]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/blk-mq.c
arm64: dts: move juno pcie-controller to base file
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25
26 #include <trace/events/block.h>
27
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
38 /*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int i;
44
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
48
49 return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54 {
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66 {
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 int freeze_depth;
84
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
89 }
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
153 }
154
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
163 {
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
170 rq->mq_ctx = ctx;
171 rq->cmd_flags |= rw_flags;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
176 rq->rq_disk = NULL;
177 rq->part = NULL;
178 rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
181 set_start_time_ns(rq);
182 rq->io_start_time_ns = 0;
183 #endif
184 rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187 #endif
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
191
192 rq->cmd = rq->__cmd;
193
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
199 INIT_LIST_HEAD(&rq->timeout_list);
200 rq->timeout = 0;
201
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 struct request *rq;
213 unsigned int tag;
214
215 tag = blk_mq_get_tag(data);
216 if (tag != BLK_MQ_TAG_FAIL) {
217 rq = data->hctx->tags->rqs[tag];
218
219 if (blk_mq_tag_busy(data->hctx)) {
220 rq->cmd_flags = REQ_MQ_INFLIGHT;
221 atomic_inc(&data->hctx->nr_active);
222 }
223
224 rq->tag = tag;
225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 return rq;
227 }
228
229 return NULL;
230 }
231
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 unsigned int flags)
234 {
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
237 struct request *rq;
238 struct blk_mq_alloc_data alloc_data;
239 int ret;
240
241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 if (ret)
243 return ERR_PTR(ret);
244
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248
249 rq = __blk_mq_alloc_request(&alloc_data, rw);
250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 __blk_mq_run_hw_queue(hctx);
252 blk_mq_put_ctx(ctx);
253
254 ctx = blk_mq_get_ctx(q);
255 hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
259 }
260 blk_mq_put_ctx(ctx);
261 if (!rq) {
262 blk_queue_exit(q);
263 return ERR_PTR(-EWOULDBLOCK);
264 }
265 return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
271 {
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
274
275 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 atomic_dec(&hctx->nr_active);
277 rq->cmd_flags = 0;
278
279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281 blk_queue_exit(q);
282 }
283
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 {
286 struct blk_mq_ctx *ctx = rq->mq_ctx;
287
288 ctx->rq_completed[rq_is_sync(rq)]++;
289 __blk_mq_free_request(hctx, ctx, rq);
290
291 }
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293
294 void blk_mq_free_request(struct request *rq)
295 {
296 struct blk_mq_hw_ctx *hctx;
297 struct request_queue *q = rq->q;
298
299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 blk_mq_free_hctx_request(hctx, rq);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_free_request);
303
304 inline void __blk_mq_end_request(struct request *rq, int error)
305 {
306 blk_account_io_done(rq);
307
308 if (rq->end_io) {
309 rq->end_io(rq, error);
310 } else {
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
313 blk_mq_free_request(rq);
314 }
315 }
316 EXPORT_SYMBOL(__blk_mq_end_request);
317
318 void blk_mq_end_request(struct request *rq, int error)
319 {
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 BUG();
322 __blk_mq_end_request(rq, error);
323 }
324 EXPORT_SYMBOL(blk_mq_end_request);
325
326 static void __blk_mq_complete_request_remote(void *data)
327 {
328 struct request *rq = data;
329
330 rq->q->softirq_done_fn(rq);
331 }
332
333 static void blk_mq_ipi_complete_request(struct request *rq)
334 {
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
336 bool shared = false;
337 int cpu;
338
339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 rq->q->softirq_done_fn(rq);
341 return;
342 }
343
344 cpu = get_cpu();
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
347
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349 rq->csd.func = __blk_mq_complete_request_remote;
350 rq->csd.info = rq;
351 rq->csd.flags = 0;
352 smp_call_function_single_async(ctx->cpu, &rq->csd);
353 } else {
354 rq->q->softirq_done_fn(rq);
355 }
356 put_cpu();
357 }
358
359 static void __blk_mq_complete_request(struct request *rq)
360 {
361 struct request_queue *q = rq->q;
362
363 if (!q->softirq_done_fn)
364 blk_mq_end_request(rq, rq->errors);
365 else
366 blk_mq_ipi_complete_request(rq);
367 }
368
369 /**
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
372 *
373 * Description:
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
376 **/
377 void blk_mq_complete_request(struct request *rq, int error)
378 {
379 struct request_queue *q = rq->q;
380
381 if (unlikely(blk_should_fake_timeout(q)))
382 return;
383 if (!blk_mark_rq_complete(rq)) {
384 rq->errors = error;
385 __blk_mq_complete_request(rq);
386 }
387 }
388 EXPORT_SYMBOL(blk_mq_complete_request);
389
390 int blk_mq_request_started(struct request *rq)
391 {
392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_request_started);
395
396 void blk_mq_start_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 trace_block_rq_issue(q, rq);
401
402 rq->resid_len = blk_rq_bytes(rq);
403 if (unlikely(blk_bidi_rq(rq)))
404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
405
406 blk_add_timer(rq);
407
408 /*
409 * Ensure that ->deadline is visible before set the started
410 * flag and clear the completed flag.
411 */
412 smp_mb__before_atomic();
413
414 /*
415 * Mark us as started and clear complete. Complete might have been
416 * set if requeue raced with timeout, which then marked it as
417 * complete. So be sure to clear complete again when we start
418 * the request, otherwise we'll ignore the completion event.
419 */
420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424
425 if (q->dma_drain_size && blk_rq_bytes(rq)) {
426 /*
427 * Make sure space for the drain appears. We know we can do
428 * this because max_hw_segments has been adjusted to be one
429 * fewer than the device can handle.
430 */
431 rq->nr_phys_segments++;
432 }
433 }
434 EXPORT_SYMBOL(blk_mq_start_request);
435
436 static void __blk_mq_requeue_request(struct request *rq)
437 {
438 struct request_queue *q = rq->q;
439
440 trace_block_rq_requeue(q, rq);
441
442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 if (q->dma_drain_size && blk_rq_bytes(rq))
444 rq->nr_phys_segments--;
445 }
446 }
447
448 void blk_mq_requeue_request(struct request *rq)
449 {
450 __blk_mq_requeue_request(rq);
451
452 BUG_ON(blk_queued_rq(rq));
453 blk_mq_add_to_requeue_list(rq, true);
454 }
455 EXPORT_SYMBOL(blk_mq_requeue_request);
456
457 static void blk_mq_requeue_work(struct work_struct *work)
458 {
459 struct request_queue *q =
460 container_of(work, struct request_queue, requeue_work);
461 LIST_HEAD(rq_list);
462 struct request *rq, *next;
463 unsigned long flags;
464
465 spin_lock_irqsave(&q->requeue_lock, flags);
466 list_splice_init(&q->requeue_list, &rq_list);
467 spin_unlock_irqrestore(&q->requeue_lock, flags);
468
469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 continue;
472
473 rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 list_del_init(&rq->queuelist);
475 blk_mq_insert_request(rq, true, false, false);
476 }
477
478 while (!list_empty(&rq_list)) {
479 rq = list_entry(rq_list.next, struct request, queuelist);
480 list_del_init(&rq->queuelist);
481 blk_mq_insert_request(rq, false, false, false);
482 }
483
484 /*
485 * Use the start variant of queue running here, so that running
486 * the requeue work will kick stopped queues.
487 */
488 blk_mq_start_hw_queues(q);
489 }
490
491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
492 {
493 struct request_queue *q = rq->q;
494 unsigned long flags;
495
496 /*
497 * We abuse this flag that is otherwise used by the I/O scheduler to
498 * request head insertation from the workqueue.
499 */
500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
501
502 spin_lock_irqsave(&q->requeue_lock, flags);
503 if (at_head) {
504 rq->cmd_flags |= REQ_SOFTBARRIER;
505 list_add(&rq->queuelist, &q->requeue_list);
506 } else {
507 list_add_tail(&rq->queuelist, &q->requeue_list);
508 }
509 spin_unlock_irqrestore(&q->requeue_lock, flags);
510 }
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
512
513 void blk_mq_cancel_requeue_work(struct request_queue *q)
514 {
515 cancel_work_sync(&q->requeue_work);
516 }
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
518
519 void blk_mq_kick_requeue_list(struct request_queue *q)
520 {
521 kblockd_schedule_work(&q->requeue_work);
522 }
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524
525 void blk_mq_abort_requeue_list(struct request_queue *q)
526 {
527 unsigned long flags;
528 LIST_HEAD(rq_list);
529
530 spin_lock_irqsave(&q->requeue_lock, flags);
531 list_splice_init(&q->requeue_list, &rq_list);
532 spin_unlock_irqrestore(&q->requeue_lock, flags);
533
534 while (!list_empty(&rq_list)) {
535 struct request *rq;
536
537 rq = list_first_entry(&rq_list, struct request, queuelist);
538 list_del_init(&rq->queuelist);
539 rq->errors = -EIO;
540 blk_mq_end_request(rq, rq->errors);
541 }
542 }
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
544
545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
546 {
547 return tags->rqs[tag];
548 }
549 EXPORT_SYMBOL(blk_mq_tag_to_rq);
550
551 struct blk_mq_timeout_data {
552 unsigned long next;
553 unsigned int next_set;
554 };
555
556 void blk_mq_rq_timed_out(struct request *req, bool reserved)
557 {
558 struct blk_mq_ops *ops = req->q->mq_ops;
559 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560
561 /*
562 * We know that complete is set at this point. If STARTED isn't set
563 * anymore, then the request isn't active and the "timeout" should
564 * just be ignored. This can happen due to the bitflag ordering.
565 * Timeout first checks if STARTED is set, and if it is, assumes
566 * the request is active. But if we race with completion, then
567 * we both flags will get cleared. So check here again, and ignore
568 * a timeout event with a request that isn't active.
569 */
570 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
571 return;
572
573 if (ops->timeout)
574 ret = ops->timeout(req, reserved);
575
576 switch (ret) {
577 case BLK_EH_HANDLED:
578 __blk_mq_complete_request(req);
579 break;
580 case BLK_EH_RESET_TIMER:
581 blk_add_timer(req);
582 blk_clear_rq_complete(req);
583 break;
584 case BLK_EH_NOT_HANDLED:
585 break;
586 default:
587 printk(KERN_ERR "block: bad eh return: %d\n", ret);
588 break;
589 }
590 }
591
592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
593 struct request *rq, void *priv, bool reserved)
594 {
595 struct blk_mq_timeout_data *data = priv;
596
597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
598 /*
599 * If a request wasn't started before the queue was
600 * marked dying, kill it here or it'll go unnoticed.
601 */
602 if (unlikely(blk_queue_dying(rq->q)))
603 blk_mq_complete_request(rq, -EIO);
604 return;
605 }
606
607 if (time_after_eq(jiffies, rq->deadline)) {
608 if (!blk_mark_rq_complete(rq))
609 blk_mq_rq_timed_out(rq, reserved);
610 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
611 data->next = rq->deadline;
612 data->next_set = 1;
613 }
614 }
615
616 static void blk_mq_timeout_work(struct work_struct *work)
617 {
618 struct request_queue *q =
619 container_of(work, struct request_queue, timeout_work);
620 struct blk_mq_timeout_data data = {
621 .next = 0,
622 .next_set = 0,
623 };
624 int i;
625
626 if (blk_queue_enter(q, true))
627 return;
628
629 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
630
631 if (data.next_set) {
632 data.next = blk_rq_timeout(round_jiffies_up(data.next));
633 mod_timer(&q->timeout, data.next);
634 } else {
635 struct blk_mq_hw_ctx *hctx;
636
637 queue_for_each_hw_ctx(q, hctx, i) {
638 /* the hctx may be unmapped, so check it here */
639 if (blk_mq_hw_queue_mapped(hctx))
640 blk_mq_tag_idle(hctx);
641 }
642 }
643 blk_queue_exit(q);
644 }
645
646 /*
647 * Reverse check our software queue for entries that we could potentially
648 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
649 * too much time checking for merges.
650 */
651 static bool blk_mq_attempt_merge(struct request_queue *q,
652 struct blk_mq_ctx *ctx, struct bio *bio)
653 {
654 struct request *rq;
655 int checked = 8;
656
657 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
658 int el_ret;
659
660 if (!checked--)
661 break;
662
663 if (!blk_rq_merge_ok(rq, bio))
664 continue;
665
666 el_ret = blk_try_merge(rq, bio);
667 if (el_ret == ELEVATOR_BACK_MERGE) {
668 if (bio_attempt_back_merge(q, rq, bio)) {
669 ctx->rq_merged++;
670 return true;
671 }
672 break;
673 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
674 if (bio_attempt_front_merge(q, rq, bio)) {
675 ctx->rq_merged++;
676 return true;
677 }
678 break;
679 }
680 }
681
682 return false;
683 }
684
685 /*
686 * Process software queues that have been marked busy, splicing them
687 * to the for-dispatch
688 */
689 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
690 {
691 struct blk_mq_ctx *ctx;
692 int i;
693
694 for (i = 0; i < hctx->ctx_map.size; i++) {
695 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
696 unsigned int off, bit;
697
698 if (!bm->word)
699 continue;
700
701 bit = 0;
702 off = i * hctx->ctx_map.bits_per_word;
703 do {
704 bit = find_next_bit(&bm->word, bm->depth, bit);
705 if (bit >= bm->depth)
706 break;
707
708 ctx = hctx->ctxs[bit + off];
709 clear_bit(bit, &bm->word);
710 spin_lock(&ctx->lock);
711 list_splice_tail_init(&ctx->rq_list, list);
712 spin_unlock(&ctx->lock);
713
714 bit++;
715 } while (1);
716 }
717 }
718
719 /*
720 * Run this hardware queue, pulling any software queues mapped to it in.
721 * Note that this function currently has various problems around ordering
722 * of IO. In particular, we'd like FIFO behaviour on handling existing
723 * items on the hctx->dispatch list. Ignore that for now.
724 */
725 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
726 {
727 struct request_queue *q = hctx->queue;
728 struct request *rq;
729 LIST_HEAD(rq_list);
730 LIST_HEAD(driver_list);
731 struct list_head *dptr;
732 int queued;
733
734 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
735
736 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
737 return;
738
739 hctx->run++;
740
741 /*
742 * Touch any software queue that has pending entries.
743 */
744 flush_busy_ctxs(hctx, &rq_list);
745
746 /*
747 * If we have previous entries on our dispatch list, grab them
748 * and stuff them at the front for more fair dispatch.
749 */
750 if (!list_empty_careful(&hctx->dispatch)) {
751 spin_lock(&hctx->lock);
752 if (!list_empty(&hctx->dispatch))
753 list_splice_init(&hctx->dispatch, &rq_list);
754 spin_unlock(&hctx->lock);
755 }
756
757 /*
758 * Start off with dptr being NULL, so we start the first request
759 * immediately, even if we have more pending.
760 */
761 dptr = NULL;
762
763 /*
764 * Now process all the entries, sending them to the driver.
765 */
766 queued = 0;
767 while (!list_empty(&rq_list)) {
768 struct blk_mq_queue_data bd;
769 int ret;
770
771 rq = list_first_entry(&rq_list, struct request, queuelist);
772 list_del_init(&rq->queuelist);
773
774 bd.rq = rq;
775 bd.list = dptr;
776 bd.last = list_empty(&rq_list);
777
778 ret = q->mq_ops->queue_rq(hctx, &bd);
779 switch (ret) {
780 case BLK_MQ_RQ_QUEUE_OK:
781 queued++;
782 continue;
783 case BLK_MQ_RQ_QUEUE_BUSY:
784 list_add(&rq->queuelist, &rq_list);
785 __blk_mq_requeue_request(rq);
786 break;
787 default:
788 pr_err("blk-mq: bad return on queue: %d\n", ret);
789 case BLK_MQ_RQ_QUEUE_ERROR:
790 rq->errors = -EIO;
791 blk_mq_end_request(rq, rq->errors);
792 break;
793 }
794
795 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
796 break;
797
798 /*
799 * We've done the first request. If we have more than 1
800 * left in the list, set dptr to defer issue.
801 */
802 if (!dptr && rq_list.next != rq_list.prev)
803 dptr = &driver_list;
804 }
805
806 if (!queued)
807 hctx->dispatched[0]++;
808 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
809 hctx->dispatched[ilog2(queued) + 1]++;
810
811 /*
812 * Any items that need requeuing? Stuff them into hctx->dispatch,
813 * that is where we will continue on next queue run.
814 */
815 if (!list_empty(&rq_list)) {
816 spin_lock(&hctx->lock);
817 list_splice(&rq_list, &hctx->dispatch);
818 spin_unlock(&hctx->lock);
819 /*
820 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
821 * it's possible the queue is stopped and restarted again
822 * before this. Queue restart will dispatch requests. And since
823 * requests in rq_list aren't added into hctx->dispatch yet,
824 * the requests in rq_list might get lost.
825 *
826 * blk_mq_run_hw_queue() already checks the STOPPED bit
827 **/
828 blk_mq_run_hw_queue(hctx, true);
829 }
830 }
831
832 /*
833 * It'd be great if the workqueue API had a way to pass
834 * in a mask and had some smarts for more clever placement.
835 * For now we just round-robin here, switching for every
836 * BLK_MQ_CPU_WORK_BATCH queued items.
837 */
838 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
839 {
840 if (hctx->queue->nr_hw_queues == 1)
841 return WORK_CPU_UNBOUND;
842
843 if (--hctx->next_cpu_batch <= 0) {
844 int cpu = hctx->next_cpu, next_cpu;
845
846 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
847 if (next_cpu >= nr_cpu_ids)
848 next_cpu = cpumask_first(hctx->cpumask);
849
850 hctx->next_cpu = next_cpu;
851 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
852
853 return cpu;
854 }
855
856 return hctx->next_cpu;
857 }
858
859 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
860 {
861 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
862 !blk_mq_hw_queue_mapped(hctx)))
863 return;
864
865 if (!async) {
866 int cpu = get_cpu();
867 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
868 __blk_mq_run_hw_queue(hctx);
869 put_cpu();
870 return;
871 }
872
873 put_cpu();
874 }
875
876 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
877 &hctx->run_work, 0);
878 }
879
880 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
881 {
882 struct blk_mq_hw_ctx *hctx;
883 int i;
884
885 queue_for_each_hw_ctx(q, hctx, i) {
886 if ((!blk_mq_hctx_has_pending(hctx) &&
887 list_empty_careful(&hctx->dispatch)) ||
888 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
889 continue;
890
891 blk_mq_run_hw_queue(hctx, async);
892 }
893 }
894 EXPORT_SYMBOL(blk_mq_run_hw_queues);
895
896 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
897 {
898 cancel_delayed_work(&hctx->run_work);
899 cancel_delayed_work(&hctx->delay_work);
900 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
901 }
902 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
903
904 void blk_mq_stop_hw_queues(struct request_queue *q)
905 {
906 struct blk_mq_hw_ctx *hctx;
907 int i;
908
909 queue_for_each_hw_ctx(q, hctx, i)
910 blk_mq_stop_hw_queue(hctx);
911 }
912 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
913
914 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
915 {
916 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
917
918 blk_mq_run_hw_queue(hctx, false);
919 }
920 EXPORT_SYMBOL(blk_mq_start_hw_queue);
921
922 void blk_mq_start_hw_queues(struct request_queue *q)
923 {
924 struct blk_mq_hw_ctx *hctx;
925 int i;
926
927 queue_for_each_hw_ctx(q, hctx, i)
928 blk_mq_start_hw_queue(hctx);
929 }
930 EXPORT_SYMBOL(blk_mq_start_hw_queues);
931
932 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
933 {
934 struct blk_mq_hw_ctx *hctx;
935 int i;
936
937 queue_for_each_hw_ctx(q, hctx, i) {
938 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
939 continue;
940
941 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
942 blk_mq_run_hw_queue(hctx, async);
943 }
944 }
945 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
946
947 static void blk_mq_run_work_fn(struct work_struct *work)
948 {
949 struct blk_mq_hw_ctx *hctx;
950
951 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
952
953 __blk_mq_run_hw_queue(hctx);
954 }
955
956 static void blk_mq_delay_work_fn(struct work_struct *work)
957 {
958 struct blk_mq_hw_ctx *hctx;
959
960 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
961
962 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
963 __blk_mq_run_hw_queue(hctx);
964 }
965
966 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
967 {
968 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
969 return;
970
971 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
972 &hctx->delay_work, msecs_to_jiffies(msecs));
973 }
974 EXPORT_SYMBOL(blk_mq_delay_queue);
975
976 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
977 struct blk_mq_ctx *ctx,
978 struct request *rq,
979 bool at_head)
980 {
981 trace_block_rq_insert(hctx->queue, rq);
982
983 if (at_head)
984 list_add(&rq->queuelist, &ctx->rq_list);
985 else
986 list_add_tail(&rq->queuelist, &ctx->rq_list);
987 }
988
989 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
990 struct request *rq, bool at_head)
991 {
992 struct blk_mq_ctx *ctx = rq->mq_ctx;
993
994 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
995 blk_mq_hctx_mark_pending(hctx, ctx);
996 }
997
998 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
999 bool async)
1000 {
1001 struct request_queue *q = rq->q;
1002 struct blk_mq_hw_ctx *hctx;
1003 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1004
1005 current_ctx = blk_mq_get_ctx(q);
1006 if (!cpu_online(ctx->cpu))
1007 rq->mq_ctx = ctx = current_ctx;
1008
1009 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1010
1011 spin_lock(&ctx->lock);
1012 __blk_mq_insert_request(hctx, rq, at_head);
1013 spin_unlock(&ctx->lock);
1014
1015 if (run_queue)
1016 blk_mq_run_hw_queue(hctx, async);
1017
1018 blk_mq_put_ctx(current_ctx);
1019 }
1020
1021 static void blk_mq_insert_requests(struct request_queue *q,
1022 struct blk_mq_ctx *ctx,
1023 struct list_head *list,
1024 int depth,
1025 bool from_schedule)
1026
1027 {
1028 struct blk_mq_hw_ctx *hctx;
1029 struct blk_mq_ctx *current_ctx;
1030
1031 trace_block_unplug(q, depth, !from_schedule);
1032
1033 current_ctx = blk_mq_get_ctx(q);
1034
1035 if (!cpu_online(ctx->cpu))
1036 ctx = current_ctx;
1037 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1038
1039 /*
1040 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1041 * offline now
1042 */
1043 spin_lock(&ctx->lock);
1044 while (!list_empty(list)) {
1045 struct request *rq;
1046
1047 rq = list_first_entry(list, struct request, queuelist);
1048 list_del_init(&rq->queuelist);
1049 rq->mq_ctx = ctx;
1050 __blk_mq_insert_req_list(hctx, ctx, rq, false);
1051 }
1052 blk_mq_hctx_mark_pending(hctx, ctx);
1053 spin_unlock(&ctx->lock);
1054
1055 blk_mq_run_hw_queue(hctx, from_schedule);
1056 blk_mq_put_ctx(current_ctx);
1057 }
1058
1059 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1060 {
1061 struct request *rqa = container_of(a, struct request, queuelist);
1062 struct request *rqb = container_of(b, struct request, queuelist);
1063
1064 return !(rqa->mq_ctx < rqb->mq_ctx ||
1065 (rqa->mq_ctx == rqb->mq_ctx &&
1066 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1067 }
1068
1069 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1070 {
1071 struct blk_mq_ctx *this_ctx;
1072 struct request_queue *this_q;
1073 struct request *rq;
1074 LIST_HEAD(list);
1075 LIST_HEAD(ctx_list);
1076 unsigned int depth;
1077
1078 list_splice_init(&plug->mq_list, &list);
1079
1080 list_sort(NULL, &list, plug_ctx_cmp);
1081
1082 this_q = NULL;
1083 this_ctx = NULL;
1084 depth = 0;
1085
1086 while (!list_empty(&list)) {
1087 rq = list_entry_rq(list.next);
1088 list_del_init(&rq->queuelist);
1089 BUG_ON(!rq->q);
1090 if (rq->mq_ctx != this_ctx) {
1091 if (this_ctx) {
1092 blk_mq_insert_requests(this_q, this_ctx,
1093 &ctx_list, depth,
1094 from_schedule);
1095 }
1096
1097 this_ctx = rq->mq_ctx;
1098 this_q = rq->q;
1099 depth = 0;
1100 }
1101
1102 depth++;
1103 list_add_tail(&rq->queuelist, &ctx_list);
1104 }
1105
1106 /*
1107 * If 'this_ctx' is set, we know we have entries to complete
1108 * on 'ctx_list'. Do those.
1109 */
1110 if (this_ctx) {
1111 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1112 from_schedule);
1113 }
1114 }
1115
1116 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1117 {
1118 init_request_from_bio(rq, bio);
1119
1120 if (blk_do_io_stat(rq))
1121 blk_account_io_start(rq, 1);
1122 }
1123
1124 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1125 {
1126 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1127 !blk_queue_nomerges(hctx->queue);
1128 }
1129
1130 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1131 struct blk_mq_ctx *ctx,
1132 struct request *rq, struct bio *bio)
1133 {
1134 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1135 blk_mq_bio_to_request(rq, bio);
1136 spin_lock(&ctx->lock);
1137 insert_rq:
1138 __blk_mq_insert_request(hctx, rq, false);
1139 spin_unlock(&ctx->lock);
1140 return false;
1141 } else {
1142 struct request_queue *q = hctx->queue;
1143
1144 spin_lock(&ctx->lock);
1145 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1146 blk_mq_bio_to_request(rq, bio);
1147 goto insert_rq;
1148 }
1149
1150 spin_unlock(&ctx->lock);
1151 __blk_mq_free_request(hctx, ctx, rq);
1152 return true;
1153 }
1154 }
1155
1156 struct blk_map_ctx {
1157 struct blk_mq_hw_ctx *hctx;
1158 struct blk_mq_ctx *ctx;
1159 };
1160
1161 static struct request *blk_mq_map_request(struct request_queue *q,
1162 struct bio *bio,
1163 struct blk_map_ctx *data)
1164 {
1165 struct blk_mq_hw_ctx *hctx;
1166 struct blk_mq_ctx *ctx;
1167 struct request *rq;
1168 int rw = bio_data_dir(bio);
1169 struct blk_mq_alloc_data alloc_data;
1170
1171 blk_queue_enter_live(q);
1172 ctx = blk_mq_get_ctx(q);
1173 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1174
1175 if (rw_is_sync(bio->bi_rw))
1176 rw |= REQ_SYNC;
1177
1178 trace_block_getrq(q, bio, rw);
1179 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1180 rq = __blk_mq_alloc_request(&alloc_data, rw);
1181 if (unlikely(!rq)) {
1182 __blk_mq_run_hw_queue(hctx);
1183 blk_mq_put_ctx(ctx);
1184 trace_block_sleeprq(q, bio, rw);
1185
1186 ctx = blk_mq_get_ctx(q);
1187 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1189 rq = __blk_mq_alloc_request(&alloc_data, rw);
1190 ctx = alloc_data.ctx;
1191 hctx = alloc_data.hctx;
1192 }
1193
1194 hctx->queued++;
1195 data->hctx = hctx;
1196 data->ctx = ctx;
1197 return rq;
1198 }
1199
1200 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1201 {
1202 int ret;
1203 struct request_queue *q = rq->q;
1204 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1205 rq->mq_ctx->cpu);
1206 struct blk_mq_queue_data bd = {
1207 .rq = rq,
1208 .list = NULL,
1209 .last = 1
1210 };
1211 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1212
1213 /*
1214 * For OK queue, we are done. For error, kill it. Any other
1215 * error (busy), just add it to our list as we previously
1216 * would have done
1217 */
1218 ret = q->mq_ops->queue_rq(hctx, &bd);
1219 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1220 *cookie = new_cookie;
1221 return 0;
1222 }
1223
1224 __blk_mq_requeue_request(rq);
1225
1226 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1227 *cookie = BLK_QC_T_NONE;
1228 rq->errors = -EIO;
1229 blk_mq_end_request(rq, rq->errors);
1230 return 0;
1231 }
1232
1233 return -1;
1234 }
1235
1236 /*
1237 * Multiple hardware queue variant. This will not use per-process plugs,
1238 * but will attempt to bypass the hctx queueing if we can go straight to
1239 * hardware for SYNC IO.
1240 */
1241 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1242 {
1243 const int is_sync = rw_is_sync(bio->bi_rw);
1244 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1245 struct blk_map_ctx data;
1246 struct request *rq;
1247 unsigned int request_count = 0;
1248 struct blk_plug *plug;
1249 struct request *same_queue_rq = NULL;
1250 blk_qc_t cookie;
1251
1252 blk_queue_bounce(q, &bio);
1253
1254 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1255 bio_io_error(bio);
1256 return BLK_QC_T_NONE;
1257 }
1258
1259 blk_queue_split(q, &bio, q->bio_split);
1260
1261 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1262 if (blk_attempt_plug_merge(q, bio, &request_count,
1263 &same_queue_rq))
1264 return BLK_QC_T_NONE;
1265 } else
1266 request_count = blk_plug_queued_count(q);
1267
1268 rq = blk_mq_map_request(q, bio, &data);
1269 if (unlikely(!rq))
1270 return BLK_QC_T_NONE;
1271
1272 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1273
1274 if (unlikely(is_flush_fua)) {
1275 blk_mq_bio_to_request(rq, bio);
1276 blk_insert_flush(rq);
1277 goto run_queue;
1278 }
1279
1280 plug = current->plug;
1281 /*
1282 * If the driver supports defer issued based on 'last', then
1283 * queue it up like normal since we can potentially save some
1284 * CPU this way.
1285 */
1286 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1287 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1288 struct request *old_rq = NULL;
1289
1290 blk_mq_bio_to_request(rq, bio);
1291
1292 /*
1293 * We do limited pluging. If the bio can be merged, do that.
1294 * Otherwise the existing request in the plug list will be
1295 * issued. So the plug list will have one request at most
1296 */
1297 if (plug) {
1298 /*
1299 * The plug list might get flushed before this. If that
1300 * happens, same_queue_rq is invalid and plug list is
1301 * empty
1302 */
1303 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1304 old_rq = same_queue_rq;
1305 list_del_init(&old_rq->queuelist);
1306 }
1307 list_add_tail(&rq->queuelist, &plug->mq_list);
1308 } else /* is_sync */
1309 old_rq = rq;
1310 blk_mq_put_ctx(data.ctx);
1311 if (!old_rq)
1312 goto done;
1313 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1314 goto done;
1315 blk_mq_insert_request(old_rq, false, true, true);
1316 goto done;
1317 }
1318
1319 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1320 /*
1321 * For a SYNC request, send it to the hardware immediately. For
1322 * an ASYNC request, just ensure that we run it later on. The
1323 * latter allows for merging opportunities and more efficient
1324 * dispatching.
1325 */
1326 run_queue:
1327 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1328 }
1329 blk_mq_put_ctx(data.ctx);
1330 done:
1331 return cookie;
1332 }
1333
1334 /*
1335 * Single hardware queue variant. This will attempt to use any per-process
1336 * plug for merging and IO deferral.
1337 */
1338 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1339 {
1340 const int is_sync = rw_is_sync(bio->bi_rw);
1341 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1342 struct blk_plug *plug;
1343 unsigned int request_count = 0;
1344 struct blk_map_ctx data;
1345 struct request *rq;
1346 blk_qc_t cookie;
1347
1348 blk_queue_bounce(q, &bio);
1349
1350 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1351 bio_io_error(bio);
1352 return BLK_QC_T_NONE;
1353 }
1354
1355 blk_queue_split(q, &bio, q->bio_split);
1356
1357 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1358 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1359 return BLK_QC_T_NONE;
1360
1361 rq = blk_mq_map_request(q, bio, &data);
1362 if (unlikely(!rq))
1363 return BLK_QC_T_NONE;
1364
1365 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1366
1367 if (unlikely(is_flush_fua)) {
1368 blk_mq_bio_to_request(rq, bio);
1369 blk_insert_flush(rq);
1370 goto run_queue;
1371 }
1372
1373 /*
1374 * A task plug currently exists. Since this is completely lockless,
1375 * utilize that to temporarily store requests until the task is
1376 * either done or scheduled away.
1377 */
1378 plug = current->plug;
1379 if (plug) {
1380 blk_mq_bio_to_request(rq, bio);
1381 if (!request_count)
1382 trace_block_plug(q);
1383
1384 blk_mq_put_ctx(data.ctx);
1385
1386 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1387 blk_flush_plug_list(plug, false);
1388 trace_block_plug(q);
1389 }
1390
1391 list_add_tail(&rq->queuelist, &plug->mq_list);
1392 return cookie;
1393 }
1394
1395 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1396 /*
1397 * For a SYNC request, send it to the hardware immediately. For
1398 * an ASYNC request, just ensure that we run it later on. The
1399 * latter allows for merging opportunities and more efficient
1400 * dispatching.
1401 */
1402 run_queue:
1403 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1404 }
1405
1406 blk_mq_put_ctx(data.ctx);
1407 return cookie;
1408 }
1409
1410 /*
1411 * Default mapping to a software queue, since we use one per CPU.
1412 */
1413 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1414 {
1415 return q->queue_hw_ctx[q->mq_map[cpu]];
1416 }
1417 EXPORT_SYMBOL(blk_mq_map_queue);
1418
1419 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1420 struct blk_mq_tags *tags, unsigned int hctx_idx)
1421 {
1422 struct page *page;
1423
1424 if (tags->rqs && set->ops->exit_request) {
1425 int i;
1426
1427 for (i = 0; i < tags->nr_tags; i++) {
1428 if (!tags->rqs[i])
1429 continue;
1430 set->ops->exit_request(set->driver_data, tags->rqs[i],
1431 hctx_idx, i);
1432 tags->rqs[i] = NULL;
1433 }
1434 }
1435
1436 while (!list_empty(&tags->page_list)) {
1437 page = list_first_entry(&tags->page_list, struct page, lru);
1438 list_del_init(&page->lru);
1439 /*
1440 * Remove kmemleak object previously allocated in
1441 * blk_mq_init_rq_map().
1442 */
1443 kmemleak_free(page_address(page));
1444 __free_pages(page, page->private);
1445 }
1446
1447 kfree(tags->rqs);
1448
1449 blk_mq_free_tags(tags);
1450 }
1451
1452 static size_t order_to_size(unsigned int order)
1453 {
1454 return (size_t)PAGE_SIZE << order;
1455 }
1456
1457 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1458 unsigned int hctx_idx)
1459 {
1460 struct blk_mq_tags *tags;
1461 unsigned int i, j, entries_per_page, max_order = 4;
1462 size_t rq_size, left;
1463
1464 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1465 set->numa_node,
1466 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1467 if (!tags)
1468 return NULL;
1469
1470 INIT_LIST_HEAD(&tags->page_list);
1471
1472 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1473 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1474 set->numa_node);
1475 if (!tags->rqs) {
1476 blk_mq_free_tags(tags);
1477 return NULL;
1478 }
1479
1480 /*
1481 * rq_size is the size of the request plus driver payload, rounded
1482 * to the cacheline size
1483 */
1484 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1485 cache_line_size());
1486 left = rq_size * set->queue_depth;
1487
1488 for (i = 0; i < set->queue_depth; ) {
1489 int this_order = max_order;
1490 struct page *page;
1491 int to_do;
1492 void *p;
1493
1494 while (left < order_to_size(this_order - 1) && this_order)
1495 this_order--;
1496
1497 do {
1498 page = alloc_pages_node(set->numa_node,
1499 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1500 this_order);
1501 if (page)
1502 break;
1503 if (!this_order--)
1504 break;
1505 if (order_to_size(this_order) < rq_size)
1506 break;
1507 } while (1);
1508
1509 if (!page)
1510 goto fail;
1511
1512 page->private = this_order;
1513 list_add_tail(&page->lru, &tags->page_list);
1514
1515 p = page_address(page);
1516 /*
1517 * Allow kmemleak to scan these pages as they contain pointers
1518 * to additional allocations like via ops->init_request().
1519 */
1520 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1521 entries_per_page = order_to_size(this_order) / rq_size;
1522 to_do = min(entries_per_page, set->queue_depth - i);
1523 left -= to_do * rq_size;
1524 for (j = 0; j < to_do; j++) {
1525 tags->rqs[i] = p;
1526 if (set->ops->init_request) {
1527 if (set->ops->init_request(set->driver_data,
1528 tags->rqs[i], hctx_idx, i,
1529 set->numa_node)) {
1530 tags->rqs[i] = NULL;
1531 goto fail;
1532 }
1533 }
1534
1535 p += rq_size;
1536 i++;
1537 }
1538 }
1539 return tags;
1540
1541 fail:
1542 blk_mq_free_rq_map(set, tags, hctx_idx);
1543 return NULL;
1544 }
1545
1546 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1547 {
1548 kfree(bitmap->map);
1549 }
1550
1551 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1552 {
1553 unsigned int bpw = 8, total, num_maps, i;
1554
1555 bitmap->bits_per_word = bpw;
1556
1557 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1558 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1559 GFP_KERNEL, node);
1560 if (!bitmap->map)
1561 return -ENOMEM;
1562
1563 total = nr_cpu_ids;
1564 for (i = 0; i < num_maps; i++) {
1565 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1566 total -= bitmap->map[i].depth;
1567 }
1568
1569 return 0;
1570 }
1571
1572 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1573 {
1574 struct request_queue *q = hctx->queue;
1575 struct blk_mq_ctx *ctx;
1576 LIST_HEAD(tmp);
1577
1578 /*
1579 * Move ctx entries to new CPU, if this one is going away.
1580 */
1581 ctx = __blk_mq_get_ctx(q, cpu);
1582
1583 spin_lock(&ctx->lock);
1584 if (!list_empty(&ctx->rq_list)) {
1585 list_splice_init(&ctx->rq_list, &tmp);
1586 blk_mq_hctx_clear_pending(hctx, ctx);
1587 }
1588 spin_unlock(&ctx->lock);
1589
1590 if (list_empty(&tmp))
1591 return NOTIFY_OK;
1592
1593 ctx = blk_mq_get_ctx(q);
1594 spin_lock(&ctx->lock);
1595
1596 while (!list_empty(&tmp)) {
1597 struct request *rq;
1598
1599 rq = list_first_entry(&tmp, struct request, queuelist);
1600 rq->mq_ctx = ctx;
1601 list_move_tail(&rq->queuelist, &ctx->rq_list);
1602 }
1603
1604 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1605 blk_mq_hctx_mark_pending(hctx, ctx);
1606
1607 spin_unlock(&ctx->lock);
1608
1609 blk_mq_run_hw_queue(hctx, true);
1610 blk_mq_put_ctx(ctx);
1611 return NOTIFY_OK;
1612 }
1613
1614 static int blk_mq_hctx_notify(void *data, unsigned long action,
1615 unsigned int cpu)
1616 {
1617 struct blk_mq_hw_ctx *hctx = data;
1618
1619 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1620 return blk_mq_hctx_cpu_offline(hctx, cpu);
1621
1622 /*
1623 * In case of CPU online, tags may be reallocated
1624 * in blk_mq_map_swqueue() after mapping is updated.
1625 */
1626
1627 return NOTIFY_OK;
1628 }
1629
1630 /* hctx->ctxs will be freed in queue's release handler */
1631 static void blk_mq_exit_hctx(struct request_queue *q,
1632 struct blk_mq_tag_set *set,
1633 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1634 {
1635 unsigned flush_start_tag = set->queue_depth;
1636
1637 blk_mq_tag_idle(hctx);
1638
1639 if (set->ops->exit_request)
1640 set->ops->exit_request(set->driver_data,
1641 hctx->fq->flush_rq, hctx_idx,
1642 flush_start_tag + hctx_idx);
1643
1644 if (set->ops->exit_hctx)
1645 set->ops->exit_hctx(hctx, hctx_idx);
1646
1647 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1648 blk_free_flush_queue(hctx->fq);
1649 blk_mq_free_bitmap(&hctx->ctx_map);
1650 }
1651
1652 static void blk_mq_exit_hw_queues(struct request_queue *q,
1653 struct blk_mq_tag_set *set, int nr_queue)
1654 {
1655 struct blk_mq_hw_ctx *hctx;
1656 unsigned int i;
1657
1658 queue_for_each_hw_ctx(q, hctx, i) {
1659 if (i == nr_queue)
1660 break;
1661 blk_mq_exit_hctx(q, set, hctx, i);
1662 }
1663 }
1664
1665 static void blk_mq_free_hw_queues(struct request_queue *q,
1666 struct blk_mq_tag_set *set)
1667 {
1668 struct blk_mq_hw_ctx *hctx;
1669 unsigned int i;
1670
1671 queue_for_each_hw_ctx(q, hctx, i)
1672 free_cpumask_var(hctx->cpumask);
1673 }
1674
1675 static int blk_mq_init_hctx(struct request_queue *q,
1676 struct blk_mq_tag_set *set,
1677 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1678 {
1679 int node;
1680 unsigned flush_start_tag = set->queue_depth;
1681
1682 node = hctx->numa_node;
1683 if (node == NUMA_NO_NODE)
1684 node = hctx->numa_node = set->numa_node;
1685
1686 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1687 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1688 spin_lock_init(&hctx->lock);
1689 INIT_LIST_HEAD(&hctx->dispatch);
1690 hctx->queue = q;
1691 hctx->queue_num = hctx_idx;
1692 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1693
1694 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1695 blk_mq_hctx_notify, hctx);
1696 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1697
1698 hctx->tags = set->tags[hctx_idx];
1699
1700 /*
1701 * Allocate space for all possible cpus to avoid allocation at
1702 * runtime
1703 */
1704 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1705 GFP_KERNEL, node);
1706 if (!hctx->ctxs)
1707 goto unregister_cpu_notifier;
1708
1709 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1710 goto free_ctxs;
1711
1712 hctx->nr_ctx = 0;
1713
1714 if (set->ops->init_hctx &&
1715 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1716 goto free_bitmap;
1717
1718 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1719 if (!hctx->fq)
1720 goto exit_hctx;
1721
1722 if (set->ops->init_request &&
1723 set->ops->init_request(set->driver_data,
1724 hctx->fq->flush_rq, hctx_idx,
1725 flush_start_tag + hctx_idx, node))
1726 goto free_fq;
1727
1728 return 0;
1729
1730 free_fq:
1731 kfree(hctx->fq);
1732 exit_hctx:
1733 if (set->ops->exit_hctx)
1734 set->ops->exit_hctx(hctx, hctx_idx);
1735 free_bitmap:
1736 blk_mq_free_bitmap(&hctx->ctx_map);
1737 free_ctxs:
1738 kfree(hctx->ctxs);
1739 unregister_cpu_notifier:
1740 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1741
1742 return -1;
1743 }
1744
1745 static int blk_mq_init_hw_queues(struct request_queue *q,
1746 struct blk_mq_tag_set *set)
1747 {
1748 struct blk_mq_hw_ctx *hctx;
1749 unsigned int i;
1750
1751 /*
1752 * Initialize hardware queues
1753 */
1754 queue_for_each_hw_ctx(q, hctx, i) {
1755 if (blk_mq_init_hctx(q, set, hctx, i))
1756 break;
1757 }
1758
1759 if (i == q->nr_hw_queues)
1760 return 0;
1761
1762 /*
1763 * Init failed
1764 */
1765 blk_mq_exit_hw_queues(q, set, i);
1766
1767 return 1;
1768 }
1769
1770 static void blk_mq_init_cpu_queues(struct request_queue *q,
1771 unsigned int nr_hw_queues)
1772 {
1773 unsigned int i;
1774
1775 for_each_possible_cpu(i) {
1776 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1777 struct blk_mq_hw_ctx *hctx;
1778
1779 memset(__ctx, 0, sizeof(*__ctx));
1780 __ctx->cpu = i;
1781 spin_lock_init(&__ctx->lock);
1782 INIT_LIST_HEAD(&__ctx->rq_list);
1783 __ctx->queue = q;
1784
1785 /* If the cpu isn't online, the cpu is mapped to first hctx */
1786 if (!cpu_online(i))
1787 continue;
1788
1789 hctx = q->mq_ops->map_queue(q, i);
1790
1791 /*
1792 * Set local node, IFF we have more than one hw queue. If
1793 * not, we remain on the home node of the device
1794 */
1795 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1796 hctx->numa_node = local_memory_node(cpu_to_node(i));
1797 }
1798 }
1799
1800 static void blk_mq_map_swqueue(struct request_queue *q,
1801 const struct cpumask *online_mask)
1802 {
1803 unsigned int i;
1804 struct blk_mq_hw_ctx *hctx;
1805 struct blk_mq_ctx *ctx;
1806 struct blk_mq_tag_set *set = q->tag_set;
1807
1808 /*
1809 * Avoid others reading imcomplete hctx->cpumask through sysfs
1810 */
1811 mutex_lock(&q->sysfs_lock);
1812
1813 queue_for_each_hw_ctx(q, hctx, i) {
1814 cpumask_clear(hctx->cpumask);
1815 hctx->nr_ctx = 0;
1816 }
1817
1818 /*
1819 * Map software to hardware queues
1820 */
1821 queue_for_each_ctx(q, ctx, i) {
1822 /* If the cpu isn't online, the cpu is mapped to first hctx */
1823 if (!cpumask_test_cpu(i, online_mask))
1824 continue;
1825
1826 hctx = q->mq_ops->map_queue(q, i);
1827 cpumask_set_cpu(i, hctx->cpumask);
1828 ctx->index_hw = hctx->nr_ctx;
1829 hctx->ctxs[hctx->nr_ctx++] = ctx;
1830 }
1831
1832 mutex_unlock(&q->sysfs_lock);
1833
1834 queue_for_each_hw_ctx(q, hctx, i) {
1835 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1836
1837 /*
1838 * If no software queues are mapped to this hardware queue,
1839 * disable it and free the request entries.
1840 */
1841 if (!hctx->nr_ctx) {
1842 if (set->tags[i]) {
1843 blk_mq_free_rq_map(set, set->tags[i], i);
1844 set->tags[i] = NULL;
1845 }
1846 hctx->tags = NULL;
1847 continue;
1848 }
1849
1850 /* unmapped hw queue can be remapped after CPU topo changed */
1851 if (!set->tags[i])
1852 set->tags[i] = blk_mq_init_rq_map(set, i);
1853 hctx->tags = set->tags[i];
1854 WARN_ON(!hctx->tags);
1855
1856 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1857 /*
1858 * Set the map size to the number of mapped software queues.
1859 * This is more accurate and more efficient than looping
1860 * over all possibly mapped software queues.
1861 */
1862 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1863
1864 /*
1865 * Initialize batch roundrobin counts
1866 */
1867 hctx->next_cpu = cpumask_first(hctx->cpumask);
1868 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1869 }
1870 }
1871
1872 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1873 {
1874 struct blk_mq_hw_ctx *hctx;
1875 int i;
1876
1877 queue_for_each_hw_ctx(q, hctx, i) {
1878 if (shared)
1879 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1880 else
1881 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1882 }
1883 }
1884
1885 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1886 {
1887 struct request_queue *q;
1888
1889 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1890 blk_mq_freeze_queue(q);
1891 queue_set_hctx_shared(q, shared);
1892 blk_mq_unfreeze_queue(q);
1893 }
1894 }
1895
1896 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1897 {
1898 struct blk_mq_tag_set *set = q->tag_set;
1899
1900 mutex_lock(&set->tag_list_lock);
1901 list_del_init(&q->tag_set_list);
1902 if (list_is_singular(&set->tag_list)) {
1903 /* just transitioned to unshared */
1904 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1905 /* update existing queue */
1906 blk_mq_update_tag_set_depth(set, false);
1907 }
1908 mutex_unlock(&set->tag_list_lock);
1909 }
1910
1911 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1912 struct request_queue *q)
1913 {
1914 q->tag_set = set;
1915
1916 mutex_lock(&set->tag_list_lock);
1917
1918 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1919 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1920 set->flags |= BLK_MQ_F_TAG_SHARED;
1921 /* update existing queue */
1922 blk_mq_update_tag_set_depth(set, true);
1923 }
1924 if (set->flags & BLK_MQ_F_TAG_SHARED)
1925 queue_set_hctx_shared(q, true);
1926 list_add_tail(&q->tag_set_list, &set->tag_list);
1927
1928 mutex_unlock(&set->tag_list_lock);
1929 }
1930
1931 /*
1932 * It is the actual release handler for mq, but we do it from
1933 * request queue's release handler for avoiding use-after-free
1934 * and headache because q->mq_kobj shouldn't have been introduced,
1935 * but we can't group ctx/kctx kobj without it.
1936 */
1937 void blk_mq_release(struct request_queue *q)
1938 {
1939 struct blk_mq_hw_ctx *hctx;
1940 unsigned int i;
1941
1942 /* hctx kobj stays in hctx */
1943 queue_for_each_hw_ctx(q, hctx, i) {
1944 if (!hctx)
1945 continue;
1946 kfree(hctx->ctxs);
1947 kfree(hctx);
1948 }
1949
1950 kfree(q->mq_map);
1951 q->mq_map = NULL;
1952
1953 kfree(q->queue_hw_ctx);
1954
1955 /* ctx kobj stays in queue_ctx */
1956 free_percpu(q->queue_ctx);
1957 }
1958
1959 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1960 {
1961 struct request_queue *uninit_q, *q;
1962
1963 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1964 if (!uninit_q)
1965 return ERR_PTR(-ENOMEM);
1966
1967 q = blk_mq_init_allocated_queue(set, uninit_q);
1968 if (IS_ERR(q))
1969 blk_cleanup_queue(uninit_q);
1970
1971 return q;
1972 }
1973 EXPORT_SYMBOL(blk_mq_init_queue);
1974
1975 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1976 struct request_queue *q)
1977 {
1978 struct blk_mq_hw_ctx **hctxs;
1979 struct blk_mq_ctx __percpu *ctx;
1980 unsigned int *map;
1981 int i;
1982
1983 ctx = alloc_percpu(struct blk_mq_ctx);
1984 if (!ctx)
1985 return ERR_PTR(-ENOMEM);
1986
1987 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1988 set->numa_node);
1989
1990 if (!hctxs)
1991 goto err_percpu;
1992
1993 map = blk_mq_make_queue_map(set);
1994 if (!map)
1995 goto err_map;
1996
1997 for (i = 0; i < set->nr_hw_queues; i++) {
1998 int node = blk_mq_hw_queue_to_node(map, i);
1999
2000 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2001 GFP_KERNEL, node);
2002 if (!hctxs[i])
2003 goto err_hctxs;
2004
2005 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2006 node))
2007 goto err_hctxs;
2008
2009 atomic_set(&hctxs[i]->nr_active, 0);
2010 hctxs[i]->numa_node = node;
2011 hctxs[i]->queue_num = i;
2012 }
2013
2014 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2015 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2016
2017 q->nr_queues = nr_cpu_ids;
2018 q->nr_hw_queues = set->nr_hw_queues;
2019 q->mq_map = map;
2020
2021 q->queue_ctx = ctx;
2022 q->queue_hw_ctx = hctxs;
2023
2024 q->mq_ops = set->ops;
2025 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2026
2027 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2028 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2029
2030 q->sg_reserved_size = INT_MAX;
2031
2032 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2033 INIT_LIST_HEAD(&q->requeue_list);
2034 spin_lock_init(&q->requeue_lock);
2035
2036 if (q->nr_hw_queues > 1)
2037 blk_queue_make_request(q, blk_mq_make_request);
2038 else
2039 blk_queue_make_request(q, blk_sq_make_request);
2040
2041 /*
2042 * Do this after blk_queue_make_request() overrides it...
2043 */
2044 q->nr_requests = set->queue_depth;
2045
2046 if (set->ops->complete)
2047 blk_queue_softirq_done(q, set->ops->complete);
2048
2049 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2050
2051 if (blk_mq_init_hw_queues(q, set))
2052 goto err_hctxs;
2053
2054 get_online_cpus();
2055 mutex_lock(&all_q_mutex);
2056
2057 list_add_tail(&q->all_q_node, &all_q_list);
2058 blk_mq_add_queue_tag_set(set, q);
2059 blk_mq_map_swqueue(q, cpu_online_mask);
2060
2061 mutex_unlock(&all_q_mutex);
2062 put_online_cpus();
2063
2064 return q;
2065
2066 err_hctxs:
2067 kfree(map);
2068 for (i = 0; i < set->nr_hw_queues; i++) {
2069 if (!hctxs[i])
2070 break;
2071 free_cpumask_var(hctxs[i]->cpumask);
2072 kfree(hctxs[i]);
2073 }
2074 err_map:
2075 kfree(hctxs);
2076 err_percpu:
2077 free_percpu(ctx);
2078 return ERR_PTR(-ENOMEM);
2079 }
2080 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2081
2082 void blk_mq_free_queue(struct request_queue *q)
2083 {
2084 struct blk_mq_tag_set *set = q->tag_set;
2085
2086 mutex_lock(&all_q_mutex);
2087 list_del_init(&q->all_q_node);
2088 mutex_unlock(&all_q_mutex);
2089
2090 blk_mq_del_queue_tag_set(q);
2091
2092 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2093 blk_mq_free_hw_queues(q, set);
2094 }
2095
2096 /* Basically redo blk_mq_init_queue with queue frozen */
2097 static void blk_mq_queue_reinit(struct request_queue *q,
2098 const struct cpumask *online_mask)
2099 {
2100 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2101
2102 blk_mq_sysfs_unregister(q);
2103
2104 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2105
2106 /*
2107 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2108 * we should change hctx numa_node according to new topology (this
2109 * involves free and re-allocate memory, worthy doing?)
2110 */
2111
2112 blk_mq_map_swqueue(q, online_mask);
2113
2114 blk_mq_sysfs_register(q);
2115 }
2116
2117 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2118 unsigned long action, void *hcpu)
2119 {
2120 struct request_queue *q;
2121 int cpu = (unsigned long)hcpu;
2122 /*
2123 * New online cpumask which is going to be set in this hotplug event.
2124 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2125 * one-by-one and dynamically allocating this could result in a failure.
2126 */
2127 static struct cpumask online_new;
2128
2129 /*
2130 * Before hotadded cpu starts handling requests, new mappings must
2131 * be established. Otherwise, these requests in hw queue might
2132 * never be dispatched.
2133 *
2134 * For example, there is a single hw queue (hctx) and two CPU queues
2135 * (ctx0 for CPU0, and ctx1 for CPU1).
2136 *
2137 * Now CPU1 is just onlined and a request is inserted into
2138 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2139 * still zero.
2140 *
2141 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2142 * set in pending bitmap and tries to retrieve requests in
2143 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2144 * so the request in ctx1->rq_list is ignored.
2145 */
2146 switch (action & ~CPU_TASKS_FROZEN) {
2147 case CPU_DEAD:
2148 case CPU_UP_CANCELED:
2149 cpumask_copy(&online_new, cpu_online_mask);
2150 break;
2151 case CPU_UP_PREPARE:
2152 cpumask_copy(&online_new, cpu_online_mask);
2153 cpumask_set_cpu(cpu, &online_new);
2154 break;
2155 default:
2156 return NOTIFY_OK;
2157 }
2158
2159 mutex_lock(&all_q_mutex);
2160
2161 /*
2162 * We need to freeze and reinit all existing queues. Freezing
2163 * involves synchronous wait for an RCU grace period and doing it
2164 * one by one may take a long time. Start freezing all queues in
2165 * one swoop and then wait for the completions so that freezing can
2166 * take place in parallel.
2167 */
2168 list_for_each_entry(q, &all_q_list, all_q_node)
2169 blk_mq_freeze_queue_start(q);
2170 list_for_each_entry(q, &all_q_list, all_q_node) {
2171 blk_mq_freeze_queue_wait(q);
2172
2173 /*
2174 * timeout handler can't touch hw queue during the
2175 * reinitialization
2176 */
2177 del_timer_sync(&q->timeout);
2178 }
2179
2180 list_for_each_entry(q, &all_q_list, all_q_node)
2181 blk_mq_queue_reinit(q, &online_new);
2182
2183 list_for_each_entry(q, &all_q_list, all_q_node)
2184 blk_mq_unfreeze_queue(q);
2185
2186 mutex_unlock(&all_q_mutex);
2187 return NOTIFY_OK;
2188 }
2189
2190 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2191 {
2192 int i;
2193
2194 for (i = 0; i < set->nr_hw_queues; i++) {
2195 set->tags[i] = blk_mq_init_rq_map(set, i);
2196 if (!set->tags[i])
2197 goto out_unwind;
2198 }
2199
2200 return 0;
2201
2202 out_unwind:
2203 while (--i >= 0)
2204 blk_mq_free_rq_map(set, set->tags[i], i);
2205
2206 return -ENOMEM;
2207 }
2208
2209 /*
2210 * Allocate the request maps associated with this tag_set. Note that this
2211 * may reduce the depth asked for, if memory is tight. set->queue_depth
2212 * will be updated to reflect the allocated depth.
2213 */
2214 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2215 {
2216 unsigned int depth;
2217 int err;
2218
2219 depth = set->queue_depth;
2220 do {
2221 err = __blk_mq_alloc_rq_maps(set);
2222 if (!err)
2223 break;
2224
2225 set->queue_depth >>= 1;
2226 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2227 err = -ENOMEM;
2228 break;
2229 }
2230 } while (set->queue_depth);
2231
2232 if (!set->queue_depth || err) {
2233 pr_err("blk-mq: failed to allocate request map\n");
2234 return -ENOMEM;
2235 }
2236
2237 if (depth != set->queue_depth)
2238 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2239 depth, set->queue_depth);
2240
2241 return 0;
2242 }
2243
2244 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2245 {
2246 return tags->cpumask;
2247 }
2248 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2249
2250 /*
2251 * Alloc a tag set to be associated with one or more request queues.
2252 * May fail with EINVAL for various error conditions. May adjust the
2253 * requested depth down, if if it too large. In that case, the set
2254 * value will be stored in set->queue_depth.
2255 */
2256 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2257 {
2258 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2259
2260 if (!set->nr_hw_queues)
2261 return -EINVAL;
2262 if (!set->queue_depth)
2263 return -EINVAL;
2264 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2265 return -EINVAL;
2266
2267 if (!set->ops->queue_rq || !set->ops->map_queue)
2268 return -EINVAL;
2269
2270 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2271 pr_info("blk-mq: reduced tag depth to %u\n",
2272 BLK_MQ_MAX_DEPTH);
2273 set->queue_depth = BLK_MQ_MAX_DEPTH;
2274 }
2275
2276 /*
2277 * If a crashdump is active, then we are potentially in a very
2278 * memory constrained environment. Limit us to 1 queue and
2279 * 64 tags to prevent using too much memory.
2280 */
2281 if (is_kdump_kernel()) {
2282 set->nr_hw_queues = 1;
2283 set->queue_depth = min(64U, set->queue_depth);
2284 }
2285
2286 set->tags = kmalloc_node(set->nr_hw_queues *
2287 sizeof(struct blk_mq_tags *),
2288 GFP_KERNEL, set->numa_node);
2289 if (!set->tags)
2290 return -ENOMEM;
2291
2292 if (blk_mq_alloc_rq_maps(set))
2293 goto enomem;
2294
2295 mutex_init(&set->tag_list_lock);
2296 INIT_LIST_HEAD(&set->tag_list);
2297
2298 return 0;
2299 enomem:
2300 kfree(set->tags);
2301 set->tags = NULL;
2302 return -ENOMEM;
2303 }
2304 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2305
2306 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2307 {
2308 int i;
2309
2310 for (i = 0; i < set->nr_hw_queues; i++) {
2311 if (set->tags[i])
2312 blk_mq_free_rq_map(set, set->tags[i], i);
2313 }
2314
2315 kfree(set->tags);
2316 set->tags = NULL;
2317 }
2318 EXPORT_SYMBOL(blk_mq_free_tag_set);
2319
2320 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2321 {
2322 struct blk_mq_tag_set *set = q->tag_set;
2323 struct blk_mq_hw_ctx *hctx;
2324 int i, ret;
2325
2326 if (!set || nr > set->queue_depth)
2327 return -EINVAL;
2328
2329 ret = 0;
2330 queue_for_each_hw_ctx(q, hctx, i) {
2331 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2332 if (ret)
2333 break;
2334 }
2335
2336 if (!ret)
2337 q->nr_requests = nr;
2338
2339 return ret;
2340 }
2341
2342 void blk_mq_disable_hotplug(void)
2343 {
2344 mutex_lock(&all_q_mutex);
2345 }
2346
2347 void blk_mq_enable_hotplug(void)
2348 {
2349 mutex_unlock(&all_q_mutex);
2350 }
2351
2352 static int __init blk_mq_init(void)
2353 {
2354 blk_mq_cpu_init();
2355
2356 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2357
2358 return 0;
2359 }
2360 subsys_initcall(blk_mq_init);