]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
40cba1b1978f24fe8e22af5dd1640768f3bf1fd3
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
89 };
90
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
94 {
95 struct mq_inflight *mi = priv;
96
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 blk_mq_run_hw_queues(q, false);
129 }
130 }
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132
133 void blk_mq_freeze_queue_wait(struct request_queue *q)
134 {
135 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
140 unsigned long timeout)
141 {
142 return wait_event_timeout(q->mq_freeze_wq,
143 percpu_ref_is_zero(&q->q_usage_counter),
144 timeout);
145 }
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 void blk_freeze_queue(struct request_queue *q)
153 {
154 /*
155 * In the !blk_mq case we are only calling this to kill the
156 * q_usage_counter, otherwise this increases the freeze depth
157 * and waits for it to return to zero. For this reason there is
158 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159 * exported to drivers as the only user for unfreeze is blk_mq.
160 */
161 blk_freeze_queue_start(q);
162 blk_mq_freeze_queue_wait(q);
163 }
164
165 void blk_mq_freeze_queue(struct request_queue *q)
166 {
167 /*
168 * ...just an alias to keep freeze and unfreeze actions balanced
169 * in the blk_mq_* namespace
170 */
171 blk_freeze_queue(q);
172 }
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174
175 void blk_mq_unfreeze_queue(struct request_queue *q)
176 {
177 int freeze_depth;
178
179 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
180 WARN_ON_ONCE(freeze_depth < 0);
181 if (!freeze_depth) {
182 percpu_ref_reinit(&q->q_usage_counter);
183 wake_up_all(&q->mq_freeze_wq);
184 }
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187
188 /*
189 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
190 * mpt3sas driver such that this function can be removed.
191 */
192 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
193 {
194 unsigned long flags;
195
196 spin_lock_irqsave(q->queue_lock, flags);
197 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 spin_unlock_irqrestore(q->queue_lock, flags);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
201
202 /**
203 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 * @q: request queue.
205 *
206 * Note: this function does not prevent that the struct request end_io()
207 * callback function is invoked. Once this function is returned, we make
208 * sure no dispatch can happen until the queue is unquiesced via
209 * blk_mq_unquiesce_queue().
210 */
211 void blk_mq_quiesce_queue(struct request_queue *q)
212 {
213 struct blk_mq_hw_ctx *hctx;
214 unsigned int i;
215 bool rcu = false;
216
217 blk_mq_quiesce_queue_nowait(q);
218
219 queue_for_each_hw_ctx(q, hctx, i) {
220 if (hctx->flags & BLK_MQ_F_BLOCKING)
221 synchronize_srcu(hctx->queue_rq_srcu);
222 else
223 rcu = true;
224 }
225 if (rcu)
226 synchronize_rcu();
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
229
230 /*
231 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
232 * @q: request queue.
233 *
234 * This function recovers queue into the state before quiescing
235 * which is done by blk_mq_quiesce_queue.
236 */
237 void blk_mq_unquiesce_queue(struct request_queue *q)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(q->queue_lock, flags);
242 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243 spin_unlock_irqrestore(q->queue_lock, flags);
244
245 /* dispatch requests which are inserted during quiescing */
246 blk_mq_run_hw_queues(q, true);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
249
250 void blk_mq_wake_waiters(struct request_queue *q)
251 {
252 struct blk_mq_hw_ctx *hctx;
253 unsigned int i;
254
255 queue_for_each_hw_ctx(q, hctx, i)
256 if (blk_mq_hw_queue_mapped(hctx))
257 blk_mq_tag_wakeup_all(hctx->tags, true);
258
259 /*
260 * If we are called because the queue has now been marked as
261 * dying, we need to ensure that processes currently waiting on
262 * the queue are notified as well.
263 */
264 wake_up_all(&q->mq_freeze_wq);
265 }
266
267 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
268 {
269 return blk_mq_has_free_tags(hctx->tags);
270 }
271 EXPORT_SYMBOL(blk_mq_can_queue);
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 unsigned int tag, unsigned int op)
275 {
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
278
279 rq->rq_flags = 0;
280
281 if (data->flags & BLK_MQ_REQ_INTERNAL) {
282 rq->tag = -1;
283 rq->internal_tag = tag;
284 } else {
285 if (blk_mq_tag_busy(data->hctx)) {
286 rq->rq_flags = RQF_MQ_INFLIGHT;
287 atomic_inc(&data->hctx->nr_active);
288 }
289 rq->tag = tag;
290 rq->internal_tag = -1;
291 data->hctx->tags->rqs[rq->tag] = rq;
292 }
293
294 INIT_LIST_HEAD(&rq->queuelist);
295 /* csd/requeue_work/fifo_time is initialized before use */
296 rq->q = data->q;
297 rq->mq_ctx = data->ctx;
298 rq->cmd_flags = op;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 /* do not touch atomic flags, it needs atomic ops against the timer */
302 rq->cpu = -1;
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 rq->start_time = jiffies;
308 #ifdef CONFIG_BLK_CGROUP
309 rq->rl = NULL;
310 set_start_time_ns(rq);
311 rq->io_start_time_ns = 0;
312 #endif
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316 #endif
317 rq->special = NULL;
318 /* tag was already set */
319 rq->extra_len = 0;
320
321 INIT_LIST_HEAD(&rq->timeout_list);
322 rq->timeout = 0;
323
324 rq->end_io = NULL;
325 rq->end_io_data = NULL;
326 rq->next_rq = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(op)]++;
329 return rq;
330 }
331
332 static struct request *blk_mq_get_request(struct request_queue *q,
333 struct bio *bio, unsigned int op,
334 struct blk_mq_alloc_data *data)
335 {
336 struct elevator_queue *e = q->elevator;
337 struct request *rq;
338 unsigned int tag;
339 struct blk_mq_ctx *local_ctx = NULL;
340
341 blk_queue_enter_live(q);
342 data->q = q;
343 if (likely(!data->ctx))
344 data->ctx = local_ctx = blk_mq_get_ctx(q);
345 if (likely(!data->hctx))
346 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 if (op & REQ_NOWAIT)
348 data->flags |= BLK_MQ_REQ_NOWAIT;
349
350 if (e) {
351 data->flags |= BLK_MQ_REQ_INTERNAL;
352
353 /*
354 * Flush requests are special and go directly to the
355 * dispatch list.
356 */
357 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
358 e->type->ops.mq.limit_depth(op, data);
359 }
360
361 tag = blk_mq_get_tag(data);
362 if (tag == BLK_MQ_TAG_FAIL) {
363 if (local_ctx) {
364 blk_mq_put_ctx(local_ctx);
365 data->ctx = NULL;
366 }
367 blk_queue_exit(q);
368 return NULL;
369 }
370
371 rq = blk_mq_rq_ctx_init(data, tag, op);
372 if (!op_is_flush(op)) {
373 rq->elv.icq = NULL;
374 if (e && e->type->ops.mq.prepare_request) {
375 if (e->type->icq_cache && rq_ioc(bio))
376 blk_mq_sched_assign_ioc(rq, bio);
377
378 e->type->ops.mq.prepare_request(rq, bio);
379 rq->rq_flags |= RQF_ELVPRIV;
380 }
381 }
382 data->hctx->queued++;
383 return rq;
384 }
385
386 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387 unsigned int flags)
388 {
389 struct blk_mq_alloc_data alloc_data = { .flags = flags };
390 struct request *rq;
391 int ret;
392
393 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 if (ret)
395 return ERR_PTR(ret);
396
397 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398 blk_queue_exit(q);
399
400 if (!rq)
401 return ERR_PTR(-EWOULDBLOCK);
402
403 blk_mq_put_ctx(alloc_data.ctx);
404
405 rq->__data_len = 0;
406 rq->__sector = (sector_t) -1;
407 rq->bio = rq->biotail = NULL;
408 return rq;
409 }
410 EXPORT_SYMBOL(blk_mq_alloc_request);
411
412 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
413 unsigned int op, unsigned int flags, unsigned int hctx_idx)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags };
416 struct request *rq;
417 unsigned int cpu;
418 int ret;
419
420 /*
421 * If the tag allocator sleeps we could get an allocation for a
422 * different hardware context. No need to complicate the low level
423 * allocator for this for the rare use case of a command tied to
424 * a specific queue.
425 */
426 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
427 return ERR_PTR(-EINVAL);
428
429 if (hctx_idx >= q->nr_hw_queues)
430 return ERR_PTR(-EIO);
431
432 ret = blk_queue_enter(q, true);
433 if (ret)
434 return ERR_PTR(ret);
435
436 /*
437 * Check if the hardware context is actually mapped to anything.
438 * If not tell the caller that it should skip this queue.
439 */
440 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
441 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
442 blk_queue_exit(q);
443 return ERR_PTR(-EXDEV);
444 }
445 cpu = cpumask_first(alloc_data.hctx->cpumask);
446 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
447
448 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449 blk_queue_exit(q);
450
451 if (!rq)
452 return ERR_PTR(-EWOULDBLOCK);
453
454 return rq;
455 }
456 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
457
458 void blk_mq_free_request(struct request *rq)
459 {
460 struct request_queue *q = rq->q;
461 struct elevator_queue *e = q->elevator;
462 struct blk_mq_ctx *ctx = rq->mq_ctx;
463 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
464 const int sched_tag = rq->internal_tag;
465
466 if (rq->rq_flags & RQF_ELVPRIV) {
467 if (e && e->type->ops.mq.finish_request)
468 e->type->ops.mq.finish_request(rq);
469 if (rq->elv.icq) {
470 put_io_context(rq->elv.icq->ioc);
471 rq->elv.icq = NULL;
472 }
473 }
474
475 ctx->rq_completed[rq_is_sync(rq)]++;
476 if (rq->rq_flags & RQF_MQ_INFLIGHT)
477 atomic_dec(&hctx->nr_active);
478
479 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
480 laptop_io_completion(q->backing_dev_info);
481
482 wbt_done(q->rq_wb, &rq->issue_stat);
483
484 if (blk_rq_rl(rq))
485 blk_put_rl(blk_rq_rl(rq));
486
487 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
488 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
489 if (rq->tag != -1)
490 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491 if (sched_tag != -1)
492 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493 blk_mq_sched_restart(hctx);
494 blk_queue_exit(q);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 {
500 blk_account_io_done(rq);
501
502 if (rq->end_io) {
503 wbt_done(rq->q->rq_wb, &rq->issue_stat);
504 rq->end_io(rq, error);
505 } else {
506 if (unlikely(blk_bidi_rq(rq)))
507 blk_mq_free_request(rq->next_rq);
508 blk_mq_free_request(rq);
509 }
510 }
511 EXPORT_SYMBOL(__blk_mq_end_request);
512
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516 BUG();
517 __blk_mq_end_request(rq, error);
518 }
519 EXPORT_SYMBOL(blk_mq_end_request);
520
521 static void __blk_mq_complete_request_remote(void *data)
522 {
523 struct request *rq = data;
524
525 rq->q->softirq_done_fn(rq);
526 }
527
528 static void __blk_mq_complete_request(struct request *rq)
529 {
530 struct blk_mq_ctx *ctx = rq->mq_ctx;
531 bool shared = false;
532 int cpu;
533
534 if (rq->internal_tag != -1)
535 blk_mq_sched_completed_request(rq);
536 if (rq->rq_flags & RQF_STATS) {
537 blk_mq_poll_stats_start(rq->q);
538 blk_stat_add(rq);
539 }
540
541 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
542 rq->q->softirq_done_fn(rq);
543 return;
544 }
545
546 cpu = get_cpu();
547 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
548 shared = cpus_share_cache(cpu, ctx->cpu);
549
550 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
551 rq->csd.func = __blk_mq_complete_request_remote;
552 rq->csd.info = rq;
553 rq->csd.flags = 0;
554 smp_call_function_single_async(ctx->cpu, &rq->csd);
555 } else {
556 rq->q->softirq_done_fn(rq);
557 }
558 put_cpu();
559 }
560
561 /**
562 * blk_mq_complete_request - end I/O on a request
563 * @rq: the request being processed
564 *
565 * Description:
566 * Ends all I/O on a request. It does not handle partial completions.
567 * The actual completion happens out-of-order, through a IPI handler.
568 **/
569 void blk_mq_complete_request(struct request *rq)
570 {
571 struct request_queue *q = rq->q;
572
573 if (unlikely(blk_should_fake_timeout(q)))
574 return;
575 if (!blk_mark_rq_complete(rq))
576 __blk_mq_complete_request(rq);
577 }
578 EXPORT_SYMBOL(blk_mq_complete_request);
579
580 int blk_mq_request_started(struct request *rq)
581 {
582 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
583 }
584 EXPORT_SYMBOL_GPL(blk_mq_request_started);
585
586 void blk_mq_start_request(struct request *rq)
587 {
588 struct request_queue *q = rq->q;
589
590 blk_mq_sched_started_request(rq);
591
592 trace_block_rq_issue(q, rq);
593
594 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
595 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
596 rq->rq_flags |= RQF_STATS;
597 wbt_issue(q->rq_wb, &rq->issue_stat);
598 }
599
600 blk_add_timer(rq);
601
602 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
603
604 /*
605 * Mark us as started and clear complete. Complete might have been
606 * set if requeue raced with timeout, which then marked it as
607 * complete. So be sure to clear complete again when we start
608 * the request, otherwise we'll ignore the completion event.
609 *
610 * Ensure that ->deadline is visible before we set STARTED, such that
611 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
612 * it observes STARTED.
613 */
614 smp_wmb();
615 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
616 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
617 /*
618 * Coherence order guarantees these consecutive stores to a
619 * single variable propagate in the specified order. Thus the
620 * clear_bit() is ordered _after_ the set bit. See
621 * blk_mq_check_expired().
622 *
623 * (the bits must be part of the same byte for this to be
624 * true).
625 */
626 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
627 }
628
629 if (q->dma_drain_size && blk_rq_bytes(rq)) {
630 /*
631 * Make sure space for the drain appears. We know we can do
632 * this because max_hw_segments has been adjusted to be one
633 * fewer than the device can handle.
634 */
635 rq->nr_phys_segments++;
636 }
637 }
638 EXPORT_SYMBOL(blk_mq_start_request);
639
640 /*
641 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
642 * flag isn't set yet, so there may be race with timeout handler,
643 * but given rq->deadline is just set in .queue_rq() under
644 * this situation, the race won't be possible in reality because
645 * rq->timeout should be set as big enough to cover the window
646 * between blk_mq_start_request() called from .queue_rq() and
647 * clearing REQ_ATOM_STARTED here.
648 */
649 static void __blk_mq_requeue_request(struct request *rq)
650 {
651 struct request_queue *q = rq->q;
652
653 trace_block_rq_requeue(q, rq);
654 wbt_requeue(q->rq_wb, &rq->issue_stat);
655 blk_mq_sched_requeue_request(rq);
656
657 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
658 if (q->dma_drain_size && blk_rq_bytes(rq))
659 rq->nr_phys_segments--;
660 }
661 }
662
663 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
664 {
665 __blk_mq_requeue_request(rq);
666
667 BUG_ON(blk_queued_rq(rq));
668 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
669 }
670 EXPORT_SYMBOL(blk_mq_requeue_request);
671
672 static void blk_mq_requeue_work(struct work_struct *work)
673 {
674 struct request_queue *q =
675 container_of(work, struct request_queue, requeue_work.work);
676 LIST_HEAD(rq_list);
677 struct request *rq, *next;
678
679 spin_lock_irq(&q->requeue_lock);
680 list_splice_init(&q->requeue_list, &rq_list);
681 spin_unlock_irq(&q->requeue_lock);
682
683 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
684 if (!(rq->rq_flags & RQF_SOFTBARRIER))
685 continue;
686
687 rq->rq_flags &= ~RQF_SOFTBARRIER;
688 list_del_init(&rq->queuelist);
689 blk_mq_sched_insert_request(rq, true, false, false, true);
690 }
691
692 while (!list_empty(&rq_list)) {
693 rq = list_entry(rq_list.next, struct request, queuelist);
694 list_del_init(&rq->queuelist);
695 blk_mq_sched_insert_request(rq, false, false, false, true);
696 }
697
698 blk_mq_run_hw_queues(q, false);
699 }
700
701 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
702 bool kick_requeue_list)
703 {
704 struct request_queue *q = rq->q;
705 unsigned long flags;
706
707 /*
708 * We abuse this flag that is otherwise used by the I/O scheduler to
709 * request head insertation from the workqueue.
710 */
711 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
712
713 spin_lock_irqsave(&q->requeue_lock, flags);
714 if (at_head) {
715 rq->rq_flags |= RQF_SOFTBARRIER;
716 list_add(&rq->queuelist, &q->requeue_list);
717 } else {
718 list_add_tail(&rq->queuelist, &q->requeue_list);
719 }
720 spin_unlock_irqrestore(&q->requeue_lock, flags);
721
722 if (kick_requeue_list)
723 blk_mq_kick_requeue_list(q);
724 }
725 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
726
727 void blk_mq_kick_requeue_list(struct request_queue *q)
728 {
729 kblockd_schedule_delayed_work(&q->requeue_work, 0);
730 }
731 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
732
733 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
734 unsigned long msecs)
735 {
736 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
737 msecs_to_jiffies(msecs));
738 }
739 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
740
741 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
742 {
743 if (tag < tags->nr_tags) {
744 prefetch(tags->rqs[tag]);
745 return tags->rqs[tag];
746 }
747
748 return NULL;
749 }
750 EXPORT_SYMBOL(blk_mq_tag_to_rq);
751
752 struct blk_mq_timeout_data {
753 unsigned long next;
754 unsigned int next_set;
755 };
756
757 void blk_mq_rq_timed_out(struct request *req, bool reserved)
758 {
759 const struct blk_mq_ops *ops = req->q->mq_ops;
760 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
761
762 /*
763 * We know that complete is set at this point. If STARTED isn't set
764 * anymore, then the request isn't active and the "timeout" should
765 * just be ignored. This can happen due to the bitflag ordering.
766 * Timeout first checks if STARTED is set, and if it is, assumes
767 * the request is active. But if we race with completion, then
768 * both flags will get cleared. So check here again, and ignore
769 * a timeout event with a request that isn't active.
770 */
771 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
772 return;
773
774 if (ops->timeout)
775 ret = ops->timeout(req, reserved);
776
777 switch (ret) {
778 case BLK_EH_HANDLED:
779 __blk_mq_complete_request(req);
780 break;
781 case BLK_EH_RESET_TIMER:
782 blk_add_timer(req);
783 blk_clear_rq_complete(req);
784 break;
785 case BLK_EH_NOT_HANDLED:
786 break;
787 default:
788 printk(KERN_ERR "block: bad eh return: %d\n", ret);
789 break;
790 }
791 }
792
793 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
794 struct request *rq, void *priv, bool reserved)
795 {
796 struct blk_mq_timeout_data *data = priv;
797 unsigned long deadline;
798
799 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
800 return;
801
802 /*
803 * Ensures that if we see STARTED we must also see our
804 * up-to-date deadline, see blk_mq_start_request().
805 */
806 smp_rmb();
807
808 deadline = READ_ONCE(rq->deadline);
809
810 /*
811 * The rq being checked may have been freed and reallocated
812 * out already here, we avoid this race by checking rq->deadline
813 * and REQ_ATOM_COMPLETE flag together:
814 *
815 * - if rq->deadline is observed as new value because of
816 * reusing, the rq won't be timed out because of timing.
817 * - if rq->deadline is observed as previous value,
818 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
819 * because we put a barrier between setting rq->deadline
820 * and clearing the flag in blk_mq_start_request(), so
821 * this rq won't be timed out too.
822 */
823 if (time_after_eq(jiffies, deadline)) {
824 if (!blk_mark_rq_complete(rq)) {
825 /*
826 * Again coherence order ensures that consecutive reads
827 * from the same variable must be in that order. This
828 * ensures that if we see COMPLETE clear, we must then
829 * see STARTED set and we'll ignore this timeout.
830 *
831 * (There's also the MB implied by the test_and_clear())
832 */
833 blk_mq_rq_timed_out(rq, reserved);
834 }
835 } else if (!data->next_set || time_after(data->next, deadline)) {
836 data->next = deadline;
837 data->next_set = 1;
838 }
839 }
840
841 static void blk_mq_timeout_work(struct work_struct *work)
842 {
843 struct request_queue *q =
844 container_of(work, struct request_queue, timeout_work);
845 struct blk_mq_timeout_data data = {
846 .next = 0,
847 .next_set = 0,
848 };
849 int i;
850
851 /* A deadlock might occur if a request is stuck requiring a
852 * timeout at the same time a queue freeze is waiting
853 * completion, since the timeout code would not be able to
854 * acquire the queue reference here.
855 *
856 * That's why we don't use blk_queue_enter here; instead, we use
857 * percpu_ref_tryget directly, because we need to be able to
858 * obtain a reference even in the short window between the queue
859 * starting to freeze, by dropping the first reference in
860 * blk_freeze_queue_start, and the moment the last request is
861 * consumed, marked by the instant q_usage_counter reaches
862 * zero.
863 */
864 if (!percpu_ref_tryget(&q->q_usage_counter))
865 return;
866
867 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
868
869 if (data.next_set) {
870 data.next = blk_rq_timeout(round_jiffies_up(data.next));
871 mod_timer(&q->timeout, data.next);
872 } else {
873 struct blk_mq_hw_ctx *hctx;
874
875 queue_for_each_hw_ctx(q, hctx, i) {
876 /* the hctx may be unmapped, so check it here */
877 if (blk_mq_hw_queue_mapped(hctx))
878 blk_mq_tag_idle(hctx);
879 }
880 }
881 blk_queue_exit(q);
882 }
883
884 struct flush_busy_ctx_data {
885 struct blk_mq_hw_ctx *hctx;
886 struct list_head *list;
887 };
888
889 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
890 {
891 struct flush_busy_ctx_data *flush_data = data;
892 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
893 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
894
895 sbitmap_clear_bit(sb, bitnr);
896 spin_lock(&ctx->lock);
897 list_splice_tail_init(&ctx->rq_list, flush_data->list);
898 spin_unlock(&ctx->lock);
899 return true;
900 }
901
902 /*
903 * Process software queues that have been marked busy, splicing them
904 * to the for-dispatch
905 */
906 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
907 {
908 struct flush_busy_ctx_data data = {
909 .hctx = hctx,
910 .list = list,
911 };
912
913 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
914 }
915 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
916
917 static inline unsigned int queued_to_index(unsigned int queued)
918 {
919 if (!queued)
920 return 0;
921
922 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
923 }
924
925 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
926 bool wait)
927 {
928 struct blk_mq_alloc_data data = {
929 .q = rq->q,
930 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
931 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
932 };
933
934 might_sleep_if(wait);
935
936 if (rq->tag != -1)
937 goto done;
938
939 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
940 data.flags |= BLK_MQ_REQ_RESERVED;
941
942 rq->tag = blk_mq_get_tag(&data);
943 if (rq->tag >= 0) {
944 if (blk_mq_tag_busy(data.hctx)) {
945 rq->rq_flags |= RQF_MQ_INFLIGHT;
946 atomic_inc(&data.hctx->nr_active);
947 }
948 data.hctx->tags->rqs[rq->tag] = rq;
949 }
950
951 done:
952 if (hctx)
953 *hctx = data.hctx;
954 return rq->tag != -1;
955 }
956
957 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
958 struct request *rq)
959 {
960 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
961 rq->tag = -1;
962
963 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
964 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
965 atomic_dec(&hctx->nr_active);
966 }
967 }
968
969 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
970 struct request *rq)
971 {
972 if (rq->tag == -1 || rq->internal_tag == -1)
973 return;
974
975 __blk_mq_put_driver_tag(hctx, rq);
976 }
977
978 static void blk_mq_put_driver_tag(struct request *rq)
979 {
980 struct blk_mq_hw_ctx *hctx;
981
982 if (rq->tag == -1 || rq->internal_tag == -1)
983 return;
984
985 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
986 __blk_mq_put_driver_tag(hctx, rq);
987 }
988
989 /*
990 * If we fail getting a driver tag because all the driver tags are already
991 * assigned and on the dispatch list, BUT the first entry does not have a
992 * tag, then we could deadlock. For that case, move entries with assigned
993 * driver tags to the front, leaving the set of tagged requests in the
994 * same order, and the untagged set in the same order.
995 */
996 static bool reorder_tags_to_front(struct list_head *list)
997 {
998 struct request *rq, *tmp, *first = NULL;
999
1000 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
1001 if (rq == first)
1002 break;
1003 if (rq->tag != -1) {
1004 list_move(&rq->queuelist, list);
1005 if (!first)
1006 first = rq;
1007 }
1008 }
1009
1010 return first != NULL;
1011 }
1012
1013 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1014 void *key)
1015 {
1016 struct blk_mq_hw_ctx *hctx;
1017
1018 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1019
1020 list_del(&wait->entry);
1021 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1022 blk_mq_run_hw_queue(hctx, true);
1023 return 1;
1024 }
1025
1026 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1027 {
1028 struct sbq_wait_state *ws;
1029
1030 /*
1031 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1032 * The thread which wins the race to grab this bit adds the hardware
1033 * queue to the wait queue.
1034 */
1035 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1036 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1037 return false;
1038
1039 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1040 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1041
1042 /*
1043 * As soon as this returns, it's no longer safe to fiddle with
1044 * hctx->dispatch_wait, since a completion can wake up the wait queue
1045 * and unlock the bit.
1046 */
1047 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1048 return true;
1049 }
1050
1051 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1052 {
1053 struct blk_mq_hw_ctx *hctx;
1054 struct request *rq;
1055 int errors, queued;
1056
1057 if (list_empty(list))
1058 return false;
1059
1060 /*
1061 * Now process all the entries, sending them to the driver.
1062 */
1063 errors = queued = 0;
1064 do {
1065 struct blk_mq_queue_data bd;
1066 blk_status_t ret;
1067
1068 rq = list_first_entry(list, struct request, queuelist);
1069 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1070 if (!queued && reorder_tags_to_front(list))
1071 continue;
1072
1073 /*
1074 * The initial allocation attempt failed, so we need to
1075 * rerun the hardware queue when a tag is freed.
1076 */
1077 if (!blk_mq_dispatch_wait_add(hctx))
1078 break;
1079
1080 /*
1081 * It's possible that a tag was freed in the window
1082 * between the allocation failure and adding the
1083 * hardware queue to the wait queue.
1084 */
1085 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1086 break;
1087 }
1088
1089 list_del_init(&rq->queuelist);
1090
1091 bd.rq = rq;
1092
1093 /*
1094 * Flag last if we have no more requests, or if we have more
1095 * but can't assign a driver tag to it.
1096 */
1097 if (list_empty(list))
1098 bd.last = true;
1099 else {
1100 struct request *nxt;
1101
1102 nxt = list_first_entry(list, struct request, queuelist);
1103 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1104 }
1105
1106 ret = q->mq_ops->queue_rq(hctx, &bd);
1107 if (ret == BLK_STS_RESOURCE) {
1108 blk_mq_put_driver_tag_hctx(hctx, rq);
1109 list_add(&rq->queuelist, list);
1110 __blk_mq_requeue_request(rq);
1111 break;
1112 }
1113
1114 if (unlikely(ret != BLK_STS_OK)) {
1115 errors++;
1116 blk_mq_end_request(rq, BLK_STS_IOERR);
1117 continue;
1118 }
1119
1120 queued++;
1121 } while (!list_empty(list));
1122
1123 hctx->dispatched[queued_to_index(queued)]++;
1124
1125 /*
1126 * Any items that need requeuing? Stuff them into hctx->dispatch,
1127 * that is where we will continue on next queue run.
1128 */
1129 if (!list_empty(list)) {
1130 /*
1131 * If an I/O scheduler has been configured and we got a driver
1132 * tag for the next request already, free it again.
1133 */
1134 rq = list_first_entry(list, struct request, queuelist);
1135 blk_mq_put_driver_tag(rq);
1136
1137 spin_lock(&hctx->lock);
1138 list_splice_init(list, &hctx->dispatch);
1139 spin_unlock(&hctx->lock);
1140
1141 /*
1142 * If SCHED_RESTART was set by the caller of this function and
1143 * it is no longer set that means that it was cleared by another
1144 * thread and hence that a queue rerun is needed.
1145 *
1146 * If TAG_WAITING is set that means that an I/O scheduler has
1147 * been configured and another thread is waiting for a driver
1148 * tag. To guarantee fairness, do not rerun this hardware queue
1149 * but let the other thread grab the driver tag.
1150 *
1151 * If no I/O scheduler has been configured it is possible that
1152 * the hardware queue got stopped and restarted before requests
1153 * were pushed back onto the dispatch list. Rerun the queue to
1154 * avoid starvation. Notes:
1155 * - blk_mq_run_hw_queue() checks whether or not a queue has
1156 * been stopped before rerunning a queue.
1157 * - Some but not all block drivers stop a queue before
1158 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1159 * and dm-rq.
1160 */
1161 if (!blk_mq_sched_needs_restart(hctx) &&
1162 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1163 blk_mq_run_hw_queue(hctx, true);
1164 }
1165
1166 return (queued + errors) != 0;
1167 }
1168
1169 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1170 {
1171 int srcu_idx;
1172
1173 /*
1174 * We should be running this queue from one of the CPUs that
1175 * are mapped to it.
1176 */
1177 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1178 cpu_online(hctx->next_cpu));
1179
1180 /*
1181 * We can't run the queue inline with ints disabled. Ensure that
1182 * we catch bad users of this early.
1183 */
1184 WARN_ON_ONCE(in_interrupt());
1185
1186 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1187 rcu_read_lock();
1188 blk_mq_sched_dispatch_requests(hctx);
1189 rcu_read_unlock();
1190 } else {
1191 might_sleep();
1192
1193 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1194 blk_mq_sched_dispatch_requests(hctx);
1195 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1196 }
1197 }
1198
1199 /*
1200 * It'd be great if the workqueue API had a way to pass
1201 * in a mask and had some smarts for more clever placement.
1202 * For now we just round-robin here, switching for every
1203 * BLK_MQ_CPU_WORK_BATCH queued items.
1204 */
1205 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1206 {
1207 if (hctx->queue->nr_hw_queues == 1)
1208 return WORK_CPU_UNBOUND;
1209
1210 if (--hctx->next_cpu_batch <= 0) {
1211 int next_cpu;
1212
1213 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1214 if (next_cpu >= nr_cpu_ids)
1215 next_cpu = cpumask_first(hctx->cpumask);
1216
1217 hctx->next_cpu = next_cpu;
1218 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1219 }
1220
1221 return hctx->next_cpu;
1222 }
1223
1224 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1225 unsigned long msecs)
1226 {
1227 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1228 return;
1229
1230 if (unlikely(blk_mq_hctx_stopped(hctx)))
1231 return;
1232
1233 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1234 int cpu = get_cpu();
1235 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1236 __blk_mq_run_hw_queue(hctx);
1237 put_cpu();
1238 return;
1239 }
1240
1241 put_cpu();
1242 }
1243
1244 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1245 &hctx->run_work,
1246 msecs_to_jiffies(msecs));
1247 }
1248
1249 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1250 {
1251 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1252 }
1253 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1254
1255 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1256 {
1257 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1258 }
1259 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1260
1261 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1262 {
1263 struct blk_mq_hw_ctx *hctx;
1264 int i;
1265
1266 queue_for_each_hw_ctx(q, hctx, i) {
1267 if (!blk_mq_hctx_has_pending(hctx) ||
1268 blk_mq_hctx_stopped(hctx))
1269 continue;
1270
1271 blk_mq_run_hw_queue(hctx, async);
1272 }
1273 }
1274 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1275
1276 /**
1277 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1278 * @q: request queue.
1279 *
1280 * The caller is responsible for serializing this function against
1281 * blk_mq_{start,stop}_hw_queue().
1282 */
1283 bool blk_mq_queue_stopped(struct request_queue *q)
1284 {
1285 struct blk_mq_hw_ctx *hctx;
1286 int i;
1287
1288 queue_for_each_hw_ctx(q, hctx, i)
1289 if (blk_mq_hctx_stopped(hctx))
1290 return true;
1291
1292 return false;
1293 }
1294 EXPORT_SYMBOL(blk_mq_queue_stopped);
1295
1296 /*
1297 * This function is often used for pausing .queue_rq() by driver when
1298 * there isn't enough resource or some conditions aren't satisfied, and
1299 * BLK_STS_RESOURCE is usually returned.
1300 *
1301 * We do not guarantee that dispatch can be drained or blocked
1302 * after blk_mq_stop_hw_queue() returns. Please use
1303 * blk_mq_quiesce_queue() for that requirement.
1304 */
1305 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1306 {
1307 cancel_delayed_work(&hctx->run_work);
1308
1309 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1310 }
1311 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1312
1313 /*
1314 * This function is often used for pausing .queue_rq() by driver when
1315 * there isn't enough resource or some conditions aren't satisfied, and
1316 * BLK_STS_RESOURCE is usually returned.
1317 *
1318 * We do not guarantee that dispatch can be drained or blocked
1319 * after blk_mq_stop_hw_queues() returns. Please use
1320 * blk_mq_quiesce_queue() for that requirement.
1321 */
1322 void blk_mq_stop_hw_queues(struct request_queue *q)
1323 {
1324 struct blk_mq_hw_ctx *hctx;
1325 int i;
1326
1327 queue_for_each_hw_ctx(q, hctx, i)
1328 blk_mq_stop_hw_queue(hctx);
1329 }
1330 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1331
1332 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1333 {
1334 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1335
1336 blk_mq_run_hw_queue(hctx, false);
1337 }
1338 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1339
1340 void blk_mq_start_hw_queues(struct request_queue *q)
1341 {
1342 struct blk_mq_hw_ctx *hctx;
1343 int i;
1344
1345 queue_for_each_hw_ctx(q, hctx, i)
1346 blk_mq_start_hw_queue(hctx);
1347 }
1348 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1349
1350 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1351 {
1352 if (!blk_mq_hctx_stopped(hctx))
1353 return;
1354
1355 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1356 blk_mq_run_hw_queue(hctx, async);
1357 }
1358 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1359
1360 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1361 {
1362 struct blk_mq_hw_ctx *hctx;
1363 int i;
1364
1365 queue_for_each_hw_ctx(q, hctx, i)
1366 blk_mq_start_stopped_hw_queue(hctx, async);
1367 }
1368 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1369
1370 static void blk_mq_run_work_fn(struct work_struct *work)
1371 {
1372 struct blk_mq_hw_ctx *hctx;
1373
1374 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1375
1376 /*
1377 * If we are stopped, don't run the queue. The exception is if
1378 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1379 * the STOPPED bit and run it.
1380 */
1381 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1382 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1383 return;
1384
1385 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1386 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1387 }
1388
1389 __blk_mq_run_hw_queue(hctx);
1390 }
1391
1392
1393 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1394 {
1395 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1396 return;
1397
1398 /*
1399 * Stop the hw queue, then modify currently delayed work.
1400 * This should prevent us from running the queue prematurely.
1401 * Mark the queue as auto-clearing STOPPED when it runs.
1402 */
1403 blk_mq_stop_hw_queue(hctx);
1404 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1405 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1406 &hctx->run_work,
1407 msecs_to_jiffies(msecs));
1408 }
1409 EXPORT_SYMBOL(blk_mq_delay_queue);
1410
1411 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1412 struct request *rq,
1413 bool at_head)
1414 {
1415 struct blk_mq_ctx *ctx = rq->mq_ctx;
1416
1417 lockdep_assert_held(&ctx->lock);
1418
1419 trace_block_rq_insert(hctx->queue, rq);
1420
1421 if (at_head)
1422 list_add(&rq->queuelist, &ctx->rq_list);
1423 else
1424 list_add_tail(&rq->queuelist, &ctx->rq_list);
1425 }
1426
1427 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1428 bool at_head)
1429 {
1430 struct blk_mq_ctx *ctx = rq->mq_ctx;
1431
1432 lockdep_assert_held(&ctx->lock);
1433
1434 __blk_mq_insert_req_list(hctx, rq, at_head);
1435 blk_mq_hctx_mark_pending(hctx, ctx);
1436 }
1437
1438 /*
1439 * Should only be used carefully, when the caller knows we want to
1440 * bypass a potential IO scheduler on the target device.
1441 */
1442 void blk_mq_request_bypass_insert(struct request *rq)
1443 {
1444 struct blk_mq_ctx *ctx = rq->mq_ctx;
1445 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1446
1447 spin_lock(&hctx->lock);
1448 list_add_tail(&rq->queuelist, &hctx->dispatch);
1449 spin_unlock(&hctx->lock);
1450
1451 blk_mq_run_hw_queue(hctx, false);
1452 }
1453
1454 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1455 struct list_head *list)
1456
1457 {
1458 /*
1459 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1460 * offline now
1461 */
1462 spin_lock(&ctx->lock);
1463 while (!list_empty(list)) {
1464 struct request *rq;
1465
1466 rq = list_first_entry(list, struct request, queuelist);
1467 BUG_ON(rq->mq_ctx != ctx);
1468 list_del_init(&rq->queuelist);
1469 __blk_mq_insert_req_list(hctx, rq, false);
1470 }
1471 blk_mq_hctx_mark_pending(hctx, ctx);
1472 spin_unlock(&ctx->lock);
1473 }
1474
1475 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1476 {
1477 struct request *rqa = container_of(a, struct request, queuelist);
1478 struct request *rqb = container_of(b, struct request, queuelist);
1479
1480 return !(rqa->mq_ctx < rqb->mq_ctx ||
1481 (rqa->mq_ctx == rqb->mq_ctx &&
1482 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1483 }
1484
1485 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1486 {
1487 struct blk_mq_ctx *this_ctx;
1488 struct request_queue *this_q;
1489 struct request *rq;
1490 LIST_HEAD(list);
1491 LIST_HEAD(ctx_list);
1492 unsigned int depth;
1493
1494 list_splice_init(&plug->mq_list, &list);
1495
1496 list_sort(NULL, &list, plug_ctx_cmp);
1497
1498 this_q = NULL;
1499 this_ctx = NULL;
1500 depth = 0;
1501
1502 while (!list_empty(&list)) {
1503 rq = list_entry_rq(list.next);
1504 list_del_init(&rq->queuelist);
1505 BUG_ON(!rq->q);
1506 if (rq->mq_ctx != this_ctx) {
1507 if (this_ctx) {
1508 trace_block_unplug(this_q, depth, from_schedule);
1509 blk_mq_sched_insert_requests(this_q, this_ctx,
1510 &ctx_list,
1511 from_schedule);
1512 }
1513
1514 this_ctx = rq->mq_ctx;
1515 this_q = rq->q;
1516 depth = 0;
1517 }
1518
1519 depth++;
1520 list_add_tail(&rq->queuelist, &ctx_list);
1521 }
1522
1523 /*
1524 * If 'this_ctx' is set, we know we have entries to complete
1525 * on 'ctx_list'. Do those.
1526 */
1527 if (this_ctx) {
1528 trace_block_unplug(this_q, depth, from_schedule);
1529 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1530 from_schedule);
1531 }
1532 }
1533
1534 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1535 {
1536 blk_init_request_from_bio(rq, bio);
1537
1538 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1539
1540 blk_account_io_start(rq, true);
1541 }
1542
1543 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1544 struct blk_mq_ctx *ctx,
1545 struct request *rq)
1546 {
1547 spin_lock(&ctx->lock);
1548 __blk_mq_insert_request(hctx, rq, false);
1549 spin_unlock(&ctx->lock);
1550 }
1551
1552 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1553 {
1554 if (rq->tag != -1)
1555 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1556
1557 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1558 }
1559
1560 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1561 struct request *rq,
1562 blk_qc_t *cookie, bool may_sleep)
1563 {
1564 struct request_queue *q = rq->q;
1565 struct blk_mq_queue_data bd = {
1566 .rq = rq,
1567 .last = true,
1568 };
1569 blk_qc_t new_cookie;
1570 blk_status_t ret;
1571 bool run_queue = true;
1572
1573 /* RCU or SRCU read lock is needed before checking quiesced flag */
1574 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1575 run_queue = false;
1576 goto insert;
1577 }
1578
1579 if (q->elevator)
1580 goto insert;
1581
1582 if (!blk_mq_get_driver_tag(rq, NULL, false))
1583 goto insert;
1584
1585 new_cookie = request_to_qc_t(hctx, rq);
1586
1587 /*
1588 * For OK queue, we are done. For error, kill it. Any other
1589 * error (busy), just add it to our list as we previously
1590 * would have done
1591 */
1592 ret = q->mq_ops->queue_rq(hctx, &bd);
1593 switch (ret) {
1594 case BLK_STS_OK:
1595 *cookie = new_cookie;
1596 return;
1597 case BLK_STS_RESOURCE:
1598 __blk_mq_requeue_request(rq);
1599 goto insert;
1600 default:
1601 *cookie = BLK_QC_T_NONE;
1602 blk_mq_end_request(rq, ret);
1603 return;
1604 }
1605
1606 insert:
1607 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1608 }
1609
1610 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1611 struct request *rq, blk_qc_t *cookie)
1612 {
1613 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1614 rcu_read_lock();
1615 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1616 rcu_read_unlock();
1617 } else {
1618 unsigned int srcu_idx;
1619
1620 might_sleep();
1621
1622 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1623 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1624 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1625 }
1626 }
1627
1628 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1629 {
1630 const int is_sync = op_is_sync(bio->bi_opf);
1631 const int is_flush_fua = op_is_flush(bio->bi_opf);
1632 struct blk_mq_alloc_data data = { .flags = 0 };
1633 struct request *rq;
1634 unsigned int request_count = 0;
1635 struct blk_plug *plug;
1636 struct request *same_queue_rq = NULL;
1637 blk_qc_t cookie;
1638 unsigned int wb_acct;
1639
1640 blk_queue_bounce(q, &bio);
1641
1642 blk_queue_split(q, &bio);
1643
1644 if (!bio_integrity_prep(bio))
1645 return BLK_QC_T_NONE;
1646
1647 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1648 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1649 return BLK_QC_T_NONE;
1650
1651 if (blk_mq_sched_bio_merge(q, bio))
1652 return BLK_QC_T_NONE;
1653
1654 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1655
1656 trace_block_getrq(q, bio, bio->bi_opf);
1657
1658 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1659 if (unlikely(!rq)) {
1660 __wbt_done(q->rq_wb, wb_acct);
1661 if (bio->bi_opf & REQ_NOWAIT)
1662 bio_wouldblock_error(bio);
1663 return BLK_QC_T_NONE;
1664 }
1665
1666 wbt_track(&rq->issue_stat, wb_acct);
1667
1668 cookie = request_to_qc_t(data.hctx, rq);
1669
1670 plug = current->plug;
1671 if (unlikely(is_flush_fua)) {
1672 blk_mq_put_ctx(data.ctx);
1673 blk_mq_bio_to_request(rq, bio);
1674 if (q->elevator) {
1675 blk_mq_sched_insert_request(rq, false, true, true,
1676 true);
1677 } else {
1678 blk_insert_flush(rq);
1679 blk_mq_run_hw_queue(data.hctx, true);
1680 }
1681 } else if (plug && q->nr_hw_queues == 1) {
1682 struct request *last = NULL;
1683
1684 blk_mq_put_ctx(data.ctx);
1685 blk_mq_bio_to_request(rq, bio);
1686
1687 /*
1688 * @request_count may become stale because of schedule
1689 * out, so check the list again.
1690 */
1691 if (list_empty(&plug->mq_list))
1692 request_count = 0;
1693 else if (blk_queue_nomerges(q))
1694 request_count = blk_plug_queued_count(q);
1695
1696 if (!request_count)
1697 trace_block_plug(q);
1698 else
1699 last = list_entry_rq(plug->mq_list.prev);
1700
1701 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1702 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1703 blk_flush_plug_list(plug, false);
1704 trace_block_plug(q);
1705 }
1706
1707 list_add_tail(&rq->queuelist, &plug->mq_list);
1708 } else if (plug && !blk_queue_nomerges(q)) {
1709 blk_mq_bio_to_request(rq, bio);
1710
1711 /*
1712 * We do limited plugging. If the bio can be merged, do that.
1713 * Otherwise the existing request in the plug list will be
1714 * issued. So the plug list will have one request at most
1715 * The plug list might get flushed before this. If that happens,
1716 * the plug list is empty, and same_queue_rq is invalid.
1717 */
1718 if (list_empty(&plug->mq_list))
1719 same_queue_rq = NULL;
1720 if (same_queue_rq)
1721 list_del_init(&same_queue_rq->queuelist);
1722 list_add_tail(&rq->queuelist, &plug->mq_list);
1723
1724 blk_mq_put_ctx(data.ctx);
1725
1726 if (same_queue_rq) {
1727 data.hctx = blk_mq_map_queue(q,
1728 same_queue_rq->mq_ctx->cpu);
1729 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1730 &cookie);
1731 }
1732 } else if (q->nr_hw_queues > 1 && is_sync) {
1733 blk_mq_put_ctx(data.ctx);
1734 blk_mq_bio_to_request(rq, bio);
1735 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1736 } else if (q->elevator) {
1737 blk_mq_put_ctx(data.ctx);
1738 blk_mq_bio_to_request(rq, bio);
1739 blk_mq_sched_insert_request(rq, false, true, true, true);
1740 } else {
1741 blk_mq_put_ctx(data.ctx);
1742 blk_mq_bio_to_request(rq, bio);
1743 blk_mq_queue_io(data.hctx, data.ctx, rq);
1744 blk_mq_run_hw_queue(data.hctx, true);
1745 }
1746
1747 return cookie;
1748 }
1749
1750 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1751 unsigned int hctx_idx)
1752 {
1753 struct page *page;
1754
1755 if (tags->rqs && set->ops->exit_request) {
1756 int i;
1757
1758 for (i = 0; i < tags->nr_tags; i++) {
1759 struct request *rq = tags->static_rqs[i];
1760
1761 if (!rq)
1762 continue;
1763 set->ops->exit_request(set, rq, hctx_idx);
1764 tags->static_rqs[i] = NULL;
1765 }
1766 }
1767
1768 while (!list_empty(&tags->page_list)) {
1769 page = list_first_entry(&tags->page_list, struct page, lru);
1770 list_del_init(&page->lru);
1771 /*
1772 * Remove kmemleak object previously allocated in
1773 * blk_mq_init_rq_map().
1774 */
1775 kmemleak_free(page_address(page));
1776 __free_pages(page, page->private);
1777 }
1778 }
1779
1780 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1781 {
1782 kfree(tags->rqs);
1783 tags->rqs = NULL;
1784 kfree(tags->static_rqs);
1785 tags->static_rqs = NULL;
1786
1787 blk_mq_free_tags(tags);
1788 }
1789
1790 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1791 unsigned int hctx_idx,
1792 unsigned int nr_tags,
1793 unsigned int reserved_tags)
1794 {
1795 struct blk_mq_tags *tags;
1796 int node;
1797
1798 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1799 if (node == NUMA_NO_NODE)
1800 node = set->numa_node;
1801
1802 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1803 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1804 if (!tags)
1805 return NULL;
1806
1807 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1808 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1809 node);
1810 if (!tags->rqs) {
1811 blk_mq_free_tags(tags);
1812 return NULL;
1813 }
1814
1815 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1816 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1817 node);
1818 if (!tags->static_rqs) {
1819 kfree(tags->rqs);
1820 blk_mq_free_tags(tags);
1821 return NULL;
1822 }
1823
1824 return tags;
1825 }
1826
1827 static size_t order_to_size(unsigned int order)
1828 {
1829 return (size_t)PAGE_SIZE << order;
1830 }
1831
1832 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1833 unsigned int hctx_idx, unsigned int depth)
1834 {
1835 unsigned int i, j, entries_per_page, max_order = 4;
1836 size_t rq_size, left;
1837 int node;
1838
1839 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1840 if (node == NUMA_NO_NODE)
1841 node = set->numa_node;
1842
1843 INIT_LIST_HEAD(&tags->page_list);
1844
1845 /*
1846 * rq_size is the size of the request plus driver payload, rounded
1847 * to the cacheline size
1848 */
1849 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1850 cache_line_size());
1851 left = rq_size * depth;
1852
1853 for (i = 0; i < depth; ) {
1854 int this_order = max_order;
1855 struct page *page;
1856 int to_do;
1857 void *p;
1858
1859 while (this_order && left < order_to_size(this_order - 1))
1860 this_order--;
1861
1862 do {
1863 page = alloc_pages_node(node,
1864 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1865 this_order);
1866 if (page)
1867 break;
1868 if (!this_order--)
1869 break;
1870 if (order_to_size(this_order) < rq_size)
1871 break;
1872 } while (1);
1873
1874 if (!page)
1875 goto fail;
1876
1877 page->private = this_order;
1878 list_add_tail(&page->lru, &tags->page_list);
1879
1880 p = page_address(page);
1881 /*
1882 * Allow kmemleak to scan these pages as they contain pointers
1883 * to additional allocations like via ops->init_request().
1884 */
1885 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1886 entries_per_page = order_to_size(this_order) / rq_size;
1887 to_do = min(entries_per_page, depth - i);
1888 left -= to_do * rq_size;
1889 for (j = 0; j < to_do; j++) {
1890 struct request *rq = p;
1891
1892 tags->static_rqs[i] = rq;
1893 if (set->ops->init_request) {
1894 if (set->ops->init_request(set, rq, hctx_idx,
1895 node)) {
1896 tags->static_rqs[i] = NULL;
1897 goto fail;
1898 }
1899 }
1900
1901 p += rq_size;
1902 i++;
1903 }
1904 }
1905 return 0;
1906
1907 fail:
1908 blk_mq_free_rqs(set, tags, hctx_idx);
1909 return -ENOMEM;
1910 }
1911
1912 /*
1913 * 'cpu' is going away. splice any existing rq_list entries from this
1914 * software queue to the hw queue dispatch list, and ensure that it
1915 * gets run.
1916 */
1917 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1918 {
1919 struct blk_mq_hw_ctx *hctx;
1920 struct blk_mq_ctx *ctx;
1921 LIST_HEAD(tmp);
1922
1923 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1924 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1925
1926 spin_lock(&ctx->lock);
1927 if (!list_empty(&ctx->rq_list)) {
1928 list_splice_init(&ctx->rq_list, &tmp);
1929 blk_mq_hctx_clear_pending(hctx, ctx);
1930 }
1931 spin_unlock(&ctx->lock);
1932
1933 if (list_empty(&tmp))
1934 return 0;
1935
1936 spin_lock(&hctx->lock);
1937 list_splice_tail_init(&tmp, &hctx->dispatch);
1938 spin_unlock(&hctx->lock);
1939
1940 blk_mq_run_hw_queue(hctx, true);
1941 return 0;
1942 }
1943
1944 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1945 {
1946 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1947 &hctx->cpuhp_dead);
1948 }
1949
1950 /* hctx->ctxs will be freed in queue's release handler */
1951 static void blk_mq_exit_hctx(struct request_queue *q,
1952 struct blk_mq_tag_set *set,
1953 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1954 {
1955 blk_mq_debugfs_unregister_hctx(hctx);
1956
1957 blk_mq_tag_idle(hctx);
1958
1959 if (set->ops->exit_request)
1960 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1961
1962 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1963
1964 if (set->ops->exit_hctx)
1965 set->ops->exit_hctx(hctx, hctx_idx);
1966
1967 if (hctx->flags & BLK_MQ_F_BLOCKING)
1968 cleanup_srcu_struct(hctx->queue_rq_srcu);
1969
1970 blk_mq_remove_cpuhp(hctx);
1971 blk_free_flush_queue(hctx->fq);
1972 sbitmap_free(&hctx->ctx_map);
1973 }
1974
1975 static void blk_mq_exit_hw_queues(struct request_queue *q,
1976 struct blk_mq_tag_set *set, int nr_queue)
1977 {
1978 struct blk_mq_hw_ctx *hctx;
1979 unsigned int i;
1980
1981 queue_for_each_hw_ctx(q, hctx, i) {
1982 if (i == nr_queue)
1983 break;
1984 blk_mq_exit_hctx(q, set, hctx, i);
1985 }
1986 }
1987
1988 static int blk_mq_init_hctx(struct request_queue *q,
1989 struct blk_mq_tag_set *set,
1990 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1991 {
1992 int node;
1993
1994 node = hctx->numa_node;
1995 if (node == NUMA_NO_NODE)
1996 node = hctx->numa_node = set->numa_node;
1997
1998 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1999 spin_lock_init(&hctx->lock);
2000 INIT_LIST_HEAD(&hctx->dispatch);
2001 hctx->queue = q;
2002 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2003
2004 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2005
2006 hctx->tags = set->tags[hctx_idx];
2007
2008 /*
2009 * Allocate space for all possible cpus to avoid allocation at
2010 * runtime
2011 */
2012 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2013 GFP_KERNEL, node);
2014 if (!hctx->ctxs)
2015 goto unregister_cpu_notifier;
2016
2017 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2018 node))
2019 goto free_ctxs;
2020
2021 hctx->nr_ctx = 0;
2022
2023 if (set->ops->init_hctx &&
2024 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2025 goto free_bitmap;
2026
2027 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2028 goto exit_hctx;
2029
2030 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2031 if (!hctx->fq)
2032 goto sched_exit_hctx;
2033
2034 if (set->ops->init_request &&
2035 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2036 node))
2037 goto free_fq;
2038
2039 if (hctx->flags & BLK_MQ_F_BLOCKING)
2040 init_srcu_struct(hctx->queue_rq_srcu);
2041
2042 blk_mq_debugfs_register_hctx(q, hctx);
2043
2044 return 0;
2045
2046 free_fq:
2047 kfree(hctx->fq);
2048 sched_exit_hctx:
2049 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2050 exit_hctx:
2051 if (set->ops->exit_hctx)
2052 set->ops->exit_hctx(hctx, hctx_idx);
2053 free_bitmap:
2054 sbitmap_free(&hctx->ctx_map);
2055 free_ctxs:
2056 kfree(hctx->ctxs);
2057 unregister_cpu_notifier:
2058 blk_mq_remove_cpuhp(hctx);
2059 return -1;
2060 }
2061
2062 static void blk_mq_init_cpu_queues(struct request_queue *q,
2063 unsigned int nr_hw_queues)
2064 {
2065 unsigned int i;
2066
2067 for_each_possible_cpu(i) {
2068 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2069 struct blk_mq_hw_ctx *hctx;
2070
2071 __ctx->cpu = i;
2072 spin_lock_init(&__ctx->lock);
2073 INIT_LIST_HEAD(&__ctx->rq_list);
2074 __ctx->queue = q;
2075
2076 /* If the cpu isn't present, the cpu is mapped to first hctx */
2077 if (!cpu_present(i))
2078 continue;
2079
2080 hctx = blk_mq_map_queue(q, i);
2081
2082 /*
2083 * Set local node, IFF we have more than one hw queue. If
2084 * not, we remain on the home node of the device
2085 */
2086 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2087 hctx->numa_node = local_memory_node(cpu_to_node(i));
2088 }
2089 }
2090
2091 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2092 {
2093 int ret = 0;
2094
2095 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2096 set->queue_depth, set->reserved_tags);
2097 if (!set->tags[hctx_idx])
2098 return false;
2099
2100 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2101 set->queue_depth);
2102 if (!ret)
2103 return true;
2104
2105 blk_mq_free_rq_map(set->tags[hctx_idx]);
2106 set->tags[hctx_idx] = NULL;
2107 return false;
2108 }
2109
2110 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2111 unsigned int hctx_idx)
2112 {
2113 if (set->tags[hctx_idx]) {
2114 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2115 blk_mq_free_rq_map(set->tags[hctx_idx]);
2116 set->tags[hctx_idx] = NULL;
2117 }
2118 }
2119
2120 static void blk_mq_map_swqueue(struct request_queue *q)
2121 {
2122 unsigned int i, hctx_idx;
2123 struct blk_mq_hw_ctx *hctx;
2124 struct blk_mq_ctx *ctx;
2125 struct blk_mq_tag_set *set = q->tag_set;
2126
2127 /*
2128 * Avoid others reading imcomplete hctx->cpumask through sysfs
2129 */
2130 mutex_lock(&q->sysfs_lock);
2131
2132 queue_for_each_hw_ctx(q, hctx, i) {
2133 cpumask_clear(hctx->cpumask);
2134 hctx->nr_ctx = 0;
2135 }
2136
2137 /*
2138 * Map software to hardware queues.
2139 *
2140 * If the cpu isn't present, the cpu is mapped to first hctx.
2141 */
2142 for_each_present_cpu(i) {
2143 hctx_idx = q->mq_map[i];
2144 /* unmapped hw queue can be remapped after CPU topo changed */
2145 if (!set->tags[hctx_idx] &&
2146 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2147 /*
2148 * If tags initialization fail for some hctx,
2149 * that hctx won't be brought online. In this
2150 * case, remap the current ctx to hctx[0] which
2151 * is guaranteed to always have tags allocated
2152 */
2153 q->mq_map[i] = 0;
2154 }
2155
2156 ctx = per_cpu_ptr(q->queue_ctx, i);
2157 hctx = blk_mq_map_queue(q, i);
2158
2159 cpumask_set_cpu(i, hctx->cpumask);
2160 ctx->index_hw = hctx->nr_ctx;
2161 hctx->ctxs[hctx->nr_ctx++] = ctx;
2162 }
2163
2164 mutex_unlock(&q->sysfs_lock);
2165
2166 queue_for_each_hw_ctx(q, hctx, i) {
2167 /*
2168 * If no software queues are mapped to this hardware queue,
2169 * disable it and free the request entries.
2170 */
2171 if (!hctx->nr_ctx) {
2172 /* Never unmap queue 0. We need it as a
2173 * fallback in case of a new remap fails
2174 * allocation
2175 */
2176 if (i && set->tags[i])
2177 blk_mq_free_map_and_requests(set, i);
2178
2179 hctx->tags = NULL;
2180 continue;
2181 }
2182
2183 hctx->tags = set->tags[i];
2184 WARN_ON(!hctx->tags);
2185
2186 /*
2187 * Set the map size to the number of mapped software queues.
2188 * This is more accurate and more efficient than looping
2189 * over all possibly mapped software queues.
2190 */
2191 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2192
2193 /*
2194 * Initialize batch roundrobin counts
2195 */
2196 hctx->next_cpu = cpumask_first(hctx->cpumask);
2197 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2198 }
2199 }
2200
2201 /*
2202 * Caller needs to ensure that we're either frozen/quiesced, or that
2203 * the queue isn't live yet.
2204 */
2205 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2206 {
2207 struct blk_mq_hw_ctx *hctx;
2208 int i;
2209
2210 queue_for_each_hw_ctx(q, hctx, i) {
2211 if (shared) {
2212 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2213 atomic_inc(&q->shared_hctx_restart);
2214 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2215 } else {
2216 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2217 atomic_dec(&q->shared_hctx_restart);
2218 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2219 }
2220 }
2221 }
2222
2223 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2224 bool shared)
2225 {
2226 struct request_queue *q;
2227
2228 lockdep_assert_held(&set->tag_list_lock);
2229
2230 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2231 blk_mq_freeze_queue(q);
2232 queue_set_hctx_shared(q, shared);
2233 blk_mq_unfreeze_queue(q);
2234 }
2235 }
2236
2237 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2238 {
2239 struct blk_mq_tag_set *set = q->tag_set;
2240
2241 mutex_lock(&set->tag_list_lock);
2242 list_del_rcu(&q->tag_set_list);
2243 INIT_LIST_HEAD(&q->tag_set_list);
2244 if (list_is_singular(&set->tag_list)) {
2245 /* just transitioned to unshared */
2246 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2247 /* update existing queue */
2248 blk_mq_update_tag_set_depth(set, false);
2249 }
2250 mutex_unlock(&set->tag_list_lock);
2251
2252 synchronize_rcu();
2253 }
2254
2255 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2256 struct request_queue *q)
2257 {
2258 q->tag_set = set;
2259
2260 mutex_lock(&set->tag_list_lock);
2261
2262 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2263 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2264 set->flags |= BLK_MQ_F_TAG_SHARED;
2265 /* update existing queue */
2266 blk_mq_update_tag_set_depth(set, true);
2267 }
2268 if (set->flags & BLK_MQ_F_TAG_SHARED)
2269 queue_set_hctx_shared(q, true);
2270 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2271
2272 mutex_unlock(&set->tag_list_lock);
2273 }
2274
2275 /*
2276 * It is the actual release handler for mq, but we do it from
2277 * request queue's release handler for avoiding use-after-free
2278 * and headache because q->mq_kobj shouldn't have been introduced,
2279 * but we can't group ctx/kctx kobj without it.
2280 */
2281 void blk_mq_release(struct request_queue *q)
2282 {
2283 struct blk_mq_hw_ctx *hctx;
2284 unsigned int i;
2285
2286 /* hctx kobj stays in hctx */
2287 queue_for_each_hw_ctx(q, hctx, i) {
2288 if (!hctx)
2289 continue;
2290 kobject_put(&hctx->kobj);
2291 }
2292
2293 q->mq_map = NULL;
2294
2295 kfree(q->queue_hw_ctx);
2296
2297 /*
2298 * release .mq_kobj and sw queue's kobject now because
2299 * both share lifetime with request queue.
2300 */
2301 blk_mq_sysfs_deinit(q);
2302
2303 free_percpu(q->queue_ctx);
2304 }
2305
2306 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2307 {
2308 struct request_queue *uninit_q, *q;
2309
2310 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2311 if (!uninit_q)
2312 return ERR_PTR(-ENOMEM);
2313
2314 q = blk_mq_init_allocated_queue(set, uninit_q);
2315 if (IS_ERR(q))
2316 blk_cleanup_queue(uninit_q);
2317
2318 return q;
2319 }
2320 EXPORT_SYMBOL(blk_mq_init_queue);
2321
2322 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2323 {
2324 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2325
2326 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2327 __alignof__(struct blk_mq_hw_ctx)) !=
2328 sizeof(struct blk_mq_hw_ctx));
2329
2330 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2331 hw_ctx_size += sizeof(struct srcu_struct);
2332
2333 return hw_ctx_size;
2334 }
2335
2336 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2337 struct request_queue *q)
2338 {
2339 int i, j;
2340 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2341
2342 blk_mq_sysfs_unregister(q);
2343 for (i = 0; i < set->nr_hw_queues; i++) {
2344 int node;
2345
2346 if (hctxs[i])
2347 continue;
2348
2349 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2350 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2351 GFP_KERNEL, node);
2352 if (!hctxs[i])
2353 break;
2354
2355 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2356 node)) {
2357 kfree(hctxs[i]);
2358 hctxs[i] = NULL;
2359 break;
2360 }
2361
2362 atomic_set(&hctxs[i]->nr_active, 0);
2363 hctxs[i]->numa_node = node;
2364 hctxs[i]->queue_num = i;
2365
2366 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2367 free_cpumask_var(hctxs[i]->cpumask);
2368 kfree(hctxs[i]);
2369 hctxs[i] = NULL;
2370 break;
2371 }
2372 blk_mq_hctx_kobj_init(hctxs[i]);
2373 }
2374 for (j = i; j < q->nr_hw_queues; j++) {
2375 struct blk_mq_hw_ctx *hctx = hctxs[j];
2376
2377 if (hctx) {
2378 if (hctx->tags)
2379 blk_mq_free_map_and_requests(set, j);
2380 blk_mq_exit_hctx(q, set, hctx, j);
2381 kobject_put(&hctx->kobj);
2382 hctxs[j] = NULL;
2383
2384 }
2385 }
2386 q->nr_hw_queues = i;
2387 blk_mq_sysfs_register(q);
2388 }
2389
2390 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2391 struct request_queue *q)
2392 {
2393 /* mark the queue as mq asap */
2394 q->mq_ops = set->ops;
2395
2396 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2397 blk_mq_poll_stats_bkt,
2398 BLK_MQ_POLL_STATS_BKTS, q);
2399 if (!q->poll_cb)
2400 goto err_exit;
2401
2402 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2403 if (!q->queue_ctx)
2404 goto err_exit;
2405
2406 /* init q->mq_kobj and sw queues' kobjects */
2407 blk_mq_sysfs_init(q);
2408
2409 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2410 GFP_KERNEL, set->numa_node);
2411 if (!q->queue_hw_ctx)
2412 goto err_percpu;
2413
2414 q->mq_map = set->mq_map;
2415
2416 blk_mq_realloc_hw_ctxs(set, q);
2417 if (!q->nr_hw_queues)
2418 goto err_hctxs;
2419
2420 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2421 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2422
2423 q->nr_queues = nr_cpu_ids;
2424
2425 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2426
2427 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2428 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2429
2430 q->sg_reserved_size = INT_MAX;
2431
2432 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2433 INIT_LIST_HEAD(&q->requeue_list);
2434 spin_lock_init(&q->requeue_lock);
2435
2436 blk_queue_make_request(q, blk_mq_make_request);
2437
2438 /*
2439 * Do this after blk_queue_make_request() overrides it...
2440 */
2441 q->nr_requests = set->queue_depth;
2442
2443 /*
2444 * Default to classic polling
2445 */
2446 q->poll_nsec = -1;
2447
2448 if (set->ops->complete)
2449 blk_queue_softirq_done(q, set->ops->complete);
2450
2451 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2452 blk_mq_add_queue_tag_set(set, q);
2453 blk_mq_map_swqueue(q);
2454
2455 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2456 int ret;
2457
2458 ret = blk_mq_sched_init(q);
2459 if (ret)
2460 return ERR_PTR(ret);
2461 }
2462
2463 return q;
2464
2465 err_hctxs:
2466 kfree(q->queue_hw_ctx);
2467 err_percpu:
2468 free_percpu(q->queue_ctx);
2469 err_exit:
2470 q->mq_ops = NULL;
2471 return ERR_PTR(-ENOMEM);
2472 }
2473 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2474
2475 void blk_mq_free_queue(struct request_queue *q)
2476 {
2477 struct blk_mq_tag_set *set = q->tag_set;
2478
2479 blk_mq_del_queue_tag_set(q);
2480 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2481 }
2482
2483 /* Basically redo blk_mq_init_queue with queue frozen */
2484 static void blk_mq_queue_reinit(struct request_queue *q)
2485 {
2486 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2487
2488 blk_mq_debugfs_unregister_hctxs(q);
2489 blk_mq_sysfs_unregister(q);
2490
2491 /*
2492 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2493 * we should change hctx numa_node according to new topology (this
2494 * involves free and re-allocate memory, worthy doing?)
2495 */
2496
2497 blk_mq_map_swqueue(q);
2498
2499 blk_mq_sysfs_register(q);
2500 blk_mq_debugfs_register_hctxs(q);
2501 }
2502
2503 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2504 {
2505 int i;
2506
2507 for (i = 0; i < set->nr_hw_queues; i++)
2508 if (!__blk_mq_alloc_rq_map(set, i))
2509 goto out_unwind;
2510
2511 return 0;
2512
2513 out_unwind:
2514 while (--i >= 0)
2515 blk_mq_free_rq_map(set->tags[i]);
2516
2517 return -ENOMEM;
2518 }
2519
2520 /*
2521 * Allocate the request maps associated with this tag_set. Note that this
2522 * may reduce the depth asked for, if memory is tight. set->queue_depth
2523 * will be updated to reflect the allocated depth.
2524 */
2525 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2526 {
2527 unsigned int depth;
2528 int err;
2529
2530 depth = set->queue_depth;
2531 do {
2532 err = __blk_mq_alloc_rq_maps(set);
2533 if (!err)
2534 break;
2535
2536 set->queue_depth >>= 1;
2537 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2538 err = -ENOMEM;
2539 break;
2540 }
2541 } while (set->queue_depth);
2542
2543 if (!set->queue_depth || err) {
2544 pr_err("blk-mq: failed to allocate request map\n");
2545 return -ENOMEM;
2546 }
2547
2548 if (depth != set->queue_depth)
2549 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2550 depth, set->queue_depth);
2551
2552 return 0;
2553 }
2554
2555 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2556 {
2557 if (set->ops->map_queues)
2558 return set->ops->map_queues(set);
2559 else
2560 return blk_mq_map_queues(set);
2561 }
2562
2563 /*
2564 * Alloc a tag set to be associated with one or more request queues.
2565 * May fail with EINVAL for various error conditions. May adjust the
2566 * requested depth down, if if it too large. In that case, the set
2567 * value will be stored in set->queue_depth.
2568 */
2569 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2570 {
2571 int ret;
2572
2573 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2574
2575 if (!set->nr_hw_queues)
2576 return -EINVAL;
2577 if (!set->queue_depth)
2578 return -EINVAL;
2579 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2580 return -EINVAL;
2581
2582 if (!set->ops->queue_rq)
2583 return -EINVAL;
2584
2585 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2586 pr_info("blk-mq: reduced tag depth to %u\n",
2587 BLK_MQ_MAX_DEPTH);
2588 set->queue_depth = BLK_MQ_MAX_DEPTH;
2589 }
2590
2591 /*
2592 * If a crashdump is active, then we are potentially in a very
2593 * memory constrained environment. Limit us to 1 queue and
2594 * 64 tags to prevent using too much memory.
2595 */
2596 if (is_kdump_kernel()) {
2597 set->nr_hw_queues = 1;
2598 set->queue_depth = min(64U, set->queue_depth);
2599 }
2600 /*
2601 * There is no use for more h/w queues than cpus.
2602 */
2603 if (set->nr_hw_queues > nr_cpu_ids)
2604 set->nr_hw_queues = nr_cpu_ids;
2605
2606 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2607 GFP_KERNEL, set->numa_node);
2608 if (!set->tags)
2609 return -ENOMEM;
2610
2611 ret = -ENOMEM;
2612 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2613 GFP_KERNEL, set->numa_node);
2614 if (!set->mq_map)
2615 goto out_free_tags;
2616
2617 ret = blk_mq_update_queue_map(set);
2618 if (ret)
2619 goto out_free_mq_map;
2620
2621 ret = blk_mq_alloc_rq_maps(set);
2622 if (ret)
2623 goto out_free_mq_map;
2624
2625 mutex_init(&set->tag_list_lock);
2626 INIT_LIST_HEAD(&set->tag_list);
2627
2628 return 0;
2629
2630 out_free_mq_map:
2631 kfree(set->mq_map);
2632 set->mq_map = NULL;
2633 out_free_tags:
2634 kfree(set->tags);
2635 set->tags = NULL;
2636 return ret;
2637 }
2638 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2639
2640 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2641 {
2642 int i;
2643
2644 for (i = 0; i < nr_cpu_ids; i++)
2645 blk_mq_free_map_and_requests(set, i);
2646
2647 kfree(set->mq_map);
2648 set->mq_map = NULL;
2649
2650 kfree(set->tags);
2651 set->tags = NULL;
2652 }
2653 EXPORT_SYMBOL(blk_mq_free_tag_set);
2654
2655 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2656 {
2657 struct blk_mq_tag_set *set = q->tag_set;
2658 struct blk_mq_hw_ctx *hctx;
2659 int i, ret;
2660
2661 if (!set)
2662 return -EINVAL;
2663
2664 blk_mq_freeze_queue(q);
2665
2666 ret = 0;
2667 queue_for_each_hw_ctx(q, hctx, i) {
2668 if (!hctx->tags)
2669 continue;
2670 /*
2671 * If we're using an MQ scheduler, just update the scheduler
2672 * queue depth. This is similar to what the old code would do.
2673 */
2674 if (!hctx->sched_tags) {
2675 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2676 min(nr, set->queue_depth),
2677 false);
2678 } else {
2679 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2680 nr, true);
2681 }
2682 if (ret)
2683 break;
2684 }
2685
2686 if (!ret)
2687 q->nr_requests = nr;
2688
2689 blk_mq_unfreeze_queue(q);
2690
2691 return ret;
2692 }
2693
2694 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2695 int nr_hw_queues)
2696 {
2697 struct request_queue *q;
2698
2699 lockdep_assert_held(&set->tag_list_lock);
2700
2701 if (nr_hw_queues > nr_cpu_ids)
2702 nr_hw_queues = nr_cpu_ids;
2703 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2704 return;
2705
2706 list_for_each_entry(q, &set->tag_list, tag_set_list)
2707 blk_mq_freeze_queue(q);
2708
2709 set->nr_hw_queues = nr_hw_queues;
2710 blk_mq_update_queue_map(set);
2711 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2712 blk_mq_realloc_hw_ctxs(set, q);
2713 blk_mq_queue_reinit(q);
2714 }
2715
2716 list_for_each_entry(q, &set->tag_list, tag_set_list)
2717 blk_mq_unfreeze_queue(q);
2718 }
2719
2720 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2721 {
2722 mutex_lock(&set->tag_list_lock);
2723 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2724 mutex_unlock(&set->tag_list_lock);
2725 }
2726 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2727
2728 /* Enable polling stats and return whether they were already enabled. */
2729 static bool blk_poll_stats_enable(struct request_queue *q)
2730 {
2731 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2732 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2733 return true;
2734 blk_stat_add_callback(q, q->poll_cb);
2735 return false;
2736 }
2737
2738 static void blk_mq_poll_stats_start(struct request_queue *q)
2739 {
2740 /*
2741 * We don't arm the callback if polling stats are not enabled or the
2742 * callback is already active.
2743 */
2744 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2745 blk_stat_is_active(q->poll_cb))
2746 return;
2747
2748 blk_stat_activate_msecs(q->poll_cb, 100);
2749 }
2750
2751 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2752 {
2753 struct request_queue *q = cb->data;
2754 int bucket;
2755
2756 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2757 if (cb->stat[bucket].nr_samples)
2758 q->poll_stat[bucket] = cb->stat[bucket];
2759 }
2760 }
2761
2762 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2763 struct blk_mq_hw_ctx *hctx,
2764 struct request *rq)
2765 {
2766 unsigned long ret = 0;
2767 int bucket;
2768
2769 /*
2770 * If stats collection isn't on, don't sleep but turn it on for
2771 * future users
2772 */
2773 if (!blk_poll_stats_enable(q))
2774 return 0;
2775
2776 /*
2777 * As an optimistic guess, use half of the mean service time
2778 * for this type of request. We can (and should) make this smarter.
2779 * For instance, if the completion latencies are tight, we can
2780 * get closer than just half the mean. This is especially
2781 * important on devices where the completion latencies are longer
2782 * than ~10 usec. We do use the stats for the relevant IO size
2783 * if available which does lead to better estimates.
2784 */
2785 bucket = blk_mq_poll_stats_bkt(rq);
2786 if (bucket < 0)
2787 return ret;
2788
2789 if (q->poll_stat[bucket].nr_samples)
2790 ret = (q->poll_stat[bucket].mean + 1) / 2;
2791
2792 return ret;
2793 }
2794
2795 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2796 struct blk_mq_hw_ctx *hctx,
2797 struct request *rq)
2798 {
2799 struct hrtimer_sleeper hs;
2800 enum hrtimer_mode mode;
2801 unsigned int nsecs;
2802 ktime_t kt;
2803
2804 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2805 return false;
2806
2807 /*
2808 * poll_nsec can be:
2809 *
2810 * -1: don't ever hybrid sleep
2811 * 0: use half of prev avg
2812 * >0: use this specific value
2813 */
2814 if (q->poll_nsec == -1)
2815 return false;
2816 else if (q->poll_nsec > 0)
2817 nsecs = q->poll_nsec;
2818 else
2819 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2820
2821 if (!nsecs)
2822 return false;
2823
2824 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2825
2826 /*
2827 * This will be replaced with the stats tracking code, using
2828 * 'avg_completion_time / 2' as the pre-sleep target.
2829 */
2830 kt = nsecs;
2831
2832 mode = HRTIMER_MODE_REL;
2833 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2834 hrtimer_set_expires(&hs.timer, kt);
2835
2836 hrtimer_init_sleeper(&hs, current);
2837 do {
2838 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2839 break;
2840 set_current_state(TASK_UNINTERRUPTIBLE);
2841 hrtimer_start_expires(&hs.timer, mode);
2842 if (hs.task)
2843 io_schedule();
2844 hrtimer_cancel(&hs.timer);
2845 mode = HRTIMER_MODE_ABS;
2846 } while (hs.task && !signal_pending(current));
2847
2848 __set_current_state(TASK_RUNNING);
2849 destroy_hrtimer_on_stack(&hs.timer);
2850 return true;
2851 }
2852
2853 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2854 {
2855 struct request_queue *q = hctx->queue;
2856 long state;
2857
2858 /*
2859 * If we sleep, have the caller restart the poll loop to reset
2860 * the state. Like for the other success return cases, the
2861 * caller is responsible for checking if the IO completed. If
2862 * the IO isn't complete, we'll get called again and will go
2863 * straight to the busy poll loop.
2864 */
2865 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2866 return true;
2867
2868 hctx->poll_considered++;
2869
2870 state = current->state;
2871 while (!need_resched()) {
2872 int ret;
2873
2874 hctx->poll_invoked++;
2875
2876 ret = q->mq_ops->poll(hctx, rq->tag);
2877 if (ret > 0) {
2878 hctx->poll_success++;
2879 set_current_state(TASK_RUNNING);
2880 return true;
2881 }
2882
2883 if (signal_pending_state(state, current))
2884 set_current_state(TASK_RUNNING);
2885
2886 if (current->state == TASK_RUNNING)
2887 return true;
2888 if (ret < 0)
2889 break;
2890 cpu_relax();
2891 }
2892
2893 return false;
2894 }
2895
2896 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2897 {
2898 struct blk_mq_hw_ctx *hctx;
2899 struct blk_plug *plug;
2900 struct request *rq;
2901
2902 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2903 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2904 return false;
2905
2906 plug = current->plug;
2907 if (plug)
2908 blk_flush_plug_list(plug, false);
2909
2910 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2911 if (!blk_qc_t_is_internal(cookie))
2912 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2913 else {
2914 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2915 /*
2916 * With scheduling, if the request has completed, we'll
2917 * get a NULL return here, as we clear the sched tag when
2918 * that happens. The request still remains valid, like always,
2919 * so we should be safe with just the NULL check.
2920 */
2921 if (!rq)
2922 return false;
2923 }
2924
2925 return __blk_mq_poll(hctx, rq);
2926 }
2927 EXPORT_SYMBOL_GPL(blk_mq_poll);
2928
2929 static int __init blk_mq_init(void)
2930 {
2931 /*
2932 * See comment in block/blk.h rq_atomic_flags enum
2933 */
2934 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2935 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2936
2937 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2938 blk_mq_hctx_notify_dead);
2939 return 0;
2940 }
2941 subsys_initcall(blk_mq_init);