data bd;
1351
1352 rq = list_first_entry(list, struct request, queuelist);
1353
1354 WARN_ON_ONCE(hctx != rq->mq_hctx);
1355 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1356 if (prep != PREP_DISPATCH_OK)
1357 break;
1358
1359 list_del_init(&rq->queuelist);
1360
1361 bd.rq = rq;
1362
1363 /*
1364 * Flag last if we have no more requests, or if we have more
1365 * but can't assign a driver tag to it.
1366 */
1367 if (list_empty(list))
1368 bd.last = true;
1369 else {
1370 nxt = list_first_entry(list, struct request, queuelist);
1371 bd.last = !blk_mq_get_driver_tag(nxt);
1372 }
1373
1374 /*
1375 * once the request is queued to lld, no need to cover the
1376 * budget any more
1377 */
1378 if (nr_budgets)
1379 nr_budgets--;
1380 ret = q->mq_ops->queue_rq(hctx, &bd);
1381 switch (ret) {
1382 case BLK_STS_OK:
1383 queued++;
1384 break;
1385 case BLK_STS_RESOURCE:
1386 case BLK_STS_DEV_RESOURCE:
1387 blk_mq_handle_dev_resource(rq, list);
1388 goto out;
1389 case BLK_STS_ZONE_RESOURCE:
1390 /*
1391 * Move the request to zone_list and keep going through
1392 * the dispatch list to find more requests the drive can
1393 * accept.
1394 */
1395 blk_mq_handle_zone_resource(rq, &zone_list);
1396 break;
1397 default:
1398 errors++;
1399 blk_mq_end_request(rq, ret);
1400 }
1401 } while (!list_empty(list));
1402 out:
1403 if (!list_empty(&zone_list))
1404 list_splice_tail_init(&zone_list, list);
1405
1406 hctx->dispatched[queued_to_index(queued)]++;
1407
1408 /* If we didn't flush the entire list, we could have told the driver
1409 * there was more coming, but that turned out to be a lie.
1410 */
1411 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1412 q->mq_ops->commit_rqs(hctx);
1413 /*
1414 * Any items that need requeuing? Stuff them into hctx->dispatch,
1415 * that is where we will continue on next queue run.
1416 */
1417 if (!list_empty(list)) {
1418 bool needs_restart;
1419 /* For non-shared tags, the RESTART check will suffice */
1420 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1421 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1422 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1423
1424 if (nr_budgets)
1425 blk_mq_release_budgets(q, list);
1426
1427 spin_lock(&hctx->lock);
1428 list_splice_tail_init(list, &hctx->dispatch);
1429 spin_unlock(&hctx->lock);
1430
1431 /*
1432 * Order adding requests to hctx->dispatch and checking
1433 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1434 * in blk_mq_sched_restart(). Avoid restart code path to
1435 * miss the new added requests to hctx->dispatch, meantime
1436 * SCHED_RESTART is observed here.
1437 */
1438 smp_mb();
1439
1440 /*
1441 * If SCHED_RESTART was set by the caller of this function and
1442 * it is no longer set that means that it was cleared by another
1443 * thread and hence that a queue rerun is needed.
1444 *
1445 * If 'no_tag' is set, that means that we failed getting
1446 * a driver tag with an I/O scheduler attached. If our dispatch
1447 * waitqueue is no longer active, ensure that we run the queue
1448 * AFTER adding our entries back to the list.
1449 *
1450 * If no I/O scheduler has been configured it is possible that
1451 * the hardware queue got stopped and restarted before requests
1452 * were pushed back onto the dispatch list. Rerun the queue to
1453 * avoid starvation. Notes:
1454 * - blk_mq_run_hw_queue() checks whether or not a queue has
1455 * been stopped before rerunning a queue.
1456 * - Some but not all block drivers stop a queue before
1457 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1458 * and dm-rq.
1459 *
1460 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1461 * bit is set, run queue after a delay to avoid IO stalls
1462 * that could otherwise occur if the queue is idle. We'll do
1463 * similar if we couldn't get budget and SCHED_RESTART is set.
1464 */
1465 needs_restart = blk_mq_sched_needs_restart(hctx);
1466 if (!needs_restart ||
1467 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1468 blk_mq_run_hw_queue(hctx, true);
1469 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1470 no_budget_avail))
1471 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1472
1473 blk_mq_update_dispatch_busy(hctx, true);
1474 return false;
1475 } else
1476 blk_mq_update_dispatch_busy(hctx, false);
1477
1478 return (queued + errors) != 0;
1479 }
1480
1481 /**
1482 * __blk_mq_run_hw_queue - Run a hardware queue.
1483 * @hctx: Pointer to the hardware queue to run.
1484 *
1485 * Send pending requests to the hardware.
1486 */
1487 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1488 {
1489 int srcu_idx;
1490
1491 /*
1492 * We can't run the queue inline with ints disabled. Ensure that
1493 * we catch bad users of this early.
1494 */
1495 WARN_ON_ONCE(in_interrupt());
1496
1497 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1498
1499 hctx_lock(hctx, &srcu_idx);
1500 blk_mq_sched_dispatch_requests(hctx);
1501 hctx_unlock(hctx, srcu_idx);
1502 }
1503
1504 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1505 {
1506 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1507
1508 if (cpu >= nr_cpu_ids)
1509 cpu = cpumask_first(hctx->cpumask);
1510 return cpu;
1511 }
1512
1513 /*
1514 * It'd be great if the workqueue API had a way to pass
1515 * in a mask and had some smarts for more clever placement.
1516 * For now we just round-robin here, switching for every
1517 * BLK_MQ_CPU_WORK_BATCH queued items.
1518 */
1519 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1520 {
1521 bool tried = false;
1522 int next_cpu = hctx->next_cpu;
1523
1524 if (hctx->queue->nr_hw_queues == 1)
1525 return WORK_CPU_UNBOUND;
1526
1527 if (--hctx->next_cpu_batch <= 0) {
1528 select_cpu:
1529 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1530 cpu_online_mask);
1531 if (next_cpu >= nr_cpu_ids)
1532 next_cpu = blk_mq_first_mapped_cpu(hctx);
1533 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1534 }
1535
1536 /*
1537 * Do unbound schedule if we can't find a online CPU for this hctx,
1538 * and it should only happen in the path of handling CPU DEAD.
1539 */
1540 if (!cpu_online(next_cpu)) {
1541 if (!tried) {
1542 tried = true;
1543 goto select_cpu;
1544 }
1545
1546 /*
1547 * Make sure to re-select CPU next time once after CPUs
1548 * in hctx->cpumask become online again.
1549 */
1550 hctx->next_cpu = next_cpu;
1551 hctx->next_cpu_batch = 1;
1552 return WORK_CPU_UNBOUND;
1553 }
1554
1555 hctx->next_cpu = next_cpu;
1556 return next_cpu;
1557 }
1558
1559 /**
1560 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1561 * @hctx: Pointer to the hardware queue to run.
1562 * @async: If we want to run the queue asynchronously.
1563 * @msecs: Milliseconds of delay to wait before running the queue.
1564 *
1565 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1566 * with a delay of @msecs.
1567 */
1568 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1569 unsigned long msecs)
1570 {
1571 if (unlikely(blk_mq_hctx_stopped(hctx)))
1572 return;
1573
1574 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1575 int cpu = get_cpu();
1576 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1577 __blk_mq_run_hw_queue(hctx);
1578 put_cpu();
1579 return;
1580 }
1581
1582 put_cpu();
1583 }
1584
1585 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1586 msecs_to_jiffies(msecs));
1587 }
1588
1589 /**
1590 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1591 * @hctx: Pointer to the hardware queue to run.
1592 * @msecs: Milliseconds of delay to wait before running the queue.
1593 *
1594 * Run a hardware queue asynchronously with a delay of @msecs.
1595 */
1596 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1597 {
1598 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1599 }
1600 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1601
1602 /**
1603 * blk_mq_run_hw_queue - Start to run a hardware queue.
1604 * @hctx: Pointer to the hardware queue to run.
1605 * @async: If we want to run the queue asynchronously.
1606 *
1607 * Check if the request queue is not in a quiesced state and if there are
1608 * pending requests to be sent. If this is true, run the queue to send requests
1609 * to hardware.
1610 */
1611 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1612 {
1613 int srcu_idx;
1614 bool need_run;
1615
1616 /*
1617 * When queue is quiesced, we may be switching io scheduler, or
1618 * updating nr_hw_queues, or other things, and we can't run queue
1619 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1620 *
1621 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1622 * quiesced.
1623 */
1624 hctx_lock(hctx, &srcu_idx);
1625 need_run = !blk_queue_quiesced(hctx->queue) &&
1626 blk_mq_hctx_has_pending(hctx);
1627 hctx_unlock(hctx, srcu_idx);
1628
1629 if (need_run)
1630 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1631 }
1632 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1633
1634 /*
1635 * Is the request queue handled by an IO scheduler that does not respect
1636 * hardware queues when dispatching?
1637 */
1638 static bool blk_mq_has_sqsched(struct request_queue *q)
1639 {
1640 struct elevator_queue *e = q->elevator;
1641
1642 if (e && e->type->ops.dispatch_request &&
1643 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1644 return true;
1645 return false;
1646 }
1647
1648 /*
1649 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1650 * scheduler.
1651 */
1652 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1653 {
1654 struct blk_mq_hw_ctx *hctx;
1655
1656 /*
1657 * If the IO scheduler does not respect hardware queues when
1658 * dispatching, we just don't bother with multiple HW queues and
1659 * dispatch from hctx for the current CPU since running multiple queues
1660 * just causes lock contention inside the scheduler and pointless cache
1661 * bouncing.
1662 */
1663 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1664 raw_smp_processor_id());
1665 if (!blk_mq_hctx_stopped(hctx))
1666 return hctx;
1667 return NULL;
1668 }
1669
1670 /**
1671 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1672 * @q: Pointer to the request queue to run.
1673 * @async: If we want to run the queue asynchronously.
1674 */
1675 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1676 {
1677 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1678 int i;
1679
1680 sq_hctx = NULL;
1681 if (blk_mq_has_sqsched(q))
1682 sq_hctx = blk_mq_get_sq_hctx(q);
1683 queue_for_each_hw_ctx(q, hctx, i) {
1684 if (blk_mq_hctx_stopped(hctx))
1685 continue;
1686 /*
1687 * Dispatch from this hctx either if there's no hctx preferred
1688 * by IO scheduler or if it has requests that bypass the
1689 * scheduler.
1690 */
1691 if (!sq_hctx || sq_hctx == hctx ||
1692 !list_empty_careful(&hctx->dispatch))
1693 blk_mq_run_hw_queue(hctx, async);
1694 }
1695 }
1696 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1697
1698 /**
1699 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1700 * @q: Pointer to the request queue to run.
1701 * @msecs: Milliseconds of delay to wait before running the queues.
1702 */
1703 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1704 {
1705 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1706 int i;
1707
1708 sq_hctx = NULL;
1709 if (blk_mq_has_sqsched(q))
1710 sq_hctx = blk_mq_get_sq_hctx(q);
1711 queue_for_each_hw_ctx(q, hctx, i) {
1712 if (blk_mq_hctx_stopped(hctx))
1713 continue;
1714 /*
1715 * Dispatch from this hctx either if there's no hctx preferred
1716 * by IO scheduler or if it has requests that bypass the
1717 * scheduler.
1718 */
1719 if (!sq_hctx || sq_hctx == hctx ||
1720 !list_empty_careful(&hctx->dispatch))
1721 blk_mq_delay_run_hw_queue(hctx, msecs);
1722 }
1723 }
1724 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1725
1726 /**
1727 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1728 * @q: request queue.
1729 *
1730 * The caller is responsible for serializing this function against
1731 * blk_mq_{start,stop}_hw_queue().
1732 */
1733 bool blk_mq_queue_stopped(struct request_queue *q)
1734 {
1735 struct blk_mq_hw_ctx *hctx;
1736 int i;
1737
1738 queue_for_each_hw_ctx(q, hctx, i)
1739 if (blk_mq_hctx_stopped(hctx))
1740 return true;
1741
1742 return false;
1743 }
1744 EXPORT_SYMBOL(blk_mq_queue_stopped);
1745
1746 /*
1747 * This function is often used for pausing .queue_rq() by driver when
1748 * there isn't enough resource or some conditions aren't satisfied, and
1749 * BLK_STS_RESOURCE is usually returned.
1750 *
1751 * We do not guarantee that dispatch can be drained or blocked
1752 * after blk_mq_stop_hw_queue() returns. Please use
1753 * blk_mq_quiesce_queue() for that requirement.
1754 */
1755 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1756 {
1757 cancel_delayed_work(&hctx->run_work);
1758
1759 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1760 }
1761 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1762
1763 /*
1764 * This function is often used for pausing .queue_rq() by driver when
1765 * there isn't enough resource or some conditions aren't satisfied, and
1766 * BLK_STS_RESOURCE is usually returned.
1767 *
1768 * We do not guarantee that dispatch can be drained or blocked
1769 * after blk_mq_stop_hw_queues() returns. Please use
1770 * blk_mq_quiesce_queue() for that requirement.
1771 */
1772 void blk_mq_stop_hw_queues(struct request_queue *q)
1773 {
1774 struct blk_mq_hw_ctx *hctx;
1775 int i;
1776
1777 queue_for_each_hw_ctx(q, hctx, i)
1778 blk_mq_stop_hw_queue(hctx);
1779 }
1780 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1781
1782 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1783 {
1784 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1785
1786 blk_mq_run_hw_queue(hctx, false);
1787 }
1788 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1789
1790 void blk_mq_start_hw_queues(struct request_queue *q)
1791 {
1792 struct blk_mq_hw_ctx *hctx;
1793 int i;
1794
1795 queue_for_each_hw_ctx(q, hctx, i)
1796 blk_mq_start_hw_queue(hctx);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1799
1800 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1801 {
1802 if (!blk_mq_hctx_stopped(hctx))
1803 return;
1804
1805 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1806 blk_mq_run_hw_queue(hctx, async);
1807 }
1808 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1809
1810 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1811 {
1812 struct blk_mq_hw_ctx *hctx;
1813 int i;
1814
1815 queue_for_each_hw_ctx(q, hctx, i)
1816 blk_mq_start_stopped_hw_queue(hctx, async);
1817 }
1818 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1819
1820 static void blk_mq_run_work_fn(struct work_struct *work)
1821 {
1822 struct blk_mq_hw_ctx *hctx;
1823
1824 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1825
1826 /*
1827 * If we are stopped, don't run the queue.
1828 */
1829 if (blk_mq_hctx_stopped(hctx))
1830 return;
1831
1832 __blk_mq_run_hw_queue(hctx);
1833 }
1834
1835 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1836 struct request *rq,
1837 bool at_head)
1838 {
1839 struct blk_mq_ctx *ctx = rq->mq_ctx;
1840 enum hctx_type type = hctx->type;
1841
1842 lockdep_assert_held(&ctx->lock);
1843
1844 trace_block_rq_insert(rq);
1845
1846 if (at_head)
1847 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1848 else
1849 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1850 }
1851
1852 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1853 bool at_head)
1854 {
1855 struct blk_mq_ctx *ctx = rq->mq_ctx;
1856
1857 lockdep_assert_held(&ctx->lock);
1858
1859 __blk_mq_insert_req_list(hctx, rq, at_head);
1860 blk_mq_hctx_mark_pending(hctx, ctx);
1861 }
1862
1863 /**
1864 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1865 * @rq: Pointer to request to be inserted.
1866 * @at_head: true if the request should be inserted at the head of the list.
1867 * @run_queue: If we should run the hardware queue after inserting the request.
1868 *
1869 * Should only be used carefully, when the caller knows we want to
1870 * bypass a potential IO scheduler on the target device.
1871 */
1872 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1873 bool run_queue)
1874 {
1875 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1876
1877 spin_lock(&hctx->lock);
1878 if (at_head)
1879 list_add(&rq->queuelist, &hctx->dispatch);
1880 else
1881 list_add_tail(&rq->queuelist, &hctx->dispatch);
1882 spin_unlock(&hctx->lock);
1883
1884 if (run_queue)
1885 blk_mq_run_hw_queue(hctx, false);
1886 }
1887
1888 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1889 struct list_head *list)
1890
1891 {
1892 struct request *rq;
1893 enum hctx_type type = hctx->type;
1894
1895 /*
1896 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1897 * offline now
1898 */
1899 list_for_each_entry(rq, list, queuelist) {
1900 BUG_ON(rq->mq_ctx != ctx);
1901 trace_block_rq_insert(rq);
1902 }
1903
1904 spin_lock(&ctx->lock);
1905 list_splice_tail_init(list, &ctx->rq_lists[type]);
1906 blk_mq_hctx_mark_pending(hctx, ctx);
1907 spin_unlock(&ctx->lock);
1908 }
1909
1910 static int plug_rq_cmp(void *priv, const struct list_head *a,
1911 const struct list_head *b)
1912 {
1913 struct request *rqa = container_of(a, struct request, queuelist);
1914 struct request *rqb = container_of(b, struct request, queuelist);
1915
1916 if (rqa->mq_ctx != rqb->mq_ctx)
1917 return rqa->mq_ctx > rqb->mq_ctx;
1918 if (rqa->mq_hctx != rqb->mq_hctx)
1919 return rqa->mq_hctx > rqb->mq_hctx;
1920
1921 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1922 }
1923
1924 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1925 {
1926 LIST_HEAD(list);
1927
1928 if (list_empty(&plug->mq_list))
1929 return;
1930 list_splice_init(&plug->mq_list, &list);
1931
1932 if (plug->rq_count > 2 && plug->multiple_queues)
1933 list_sort(NULL, &list, plug_rq_cmp);
1934
1935 plug->rq_count = 0;
1936
1937 do {
1938 struct list_head rq_list;
1939 struct request *rq, *head_rq = list_entry_rq(list.next);
1940 struct list_head *pos = &head_rq->queuelist; /* skip first */
1941 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1942 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1943 unsigned int depth = 1;
1944
1945 list_for_each_continue(pos, &list) {
1946 rq = list_entry_rq(pos);
1947 BUG_ON(!rq->q);
1948 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1949 break;
1950 depth++;
1951 }
1952
1953 list_cut_before(&rq_list, &list, pos);
1954 trace_block_unplug(head_rq->q, depth, !from_schedule);
1955 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1956 from_schedule);
1957 } while(!list_empty(&list));
1958 }
1959
1960 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1961 unsigned int nr_segs)
1962 {
1963 int err;
1964
1965 if (bio->bi_opf & REQ_RAHEAD)
1966 rq->cmd_flags |= REQ_FAILFAST_MASK;
1967
1968 rq->__sector = bio->bi_iter.bi_sector;
1969 rq->write_hint = bio->bi_write_hint;
1970 blk_rq_bio_prep(rq, bio, nr_segs);
1971
1972 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1973 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1974 WARN_ON_ONCE(err);
1975
1976 blk_account_io_start(rq);
1977 }
1978
1979 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1980 struct request *rq,
1981 blk_qc_t *cookie, bool last)
1982 {
1983 struct request_queue *q = rq->q;
1984 struct blk_mq_queue_data bd = {
1985 .rq = rq,
1986 .last = last,
1987 };
1988 blk_qc_t new_cookie;
1989 blk_status_t ret;
1990
1991 new_cookie = request_to_qc_t(hctx, rq);
1992
1993 /*
1994 * For OK queue, we are done. For error, caller may kill it.
1995 * Any other error (busy), just add it to our list as we
1996 * previously would have done.
1997 */
1998 ret = q->mq_ops->queue_rq(hctx, &bd);
1999 switch (ret) {
2000 case BLK_STS_OK:
2001 blk_mq_update_dispatch_busy(hctx, false);
2002 *cookie = new_cookie;
2003 break;
2004 case BLK_STS_RESOURCE:
2005 case BLK_STS_DEV_RESOURCE:
2006 blk_mq_update_dispatch_busy(hctx, true);
2007 __blk_mq_requeue_request(rq);
2008 break;
2009 default:
2010 blk_mq_update_dispatch_busy(hctx, false);
2011 *cookie = BLK_QC_T_NONE;
2012 break;
2013 }
2014
2015 return ret;
2016 }
2017
2018 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2019 struct request *rq,
2020 blk_qc_t *cookie,
2021 bool bypass_insert, bool last)
2022 {
2023 struct request_queue *q = rq->q;
2024 bool run_queue = true;
2025 int budget_token;
2026
2027 /*
2028 * RCU or SRCU read lock is needed before checking quiesced flag.
2029 *
2030 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2031 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2032 * and avoid driver to try to dispatch again.
2033 */
2034 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2035 run_queue = false;
2036 bypass_insert = false;
2037 goto insert;
2038 }
2039
2040 if (q->elevator && !bypass_insert)
2041 goto insert;
2042
2043 budget_token = blk_mq_get_dispatch_budget(q);
2044 if (budget_token < 0)
2045 goto insert;
2046
2047 blk_mq_set_rq_budget_token(rq, budget_token);
2048
2049 if (!blk_mq_get_driver_tag(rq)) {
2050 blk_mq_put_dispatch_budget(q, budget_token);
2051 goto insert;
2052 }
2053
2054 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2055 insert:
2056 if (bypass_insert)
2057 return BLK_STS_RESOURCE;
2058
2059 blk_mq_sched_insert_request(rq, false, run_queue, false);
2060
2061 return BLK_STS_OK;
2062 }
2063
2064 /**
2065 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2066 * @hctx: Pointer of the associated hardware queue.
2067 * @rq: Pointer to request to be sent.
2068 * @cookie: Request queue cookie.
2069 *
2070 * If the device has enough resources to accept a new request now, send the
2071 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2072 * we can try send it another time in the future. Requests inserted at this
2073 * queue have higher priority.
2074 */
2075 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2076 struct request *rq, blk_qc_t *cookie)
2077 {
2078 blk_status_t ret;
2079 int srcu_idx;
2080
2081 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2082
2083 hctx_lock(hctx, &srcu_idx);
2084
2085 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2086 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2087 blk_mq_request_bypass_insert(rq, false, true);
2088 else if (ret != BLK_STS_OK)
2089 blk_mq_end_request(rq, ret);
2090
2091 hctx_unlock(hctx, srcu_idx);
2092 }
2093
2094 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2095 {
2096 blk_status_t ret;
2097 int srcu_idx;
2098 blk_qc_t unused_cookie;
2099 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2100
2101 hctx_lock(hctx, &srcu_idx);
2102 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2103 hctx_unlock(hctx, srcu_idx);
2104
2105 return ret;
2106 }
2107
2108 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2109 struct list_head *list)
2110 {
2111 int queued = 0;
2112 int errors = 0;
2113
2114 while (!list_empty(list)) {
2115 blk_status_t ret;
2116 struct request *rq = list_first_entry(list, struct request,
2117 queuelist);
2118
2119 list_del_init(&rq->queuelist);
2120 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2121 if (ret != BLK_STS_OK) {
2122 if (ret == BLK_STS_RESOURCE ||
2123 ret == BLK_STS_DEV_RESOURCE) {
2124 blk_mq_request_bypass_insert(rq, false,
2125 list_empty(list));
2126 break;
2127 }
2128 blk_mq_end_request(rq, ret);
2129 errors++;
2130 } else
2131 queued++;
2132 }
2133
2134 /*
2135 * If we didn't flush the entire list, we could have told
2136 * the driver there was more coming, but that turned out to
2137 * be a lie.
2138 */
2139 if ((!list_empty(list) || errors) &&
2140 hctx->queue->mq_ops->commit_rqs && queued)
2141 hctx->queue->mq_ops->commit_rqs(hctx);
2142 }
2143
2144 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2145 {
2146 list_add_tail(&rq->queuelist, &plug->mq_list);
2147 plug->rq_count++;
2148 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2149 struct request *tmp;
2150
2151 tmp = list_first_entry(&plug->mq_list, struct request,
2152 queuelist);
2153 if (tmp->q != rq->q)
2154 plug->multiple_queues = true;
2155 }
2156 }
2157
2158 /**
2159 * blk_mq_submit_bio - Create and send a request to block device.
2160 * @bio: Bio pointer.
2161 *
2162 * Builds up a request structure from @q and @bio and send to the device. The
2163 * request may not be queued directly to hardware if:
2164 * * This request can be merged with another one
2165 * * We want to place request at plug queue for possible future merging
2166 * * There is an IO scheduler active at this queue
2167 *
2168 * It will not queue the request if there is an error with the bio, or at the
2169 * request creation.
2170 *
2171 * Returns: Request queue cookie.
2172 */
2173 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2174 {
2175 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2176 const int is_sync = op_is_sync(bio->bi_opf);
2177 const int is_flush_fua = op_is_flush(bio->bi_opf);
2178 struct blk_mq_alloc_data data = {
2179 .q = q,
2180 };
2181 struct request *rq;
2182 struct blk_plug *plug;
2183 struct request *same_queue_rq = NULL;
2184 unsigned int nr_segs;
2185 blk_qc_t cookie;
2186 blk_status_t ret;
2187 bool hipri;
2188
2189 blk_queue_bounce(q, &bio);
2190 __blk_queue_split(&bio, &nr_segs);
2191
2192 if (!bio_integrity_prep(bio))
2193 goto queue_exit;
2194
2195 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2196 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2197 goto queue_exit;
2198
2199 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2200 goto queue_exit;
2201
2202 rq_qos_throttle(q, bio);
2203
2204 hipri = bio->bi_opf & REQ_HIPRI;
2205
2206 data.cmd_flags = bio->bi_opf;
2207 rq = __blk_mq_alloc_request(&data);
2208 if (unlikely(!rq)) {
2209 rq_qos_cleanup(q, bio);
2210 if (bio->bi_opf & REQ_NOWAIT)
2211 bio_wouldblock_error(bio);
2212 goto queue_exit;
2213 }
2214
2215 trace_block_getrq(bio);
2216
2217 rq_qos_track(q, rq, bio);
2218
2219 cookie = request_to_qc_t(data.hctx, rq);
2220
2221 blk_mq_bio_to_request(rq, bio, nr_segs);
2222
2223 ret = blk_crypto_init_request(rq);
2224 if (ret != BLK_STS_OK) {
2225 bio->bi_status = ret;
2226 bio_endio(bio);
2227 blk_mq_free_request(rq);
2228 return BLK_QC_T_NONE;
2229 }
2230
2231 plug = blk_mq_plug(q, bio);
2232 if (unlikely(is_flush_fua)) {
2233 /* Bypass scheduler for flush requests */
2234 blk_insert_flush(rq);
2235 blk_mq_run_hw_queue(data.hctx, true);
2236 } else if (plug && (q->nr_hw_queues == 1 ||
2237 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2238 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2239 /*
2240 * Use plugging if we have a ->commit_rqs() hook as well, as
2241 * we know the driver uses bd->last in a smart fashion.
2242 *
2243 * Use normal plugging if this disk is slow HDD, as sequential
2244 * IO may benefit a lot from plug merging.
2245 */
2246 unsigned int request_count = plug->rq_count;
2247 struct request *last = NULL;
2248
2249 if (!request_count)
2250 trace_block_plug(q);
2251 else
2252 last = list_entry_rq(plug->mq_list.prev);
2253
2254 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2255 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2256 blk_flush_plug_list(plug, false);
2257 trace_block_plug(q);
2258 }
2259
2260 blk_add_rq_to_plug(plug, rq);
2261 } else if (q->elevator) {
2262 /* Insert the request at the IO scheduler queue */
2263 blk_mq_sched_insert_request(rq, false, true, true);
2264 } else if (plug && !blk_queue_nomerges(q)) {
2265 /*
2266 * We do limited plugging. If the bio can be merged, do that.
2267 * Otherwise the existing request in the plug list will be
2268 * issued. So the plug list will have one request at most
2269 * The plug list might get flushed before this. If that happens,
2270 * the plug list is empty, and same_queue_rq is invalid.
2271 */
2272 if (list_empty(&plug->mq_list))
2273 same_queue_rq = NULL;
2274 if (same_queue_rq) {
2275 list_del_init(&same_queue_rq->queuelist);
2276 plug->rq_count--;
2277 }
2278 blk_add_rq_to_plug(plug, rq);
2279 trace_block_plug(q);
2280
2281 if (same_queue_rq) {
2282 data.hctx = same_queue_rq->mq_hctx;
2283 trace_block_unplug(q, 1, true);
2284 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2285 &cookie);
2286 }
2287 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2288 !data.hctx->dispatch_busy) {
2289 /*
2290 * There is no scheduler and we can try to send directly
2291 * to the hardware.
2292 */
2293 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2294 } else {
2295 /* Default case. */
2296 blk_mq_sched_insert_request(rq, false, true, true);
2297 }
2298
2299 if (!hipri)
2300 return BLK_QC_T_NONE;
2301 return cookie;
2302 queue_exit:
2303 blk_queue_exit(q);
2304 return BLK_QC_T_NONE;
2305 }
2306
2307 static size_t order_to_size(unsigned int order)
2308 {
2309 return (size_t)PAGE_SIZE << order;
2310 }
2311
2312 /* called before freeing request pool in @tags */
2313 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2314 struct blk_mq_tags *tags, unsigned int hctx_idx)
2315 {
2316 struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2317 struct page *page;
2318 unsigned long flags;
2319
2320 list_for_each_entry(page, &tags->page_list, lru) {
2321 unsigned long start = (unsigned long)page_address(page);
2322 unsigned long end = start + order_to_size(page->private);
2323 int i;
2324
2325 for (i = 0; i < set->queue_depth; i++) {
2326 struct request *rq = drv_tags->rqs[i];
2327 unsigned long rq_addr = (unsigned long)rq;
2328
2329 if (rq_addr >= start && rq_addr < end) {
2330 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2331 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2332 }
2333 }
2334 }
2335
2336 /*
2337 * Wait until all pending iteration is done.
2338 *
2339 * Request reference is cleared and it is guaranteed to be observed
2340 * after the ->lock is released.
2341 */
2342 spin_lock_irqsave(&drv_tags->lock, flags);
2343 spin_unlock_irqrestore(&drv_tags->lock, flags);
2344 }
2345
2346 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2347 unsigned int hctx_idx)
2348 {
2349 struct page *page;
2350
2351 if (tags->rqs && set->ops->exit_request) {
2352 int i;
2353
2354 for (i = 0; i < tags->nr_tags; i++) {
2355 struct request *rq = tags->static_rqs[i];
2356
2357 if (!rq)
2358 continue;
2359 set->ops->exit_request(set, rq, hctx_idx);
2360 tags->static_rqs[i] = NULL;
2361 }
2362 }
2363
2364 blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2365
2366 while (!list_empty(&tags->page_list)) {
2367 page = list_first_entry(&tags->page_list, struct page, lru);
2368 list_del_init(&page->lru);
2369 /*
2370 * Remove kmemleak object previously allocated in
2371 * blk_mq_alloc_rqs().
2372 */
2373 kmemleak_free(page_address(page));
2374 __free_pages(page, page->private);
2375 }
2376 }
2377
2378 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2379 {
2380 kfree(tags->rqs);
2381 tags->rqs = NULL;
2382 kfree(tags->static_rqs);
2383 tags->static_rqs = NULL;
2384
2385 blk_mq_free_tags(tags, flags);
2386 }
2387
2388 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2389 unsigned int hctx_idx,
2390 unsigned int nr_tags,
2391 unsigned int reserved_tags,
2392 unsigned int flags)
2393 {
2394 struct blk_mq_tags *tags;
2395 int node;
2396
2397 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2398 if (node == NUMA_NO_NODE)
2399 node = set->numa_node;
2400
2401 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2402 if (!tags)
2403 return NULL;
2404
2405 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2406 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2407 node);
2408 if (!tags->rqs) {
2409 blk_mq_free_tags(tags, flags);
2410 return NULL;
2411 }
2412
2413 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2414 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2415 node);
2416 if (!tags->static_rqs) {
2417 kfree(tags->rqs);
2418 blk_mq_free_tags(tags, flags);
2419 return NULL;
2420 }
2421
2422 return tags;
2423 }
2424
2425 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2426 unsigned int hctx_idx, int node)
2427 {
2428 int ret;
2429
2430 if (set->ops->init_request) {
2431 ret = set->ops->init_request(set, rq, hctx_idx, node);
2432 if (ret)
2433 return ret;
2434 }
2435
2436 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2437 return 0;
2438 }
2439
2440 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2441 unsigned int hctx_idx, unsigned int depth)
2442 {
2443 unsigned int i, j, entries_per_page, max_order = 4;
2444 size_t rq_size, left;
2445 int node;
2446
2447 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2448 if (node == NUMA_NO_NODE)
2449 node = set->numa_node;
2450
2451 INIT_LIST_HEAD(&tags->page_list);
2452
2453 /*
2454 * rq_size is the size of the request plus driver payload, rounded
2455 * to the cacheline size
2456 */
2457 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2458 cache_line_size());
2459 left = rq_size * depth;
2460
2461 for (i = 0; i < depth; ) {
2462 int this_order = max_order;
2463 struct page *page;
2464 int to_do;
2465 void *p;
2466
2467 while (this_order && left < order_to_size(this_order - 1))
2468 this_order--;
2469
2470 do {
2471 page = alloc_pages_node(node,
2472 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2473 this_order);
2474 if (page)
2475 break;
2476 if (!this_order--)
2477 break;
2478 if (order_to_size(this_order) < rq_size)
2479 break;
2480 } while (1);
2481
2482 if (!page)
2483 goto fail;
2484
2485 page->private = this_order;
2486 list_add_tail(&page->lru, &tags->page_list);
2487
2488 p = page_address(page);
2489 /*
2490 * Allow kmemleak to scan these pages as they contain pointers
2491 * to additional allocations like via ops->init_request().
2492 */
2493 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2494 entries_per_page = order_to_size(this_order) / rq_size;
2495 to_do = min(entries_per_page, depth - i);
2496 left -= to_do * rq_size;
2497 for (j = 0; j < to_do; j++) {
2498 struct request *rq = p;
2499
2500 tags->static_rqs[i] = rq;
2501 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2502 tags->static_rqs[i] = NULL;
2503 goto fail;
2504 }
2505
2506 p += rq_size;
2507 i++;
2508 }
2509 }
2510 return 0;
2511
2512 fail:
2513 blk_mq_free_rqs(set, tags, hctx_idx);
2514 return -ENOMEM;
2515 }
2516
2517 struct rq_iter_data {
2518 struct blk_mq_hw_ctx *hctx;
2519 bool has_rq;
2520 };
2521
2522 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2523 {
2524 struct rq_iter_data *iter_data = data;
2525
2526 if (rq->mq_hctx != iter_data->hctx)
2527 return true;
2528 iter_data->has_rq = true;
2529 return false;
2530 }
2531
2532 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2533 {
2534 struct blk_mq_tags *tags = hctx->sched_tags ?
2535 hctx->sched_tags : hctx->tags;
2536 struct rq_iter_data data = {
2537 .hctx = hctx,
2538 };
2539
2540 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2541 return data.has_rq;
2542 }
2543
2544 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2545 struct blk_mq_hw_ctx *hctx)
2546 {
2547 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2548 return false;
2549 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2550 return false;
2551 return true;
2552 }
2553
2554 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2555 {
2556 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2557 struct blk_mq_hw_ctx, cpuhp_online);
2558
2559 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2560 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2561 return 0;
2562
2563 /*
2564 * Prevent new request from being allocated on the current hctx.
2565 *
2566 * The smp_mb__after_atomic() Pairs with the implied barrier in
2567 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2568 * seen once we return from the tag allocator.
2569 */
2570 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2571 smp_mb__after_atomic();
2572
2573 /*
2574 * Try to grab a reference to the queue and wait for any outstanding
2575 * requests. If we could not grab a reference the queue has been
2576 * frozen and there are no requests.
2577 */
2578 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2579 while (blk_mq_hctx_has_requests(hctx))
2580 msleep(5);
2581 percpu_ref_put(&hctx->queue->q_usage_counter);
2582 }
2583
2584 return 0;
2585 }
2586
2587 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2588 {
2589 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2590 struct blk_mq_hw_ctx, cpuhp_online);
2591
2592 if (cpumask_test_cpu(cpu, hctx->cpumask))
2593 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2594 return 0;
2595 }
2596
2597 /*
2598 * 'cpu' is going away. splice any existing rq_list entries from this
2599 * software queue to the hw queue dispatch list, and ensure that it
2600 * gets run.
2601 */
2602 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2603 {
2604 struct blk_mq_hw_ctx *hctx;
2605 struct blk_mq_ctx *ctx;
2606 LIST_HEAD(tmp);
2607 enum hctx_type type;
2608
2609 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2610 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2611 return 0;
2612
2613 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2614 type = hctx->type;
2615
2616 spin_lock(&ctx->lock);
2617 if (!list_empty(&ctx->rq_lists[type])) {
2618 list_splice_init(&ctx->rq_lists[type], &tmp);
2619 blk_mq_hctx_clear_pending(hctx, ctx);
2620 }
2621 spin_unlock(&ctx->lock);
2622
2623 if (list_empty(&tmp))
2624 return 0;
2625
2626 spin_lock(&hctx->lock);
2627 list_splice_tail_init(&tmp, &hctx->dispatch);
2628 spin_unlock(&hctx->lock);
2629
2630 blk_mq_run_hw_queue(hctx, true);
2631 return 0;
2632 }
2633
2634 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2635 {
2636 if (!(hctx->flags & BLK_MQ_F_STACKING))
2637 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2638 &hctx->cpuhp_online);
2639 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2640 &hctx->cpuhp_dead);
2641 }
2642
2643 /*
2644 * Before freeing hw queue, clearing the flush request reference in
2645 * tags->rqs[] for avoiding potential UAF.
2646 */
2647 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2648 unsigned int queue_depth, struct request *flush_rq)
2649 {
2650 int i;
2651 unsigned long flags;
2652
2653 /* The hw queue may not be mapped yet */
2654 if (!tags)
2655 return;
2656
2657 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2658
2659 for (i = 0; i < queue_depth; i++)
2660 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2661
2662 /*
2663 * Wait until all pending iteration is done.
2664 *
2665 * Request reference is cleared and it is guaranteed to be observed
2666 * after the ->lock is released.
2667 */
2668 spin_lock_irqsave(&tags->lock, flags);
2669 spin_unlock_irqrestore(&tags->lock, flags);
2670 }
2671
2672 /* hctx->ctxs will be freed in queue's release handler */
2673 static void blk_mq_exit_hctx(struct request_queue *q,
2674 struct blk_mq_tag_set *set,
2675 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2676 {
2677 struct request *flush_rq = hctx->fq->flush_rq;
2678
2679 if (blk_mq_hw_queue_mapped(hctx))
2680 blk_mq_tag_idle(hctx);
2681
2682 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2683 set->queue_depth, flush_rq);
2684 if (set->ops->exit_request)
2685 set->ops->exit_request(set, flush_rq, hctx_idx);
2686
2687 if (set->ops->exit_hctx)
2688 set->ops->exit_hctx(hctx, hctx_idx);
2689
2690 blk_mq_remove_cpuhp(hctx);
2691
2692 spin_lock(&q->unused_hctx_lock);
2693 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2694 spin_unlock(&q->unused_hctx_lock);
2695 }
2696
2697 static void blk_mq_exit_hw_queues(struct request_queue *q,
2698 struct blk_mq_tag_set *set, int nr_queue)
2699 {
2700 struct blk_mq_hw_ctx *hctx;
2701 unsigned int i;
2702
2703 queue_for_each_hw_ctx(q, hctx, i) {
2704 if (i == nr_queue)
2705 break;
2706 blk_mq_debugfs_unregister_hctx(hctx);
2707 blk_mq_exit_hctx(q, set, hctx, i);
2708 }
2709 }
2710
2711 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2712 {
2713 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2714
2715 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2716 __alignof__(struct blk_mq_hw_ctx)) !=
2717 sizeof(struct blk_mq_hw_ctx));
2718
2719 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2720 hw_ctx_size += sizeof(struct srcu_struct);
2721
2722 return hw_ctx_size;
2723 }
2724
2725 static int blk_mq_init_hctx(struct request_queue *q,
2726 struct blk_mq_tag_set *set,
2727 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2728 {
2729 hctx->queue_num = hctx_idx;
2730
2731 if (!(hctx->flags & BLK_MQ_F_STACKING))
2732 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2733 &hctx->cpuhp_online);
2734 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2735
2736 hctx->tags = set->tags[hctx_idx];
2737
2738 if (set->ops->init_hctx &&
2739 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2740 goto unregister_cpu_notifier;
2741
2742 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2743 hctx->numa_node))
2744 goto exit_hctx;
2745 return 0;
2746
2747 exit_hctx:
2748 if (set->ops->exit_hctx)
2749 set->ops->exit_hctx(hctx, hctx_idx);
2750 unregister_cpu_notifier:
2751 blk_mq_remove_cpuhp(hctx);
2752 return -1;
2753 }
2754
2755 static struct blk_mq_hw_ctx *
2756 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2757 int node)
2758 {
2759 struct blk_mq_hw_ctx *hctx;
2760 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2761
2762 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2763 if (!hctx)
2764 goto fail_alloc_hctx;
2765
2766 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2767 goto free_hctx;
2768
2769 atomic_set(&hctx->nr_active, 0);
2770 if (node == NUMA_NO_NODE)
2771 node = set->numa_node;
2772 hctx->numa_node = node;
2773
2774 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2775 spin_lock_init(&hctx->lock);
2776 INIT_LIST_HEAD(&hctx->dispatch);
2777 hctx->queue = q;
2778 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2779
2780 INIT_LIST_HEAD(&hctx->hctx_list);
2781
2782 /*
2783 * Allocate space for all possible cpus to avoid allocation at
2784 * runtime
2785 */
2786 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2787 gfp, node);
2788 if (!hctx->ctxs)
2789 goto free_cpumask;
2790
2791 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2792 gfp, node, false, false))
2793 goto free_ctxs;
2794 hctx->nr_ctx = 0;
2795
2796 spin_lock_init(&hctx->dispatch_wait_lock);
2797 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2798 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2799
2800 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2801 if (!hctx->fq)
2802 goto free_bitmap;
2803
2804 if (hctx->flags & BLK_MQ_F_BLOCKING)
2805 init_srcu_struct(hctx->srcu);
2806 blk_mq_hctx_kobj_init(hctx);
2807
2808 return hctx;
2809
2810 free_bitmap:
2811 sbitmap_free(&hctx->ctx_map);
2812 free_ctxs:
2813 kfree(hctx->ctxs);
2814 free_cpumask:
2815 free_cpumask_var(hctx->cpumask);
2816 free_hctx:
2817 kfree(hctx);
2818 fail_alloc_hctx:
2819 return NULL;
2820 }
2821
2822 static void blk_mq_init_cpu_queues(struct request_queue *q,
2823 unsigned int nr_hw_queues)
2824 {
2825 struct blk_mq_tag_set *set = q->tag_set;
2826 unsigned int i, j;
2827
2828 for_each_possible_cpu(i) {
2829 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2830 struct blk_mq_hw_ctx *hctx;
2831 int k;
2832
2833 __ctx->cpu = i;
2834 spin_lock_init(&__ctx->lock);
2835 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2836 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2837
2838 __ctx->queue = q;
2839
2840 /*
2841 * Set local node, IFF we have more than one hw queue. If
2842 * not, we remain on the home node of the device
2843 */
2844 for (j = 0; j < set->nr_maps; j++) {
2845 hctx = blk_mq_map_queue_type(q, j, i);
2846 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2847 hctx->numa_node = cpu_to_node(i);
2848 }
2849 }
2850 }
2851
2852 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2853 int hctx_idx)
2854 {
2855 unsigned int flags = set->flags;
2856 int ret = 0;
2857
2858 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2859 set->queue_depth, set->reserved_tags, flags);
2860 if (!set->tags[hctx_idx])
2861 return false;
2862
2863 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2864 set->queue_depth);
2865 if (!ret)
2866 return true;
2867
2868 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2869 set->tags[hctx_idx] = NULL;
2870 return false;
2871 }
2872
2873 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2874 unsigned int hctx_idx)
2875 {
2876 unsigned int flags = set->flags;
2877
2878 if (set->tags && set->tags[hctx_idx]) {
2879 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2880 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2881 set->tags[hctx_idx] = NULL;
2882 }
2883 }
2884
2885 static void blk_mq_map_swqueue(struct request_queue *q)
2886 {
2887 unsigned int i, j, hctx_idx;
2888 struct blk_mq_hw_ctx *hctx;
2889 struct blk_mq_ctx *ctx;
2890 struct blk_mq_tag_set *set = q->tag_set;
2891
2892 queue_for_each_hw_ctx(q, hctx, i) {
2893 cpumask_clear(hctx->cpumask);
2894 hctx->nr_ctx = 0;
2895 hctx->dispatch_from = NULL;
2896 }
2897
2898 /*
2899 * Map software to hardware queues.
2900 *
2901 * If the cpu isn't present, the cpu is mapped to first hctx.
2902 */
2903 for_each_possible_cpu(i) {
2904
2905 ctx = per_cpu_ptr(q->queue_ctx, i);
2906 for (j = 0; j < set->nr_maps; j++) {
2907 if (!set->map[j].nr_queues) {
2908 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2909 HCTX_TYPE_DEFAULT, i);
2910 continue;
2911 }
2912 hctx_idx = set->map[j].mq_map[i];
2913 /* unmapped hw queue can be remapped after CPU topo changed */
2914 if (!set->tags[hctx_idx] &&
2915 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2916 /*
2917 * If tags initialization fail for some hctx,
2918 * that hctx won't be brought online. In this
2919 * case, remap the current ctx to hctx[0] which
2920 * is guaranteed to always have tags allocated
2921 */
2922 set->map[j].mq_map[i] = 0;
2923 }
2924
2925 hctx = blk_mq_map_queue_type(q, j, i);
2926 ctx->hctxs[j] = hctx;
2927 /*
2928 * If the CPU is already set in the mask, then we've
2929 * mapped this one already. This can happen if
2930 * devices share queues across queue maps.
2931 */
2932 if (cpumask_test_cpu(i, hctx->cpumask))
2933 continue;
2934
2935 cpumask_set_cpu(i, hctx->cpumask);
2936 hctx->type = j;
2937 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2938 hctx->ctxs[hctx->nr_ctx++] = ctx;
2939
2940 /*
2941 * If the nr_ctx type overflows, we have exceeded the
2942 * amount of sw queues we can support.
2943 */
2944 BUG_ON(!hctx->nr_ctx);
2945 }
2946
2947 for (; j < HCTX_MAX_TYPES; j++)
2948 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2949 HCTX_TYPE_DEFAULT, i);
2950 }
2951
2952 queue_for_each_hw_ctx(q, hctx, i) {
2953 /*
2954 * If no software queues are mapped to this hardware queue,
2955 * disable it and free the request entries.
2956 */
2957 if (!hctx->nr_ctx) {
2958 /* Never unmap queue 0. We need it as a
2959 * fallback in case of a new remap fails
2960 * allocation
2961 */
2962 if (i && set->tags[i])
2963 blk_mq_free_map_and_requests(set, i);
2964
2965 hctx->tags = NULL;
2966 continue;
2967 }
2968
2969 hctx->tags = set->tags[i];
2970 WARN_ON(!hctx->tags);
2971
2972 /*
2973 * Set the map size to the number of mapped software queues.
2974 * This is more accurate and more efficient than looping
2975 * over all possibly mapped software queues.
2976 */
2977 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2978
2979 /*
2980 * Initialize batch roundrobin counts
2981 */
2982 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2983 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2984 }
2985 }
2986
2987 /*
2988 * Caller needs to ensure that we're either frozen/quiesced, or that
2989 * the queue isn't live yet.
2990 */
2991 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2992 {
2993 struct blk_mq_hw_ctx *hctx;
2994 int i;
2995
2996 queue_for_each_hw_ctx(q, hctx, i) {
2997 if (shared)
2998 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2999 else
3000 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3001 }
3002 }
3003
3004 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3005 bool shared)
3006 {
3007 struct request_queue *q;
3008
3009 lockdep_assert_held(&set->tag_list_lock);
3010
3011 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3012 blk_mq_freeze_queue(q);
3013 queue_set_hctx_shared(q, shared);
3014 blk_mq_unfreeze_queue(q);
3015 }
3016 }
3017
3018 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3019 {
3020 struct blk_mq_tag_set *set = q->tag_set;
3021
3022 mutex_lock(&set->tag_list_lock);
3023 list_del(&q->tag_set_list);
3024 if (list_is_singular(&set->tag_list)) {
3025 /* just transitioned to unshared */
3026 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3027 /* update existing queue */
3028 blk_mq_update_tag_set_shared(set, false);
3029 }
3030 mutex_unlock(&set->tag_list_lock);
3031 INIT_LIST_HEAD(&q->tag_set_list);
3032 }
3033
3034 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3035 struct request_queue *q)
3036 {
3037 mutex_lock(&set->tag_list_lock);
3038
3039 /*
3040 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3041 */
3042 if (!list_empty(&set->tag_list) &&
3043 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3044 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3045 /* update existing queue */
3046 blk_mq_update_tag_set_shared(set, true);
3047 }
3048 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3049 queue_set_hctx_shared(q, true);
3050 list_add_tail(&q->tag_set_list, &set->tag_list);
3051
3052 mutex_unlock(&set->tag_list_lock);
3053 }
3054
3055 /* All allocations will be freed in release handler of q->mq_kobj */
3056 static int blk_mq_alloc_ctxs(struct request_queue *q)
3057 {
3058 struct blk_mq_ctxs *ctxs;
3059 int cpu;
3060
3061 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3062 if (!ctxs)
3063 return -ENOMEM;
3064
3065 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3066 if (!ctxs->queue_ctx)
3067 goto fail;
3068
3069 for_each_possible_cpu(cpu) {
3070 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3071 ctx->ctxs = ctxs;
3072 }
3073
3074 q->mq_kobj = &ctxs->kobj;
3075 q->queue_ctx = ctxs->queue_ctx;
3076
3077 return 0;
3078 fail:
3079 kfree(ctxs);
3080 return -ENOMEM;
3081 }
3082
3083 /*
3084 * It is the actual release handler for mq, but we do it from
3085 * request queue's release handler for avoiding use-after-free
3086 * and headache because q->mq_kobj shouldn't have been introduced,
3087 * but we can't group ctx/kctx kobj without it.
3088 */
3089 void blk_mq_release(struct request_queue *q)
3090 {
3091 struct blk_mq_hw_ctx *hctx, *next;
3092 int i;
3093
3094 queue_for_each_hw_ctx(q, hctx, i)
3095 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3096
3097 /* all hctx are in .unused_hctx_list now */
3098 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3099 list_del_init(&hctx->hctx_list);
3100 kobject_put(&hctx->kobj);
3101 }
3102
3103 kfree(q->queue_hw_ctx);
3104
3105 /*
3106 * release .mq_kobj and sw queue's kobject now because
3107 * both share lifetime with request queue.
3108 */
3109 blk_mq_sysfs_deinit(q);
3110 }
3111
3112 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3113 void *queuedata)
3114 {
3115 struct request_queue *q;
3116 int ret;
3117
3118 q = blk_alloc_queue(set->numa_node);
3119 if (!q)
3120 return ERR_PTR(-ENOMEM);
3121 q->queuedata = queuedata;
3122 ret = blk_mq_init_allocated_queue(set, q);
3123 if (ret) {
3124 blk_cleanup_queue(q);
3125 return ERR_PTR(ret);
3126 }
3127 return q;
3128 }
3129 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3130
3131 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3132 {
3133 return blk_mq_init_queue_data(set, NULL);
3134 }
3135 EXPORT_SYMBOL(blk_mq_init_queue);
3136
3137 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata)
3138 {
3139 struct request_queue *q;
3140 struct gendisk *disk;
3141
3142 q = blk_mq_init_queue_data(set, queuedata);
3143 if (IS_ERR(q))
3144 return ERR_CAST(q);
3145
3146 disk = __alloc_disk_node(0, set->numa_node);
3147 if (!disk) {
3148 blk_cleanup_queue(q);
3149 return ERR_PTR(-ENOMEM);
3150 }
3151 disk->queue = q;
3152 return disk;
3153 }
3154 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3155
3156 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3157 struct blk_mq_tag_set *set, struct request_queue *q,
3158 int hctx_idx, int node)
3159 {
3160 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3161
3162 /* reuse dead hctx first */
3163 spin_lock(&q->unused_hctx_lock);
3164 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3165 if (tmp->numa_node == node) {
3166 hctx = tmp;
3167 break;
3168 }
3169 }
3170 if (hctx)
3171 list_del_init(&hctx->hctx_list);
3172 spin_unlock(&q->unused_hctx_lock);
3173
3174 if (!hctx)
3175 hctx = blk_mq_alloc_hctx(q, set, node);
3176 if (!hctx)
3177 goto fail;
3178
3179 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3180 goto free_hctx;
3181
3182 return hctx;
3183
3184 free_hctx:
3185 kobject_put(&hctx->kobj);
3186 fail:
3187 return NULL;
3188 }
3189
3190 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3191 struct request_queue *q)
3192 {
3193 int i, j, end;
3194 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3195
3196 if (q->nr_hw_queues < set->nr_hw_queues) {
3197 struct blk_mq_hw_ctx **new_hctxs;
3198
3199 new_hctxs = kcalloc_node(set->nr_hw_queues,
3200 sizeof(*new_hctxs), GFP_KERNEL,
3201 set->numa_node);
3202 if (!new_hctxs)
3203 return;
3204 if (hctxs)
3205 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3206 sizeof(*hctxs));
3207 q->queue_hw_ctx = new_hctxs;
3208 kfree(hctxs);
3209 hctxs = new_hctxs;
3210 }
3211
3212 /* protect against switching io scheduler */
3213 mutex_lock(&q->sysfs_lock);
3214 for (i = 0; i < set->nr_hw_queues; i++) {
3215 int node;
3216 struct blk_mq_hw_ctx *hctx;
3217
3218 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3219 /*
3220 * If the hw queue has been mapped to another numa node,
3221 * we need to realloc the hctx. If allocation fails, fallback
3222 * to use the previous one.
3223 */
3224 if (hctxs[i] && (hctxs[i]->numa_node == node))
3225 continue;
3226
3227 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3228 if (hctx) {
3229 if (hctxs[i])
3230 blk_mq_exit_hctx(q, set, hctxs[i], i);
3231 hctxs[i] = hctx;
3232 } else {
3233 if (hctxs[i])
3234 pr_warn("Allocate new hctx on node %d fails,\
3235 fallback to previous one on node %d\n",
3236 node, hctxs[i]->numa_node);
3237 else
3238 break;
3239 }
3240 }
3241 /*
3242 * Increasing nr_hw_queues fails. Free the newly allocated
3243 * hctxs and keep the previous q->nr_hw_queues.
3244 */
3245 if (i != set->nr_hw_queues) {
3246 j = q->nr_hw_queues;
3247 end = i;
3248 } else {
3249 j = i;
3250 end = q->nr_hw_queues;
3251 q->nr_hw_queues = set->nr_hw_queues;
3252 }
3253
3254 for (; j < end; j++) {
3255 struct blk_mq_hw_ctx *hctx = hctxs[j];
3256
3257 if (hctx) {
3258 if (hctx->tags)
3259 blk_mq_free_map_and_requests(set, j);
3260 blk_mq_exit_hctx(q, set, hctx, j);
3261 hctxs[j] = NULL;
3262 }
3263 }
3264 mutex_unlock(&q->sysfs_lock);
3265 }
3266
3267 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3268 struct request_queue *q)
3269 {
3270 /* mark the queue as mq asap */
3271 q->mq_ops = set->ops;
3272
3273 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3274 blk_mq_poll_stats_bkt,
3275 BLK_MQ_POLL_STATS_BKTS, q);
3276 if (!q->poll_cb)
3277 goto err_exit;
3278
3279 if (blk_mq_alloc_ctxs(q))
3280 goto err_poll;
3281
3282 /* init q->mq_kobj and sw queues' kobjects */
3283 blk_mq_sysfs_init(q);
3284
3285 INIT_LIST_HEAD(&q->unused_hctx_list);
3286 spin_lock_init(&q->unused_hctx_lock);
3287
3288 blk_mq_realloc_hw_ctxs(set, q);
3289 if (!q->nr_hw_queues)
3290 goto err_hctxs;
3291
3292 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3293 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3294
3295 q->tag_set = set;
3296
3297 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3298 if (set->nr_maps > HCTX_TYPE_POLL &&
3299 set->map[HCTX_TYPE_POLL].nr_queues)
3300 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3301
3302 q->sg_reserved_size = INT_MAX;
3303
3304 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3305 INIT_LIST_HEAD(&q->requeue_list);
3306 spin_lock_init(&q->requeue_lock);
3307
3308 q->nr_requests = set->queue_depth;
3309
3310 /*
3311 * Default to classic polling
3312 */
3313 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3314
3315 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3316 blk_mq_add_queue_tag_set(set, q);
3317 blk_mq_map_swqueue(q);
3318 return 0;
3319
3320 err_hctxs:
3321 kfree(q->queue_hw_ctx);
3322 q->nr_hw_queues = 0;
3323 blk_mq_sysfs_deinit(q);
3324 err_poll:
3325 blk_stat_free_callback(q->poll_cb);
3326 q->poll_cb = NULL;
3327 err_exit:
3328 q->mq_ops = NULL;
3329 return -ENOMEM;
3330 }
3331 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3332
3333 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3334 void blk_mq_exit_queue(struct request_queue *q)
3335 {
3336 struct blk_mq_tag_set *set = q->tag_set;
3337
3338 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3339 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3340 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3341 blk_mq_del_queue_tag_set(q);
3342 }
3343
3344 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3345 {
3346 int i;
3347
3348 for (i = 0; i < set->nr_hw_queues; i++) {
3349 if (!__blk_mq_alloc_map_and_request(set, i))
3350 goto out_unwind;
3351 cond_resched();
3352 }
3353
3354 return 0;
3355
3356 out_unwind:
3357 while (--i >= 0)
3358 blk_mq_free_map_and_requests(set, i);
3359
3360 return -ENOMEM;
3361 }
3362
3363 /*
3364 * Allocate the request maps associated with this tag_set. Note that this
3365 * may reduce the depth asked for, if memory is tight. set->queue_depth
3366 * will be updated to reflect the allocated depth.
3367 */
3368 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3369 {
3370 unsigned int depth;
3371 int err;
3372
3373 depth = set->queue_depth;
3374 do {
3375 err = __blk_mq_alloc_rq_maps(set);
3376 if (!err)
3377 break;
3378
3379 set->queue_depth >>= 1;
3380 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3381 err = -ENOMEM;
3382 break;
3383 }
3384 } while (set->queue_depth);
3385
3386 if (!set->queue_depth || err) {
3387 pr_err("blk-mq: failed to allocate request map\n");
3388 return -ENOMEM;
3389 }
3390
3391 if (depth != set->queue_depth)
3392 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3393 depth, set->queue_depth);
3394
3395 return 0;
3396 }
3397
3398 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3399 {
3400 /*
3401 * blk_mq_map_queues() and multiple .map_queues() implementations
3402 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3403 * number of hardware queues.
3404 */
3405 if (set->nr_maps == 1)
3406 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3407
3408 if (set->ops->map_queues && !is_kdump_kernel()) {
3409 int i;
3410
3411 /*
3412 * transport .map_queues is usually done in the following
3413 * way:
3414 *
3415 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3416 * mask = get_cpu_mask(queue)
3417 * for_each_cpu(cpu, mask)
3418 * set->map[x].mq_map[cpu] = queue;
3419 * }
3420 *
3421 * When we need to remap, the table has to be cleared for
3422 * killing stale mapping since one CPU may not be mapped
3423 * to any hw queue.
3424 */
3425 for (i = 0; i < set->nr_maps; i++)
3426 blk_mq_clear_mq_map(&set->map[i]);
3427
3428 return set->ops->map_queues(set);
3429 } else {
3430 BUG_ON(set->nr_maps > 1);
3431 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3432 }
3433 }
3434
3435 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3436 int cur_nr_hw_queues, int new_nr_hw_queues)
3437 {
3438 struct blk_mq_tags **new_tags;
3439
3440 if (cur_nr_hw_queues >= new_nr_hw_queues)
3441 return 0;
3442
3443 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3444 GFP_KERNEL, set->numa_node);
3445 if (!new_tags)
3446 return -ENOMEM;
3447
3448 if (set->tags)
3449 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3450 sizeof(*set->tags));
3451 kfree(set->tags);
3452 set->tags = new_tags;
3453 set->nr_hw_queues = new_nr_hw_queues;
3454
3455 return 0;
3456 }
3457
3458 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3459 int new_nr_hw_queues)
3460 {
3461 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3462 }
3463
3464 /*
3465 * Alloc a tag set to be associated with one or more request queues.
3466 * May fail with EINVAL for various error conditions. May adjust the
3467 * requested depth down, if it's too large. In that case, the set
3468 * value will be stored in set->queue_depth.
3469 */
3470 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3471 {
3472 int i, ret;
3473
3474 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3475
3476 if (!set->nr_hw_queues)
3477 return -EINVAL;
3478 if (!set->queue_depth)
3479 return -EINVAL;
3480 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3481 return -EINVAL;
3482
3483 if (!set->ops->queue_rq)
3484 return -EINVAL;
3485
3486 if (!set->ops->get_budget ^ !set->ops->put_budget)
3487 return -EINVAL;
3488
3489 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3490 pr_info("blk-mq: reduced tag depth to %u\n",
3491 BLK_MQ_MAX_DEPTH);
3492 set->queue_depth = BLK_MQ_MAX_DEPTH;
3493 }
3494
3495 if (!set->nr_maps)
3496 set->nr_maps = 1;
3497 else if (set->nr_maps > HCTX_MAX_TYPES)
3498 return -EINVAL;
3499
3500 /*
3501 * If a crashdump is active, then we are potentially in a very
3502 * memory constrained environment. Limit us to 1 queue and
3503 * 64 tags to prevent using too much memory.
3504 */
3505 if (is_kdump_kernel()) {
3506 set->nr_hw_queues = 1;
3507 set->nr_maps = 1;
3508 set->queue_depth = min(64U, set->queue_depth);
3509 }
3510 /*
3511 * There is no use for more h/w queues than cpus if we just have
3512 * a single map
3513 */
3514 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3515 set->nr_hw_queues = nr_cpu_ids;
3516
3517 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3518 return -ENOMEM;
3519
3520 ret = -ENOMEM;
3521 for (i = 0; i < set->nr_maps; i++) {
3522 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3523 sizeof(set->map[i].mq_map[0]),
3524 GFP_KERNEL, set->numa_node);
3525 if (!set->map[i].mq_map)
3526 goto out_free_mq_map;
3527 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3528 }
3529
3530 ret = blk_mq_update_queue_map(set);
3531 if (ret)
3532 goto out_free_mq_map;
3533
3534 ret = blk_mq_alloc_map_and_requests(set);
3535 if (ret)
3536 goto out_free_mq_map;
3537
3538 if (blk_mq_is_sbitmap_shared(set->flags)) {
3539 atomic_set(&set->active_queues_shared_sbitmap, 0);
3540
3541 if (blk_mq_init_shared_sbitmap(set)) {
3542 ret = -ENOMEM;
3543 goto out_free_mq_rq_maps;
3544 }
3545 }
3546
3547 mutex_init(&set->tag_list_lock);
3548 INIT_LIST_HEAD(&set->tag_list);
3549
3550 return 0;
3551
3552 out_free_mq_rq_maps:
3553 for (i = 0; i < set->nr_hw_queues; i++)
3554 blk_mq_free_map_and_requests(set, i);
3555 out_free_mq_map:
3556 for (i = 0; i < set->nr_maps; i++) {
3557 kfree(set->map[i].mq_map);
3558 set->map[i].mq_map = NULL;
3559 }
3560 kfree(set->tags);
3561 set->tags = NULL;
3562 return ret;
3563 }
3564 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3565
3566 /* allocate and initialize a tagset for a simple single-queue device */
3567 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3568 const struct blk_mq_ops *ops, unsigned int queue_depth,
3569 unsigned int set_flags)
3570 {
3571 memset(set, 0, sizeof(*set));
3572 set->ops = ops;
3573 set->nr_hw_queues = 1;
3574 set->nr_maps = 1;
3575 set->queue_depth = queue_depth;
3576 set->numa_node = NUMA_NO_NODE;
3577 set->flags = set_flags;
3578 return blk_mq_alloc_tag_set(set);
3579 }
3580 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3581
3582 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3583 {
3584 int i, j;
3585
3586 for (i = 0; i < set->nr_hw_queues; i++)
3587 blk_mq_free_map_and_requests(set, i);
3588
3589 if (blk_mq_is_sbitmap_shared(set->flags))
3590 blk_mq_exit_shared_sbitmap(set);
3591
3592 for (j = 0; j < set->nr_maps; j++) {
3593 kfree(set->map[j].mq_map);
3594 set->map[j].mq_map = NULL;
3595 }
3596
3597 kfree(set->tags);
3598 set->tags = NULL;
3599 }
3600 EXPORT_SYMBOL(blk_mq_free_tag_set);
3601
3602 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3603 {
3604 struct blk_mq_tag_set *set = q->tag_set;
3605 struct blk_mq_hw_ctx *hctx;
3606 int i, ret;
3607
3608 if (!set)
3609 return -EINVAL;
3610
3611 if (q->nr_requests == nr)
3612 return 0;
3613
3614 blk_mq_freeze_queue(q);
3615 blk_mq_quiesce_queue(q);
3616
3617 ret = 0;
3618 queue_for_each_hw_ctx(q, hctx, i) {
3619 if (!hctx->tags)
3620 continue;
3621 /*
3622 * If we're using an MQ scheduler, just update the scheduler
3623 * queue depth. This is similar to what the old code would do.
3624 */
3625 if (!hctx->sched_tags) {
3626 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3627 false);
3628 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3629 blk_mq_tag_resize_shared_sbitmap(set, nr);
3630 } else {
3631 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3632 nr, true);
3633 if (blk_mq_is_sbitmap_shared(set->flags)) {
3634 hctx->sched_tags->bitmap_tags =
3635 &q->sched_bitmap_tags;
3636 hctx->sched_tags->breserved_tags =
3637 &q->sched_breserved_tags;
3638 }
3639 }
3640 if (ret)
3641 break;
3642 if (q->elevator && q->elevator->type->ops.depth_updated)
3643 q->elevator->type->ops.depth_updated(hctx);
3644 }
3645 if (!ret) {
3646 q->nr_requests = nr;
3647 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3648 sbitmap_queue_resize(&q->sched_bitmap_tags,
3649 nr - set->reserved_tags);
3650 }
3651
3652 blk_mq_unquiesce_queue(q);
3653 blk_mq_unfreeze_queue(q);
3654
3655 return ret;
3656 }
3657
3658 /*
3659 * request_queue and elevator_type pair.
3660 * It is just used by __blk_mq_update_nr_hw_queues to cache
3661 * the elevator_type associated with a request_queue.
3662 */
3663 struct blk_mq_qe_pair {
3664 struct list_head node;
3665 struct request_queue *q;
3666 struct elevator_type *type;
3667 };
3668
3669 /*
3670 * Cache the elevator_type in qe pair list and switch the
3671 * io scheduler to 'none'
3672 */
3673 static bool blk_mq_elv_switch_none(struct list_head *head,
3674 struct request_queue *q)
3675 {
3676 struct blk_mq_qe_pair *qe;
3677
3678 if (!q->elevator)
3679 return true;
3680
3681 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3682 if (!qe)
3683 return false;
3684
3685 INIT_LIST_HEAD(&qe->node);
3686 qe->q = q;
3687 qe->type = q->elevator->type;
3688 list_add(&qe->node, head);
3689
3690 mutex_lock(&q->sysfs_lock);
3691 /*
3692 * After elevator_switch_mq, the previous elevator_queue will be
3693 * released by elevator_release. The reference of the io scheduler
3694 * module get by elevator_get will also be put. So we need to get
3695 * a reference of the io scheduler module here to prevent it to be
3696 * removed.
3697 */
3698 __module_get(qe->type->elevator_owner);
3699 elevator_switch_mq(q, NULL);
3700 mutex_unlock(&q->sysfs_lock);
3701
3702 return true;
3703 }
3704
3705 static void blk_mq_elv_switch_back(struct list_head *head,
3706 struct request_queue *q)
3707 {
3708 struct blk_mq_qe_pair *qe;
3709 struct elevator_type *t = NULL;
3710
3711 list_for_each_entry(qe, head, node)
3712 if (qe->q == q) {
3713 t = qe->type;
3714 break;
3715 }
3716
3717 if (!t)
3718 return;
3719
3720 list_del(&qe->node);
3721 kfree(qe);
3722
3723 mutex_lock(&q->sysfs_lock);
3724 elevator_switch_mq(q, t);
3725 mutex_unlock(&q->sysfs_lock);
3726 }
3727
3728 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3729 int nr_hw_queues)
3730 {
3731 struct request_queue *q;
3732 LIST_HEAD(head);
3733 int prev_nr_hw_queues;
3734
3735 lockdep_assert_held(&set->tag_list_lock);
3736
3737 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3738 nr_hw_queues = nr_cpu_ids;
3739 if (nr_hw_queues < 1)
3740 return;
3741 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3742 return;
3743
3744 list_for_each_entry(q, &set->tag_list, tag_set_list)
3745 blk_mq_freeze_queue(q);
3746 /*
3747 * Switch IO scheduler to 'none', cleaning up the data associated
3748 * with the previous scheduler. We will switch back once we are done
3749 * updating the new sw to hw queue mappings.
3750 */
3751 list_for_each_entry(q, &set->tag_list, tag_set_list)
3752 if (!blk_mq_elv_switch_none(&head, q))
3753 goto switch_back;
3754
3755 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3756 blk_mq_debugfs_unregister_hctxs(q);
3757 blk_mq_sysfs_unregister(q);
3758 }
3759
3760 prev_nr_hw_queues = set->nr_hw_queues;
3761 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3762 0)
3763 goto reregister;
3764
3765 set->nr_hw_queues = nr_hw_queues;
3766 fallback:
3767 blk_mq_update_queue_map(set);
3768 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3769 blk_mq_realloc_hw_ctxs(set, q);
3770 if (q->nr_hw_queues != set->nr_hw_queues) {
3771 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3772 nr_hw_queues, prev_nr_hw_queues);
3773 set->nr_hw_queues = prev_nr_hw_queues;
3774 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3775 goto fallback;
3776 }
3777 blk_mq_map_swqueue(q);
3778 }
3779
3780 reregister:
3781 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3782 blk_mq_sysfs_register(q);
3783 blk_mq_debugfs_register_hctxs(q);
3784 }
3785
3786 switch_back:
3787 list_for_each_entry(q, &set->tag_list, tag_set_list)
3788 blk_mq_elv_switch_back(&head, q);
3789
3790 list_for_each_entry(q, &set->tag_list, tag_set_list)
3791 blk_mq_unfreeze_queue(q);
3792 }
3793
3794 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3795 {
3796 mutex_lock(&set->tag_list_lock);
3797 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3798 mutex_unlock(&set->tag_list_lock);
3799 }
3800 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3801
3802 /* Enable polling stats and return whether they were already enabled. */
3803 static bool blk_poll_stats_enable(struct request_queue *q)
3804 {
3805 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3806 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3807 return true;
3808 blk_stat_add_callback(q, q->poll_cb);
3809 return false;
3810 }
3811
3812 static void blk_mq_poll_stats_start(struct request_queue *q)
3813 {
3814 /*
3815 * We don't arm the callback if polling stats are not enabled or the
3816 * callback is already active.
3817 */
3818 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3819 blk_stat_is_active(q->poll_cb))
3820 return;
3821
3822 blk_stat_activate_msecs(q->poll_cb, 100);
3823 }
3824
3825 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3826 {
3827 struct request_queue *q = cb->data;
3828 int bucket;
3829
3830 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3831 if (cb->stat[bucket].nr_samples)
3832 q->poll_stat[bucket] = cb->stat[bucket];
3833 }
3834 }
3835
3836 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3837 struct request *rq)
3838 {
3839 unsigned long ret = 0;
3840 int bucket;
3841
3842 /*
3843 * If stats collection isn't on, don't sleep but turn it on for
3844 * future users
3845 */
3846 if (!blk_poll_stats_enable(q))
3847 return 0;
3848
3849 /*
3850 * As an optimistic guess, use half of the mean service time
3851 * for this type of request. We can (and should) make this smarter.
3852 * For instance, if the completion latencies are tight, we can
3853 * get closer than just half the mean. This is especially
3854 * important on devices where the completion latencies are longer
3855 * than ~10 usec. We do use the stats for the relevant IO size
3856 * if available which does lead to better estimates.
3857 */
3858 bucket = blk_mq_poll_stats_bkt(rq);
3859 if (bucket < 0)
3860 return ret;
3861
3862 if (q->poll_stat[bucket].nr_samples)
3863 ret = (q->poll_stat[bucket].mean + 1) / 2;
3864
3865 return ret;
3866 }
3867
3868 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3869 struct request *rq)
3870 {
3871 struct hrtimer_sleeper hs;
3872 enum hrtimer_mode mode;
3873 unsigned int nsecs;
3874 ktime_t kt;
3875
3876 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3877 return false;
3878
3879 /*
3880 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3881 *
3882 * 0: use half of prev avg
3883 * >0: use this specific value
3884 */
3885 if (q->poll_nsec > 0)
3886 nsecs = q->poll_nsec;
3887 else
3888 nsecs = blk_mq_poll_nsecs(q, rq);
3889
3890 if (!nsecs)
3891 return false;
3892
3893 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3894
3895 /*
3896 * This will be replaced with the stats tracking code, using
3897 * 'avg_completion_time / 2' as the pre-sleep target.
3898 */
3899 kt = nsecs;
3900
3901 mode = HRTIMER_MODE_REL;
3902 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3903 hrtimer_set_expires(&hs.timer, kt);
3904
3905 do {
3906 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3907 break;
3908 set_current_state(TASK_UNINTERRUPTIBLE);
3909 hrtimer_sleeper_start_expires(&hs, mode);
3910 if (hs.task)
3911 io_schedule();
3912 hrtimer_cancel(&hs.timer);
3913 mode = HRTIMER_MODE_ABS;
3914 } while (hs.task && !signal_pending(current));
3915
3916 __set_current_state(TASK_RUNNING);
3917 destroy_hrtimer_on_stack(&hs.timer);
3918 return true;
3919 }
3920
3921 static bool blk_mq_poll_hybrid(struct request_queue *q,
3922 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3923 {
3924 struct request *rq;
3925
3926 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3927 return false;
3928
3929 if (!blk_qc_t_is_internal(cookie))
3930 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3931 else {
3932 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3933 /*
3934 * With scheduling, if the request has completed, we'll
3935 * get a NULL return here, as we clear the sched tag when
3936 * that happens. The request still remains valid, like always,
3937 * so we should be safe with just the NULL check.
3938 */
3939 if (!rq)
3940 return false;
3941 }
3942
3943 return blk_mq_poll_hybrid_sleep(q, rq);
3944 }
3945
3946 /**
3947 * blk_poll - poll for IO completions
3948 * @q: the queue
3949 * @cookie: cookie passed back at IO submission time
3950 * @spin: whether to spin for completions
3951 *
3952 * Description:
3953 * Poll for completions on the passed in queue. Returns number of
3954 * completed entries found. If @spin is true, then blk_poll will continue
3955 * looping until at least one completion is found, unless the task is
3956 * otherwise marked running (or we need to reschedule).
3957 */
3958 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3959 {
3960 struct blk_mq_hw_ctx *hctx;
3961 unsigned int state;
3962
3963 if (!blk_qc_t_valid(cookie) ||
3964 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3965 return 0;
3966
3967 if (current->plug)
3968 blk_flush_plug_list(current->plug, false);
3969
3970 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3971
3972 /*
3973 * If we sleep, have the caller restart the poll loop to reset
3974 * the state. Like for the other success return cases, the
3975 * caller is responsible for checking if the IO completed. If
3976 * the IO isn't complete, we'll get called again and will go
3977 * straight to the busy poll loop. If specified not to spin,
3978 * we also should not sleep.
3979 */
3980 if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3981 return 1;
3982
3983 hctx->poll_considered++;
3984
3985 state = get_current_state();
3986 do {
3987 int ret;
3988
3989 hctx->poll_invoked++;
3990
3991 ret = q->mq_ops->poll(hctx);
3992 if (ret > 0) {
3993 hctx->poll_success++;
3994 __set_current_state(TASK_RUNNING);
3995 return ret;
3996 }
3997
3998 if (signal_pending_state(state, current))
3999 __set_current_state(TASK_RUNNING);
4000
4001 if (task_is_running(current))
4002 return 1;
4003 if (ret < 0 || !spin)
4004 break;
4005 cpu_relax();
4006 } while (!need_resched());
4007
4008 __set_current_state(TASK_RUNNING);
4009 return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(blk_poll);
4012
4013 unsigned int blk_mq_rq_cpu(struct request *rq)
4014 {
4015 return rq->mq_ctx->cpu;
4016 }
4017 EXPORT_SYMBOL(blk_mq_rq_cpu);
4018
4019 static int __init blk_mq_init(void)
4020 {
4021 int i;
4022
4023 for_each_possible_cpu(i)
4024 init_llist_head(&per_cpu(blk_cpu_done, i));
4025 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4026
4027 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4028 "block/softirq:dead", NULL,
4029 blk_softirq_cpu_dead);
4030 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4031 blk_mq_hctx_notify_dead);
4032 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4033 blk_mq_hctx_notify_online,
4034 blk_mq_hctx_notify_offline);
4035 return 0;
4036 }
4037 subsys_initcall(blk_mq_init);