]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Include: Uapi: Add user ABI for Sed/Opal
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55 {
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62 {
63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 int freeze_depth;
69
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
72 percpu_ref_kill(&q->q_usage_counter);
73 blk_mq_run_hw_queues(q, false);
74 }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 int freeze_depth;
113
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
117 percpu_ref_reinit(&q->q_usage_counter);
118 wake_up_all(&q->mq_freeze_wq);
119 }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
175 {
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
179 rq->mq_ctx = ctx;
180 rq->cmd_flags = op;
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
202
203 rq->cmd = rq->__cmd;
204
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
209
210 INIT_LIST_HEAD(&rq->timeout_list);
211 rq->timeout = 0;
212
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
216
217 ctx->rq_dispatched[op_is_sync(op)]++;
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
220
221 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 unsigned int op)
223 {
224 struct request *rq;
225 unsigned int tag;
226
227 tag = blk_mq_get_tag(data);
228 if (tag != BLK_MQ_TAG_FAIL) {
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231 rq = tags->static_rqs[tag];
232
233 if (data->flags & BLK_MQ_REQ_INTERNAL) {
234 rq->tag = -1;
235 rq->internal_tag = tag;
236 } else {
237 if (blk_mq_tag_busy(data->hctx)) {
238 rq->rq_flags = RQF_MQ_INFLIGHT;
239 atomic_inc(&data->hctx->nr_active);
240 }
241 rq->tag = tag;
242 rq->internal_tag = -1;
243 }
244
245 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
246 return rq;
247 }
248
249 return NULL;
250 }
251 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
252
253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
254 unsigned int flags)
255 {
256 struct blk_mq_alloc_data alloc_data = { .flags = flags };
257 struct request *rq;
258 int ret;
259
260 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
261 if (ret)
262 return ERR_PTR(ret);
263
264 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
265
266 blk_mq_put_ctx(alloc_data.ctx);
267 blk_queue_exit(q);
268
269 if (!rq)
270 return ERR_PTR(-EWOULDBLOCK);
271
272 rq->__data_len = 0;
273 rq->__sector = (sector_t) -1;
274 rq->bio = rq->biotail = NULL;
275 return rq;
276 }
277 EXPORT_SYMBOL(blk_mq_alloc_request);
278
279 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
280 unsigned int flags, unsigned int hctx_idx)
281 {
282 struct blk_mq_hw_ctx *hctx;
283 struct blk_mq_ctx *ctx;
284 struct request *rq;
285 struct blk_mq_alloc_data alloc_data;
286 int ret;
287
288 /*
289 * If the tag allocator sleeps we could get an allocation for a
290 * different hardware context. No need to complicate the low level
291 * allocator for this for the rare use case of a command tied to
292 * a specific queue.
293 */
294 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
295 return ERR_PTR(-EINVAL);
296
297 if (hctx_idx >= q->nr_hw_queues)
298 return ERR_PTR(-EIO);
299
300 ret = blk_queue_enter(q, true);
301 if (ret)
302 return ERR_PTR(ret);
303
304 /*
305 * Check if the hardware context is actually mapped to anything.
306 * If not tell the caller that it should skip this queue.
307 */
308 hctx = q->queue_hw_ctx[hctx_idx];
309 if (!blk_mq_hw_queue_mapped(hctx)) {
310 ret = -EXDEV;
311 goto out_queue_exit;
312 }
313 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
314
315 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
316 rq = __blk_mq_alloc_request(&alloc_data, rw);
317 if (!rq) {
318 ret = -EWOULDBLOCK;
319 goto out_queue_exit;
320 }
321
322 return rq;
323
324 out_queue_exit:
325 blk_queue_exit(q);
326 return ERR_PTR(ret);
327 }
328 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
329
330 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
331 struct request *rq)
332 {
333 const int sched_tag = rq->internal_tag;
334 struct request_queue *q = rq->q;
335
336 if (rq->rq_flags & RQF_MQ_INFLIGHT)
337 atomic_dec(&hctx->nr_active);
338
339 wbt_done(q->rq_wb, &rq->issue_stat);
340 rq->rq_flags = 0;
341
342 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
343 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
344 if (rq->tag != -1)
345 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
346 if (sched_tag != -1)
347 blk_mq_sched_completed_request(hctx, rq);
348 blk_mq_sched_restart_queues(hctx);
349 blk_queue_exit(q);
350 }
351
352 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
353 struct request *rq)
354 {
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
356
357 ctx->rq_completed[rq_is_sync(rq)]++;
358 __blk_mq_finish_request(hctx, ctx, rq);
359 }
360
361 void blk_mq_finish_request(struct request *rq)
362 {
363 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
364 }
365
366 void blk_mq_free_request(struct request *rq)
367 {
368 blk_mq_sched_put_request(rq);
369 }
370 EXPORT_SYMBOL_GPL(blk_mq_free_request);
371
372 inline void __blk_mq_end_request(struct request *rq, int error)
373 {
374 blk_account_io_done(rq);
375
376 if (rq->end_io) {
377 wbt_done(rq->q->rq_wb, &rq->issue_stat);
378 rq->end_io(rq, error);
379 } else {
380 if (unlikely(blk_bidi_rq(rq)))
381 blk_mq_free_request(rq->next_rq);
382 blk_mq_free_request(rq);
383 }
384 }
385 EXPORT_SYMBOL(__blk_mq_end_request);
386
387 void blk_mq_end_request(struct request *rq, int error)
388 {
389 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
390 BUG();
391 __blk_mq_end_request(rq, error);
392 }
393 EXPORT_SYMBOL(blk_mq_end_request);
394
395 static void __blk_mq_complete_request_remote(void *data)
396 {
397 struct request *rq = data;
398
399 rq->q->softirq_done_fn(rq);
400 }
401
402 static void blk_mq_ipi_complete_request(struct request *rq)
403 {
404 struct blk_mq_ctx *ctx = rq->mq_ctx;
405 bool shared = false;
406 int cpu;
407
408 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
409 rq->q->softirq_done_fn(rq);
410 return;
411 }
412
413 cpu = get_cpu();
414 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
415 shared = cpus_share_cache(cpu, ctx->cpu);
416
417 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
418 rq->csd.func = __blk_mq_complete_request_remote;
419 rq->csd.info = rq;
420 rq->csd.flags = 0;
421 smp_call_function_single_async(ctx->cpu, &rq->csd);
422 } else {
423 rq->q->softirq_done_fn(rq);
424 }
425 put_cpu();
426 }
427
428 static void blk_mq_stat_add(struct request *rq)
429 {
430 if (rq->rq_flags & RQF_STATS) {
431 /*
432 * We could rq->mq_ctx here, but there's less of a risk
433 * of races if we have the completion event add the stats
434 * to the local software queue.
435 */
436 struct blk_mq_ctx *ctx;
437
438 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
439 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
440 }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445 struct request_queue *q = rq->q;
446
447 blk_mq_stat_add(rq);
448
449 if (!q->softirq_done_fn)
450 blk_mq_end_request(rq, rq->errors);
451 else
452 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
468 return;
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
471 __blk_mq_complete_request(rq);
472 }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484 struct request_queue *q = rq->q;
485
486 blk_mq_sched_started_request(rq);
487
488 trace_block_rq_issue(q, rq);
489
490 rq->resid_len = blk_rq_bytes(rq);
491 if (unlikely(blk_bidi_rq(rq)))
492 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
493
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
497 wbt_issue(q->rq_wb, &rq->issue_stat);
498 }
499
500 blk_add_timer(rq);
501
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
535 wbt_requeue(q->rq_wb, &rq->issue_stat);
536 blk_mq_sched_requeue_request(rq);
537
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 __blk_mq_requeue_request(rq);
547
548 BUG_ON(blk_queued_rq(rq));
549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 struct request_queue *q =
556 container_of(work, struct request_queue, requeue_work.work);
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 continue;
568
569 rq->rq_flags &= ~RQF_SOFTBARRIER;
570 list_del_init(&rq->queuelist);
571 blk_mq_sched_insert_request(rq, true, false, false, true);
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
577 blk_mq_sched_insert_request(rq, false, false, false, true);
578 }
579
580 blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
585 {
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
597 rq->rq_flags |= RQF_SOFTBARRIER;
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617 {
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
647 return tags->rqs[tag];
648 }
649
650 return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655 unsigned long next;
656 unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 const struct blk_mq_ops *ops = req->q->mq_ops;
662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
675
676 if (ops->timeout)
677 ret = ops->timeout(req, reserved);
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697 {
698 struct blk_mq_timeout_data *data = priv;
699
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
709 return;
710 }
711
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
714 blk_mq_rq_timed_out(rq, reserved);
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
719 }
720
721 static void blk_mq_timeout_work(struct work_struct *work)
722 {
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
729 int i;
730
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
745 return;
746
747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
752 } else {
753 struct blk_mq_hw_ctx *hctx;
754
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
760 }
761 blk_queue_exit(q);
762 }
763
764 /*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769 static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771 {
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 int el_ret;
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
784 el_ret = blk_try_merge(rq, bio);
785 if (el_ret == ELEVATOR_NO_MERGE)
786 continue;
787
788 if (!blk_mq_sched_allow_merge(q, rq, bio))
789 break;
790
791 if (el_ret == ELEVATOR_BACK_MERGE) {
792 if (bio_attempt_back_merge(q, rq, bio)) {
793 ctx->rq_merged++;
794 return true;
795 }
796 break;
797 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
798 if (bio_attempt_front_merge(q, rq, bio)) {
799 ctx->rq_merged++;
800 return true;
801 }
802 break;
803 }
804 }
805
806 return false;
807 }
808
809 struct flush_busy_ctx_data {
810 struct blk_mq_hw_ctx *hctx;
811 struct list_head *list;
812 };
813
814 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
815 {
816 struct flush_busy_ctx_data *flush_data = data;
817 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
818 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
819
820 sbitmap_clear_bit(sb, bitnr);
821 spin_lock(&ctx->lock);
822 list_splice_tail_init(&ctx->rq_list, flush_data->list);
823 spin_unlock(&ctx->lock);
824 return true;
825 }
826
827 /*
828 * Process software queues that have been marked busy, splicing them
829 * to the for-dispatch
830 */
831 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
832 {
833 struct flush_busy_ctx_data data = {
834 .hctx = hctx,
835 .list = list,
836 };
837
838 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
839 }
840 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
841
842 static inline unsigned int queued_to_index(unsigned int queued)
843 {
844 if (!queued)
845 return 0;
846
847 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
848 }
849
850 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
851 bool wait)
852 {
853 struct blk_mq_alloc_data data = {
854 .q = rq->q,
855 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
856 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
857 };
858
859 if (rq->tag != -1) {
860 done:
861 if (hctx)
862 *hctx = data.hctx;
863 return true;
864 }
865
866 rq->tag = blk_mq_get_tag(&data);
867 if (rq->tag >= 0) {
868 if (blk_mq_tag_busy(data.hctx)) {
869 rq->rq_flags |= RQF_MQ_INFLIGHT;
870 atomic_inc(&data.hctx->nr_active);
871 }
872 data.hctx->tags->rqs[rq->tag] = rq;
873 goto done;
874 }
875
876 return false;
877 }
878
879 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
880 struct request *rq)
881 {
882 if (rq->tag == -1 || rq->internal_tag == -1)
883 return;
884
885 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
886 rq->tag = -1;
887
888 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
889 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
890 atomic_dec(&hctx->nr_active);
891 }
892 }
893
894 /*
895 * If we fail getting a driver tag because all the driver tags are already
896 * assigned and on the dispatch list, BUT the first entry does not have a
897 * tag, then we could deadlock. For that case, move entries with assigned
898 * driver tags to the front, leaving the set of tagged requests in the
899 * same order, and the untagged set in the same order.
900 */
901 static bool reorder_tags_to_front(struct list_head *list)
902 {
903 struct request *rq, *tmp, *first = NULL;
904
905 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
906 if (rq == first)
907 break;
908 if (rq->tag != -1) {
909 list_move(&rq->queuelist, list);
910 if (!first)
911 first = rq;
912 }
913 }
914
915 return first != NULL;
916 }
917
918 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
919 {
920 struct request_queue *q = hctx->queue;
921 struct request *rq;
922 LIST_HEAD(driver_list);
923 struct list_head *dptr;
924 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
925
926 /*
927 * Start off with dptr being NULL, so we start the first request
928 * immediately, even if we have more pending.
929 */
930 dptr = NULL;
931
932 /*
933 * Now process all the entries, sending them to the driver.
934 */
935 queued = 0;
936 while (!list_empty(list)) {
937 struct blk_mq_queue_data bd;
938
939 rq = list_first_entry(list, struct request, queuelist);
940 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
941 if (!queued && reorder_tags_to_front(list))
942 continue;
943
944 /*
945 * We failed getting a driver tag. Mark the queue(s)
946 * as needing a restart. Retry getting a tag again,
947 * in case the needed IO completed right before we
948 * marked the queue as needing a restart.
949 */
950 blk_mq_sched_mark_restart(hctx);
951 if (!blk_mq_get_driver_tag(rq, &hctx, false))
952 break;
953 }
954 list_del_init(&rq->queuelist);
955
956 bd.rq = rq;
957 bd.list = dptr;
958 bd.last = list_empty(list);
959
960 ret = q->mq_ops->queue_rq(hctx, &bd);
961 switch (ret) {
962 case BLK_MQ_RQ_QUEUE_OK:
963 queued++;
964 break;
965 case BLK_MQ_RQ_QUEUE_BUSY:
966 blk_mq_put_driver_tag(hctx, rq);
967 list_add(&rq->queuelist, list);
968 __blk_mq_requeue_request(rq);
969 break;
970 default:
971 pr_err("blk-mq: bad return on queue: %d\n", ret);
972 case BLK_MQ_RQ_QUEUE_ERROR:
973 rq->errors = -EIO;
974 blk_mq_end_request(rq, rq->errors);
975 break;
976 }
977
978 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
979 break;
980
981 /*
982 * We've done the first request. If we have more than 1
983 * left in the list, set dptr to defer issue.
984 */
985 if (!dptr && list->next != list->prev)
986 dptr = &driver_list;
987 }
988
989 hctx->dispatched[queued_to_index(queued)]++;
990
991 /*
992 * Any items that need requeuing? Stuff them into hctx->dispatch,
993 * that is where we will continue on next queue run.
994 */
995 if (!list_empty(list)) {
996 spin_lock(&hctx->lock);
997 list_splice_init(list, &hctx->dispatch);
998 spin_unlock(&hctx->lock);
999
1000 /*
1001 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1002 * it's possible the queue is stopped and restarted again
1003 * before this. Queue restart will dispatch requests. And since
1004 * requests in rq_list aren't added into hctx->dispatch yet,
1005 * the requests in rq_list might get lost.
1006 *
1007 * blk_mq_run_hw_queue() already checks the STOPPED bit
1008 *
1009 * If RESTART is set, then let completion restart the queue
1010 * instead of potentially looping here.
1011 */
1012 if (!blk_mq_sched_needs_restart(hctx))
1013 blk_mq_run_hw_queue(hctx, true);
1014 }
1015
1016 return ret != BLK_MQ_RQ_QUEUE_BUSY;
1017 }
1018
1019 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1020 {
1021 int srcu_idx;
1022
1023 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1024 cpu_online(hctx->next_cpu));
1025
1026 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1027 rcu_read_lock();
1028 blk_mq_sched_dispatch_requests(hctx);
1029 rcu_read_unlock();
1030 } else {
1031 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1032 blk_mq_sched_dispatch_requests(hctx);
1033 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1034 }
1035 }
1036
1037 /*
1038 * It'd be great if the workqueue API had a way to pass
1039 * in a mask and had some smarts for more clever placement.
1040 * For now we just round-robin here, switching for every
1041 * BLK_MQ_CPU_WORK_BATCH queued items.
1042 */
1043 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1044 {
1045 if (hctx->queue->nr_hw_queues == 1)
1046 return WORK_CPU_UNBOUND;
1047
1048 if (--hctx->next_cpu_batch <= 0) {
1049 int next_cpu;
1050
1051 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1052 if (next_cpu >= nr_cpu_ids)
1053 next_cpu = cpumask_first(hctx->cpumask);
1054
1055 hctx->next_cpu = next_cpu;
1056 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1057 }
1058
1059 return hctx->next_cpu;
1060 }
1061
1062 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1063 {
1064 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1065 !blk_mq_hw_queue_mapped(hctx)))
1066 return;
1067
1068 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1069 int cpu = get_cpu();
1070 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1071 __blk_mq_run_hw_queue(hctx);
1072 put_cpu();
1073 return;
1074 }
1075
1076 put_cpu();
1077 }
1078
1079 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1080 }
1081
1082 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1083 {
1084 struct blk_mq_hw_ctx *hctx;
1085 int i;
1086
1087 queue_for_each_hw_ctx(q, hctx, i) {
1088 if (!blk_mq_hctx_has_pending(hctx) ||
1089 blk_mq_hctx_stopped(hctx))
1090 continue;
1091
1092 blk_mq_run_hw_queue(hctx, async);
1093 }
1094 }
1095 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1096
1097 /**
1098 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1099 * @q: request queue.
1100 *
1101 * The caller is responsible for serializing this function against
1102 * blk_mq_{start,stop}_hw_queue().
1103 */
1104 bool blk_mq_queue_stopped(struct request_queue *q)
1105 {
1106 struct blk_mq_hw_ctx *hctx;
1107 int i;
1108
1109 queue_for_each_hw_ctx(q, hctx, i)
1110 if (blk_mq_hctx_stopped(hctx))
1111 return true;
1112
1113 return false;
1114 }
1115 EXPORT_SYMBOL(blk_mq_queue_stopped);
1116
1117 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1118 {
1119 cancel_work(&hctx->run_work);
1120 cancel_delayed_work(&hctx->delay_work);
1121 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1122 }
1123 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1124
1125 void blk_mq_stop_hw_queues(struct request_queue *q)
1126 {
1127 struct blk_mq_hw_ctx *hctx;
1128 int i;
1129
1130 queue_for_each_hw_ctx(q, hctx, i)
1131 blk_mq_stop_hw_queue(hctx);
1132 }
1133 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1134
1135 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1136 {
1137 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1138
1139 blk_mq_run_hw_queue(hctx, false);
1140 }
1141 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1142
1143 void blk_mq_start_hw_queues(struct request_queue *q)
1144 {
1145 struct blk_mq_hw_ctx *hctx;
1146 int i;
1147
1148 queue_for_each_hw_ctx(q, hctx, i)
1149 blk_mq_start_hw_queue(hctx);
1150 }
1151 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1152
1153 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1154 {
1155 if (!blk_mq_hctx_stopped(hctx))
1156 return;
1157
1158 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1159 blk_mq_run_hw_queue(hctx, async);
1160 }
1161 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1162
1163 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1164 {
1165 struct blk_mq_hw_ctx *hctx;
1166 int i;
1167
1168 queue_for_each_hw_ctx(q, hctx, i)
1169 blk_mq_start_stopped_hw_queue(hctx, async);
1170 }
1171 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1172
1173 static void blk_mq_run_work_fn(struct work_struct *work)
1174 {
1175 struct blk_mq_hw_ctx *hctx;
1176
1177 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1178
1179 __blk_mq_run_hw_queue(hctx);
1180 }
1181
1182 static void blk_mq_delay_work_fn(struct work_struct *work)
1183 {
1184 struct blk_mq_hw_ctx *hctx;
1185
1186 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1187
1188 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1189 __blk_mq_run_hw_queue(hctx);
1190 }
1191
1192 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1193 {
1194 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1195 return;
1196
1197 blk_mq_stop_hw_queue(hctx);
1198 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1199 &hctx->delay_work, msecs_to_jiffies(msecs));
1200 }
1201 EXPORT_SYMBOL(blk_mq_delay_queue);
1202
1203 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1204 struct request *rq,
1205 bool at_head)
1206 {
1207 struct blk_mq_ctx *ctx = rq->mq_ctx;
1208
1209 trace_block_rq_insert(hctx->queue, rq);
1210
1211 if (at_head)
1212 list_add(&rq->queuelist, &ctx->rq_list);
1213 else
1214 list_add_tail(&rq->queuelist, &ctx->rq_list);
1215 }
1216
1217 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1218 bool at_head)
1219 {
1220 struct blk_mq_ctx *ctx = rq->mq_ctx;
1221
1222 __blk_mq_insert_req_list(hctx, rq, at_head);
1223 blk_mq_hctx_mark_pending(hctx, ctx);
1224 }
1225
1226 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1227 struct list_head *list)
1228
1229 {
1230 /*
1231 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1232 * offline now
1233 */
1234 spin_lock(&ctx->lock);
1235 while (!list_empty(list)) {
1236 struct request *rq;
1237
1238 rq = list_first_entry(list, struct request, queuelist);
1239 BUG_ON(rq->mq_ctx != ctx);
1240 list_del_init(&rq->queuelist);
1241 __blk_mq_insert_req_list(hctx, rq, false);
1242 }
1243 blk_mq_hctx_mark_pending(hctx, ctx);
1244 spin_unlock(&ctx->lock);
1245 }
1246
1247 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1248 {
1249 struct request *rqa = container_of(a, struct request, queuelist);
1250 struct request *rqb = container_of(b, struct request, queuelist);
1251
1252 return !(rqa->mq_ctx < rqb->mq_ctx ||
1253 (rqa->mq_ctx == rqb->mq_ctx &&
1254 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1255 }
1256
1257 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1258 {
1259 struct blk_mq_ctx *this_ctx;
1260 struct request_queue *this_q;
1261 struct request *rq;
1262 LIST_HEAD(list);
1263 LIST_HEAD(ctx_list);
1264 unsigned int depth;
1265
1266 list_splice_init(&plug->mq_list, &list);
1267
1268 list_sort(NULL, &list, plug_ctx_cmp);
1269
1270 this_q = NULL;
1271 this_ctx = NULL;
1272 depth = 0;
1273
1274 while (!list_empty(&list)) {
1275 rq = list_entry_rq(list.next);
1276 list_del_init(&rq->queuelist);
1277 BUG_ON(!rq->q);
1278 if (rq->mq_ctx != this_ctx) {
1279 if (this_ctx) {
1280 trace_block_unplug(this_q, depth, from_schedule);
1281 blk_mq_sched_insert_requests(this_q, this_ctx,
1282 &ctx_list,
1283 from_schedule);
1284 }
1285
1286 this_ctx = rq->mq_ctx;
1287 this_q = rq->q;
1288 depth = 0;
1289 }
1290
1291 depth++;
1292 list_add_tail(&rq->queuelist, &ctx_list);
1293 }
1294
1295 /*
1296 * If 'this_ctx' is set, we know we have entries to complete
1297 * on 'ctx_list'. Do those.
1298 */
1299 if (this_ctx) {
1300 trace_block_unplug(this_q, depth, from_schedule);
1301 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1302 from_schedule);
1303 }
1304 }
1305
1306 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1307 {
1308 init_request_from_bio(rq, bio);
1309
1310 blk_account_io_start(rq, true);
1311 }
1312
1313 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1314 {
1315 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1316 !blk_queue_nomerges(hctx->queue);
1317 }
1318
1319 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1320 struct blk_mq_ctx *ctx,
1321 struct request *rq, struct bio *bio)
1322 {
1323 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1324 blk_mq_bio_to_request(rq, bio);
1325 spin_lock(&ctx->lock);
1326 insert_rq:
1327 __blk_mq_insert_request(hctx, rq, false);
1328 spin_unlock(&ctx->lock);
1329 return false;
1330 } else {
1331 struct request_queue *q = hctx->queue;
1332
1333 spin_lock(&ctx->lock);
1334 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1335 blk_mq_bio_to_request(rq, bio);
1336 goto insert_rq;
1337 }
1338
1339 spin_unlock(&ctx->lock);
1340 __blk_mq_finish_request(hctx, ctx, rq);
1341 return true;
1342 }
1343 }
1344
1345 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1346 {
1347 if (rq->tag != -1)
1348 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1349
1350 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1351 }
1352
1353 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1354 {
1355 struct request_queue *q = rq->q;
1356 struct blk_mq_queue_data bd = {
1357 .rq = rq,
1358 .list = NULL,
1359 .last = 1
1360 };
1361 struct blk_mq_hw_ctx *hctx;
1362 blk_qc_t new_cookie;
1363 int ret;
1364
1365 if (q->elevator)
1366 goto insert;
1367
1368 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1369 goto insert;
1370
1371 new_cookie = request_to_qc_t(hctx, rq);
1372
1373 /*
1374 * For OK queue, we are done. For error, kill it. Any other
1375 * error (busy), just add it to our list as we previously
1376 * would have done
1377 */
1378 ret = q->mq_ops->queue_rq(hctx, &bd);
1379 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1380 *cookie = new_cookie;
1381 return;
1382 }
1383
1384 __blk_mq_requeue_request(rq);
1385
1386 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1387 *cookie = BLK_QC_T_NONE;
1388 rq->errors = -EIO;
1389 blk_mq_end_request(rq, rq->errors);
1390 return;
1391 }
1392
1393 insert:
1394 blk_mq_sched_insert_request(rq, false, true, true, false);
1395 }
1396
1397 /*
1398 * Multiple hardware queue variant. This will not use per-process plugs,
1399 * but will attempt to bypass the hctx queueing if we can go straight to
1400 * hardware for SYNC IO.
1401 */
1402 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1403 {
1404 const int is_sync = op_is_sync(bio->bi_opf);
1405 const int is_flush_fua = op_is_flush(bio->bi_opf);
1406 struct blk_mq_alloc_data data = { .flags = 0 };
1407 struct request *rq;
1408 unsigned int request_count = 0, srcu_idx;
1409 struct blk_plug *plug;
1410 struct request *same_queue_rq = NULL;
1411 blk_qc_t cookie;
1412 unsigned int wb_acct;
1413
1414 blk_queue_bounce(q, &bio);
1415
1416 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1417 bio_io_error(bio);
1418 return BLK_QC_T_NONE;
1419 }
1420
1421 blk_queue_split(q, &bio, q->bio_split);
1422
1423 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1424 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1425 return BLK_QC_T_NONE;
1426
1427 if (blk_mq_sched_bio_merge(q, bio))
1428 return BLK_QC_T_NONE;
1429
1430 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1431
1432 trace_block_getrq(q, bio, bio->bi_opf);
1433
1434 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1435 if (unlikely(!rq)) {
1436 __wbt_done(q->rq_wb, wb_acct);
1437 return BLK_QC_T_NONE;
1438 }
1439
1440 wbt_track(&rq->issue_stat, wb_acct);
1441
1442 cookie = request_to_qc_t(data.hctx, rq);
1443
1444 if (unlikely(is_flush_fua)) {
1445 blk_mq_put_ctx(data.ctx);
1446 blk_mq_bio_to_request(rq, bio);
1447 blk_mq_get_driver_tag(rq, NULL, true);
1448 blk_insert_flush(rq);
1449 blk_mq_run_hw_queue(data.hctx, true);
1450 goto done;
1451 }
1452
1453 plug = current->plug;
1454 /*
1455 * If the driver supports defer issued based on 'last', then
1456 * queue it up like normal since we can potentially save some
1457 * CPU this way.
1458 */
1459 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1460 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1461 struct request *old_rq = NULL;
1462
1463 blk_mq_bio_to_request(rq, bio);
1464
1465 /*
1466 * We do limited plugging. If the bio can be merged, do that.
1467 * Otherwise the existing request in the plug list will be
1468 * issued. So the plug list will have one request at most
1469 */
1470 if (plug) {
1471 /*
1472 * The plug list might get flushed before this. If that
1473 * happens, same_queue_rq is invalid and plug list is
1474 * empty
1475 */
1476 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1477 old_rq = same_queue_rq;
1478 list_del_init(&old_rq->queuelist);
1479 }
1480 list_add_tail(&rq->queuelist, &plug->mq_list);
1481 } else /* is_sync */
1482 old_rq = rq;
1483 blk_mq_put_ctx(data.ctx);
1484 if (!old_rq)
1485 goto done;
1486
1487 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1488 rcu_read_lock();
1489 blk_mq_try_issue_directly(old_rq, &cookie);
1490 rcu_read_unlock();
1491 } else {
1492 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1493 blk_mq_try_issue_directly(old_rq, &cookie);
1494 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1495 }
1496 goto done;
1497 }
1498
1499 if (q->elevator) {
1500 blk_mq_put_ctx(data.ctx);
1501 blk_mq_bio_to_request(rq, bio);
1502 blk_mq_sched_insert_request(rq, false, true,
1503 !is_sync || is_flush_fua, true);
1504 goto done;
1505 }
1506 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1507 /*
1508 * For a SYNC request, send it to the hardware immediately. For
1509 * an ASYNC request, just ensure that we run it later on. The
1510 * latter allows for merging opportunities and more efficient
1511 * dispatching.
1512 */
1513 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1514 }
1515 blk_mq_put_ctx(data.ctx);
1516 done:
1517 return cookie;
1518 }
1519
1520 /*
1521 * Single hardware queue variant. This will attempt to use any per-process
1522 * plug for merging and IO deferral.
1523 */
1524 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1525 {
1526 const int is_sync = op_is_sync(bio->bi_opf);
1527 const int is_flush_fua = op_is_flush(bio->bi_opf);
1528 struct blk_plug *plug;
1529 unsigned int request_count = 0;
1530 struct blk_mq_alloc_data data = { .flags = 0 };
1531 struct request *rq;
1532 blk_qc_t cookie;
1533 unsigned int wb_acct;
1534
1535 blk_queue_bounce(q, &bio);
1536
1537 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1538 bio_io_error(bio);
1539 return BLK_QC_T_NONE;
1540 }
1541
1542 blk_queue_split(q, &bio, q->bio_split);
1543
1544 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1545 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1546 return BLK_QC_T_NONE;
1547 } else
1548 request_count = blk_plug_queued_count(q);
1549
1550 if (blk_mq_sched_bio_merge(q, bio))
1551 return BLK_QC_T_NONE;
1552
1553 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1554
1555 trace_block_getrq(q, bio, bio->bi_opf);
1556
1557 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1558 if (unlikely(!rq)) {
1559 __wbt_done(q->rq_wb, wb_acct);
1560 return BLK_QC_T_NONE;
1561 }
1562
1563 wbt_track(&rq->issue_stat, wb_acct);
1564
1565 cookie = request_to_qc_t(data.hctx, rq);
1566
1567 if (unlikely(is_flush_fua)) {
1568 blk_mq_put_ctx(data.ctx);
1569 blk_mq_bio_to_request(rq, bio);
1570 blk_mq_get_driver_tag(rq, NULL, true);
1571 blk_insert_flush(rq);
1572 blk_mq_run_hw_queue(data.hctx, true);
1573 goto done;
1574 }
1575
1576 /*
1577 * A task plug currently exists. Since this is completely lockless,
1578 * utilize that to temporarily store requests until the task is
1579 * either done or scheduled away.
1580 */
1581 plug = current->plug;
1582 if (plug) {
1583 struct request *last = NULL;
1584
1585 blk_mq_bio_to_request(rq, bio);
1586
1587 /*
1588 * @request_count may become stale because of schedule
1589 * out, so check the list again.
1590 */
1591 if (list_empty(&plug->mq_list))
1592 request_count = 0;
1593 if (!request_count)
1594 trace_block_plug(q);
1595 else
1596 last = list_entry_rq(plug->mq_list.prev);
1597
1598 blk_mq_put_ctx(data.ctx);
1599
1600 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1601 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1602 blk_flush_plug_list(plug, false);
1603 trace_block_plug(q);
1604 }
1605
1606 list_add_tail(&rq->queuelist, &plug->mq_list);
1607 return cookie;
1608 }
1609
1610 if (q->elevator) {
1611 blk_mq_put_ctx(data.ctx);
1612 blk_mq_bio_to_request(rq, bio);
1613 blk_mq_sched_insert_request(rq, false, true,
1614 !is_sync || is_flush_fua, true);
1615 goto done;
1616 }
1617 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1618 /*
1619 * For a SYNC request, send it to the hardware immediately. For
1620 * an ASYNC request, just ensure that we run it later on. The
1621 * latter allows for merging opportunities and more efficient
1622 * dispatching.
1623 */
1624 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1625 }
1626
1627 blk_mq_put_ctx(data.ctx);
1628 done:
1629 return cookie;
1630 }
1631
1632 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1633 unsigned int hctx_idx)
1634 {
1635 struct page *page;
1636
1637 if (tags->rqs && set->ops->exit_request) {
1638 int i;
1639
1640 for (i = 0; i < tags->nr_tags; i++) {
1641 struct request *rq = tags->static_rqs[i];
1642
1643 if (!rq)
1644 continue;
1645 set->ops->exit_request(set->driver_data, rq,
1646 hctx_idx, i);
1647 tags->static_rqs[i] = NULL;
1648 }
1649 }
1650
1651 while (!list_empty(&tags->page_list)) {
1652 page = list_first_entry(&tags->page_list, struct page, lru);
1653 list_del_init(&page->lru);
1654 /*
1655 * Remove kmemleak object previously allocated in
1656 * blk_mq_init_rq_map().
1657 */
1658 kmemleak_free(page_address(page));
1659 __free_pages(page, page->private);
1660 }
1661 }
1662
1663 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1664 {
1665 kfree(tags->rqs);
1666 tags->rqs = NULL;
1667 kfree(tags->static_rqs);
1668 tags->static_rqs = NULL;
1669
1670 blk_mq_free_tags(tags);
1671 }
1672
1673 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1674 unsigned int hctx_idx,
1675 unsigned int nr_tags,
1676 unsigned int reserved_tags)
1677 {
1678 struct blk_mq_tags *tags;
1679
1680 tags = blk_mq_init_tags(nr_tags, reserved_tags,
1681 set->numa_node,
1682 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1683 if (!tags)
1684 return NULL;
1685
1686 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1687 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1688 set->numa_node);
1689 if (!tags->rqs) {
1690 blk_mq_free_tags(tags);
1691 return NULL;
1692 }
1693
1694 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1695 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1696 set->numa_node);
1697 if (!tags->static_rqs) {
1698 kfree(tags->rqs);
1699 blk_mq_free_tags(tags);
1700 return NULL;
1701 }
1702
1703 return tags;
1704 }
1705
1706 static size_t order_to_size(unsigned int order)
1707 {
1708 return (size_t)PAGE_SIZE << order;
1709 }
1710
1711 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1712 unsigned int hctx_idx, unsigned int depth)
1713 {
1714 unsigned int i, j, entries_per_page, max_order = 4;
1715 size_t rq_size, left;
1716
1717 INIT_LIST_HEAD(&tags->page_list);
1718
1719 /*
1720 * rq_size is the size of the request plus driver payload, rounded
1721 * to the cacheline size
1722 */
1723 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1724 cache_line_size());
1725 left = rq_size * depth;
1726
1727 for (i = 0; i < depth; ) {
1728 int this_order = max_order;
1729 struct page *page;
1730 int to_do;
1731 void *p;
1732
1733 while (this_order && left < order_to_size(this_order - 1))
1734 this_order--;
1735
1736 do {
1737 page = alloc_pages_node(set->numa_node,
1738 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1739 this_order);
1740 if (page)
1741 break;
1742 if (!this_order--)
1743 break;
1744 if (order_to_size(this_order) < rq_size)
1745 break;
1746 } while (1);
1747
1748 if (!page)
1749 goto fail;
1750
1751 page->private = this_order;
1752 list_add_tail(&page->lru, &tags->page_list);
1753
1754 p = page_address(page);
1755 /*
1756 * Allow kmemleak to scan these pages as they contain pointers
1757 * to additional allocations like via ops->init_request().
1758 */
1759 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1760 entries_per_page = order_to_size(this_order) / rq_size;
1761 to_do = min(entries_per_page, depth - i);
1762 left -= to_do * rq_size;
1763 for (j = 0; j < to_do; j++) {
1764 struct request *rq = p;
1765
1766 tags->static_rqs[i] = rq;
1767 if (set->ops->init_request) {
1768 if (set->ops->init_request(set->driver_data,
1769 rq, hctx_idx, i,
1770 set->numa_node)) {
1771 tags->static_rqs[i] = NULL;
1772 goto fail;
1773 }
1774 }
1775
1776 p += rq_size;
1777 i++;
1778 }
1779 }
1780 return 0;
1781
1782 fail:
1783 blk_mq_free_rqs(set, tags, hctx_idx);
1784 return -ENOMEM;
1785 }
1786
1787 /*
1788 * 'cpu' is going away. splice any existing rq_list entries from this
1789 * software queue to the hw queue dispatch list, and ensure that it
1790 * gets run.
1791 */
1792 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1793 {
1794 struct blk_mq_hw_ctx *hctx;
1795 struct blk_mq_ctx *ctx;
1796 LIST_HEAD(tmp);
1797
1798 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1799 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1800
1801 spin_lock(&ctx->lock);
1802 if (!list_empty(&ctx->rq_list)) {
1803 list_splice_init(&ctx->rq_list, &tmp);
1804 blk_mq_hctx_clear_pending(hctx, ctx);
1805 }
1806 spin_unlock(&ctx->lock);
1807
1808 if (list_empty(&tmp))
1809 return 0;
1810
1811 spin_lock(&hctx->lock);
1812 list_splice_tail_init(&tmp, &hctx->dispatch);
1813 spin_unlock(&hctx->lock);
1814
1815 blk_mq_run_hw_queue(hctx, true);
1816 return 0;
1817 }
1818
1819 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1820 {
1821 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1822 &hctx->cpuhp_dead);
1823 }
1824
1825 /* hctx->ctxs will be freed in queue's release handler */
1826 static void blk_mq_exit_hctx(struct request_queue *q,
1827 struct blk_mq_tag_set *set,
1828 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1829 {
1830 unsigned flush_start_tag = set->queue_depth;
1831
1832 blk_mq_tag_idle(hctx);
1833
1834 if (set->ops->exit_request)
1835 set->ops->exit_request(set->driver_data,
1836 hctx->fq->flush_rq, hctx_idx,
1837 flush_start_tag + hctx_idx);
1838
1839 if (set->ops->exit_hctx)
1840 set->ops->exit_hctx(hctx, hctx_idx);
1841
1842 if (hctx->flags & BLK_MQ_F_BLOCKING)
1843 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1844
1845 blk_mq_remove_cpuhp(hctx);
1846 blk_free_flush_queue(hctx->fq);
1847 sbitmap_free(&hctx->ctx_map);
1848 }
1849
1850 static void blk_mq_exit_hw_queues(struct request_queue *q,
1851 struct blk_mq_tag_set *set, int nr_queue)
1852 {
1853 struct blk_mq_hw_ctx *hctx;
1854 unsigned int i;
1855
1856 queue_for_each_hw_ctx(q, hctx, i) {
1857 if (i == nr_queue)
1858 break;
1859 blk_mq_exit_hctx(q, set, hctx, i);
1860 }
1861 }
1862
1863 static void blk_mq_free_hw_queues(struct request_queue *q,
1864 struct blk_mq_tag_set *set)
1865 {
1866 struct blk_mq_hw_ctx *hctx;
1867 unsigned int i;
1868
1869 queue_for_each_hw_ctx(q, hctx, i)
1870 free_cpumask_var(hctx->cpumask);
1871 }
1872
1873 static int blk_mq_init_hctx(struct request_queue *q,
1874 struct blk_mq_tag_set *set,
1875 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1876 {
1877 int node;
1878 unsigned flush_start_tag = set->queue_depth;
1879
1880 node = hctx->numa_node;
1881 if (node == NUMA_NO_NODE)
1882 node = hctx->numa_node = set->numa_node;
1883
1884 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1885 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1886 spin_lock_init(&hctx->lock);
1887 INIT_LIST_HEAD(&hctx->dispatch);
1888 hctx->queue = q;
1889 hctx->queue_num = hctx_idx;
1890 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1891
1892 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1893
1894 hctx->tags = set->tags[hctx_idx];
1895
1896 /*
1897 * Allocate space for all possible cpus to avoid allocation at
1898 * runtime
1899 */
1900 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1901 GFP_KERNEL, node);
1902 if (!hctx->ctxs)
1903 goto unregister_cpu_notifier;
1904
1905 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1906 node))
1907 goto free_ctxs;
1908
1909 hctx->nr_ctx = 0;
1910
1911 if (set->ops->init_hctx &&
1912 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1913 goto free_bitmap;
1914
1915 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1916 if (!hctx->fq)
1917 goto exit_hctx;
1918
1919 if (set->ops->init_request &&
1920 set->ops->init_request(set->driver_data,
1921 hctx->fq->flush_rq, hctx_idx,
1922 flush_start_tag + hctx_idx, node))
1923 goto free_fq;
1924
1925 if (hctx->flags & BLK_MQ_F_BLOCKING)
1926 init_srcu_struct(&hctx->queue_rq_srcu);
1927
1928 return 0;
1929
1930 free_fq:
1931 kfree(hctx->fq);
1932 exit_hctx:
1933 if (set->ops->exit_hctx)
1934 set->ops->exit_hctx(hctx, hctx_idx);
1935 free_bitmap:
1936 sbitmap_free(&hctx->ctx_map);
1937 free_ctxs:
1938 kfree(hctx->ctxs);
1939 unregister_cpu_notifier:
1940 blk_mq_remove_cpuhp(hctx);
1941 return -1;
1942 }
1943
1944 static void blk_mq_init_cpu_queues(struct request_queue *q,
1945 unsigned int nr_hw_queues)
1946 {
1947 unsigned int i;
1948
1949 for_each_possible_cpu(i) {
1950 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1951 struct blk_mq_hw_ctx *hctx;
1952
1953 memset(__ctx, 0, sizeof(*__ctx));
1954 __ctx->cpu = i;
1955 spin_lock_init(&__ctx->lock);
1956 INIT_LIST_HEAD(&__ctx->rq_list);
1957 __ctx->queue = q;
1958 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1959 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1960
1961 /* If the cpu isn't online, the cpu is mapped to first hctx */
1962 if (!cpu_online(i))
1963 continue;
1964
1965 hctx = blk_mq_map_queue(q, i);
1966
1967 /*
1968 * Set local node, IFF we have more than one hw queue. If
1969 * not, we remain on the home node of the device
1970 */
1971 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1972 hctx->numa_node = local_memory_node(cpu_to_node(i));
1973 }
1974 }
1975
1976 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1977 {
1978 int ret = 0;
1979
1980 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1981 set->queue_depth, set->reserved_tags);
1982 if (!set->tags[hctx_idx])
1983 return false;
1984
1985 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1986 set->queue_depth);
1987 if (!ret)
1988 return true;
1989
1990 blk_mq_free_rq_map(set->tags[hctx_idx]);
1991 set->tags[hctx_idx] = NULL;
1992 return false;
1993 }
1994
1995 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1996 unsigned int hctx_idx)
1997 {
1998 if (set->tags[hctx_idx]) {
1999 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2000 blk_mq_free_rq_map(set->tags[hctx_idx]);
2001 set->tags[hctx_idx] = NULL;
2002 }
2003 }
2004
2005 static void blk_mq_map_swqueue(struct request_queue *q,
2006 const struct cpumask *online_mask)
2007 {
2008 unsigned int i, hctx_idx;
2009 struct blk_mq_hw_ctx *hctx;
2010 struct blk_mq_ctx *ctx;
2011 struct blk_mq_tag_set *set = q->tag_set;
2012
2013 /*
2014 * Avoid others reading imcomplete hctx->cpumask through sysfs
2015 */
2016 mutex_lock(&q->sysfs_lock);
2017
2018 queue_for_each_hw_ctx(q, hctx, i) {
2019 cpumask_clear(hctx->cpumask);
2020 hctx->nr_ctx = 0;
2021 }
2022
2023 /*
2024 * Map software to hardware queues
2025 */
2026 for_each_possible_cpu(i) {
2027 /* If the cpu isn't online, the cpu is mapped to first hctx */
2028 if (!cpumask_test_cpu(i, online_mask))
2029 continue;
2030
2031 hctx_idx = q->mq_map[i];
2032 /* unmapped hw queue can be remapped after CPU topo changed */
2033 if (!set->tags[hctx_idx] &&
2034 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2035 /*
2036 * If tags initialization fail for some hctx,
2037 * that hctx won't be brought online. In this
2038 * case, remap the current ctx to hctx[0] which
2039 * is guaranteed to always have tags allocated
2040 */
2041 q->mq_map[i] = 0;
2042 }
2043
2044 ctx = per_cpu_ptr(q->queue_ctx, i);
2045 hctx = blk_mq_map_queue(q, i);
2046
2047 cpumask_set_cpu(i, hctx->cpumask);
2048 ctx->index_hw = hctx->nr_ctx;
2049 hctx->ctxs[hctx->nr_ctx++] = ctx;
2050 }
2051
2052 mutex_unlock(&q->sysfs_lock);
2053
2054 queue_for_each_hw_ctx(q, hctx, i) {
2055 /*
2056 * If no software queues are mapped to this hardware queue,
2057 * disable it and free the request entries.
2058 */
2059 if (!hctx->nr_ctx) {
2060 /* Never unmap queue 0. We need it as a
2061 * fallback in case of a new remap fails
2062 * allocation
2063 */
2064 if (i && set->tags[i])
2065 blk_mq_free_map_and_requests(set, i);
2066
2067 hctx->tags = NULL;
2068 continue;
2069 }
2070
2071 hctx->tags = set->tags[i];
2072 WARN_ON(!hctx->tags);
2073
2074 /*
2075 * Set the map size to the number of mapped software queues.
2076 * This is more accurate and more efficient than looping
2077 * over all possibly mapped software queues.
2078 */
2079 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2080
2081 /*
2082 * Initialize batch roundrobin counts
2083 */
2084 hctx->next_cpu = cpumask_first(hctx->cpumask);
2085 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2086 }
2087 }
2088
2089 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2090 {
2091 struct blk_mq_hw_ctx *hctx;
2092 int i;
2093
2094 queue_for_each_hw_ctx(q, hctx, i) {
2095 if (shared)
2096 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2097 else
2098 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2099 }
2100 }
2101
2102 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2103 {
2104 struct request_queue *q;
2105
2106 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2107 blk_mq_freeze_queue(q);
2108 queue_set_hctx_shared(q, shared);
2109 blk_mq_unfreeze_queue(q);
2110 }
2111 }
2112
2113 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2114 {
2115 struct blk_mq_tag_set *set = q->tag_set;
2116
2117 mutex_lock(&set->tag_list_lock);
2118 list_del_init(&q->tag_set_list);
2119 if (list_is_singular(&set->tag_list)) {
2120 /* just transitioned to unshared */
2121 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2122 /* update existing queue */
2123 blk_mq_update_tag_set_depth(set, false);
2124 }
2125 mutex_unlock(&set->tag_list_lock);
2126 }
2127
2128 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2129 struct request_queue *q)
2130 {
2131 q->tag_set = set;
2132
2133 mutex_lock(&set->tag_list_lock);
2134
2135 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2136 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2137 set->flags |= BLK_MQ_F_TAG_SHARED;
2138 /* update existing queue */
2139 blk_mq_update_tag_set_depth(set, true);
2140 }
2141 if (set->flags & BLK_MQ_F_TAG_SHARED)
2142 queue_set_hctx_shared(q, true);
2143 list_add_tail(&q->tag_set_list, &set->tag_list);
2144
2145 mutex_unlock(&set->tag_list_lock);
2146 }
2147
2148 /*
2149 * It is the actual release handler for mq, but we do it from
2150 * request queue's release handler for avoiding use-after-free
2151 * and headache because q->mq_kobj shouldn't have been introduced,
2152 * but we can't group ctx/kctx kobj without it.
2153 */
2154 void blk_mq_release(struct request_queue *q)
2155 {
2156 struct blk_mq_hw_ctx *hctx;
2157 unsigned int i;
2158
2159 blk_mq_sched_teardown(q);
2160
2161 /* hctx kobj stays in hctx */
2162 queue_for_each_hw_ctx(q, hctx, i) {
2163 if (!hctx)
2164 continue;
2165 kfree(hctx->ctxs);
2166 kfree(hctx);
2167 }
2168
2169 q->mq_map = NULL;
2170
2171 kfree(q->queue_hw_ctx);
2172
2173 /* ctx kobj stays in queue_ctx */
2174 free_percpu(q->queue_ctx);
2175 }
2176
2177 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2178 {
2179 struct request_queue *uninit_q, *q;
2180
2181 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2182 if (!uninit_q)
2183 return ERR_PTR(-ENOMEM);
2184
2185 q = blk_mq_init_allocated_queue(set, uninit_q);
2186 if (IS_ERR(q))
2187 blk_cleanup_queue(uninit_q);
2188
2189 return q;
2190 }
2191 EXPORT_SYMBOL(blk_mq_init_queue);
2192
2193 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2194 struct request_queue *q)
2195 {
2196 int i, j;
2197 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2198
2199 blk_mq_sysfs_unregister(q);
2200 for (i = 0; i < set->nr_hw_queues; i++) {
2201 int node;
2202
2203 if (hctxs[i])
2204 continue;
2205
2206 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2207 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2208 GFP_KERNEL, node);
2209 if (!hctxs[i])
2210 break;
2211
2212 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2213 node)) {
2214 kfree(hctxs[i]);
2215 hctxs[i] = NULL;
2216 break;
2217 }
2218
2219 atomic_set(&hctxs[i]->nr_active, 0);
2220 hctxs[i]->numa_node = node;
2221 hctxs[i]->queue_num = i;
2222
2223 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2224 free_cpumask_var(hctxs[i]->cpumask);
2225 kfree(hctxs[i]);
2226 hctxs[i] = NULL;
2227 break;
2228 }
2229 blk_mq_hctx_kobj_init(hctxs[i]);
2230 }
2231 for (j = i; j < q->nr_hw_queues; j++) {
2232 struct blk_mq_hw_ctx *hctx = hctxs[j];
2233
2234 if (hctx) {
2235 if (hctx->tags)
2236 blk_mq_free_map_and_requests(set, j);
2237 blk_mq_exit_hctx(q, set, hctx, j);
2238 free_cpumask_var(hctx->cpumask);
2239 kobject_put(&hctx->kobj);
2240 kfree(hctx->ctxs);
2241 kfree(hctx);
2242 hctxs[j] = NULL;
2243
2244 }
2245 }
2246 q->nr_hw_queues = i;
2247 blk_mq_sysfs_register(q);
2248 }
2249
2250 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2251 struct request_queue *q)
2252 {
2253 /* mark the queue as mq asap */
2254 q->mq_ops = set->ops;
2255
2256 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2257 if (!q->queue_ctx)
2258 goto err_exit;
2259
2260 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2261 GFP_KERNEL, set->numa_node);
2262 if (!q->queue_hw_ctx)
2263 goto err_percpu;
2264
2265 q->mq_map = set->mq_map;
2266
2267 blk_mq_realloc_hw_ctxs(set, q);
2268 if (!q->nr_hw_queues)
2269 goto err_hctxs;
2270
2271 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2272 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2273
2274 q->nr_queues = nr_cpu_ids;
2275
2276 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2277
2278 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2279 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2280
2281 q->sg_reserved_size = INT_MAX;
2282
2283 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2284 INIT_LIST_HEAD(&q->requeue_list);
2285 spin_lock_init(&q->requeue_lock);
2286
2287 if (q->nr_hw_queues > 1)
2288 blk_queue_make_request(q, blk_mq_make_request);
2289 else
2290 blk_queue_make_request(q, blk_sq_make_request);
2291
2292 /*
2293 * Do this after blk_queue_make_request() overrides it...
2294 */
2295 q->nr_requests = set->queue_depth;
2296
2297 /*
2298 * Default to classic polling
2299 */
2300 q->poll_nsec = -1;
2301
2302 if (set->ops->complete)
2303 blk_queue_softirq_done(q, set->ops->complete);
2304
2305 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2306
2307 get_online_cpus();
2308 mutex_lock(&all_q_mutex);
2309
2310 list_add_tail(&q->all_q_node, &all_q_list);
2311 blk_mq_add_queue_tag_set(set, q);
2312 blk_mq_map_swqueue(q, cpu_online_mask);
2313
2314 mutex_unlock(&all_q_mutex);
2315 put_online_cpus();
2316
2317 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2318 int ret;
2319
2320 ret = blk_mq_sched_init(q);
2321 if (ret)
2322 return ERR_PTR(ret);
2323 }
2324
2325 return q;
2326
2327 err_hctxs:
2328 kfree(q->queue_hw_ctx);
2329 err_percpu:
2330 free_percpu(q->queue_ctx);
2331 err_exit:
2332 q->mq_ops = NULL;
2333 return ERR_PTR(-ENOMEM);
2334 }
2335 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2336
2337 void blk_mq_free_queue(struct request_queue *q)
2338 {
2339 struct blk_mq_tag_set *set = q->tag_set;
2340
2341 mutex_lock(&all_q_mutex);
2342 list_del_init(&q->all_q_node);
2343 mutex_unlock(&all_q_mutex);
2344
2345 wbt_exit(q);
2346
2347 blk_mq_del_queue_tag_set(q);
2348
2349 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2350 blk_mq_free_hw_queues(q, set);
2351 }
2352
2353 /* Basically redo blk_mq_init_queue with queue frozen */
2354 static void blk_mq_queue_reinit(struct request_queue *q,
2355 const struct cpumask *online_mask)
2356 {
2357 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2358
2359 blk_mq_sysfs_unregister(q);
2360
2361 /*
2362 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2363 * we should change hctx numa_node according to new topology (this
2364 * involves free and re-allocate memory, worthy doing?)
2365 */
2366
2367 blk_mq_map_swqueue(q, online_mask);
2368
2369 blk_mq_sysfs_register(q);
2370 }
2371
2372 /*
2373 * New online cpumask which is going to be set in this hotplug event.
2374 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2375 * one-by-one and dynamically allocating this could result in a failure.
2376 */
2377 static struct cpumask cpuhp_online_new;
2378
2379 static void blk_mq_queue_reinit_work(void)
2380 {
2381 struct request_queue *q;
2382
2383 mutex_lock(&all_q_mutex);
2384 /*
2385 * We need to freeze and reinit all existing queues. Freezing
2386 * involves synchronous wait for an RCU grace period and doing it
2387 * one by one may take a long time. Start freezing all queues in
2388 * one swoop and then wait for the completions so that freezing can
2389 * take place in parallel.
2390 */
2391 list_for_each_entry(q, &all_q_list, all_q_node)
2392 blk_mq_freeze_queue_start(q);
2393 list_for_each_entry(q, &all_q_list, all_q_node)
2394 blk_mq_freeze_queue_wait(q);
2395
2396 list_for_each_entry(q, &all_q_list, all_q_node)
2397 blk_mq_queue_reinit(q, &cpuhp_online_new);
2398
2399 list_for_each_entry(q, &all_q_list, all_q_node)
2400 blk_mq_unfreeze_queue(q);
2401
2402 mutex_unlock(&all_q_mutex);
2403 }
2404
2405 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2406 {
2407 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2408 blk_mq_queue_reinit_work();
2409 return 0;
2410 }
2411
2412 /*
2413 * Before hotadded cpu starts handling requests, new mappings must be
2414 * established. Otherwise, these requests in hw queue might never be
2415 * dispatched.
2416 *
2417 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2418 * for CPU0, and ctx1 for CPU1).
2419 *
2420 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2421 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2422 *
2423 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2424 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2425 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2426 * ignored.
2427 */
2428 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2429 {
2430 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2431 cpumask_set_cpu(cpu, &cpuhp_online_new);
2432 blk_mq_queue_reinit_work();
2433 return 0;
2434 }
2435
2436 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2437 {
2438 int i;
2439
2440 for (i = 0; i < set->nr_hw_queues; i++)
2441 if (!__blk_mq_alloc_rq_map(set, i))
2442 goto out_unwind;
2443
2444 return 0;
2445
2446 out_unwind:
2447 while (--i >= 0)
2448 blk_mq_free_rq_map(set->tags[i]);
2449
2450 return -ENOMEM;
2451 }
2452
2453 /*
2454 * Allocate the request maps associated with this tag_set. Note that this
2455 * may reduce the depth asked for, if memory is tight. set->queue_depth
2456 * will be updated to reflect the allocated depth.
2457 */
2458 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2459 {
2460 unsigned int depth;
2461 int err;
2462
2463 depth = set->queue_depth;
2464 do {
2465 err = __blk_mq_alloc_rq_maps(set);
2466 if (!err)
2467 break;
2468
2469 set->queue_depth >>= 1;
2470 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2471 err = -ENOMEM;
2472 break;
2473 }
2474 } while (set->queue_depth);
2475
2476 if (!set->queue_depth || err) {
2477 pr_err("blk-mq: failed to allocate request map\n");
2478 return -ENOMEM;
2479 }
2480
2481 if (depth != set->queue_depth)
2482 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2483 depth, set->queue_depth);
2484
2485 return 0;
2486 }
2487
2488 /*
2489 * Alloc a tag set to be associated with one or more request queues.
2490 * May fail with EINVAL for various error conditions. May adjust the
2491 * requested depth down, if if it too large. In that case, the set
2492 * value will be stored in set->queue_depth.
2493 */
2494 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2495 {
2496 int ret;
2497
2498 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2499
2500 if (!set->nr_hw_queues)
2501 return -EINVAL;
2502 if (!set->queue_depth)
2503 return -EINVAL;
2504 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2505 return -EINVAL;
2506
2507 if (!set->ops->queue_rq)
2508 return -EINVAL;
2509
2510 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2511 pr_info("blk-mq: reduced tag depth to %u\n",
2512 BLK_MQ_MAX_DEPTH);
2513 set->queue_depth = BLK_MQ_MAX_DEPTH;
2514 }
2515
2516 /*
2517 * If a crashdump is active, then we are potentially in a very
2518 * memory constrained environment. Limit us to 1 queue and
2519 * 64 tags to prevent using too much memory.
2520 */
2521 if (is_kdump_kernel()) {
2522 set->nr_hw_queues = 1;
2523 set->queue_depth = min(64U, set->queue_depth);
2524 }
2525 /*
2526 * There is no use for more h/w queues than cpus.
2527 */
2528 if (set->nr_hw_queues > nr_cpu_ids)
2529 set->nr_hw_queues = nr_cpu_ids;
2530
2531 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2532 GFP_KERNEL, set->numa_node);
2533 if (!set->tags)
2534 return -ENOMEM;
2535
2536 ret = -ENOMEM;
2537 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2538 GFP_KERNEL, set->numa_node);
2539 if (!set->mq_map)
2540 goto out_free_tags;
2541
2542 if (set->ops->map_queues)
2543 ret = set->ops->map_queues(set);
2544 else
2545 ret = blk_mq_map_queues(set);
2546 if (ret)
2547 goto out_free_mq_map;
2548
2549 ret = blk_mq_alloc_rq_maps(set);
2550 if (ret)
2551 goto out_free_mq_map;
2552
2553 mutex_init(&set->tag_list_lock);
2554 INIT_LIST_HEAD(&set->tag_list);
2555
2556 return 0;
2557
2558 out_free_mq_map:
2559 kfree(set->mq_map);
2560 set->mq_map = NULL;
2561 out_free_tags:
2562 kfree(set->tags);
2563 set->tags = NULL;
2564 return ret;
2565 }
2566 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2567
2568 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2569 {
2570 int i;
2571
2572 for (i = 0; i < nr_cpu_ids; i++)
2573 blk_mq_free_map_and_requests(set, i);
2574
2575 kfree(set->mq_map);
2576 set->mq_map = NULL;
2577
2578 kfree(set->tags);
2579 set->tags = NULL;
2580 }
2581 EXPORT_SYMBOL(blk_mq_free_tag_set);
2582
2583 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2584 {
2585 struct blk_mq_tag_set *set = q->tag_set;
2586 struct blk_mq_hw_ctx *hctx;
2587 int i, ret;
2588
2589 if (!set)
2590 return -EINVAL;
2591
2592 blk_mq_freeze_queue(q);
2593 blk_mq_quiesce_queue(q);
2594
2595 ret = 0;
2596 queue_for_each_hw_ctx(q, hctx, i) {
2597 if (!hctx->tags)
2598 continue;
2599 /*
2600 * If we're using an MQ scheduler, just update the scheduler
2601 * queue depth. This is similar to what the old code would do.
2602 */
2603 if (!hctx->sched_tags) {
2604 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2605 min(nr, set->queue_depth),
2606 false);
2607 } else {
2608 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2609 nr, true);
2610 }
2611 if (ret)
2612 break;
2613 }
2614
2615 if (!ret)
2616 q->nr_requests = nr;
2617
2618 blk_mq_unfreeze_queue(q);
2619 blk_mq_start_stopped_hw_queues(q, true);
2620
2621 return ret;
2622 }
2623
2624 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2625 {
2626 struct request_queue *q;
2627
2628 if (nr_hw_queues > nr_cpu_ids)
2629 nr_hw_queues = nr_cpu_ids;
2630 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2631 return;
2632
2633 list_for_each_entry(q, &set->tag_list, tag_set_list)
2634 blk_mq_freeze_queue(q);
2635
2636 set->nr_hw_queues = nr_hw_queues;
2637 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2638 blk_mq_realloc_hw_ctxs(set, q);
2639
2640 if (q->nr_hw_queues > 1)
2641 blk_queue_make_request(q, blk_mq_make_request);
2642 else
2643 blk_queue_make_request(q, blk_sq_make_request);
2644
2645 blk_mq_queue_reinit(q, cpu_online_mask);
2646 }
2647
2648 list_for_each_entry(q, &set->tag_list, tag_set_list)
2649 blk_mq_unfreeze_queue(q);
2650 }
2651 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2652
2653 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2654 struct blk_mq_hw_ctx *hctx,
2655 struct request *rq)
2656 {
2657 struct blk_rq_stat stat[2];
2658 unsigned long ret = 0;
2659
2660 /*
2661 * If stats collection isn't on, don't sleep but turn it on for
2662 * future users
2663 */
2664 if (!blk_stat_enable(q))
2665 return 0;
2666
2667 /*
2668 * We don't have to do this once per IO, should optimize this
2669 * to just use the current window of stats until it changes
2670 */
2671 memset(&stat, 0, sizeof(stat));
2672 blk_hctx_stat_get(hctx, stat);
2673
2674 /*
2675 * As an optimistic guess, use half of the mean service time
2676 * for this type of request. We can (and should) make this smarter.
2677 * For instance, if the completion latencies are tight, we can
2678 * get closer than just half the mean. This is especially
2679 * important on devices where the completion latencies are longer
2680 * than ~10 usec.
2681 */
2682 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2683 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2684 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2685 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2686
2687 return ret;
2688 }
2689
2690 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2691 struct blk_mq_hw_ctx *hctx,
2692 struct request *rq)
2693 {
2694 struct hrtimer_sleeper hs;
2695 enum hrtimer_mode mode;
2696 unsigned int nsecs;
2697 ktime_t kt;
2698
2699 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2700 return false;
2701
2702 /*
2703 * poll_nsec can be:
2704 *
2705 * -1: don't ever hybrid sleep
2706 * 0: use half of prev avg
2707 * >0: use this specific value
2708 */
2709 if (q->poll_nsec == -1)
2710 return false;
2711 else if (q->poll_nsec > 0)
2712 nsecs = q->poll_nsec;
2713 else
2714 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2715
2716 if (!nsecs)
2717 return false;
2718
2719 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2720
2721 /*
2722 * This will be replaced with the stats tracking code, using
2723 * 'avg_completion_time / 2' as the pre-sleep target.
2724 */
2725 kt = nsecs;
2726
2727 mode = HRTIMER_MODE_REL;
2728 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2729 hrtimer_set_expires(&hs.timer, kt);
2730
2731 hrtimer_init_sleeper(&hs, current);
2732 do {
2733 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2734 break;
2735 set_current_state(TASK_UNINTERRUPTIBLE);
2736 hrtimer_start_expires(&hs.timer, mode);
2737 if (hs.task)
2738 io_schedule();
2739 hrtimer_cancel(&hs.timer);
2740 mode = HRTIMER_MODE_ABS;
2741 } while (hs.task && !signal_pending(current));
2742
2743 __set_current_state(TASK_RUNNING);
2744 destroy_hrtimer_on_stack(&hs.timer);
2745 return true;
2746 }
2747
2748 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2749 {
2750 struct request_queue *q = hctx->queue;
2751 long state;
2752
2753 /*
2754 * If we sleep, have the caller restart the poll loop to reset
2755 * the state. Like for the other success return cases, the
2756 * caller is responsible for checking if the IO completed. If
2757 * the IO isn't complete, we'll get called again and will go
2758 * straight to the busy poll loop.
2759 */
2760 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2761 return true;
2762
2763 hctx->poll_considered++;
2764
2765 state = current->state;
2766 while (!need_resched()) {
2767 int ret;
2768
2769 hctx->poll_invoked++;
2770
2771 ret = q->mq_ops->poll(hctx, rq->tag);
2772 if (ret > 0) {
2773 hctx->poll_success++;
2774 set_current_state(TASK_RUNNING);
2775 return true;
2776 }
2777
2778 if (signal_pending_state(state, current))
2779 set_current_state(TASK_RUNNING);
2780
2781 if (current->state == TASK_RUNNING)
2782 return true;
2783 if (ret < 0)
2784 break;
2785 cpu_relax();
2786 }
2787
2788 return false;
2789 }
2790
2791 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2792 {
2793 struct blk_mq_hw_ctx *hctx;
2794 struct blk_plug *plug;
2795 struct request *rq;
2796
2797 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2798 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2799 return false;
2800
2801 plug = current->plug;
2802 if (plug)
2803 blk_flush_plug_list(plug, false);
2804
2805 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2806 if (!blk_qc_t_is_internal(cookie))
2807 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2808 else
2809 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2810
2811 return __blk_mq_poll(hctx, rq);
2812 }
2813 EXPORT_SYMBOL_GPL(blk_mq_poll);
2814
2815 void blk_mq_disable_hotplug(void)
2816 {
2817 mutex_lock(&all_q_mutex);
2818 }
2819
2820 void blk_mq_enable_hotplug(void)
2821 {
2822 mutex_unlock(&all_q_mutex);
2823 }
2824
2825 static int __init blk_mq_init(void)
2826 {
2827 blk_mq_debugfs_init();
2828
2829 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2830 blk_mq_hctx_notify_dead);
2831
2832 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2833 blk_mq_queue_reinit_prepare,
2834 blk_mq_queue_reinit_dead);
2835 return 0;
2836 }
2837 subsys_initcall(blk_mq_init);