]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-stat: convert to callback-based statistics reporting
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60 {
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67 {
68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_mq_freeze_queue_start(struct request_queue *q)
72 {
73 int freeze_depth;
74
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
77 percpu_ref_kill(&q->q_usage_counter);
78 blk_mq_run_hw_queues(q, false);
79 }
80 }
81 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91 {
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184 return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
190 {
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
194 rq->mq_ctx = ctx;
195 rq->cmd_flags = op;
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
202 rq->rq_disk = NULL;
203 rq->part = NULL;
204 rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
207 set_start_time_ns(rq);
208 rq->io_start_time_ns = 0;
209 #endif
210 rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213 #endif
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
217 rq->extra_len = 0;
218
219 INIT_LIST_HEAD(&rq->timeout_list);
220 rq->timeout = 0;
221
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
226 ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
232 {
233 struct request *rq;
234 unsigned int tag;
235
236 tag = blk_mq_get_tag(data);
237 if (tag != BLK_MQ_TAG_FAIL) {
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
241
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
250 rq->tag = tag;
251 rq->internal_tag = -1;
252 data->hctx->tags->rqs[rq->tag] = rq;
253 }
254
255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 return rq;
257 }
258
259 return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
265 {
266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
267 struct request *rq;
268 int ret;
269
270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 if (ret)
272 return ERR_PTR(ret);
273
274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
280 return ERR_PTR(-EWOULDBLOCK);
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
285 return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291 {
292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
293 struct request *rq;
294 unsigned int cpu;
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
321 }
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327 blk_mq_put_ctx(alloc_data.ctx);
328 blk_queue_exit(q);
329
330 if (!rq)
331 return ERR_PTR(-EWOULDBLOCK);
332
333 return rq;
334 }
335 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
336
337 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
338 struct request *rq)
339 {
340 const int sched_tag = rq->internal_tag;
341 struct request_queue *q = rq->q;
342
343 if (rq->rq_flags & RQF_MQ_INFLIGHT)
344 atomic_dec(&hctx->nr_active);
345
346 wbt_done(q->rq_wb, &rq->issue_stat);
347 rq->rq_flags = 0;
348
349 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
350 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
351 if (rq->tag != -1)
352 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
353 if (sched_tag != -1)
354 blk_mq_sched_completed_request(hctx, rq);
355 blk_mq_sched_restart_queues(hctx);
356 blk_queue_exit(q);
357 }
358
359 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
360 struct request *rq)
361 {
362 struct blk_mq_ctx *ctx = rq->mq_ctx;
363
364 ctx->rq_completed[rq_is_sync(rq)]++;
365 __blk_mq_finish_request(hctx, ctx, rq);
366 }
367
368 void blk_mq_finish_request(struct request *rq)
369 {
370 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
371 }
372
373 void blk_mq_free_request(struct request *rq)
374 {
375 blk_mq_sched_put_request(rq);
376 }
377 EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379 inline void __blk_mq_end_request(struct request *rq, int error)
380 {
381 blk_account_io_done(rq);
382
383 if (rq->end_io) {
384 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385 rq->end_io(rq, error);
386 } else {
387 if (unlikely(blk_bidi_rq(rq)))
388 blk_mq_free_request(rq->next_rq);
389 blk_mq_free_request(rq);
390 }
391 }
392 EXPORT_SYMBOL(__blk_mq_end_request);
393
394 void blk_mq_end_request(struct request *rq, int error)
395 {
396 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397 BUG();
398 __blk_mq_end_request(rq, error);
399 }
400 EXPORT_SYMBOL(blk_mq_end_request);
401
402 static void __blk_mq_complete_request_remote(void *data)
403 {
404 struct request *rq = data;
405
406 rq->q->softirq_done_fn(rq);
407 }
408
409 static void blk_mq_ipi_complete_request(struct request *rq)
410 {
411 struct blk_mq_ctx *ctx = rq->mq_ctx;
412 bool shared = false;
413 int cpu;
414
415 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 rq->q->softirq_done_fn(rq);
417 return;
418 }
419
420 cpu = get_cpu();
421 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422 shared = cpus_share_cache(cpu, ctx->cpu);
423
424 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425 rq->csd.func = __blk_mq_complete_request_remote;
426 rq->csd.info = rq;
427 rq->csd.flags = 0;
428 smp_call_function_single_async(ctx->cpu, &rq->csd);
429 } else {
430 rq->q->softirq_done_fn(rq);
431 }
432 put_cpu();
433 }
434
435 static void blk_mq_stat_add(struct request *rq)
436 {
437 if (rq->rq_flags & RQF_STATS) {
438 blk_mq_poll_stats_start(rq->q);
439 blk_stat_add(rq);
440 }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445 struct request_queue *q = rq->q;
446
447 blk_mq_stat_add(rq);
448
449 if (!q->softirq_done_fn)
450 blk_mq_end_request(rq, rq->errors);
451 else
452 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
468 return;
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
471 __blk_mq_complete_request(rq);
472 }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484 struct request_queue *q = rq->q;
485
486 blk_mq_sched_started_request(rq);
487
488 trace_block_rq_issue(q, rq);
489
490 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491 blk_stat_set_issue_time(&rq->issue_stat);
492 rq->rq_flags |= RQF_STATS;
493 wbt_issue(q->rq_wb, &rq->issue_stat);
494 }
495
496 blk_add_timer(rq);
497
498 /*
499 * Ensure that ->deadline is visible before set the started
500 * flag and clear the completed flag.
501 */
502 smp_mb__before_atomic();
503
504 /*
505 * Mark us as started and clear complete. Complete might have been
506 * set if requeue raced with timeout, which then marked it as
507 * complete. So be sure to clear complete again when we start
508 * the request, otherwise we'll ignore the completion event.
509 */
510 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514
515 if (q->dma_drain_size && blk_rq_bytes(rq)) {
516 /*
517 * Make sure space for the drain appears. We know we can do
518 * this because max_hw_segments has been adjusted to be one
519 * fewer than the device can handle.
520 */
521 rq->nr_phys_segments++;
522 }
523 }
524 EXPORT_SYMBOL(blk_mq_start_request);
525
526 static void __blk_mq_requeue_request(struct request *rq)
527 {
528 struct request_queue *q = rq->q;
529
530 trace_block_rq_requeue(q, rq);
531 wbt_requeue(q->rq_wb, &rq->issue_stat);
532 blk_mq_sched_requeue_request(rq);
533
534 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
535 if (q->dma_drain_size && blk_rq_bytes(rq))
536 rq->nr_phys_segments--;
537 }
538 }
539
540 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
541 {
542 __blk_mq_requeue_request(rq);
543
544 BUG_ON(blk_queued_rq(rq));
545 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
546 }
547 EXPORT_SYMBOL(blk_mq_requeue_request);
548
549 static void blk_mq_requeue_work(struct work_struct *work)
550 {
551 struct request_queue *q =
552 container_of(work, struct request_queue, requeue_work.work);
553 LIST_HEAD(rq_list);
554 struct request *rq, *next;
555 unsigned long flags;
556
557 spin_lock_irqsave(&q->requeue_lock, flags);
558 list_splice_init(&q->requeue_list, &rq_list);
559 spin_unlock_irqrestore(&q->requeue_lock, flags);
560
561 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
562 if (!(rq->rq_flags & RQF_SOFTBARRIER))
563 continue;
564
565 rq->rq_flags &= ~RQF_SOFTBARRIER;
566 list_del_init(&rq->queuelist);
567 blk_mq_sched_insert_request(rq, true, false, false, true);
568 }
569
570 while (!list_empty(&rq_list)) {
571 rq = list_entry(rq_list.next, struct request, queuelist);
572 list_del_init(&rq->queuelist);
573 blk_mq_sched_insert_request(rq, false, false, false, true);
574 }
575
576 blk_mq_run_hw_queues(q, false);
577 }
578
579 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
580 bool kick_requeue_list)
581 {
582 struct request_queue *q = rq->q;
583 unsigned long flags;
584
585 /*
586 * We abuse this flag that is otherwise used by the I/O scheduler to
587 * request head insertation from the workqueue.
588 */
589 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
590
591 spin_lock_irqsave(&q->requeue_lock, flags);
592 if (at_head) {
593 rq->rq_flags |= RQF_SOFTBARRIER;
594 list_add(&rq->queuelist, &q->requeue_list);
595 } else {
596 list_add_tail(&rq->queuelist, &q->requeue_list);
597 }
598 spin_unlock_irqrestore(&q->requeue_lock, flags);
599
600 if (kick_requeue_list)
601 blk_mq_kick_requeue_list(q);
602 }
603 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
604
605 void blk_mq_kick_requeue_list(struct request_queue *q)
606 {
607 kblockd_schedule_delayed_work(&q->requeue_work, 0);
608 }
609 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
610
611 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
612 unsigned long msecs)
613 {
614 kblockd_schedule_delayed_work(&q->requeue_work,
615 msecs_to_jiffies(msecs));
616 }
617 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
618
619 void blk_mq_abort_requeue_list(struct request_queue *q)
620 {
621 unsigned long flags;
622 LIST_HEAD(rq_list);
623
624 spin_lock_irqsave(&q->requeue_lock, flags);
625 list_splice_init(&q->requeue_list, &rq_list);
626 spin_unlock_irqrestore(&q->requeue_lock, flags);
627
628 while (!list_empty(&rq_list)) {
629 struct request *rq;
630
631 rq = list_first_entry(&rq_list, struct request, queuelist);
632 list_del_init(&rq->queuelist);
633 rq->errors = -EIO;
634 blk_mq_end_request(rq, rq->errors);
635 }
636 }
637 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
638
639 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
640 {
641 if (tag < tags->nr_tags) {
642 prefetch(tags->rqs[tag]);
643 return tags->rqs[tag];
644 }
645
646 return NULL;
647 }
648 EXPORT_SYMBOL(blk_mq_tag_to_rq);
649
650 struct blk_mq_timeout_data {
651 unsigned long next;
652 unsigned int next_set;
653 };
654
655 void blk_mq_rq_timed_out(struct request *req, bool reserved)
656 {
657 const struct blk_mq_ops *ops = req->q->mq_ops;
658 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
659
660 /*
661 * We know that complete is set at this point. If STARTED isn't set
662 * anymore, then the request isn't active and the "timeout" should
663 * just be ignored. This can happen due to the bitflag ordering.
664 * Timeout first checks if STARTED is set, and if it is, assumes
665 * the request is active. But if we race with completion, then
666 * we both flags will get cleared. So check here again, and ignore
667 * a timeout event with a request that isn't active.
668 */
669 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
670 return;
671
672 if (ops->timeout)
673 ret = ops->timeout(req, reserved);
674
675 switch (ret) {
676 case BLK_EH_HANDLED:
677 __blk_mq_complete_request(req);
678 break;
679 case BLK_EH_RESET_TIMER:
680 blk_add_timer(req);
681 blk_clear_rq_complete(req);
682 break;
683 case BLK_EH_NOT_HANDLED:
684 break;
685 default:
686 printk(KERN_ERR "block: bad eh return: %d\n", ret);
687 break;
688 }
689 }
690
691 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
692 struct request *rq, void *priv, bool reserved)
693 {
694 struct blk_mq_timeout_data *data = priv;
695
696 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
697 /*
698 * If a request wasn't started before the queue was
699 * marked dying, kill it here or it'll go unnoticed.
700 */
701 if (unlikely(blk_queue_dying(rq->q))) {
702 rq->errors = -EIO;
703 blk_mq_end_request(rq, rq->errors);
704 }
705 return;
706 }
707
708 if (time_after_eq(jiffies, rq->deadline)) {
709 if (!blk_mark_rq_complete(rq))
710 blk_mq_rq_timed_out(rq, reserved);
711 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
712 data->next = rq->deadline;
713 data->next_set = 1;
714 }
715 }
716
717 static void blk_mq_timeout_work(struct work_struct *work)
718 {
719 struct request_queue *q =
720 container_of(work, struct request_queue, timeout_work);
721 struct blk_mq_timeout_data data = {
722 .next = 0,
723 .next_set = 0,
724 };
725 int i;
726
727 /* A deadlock might occur if a request is stuck requiring a
728 * timeout at the same time a queue freeze is waiting
729 * completion, since the timeout code would not be able to
730 * acquire the queue reference here.
731 *
732 * That's why we don't use blk_queue_enter here; instead, we use
733 * percpu_ref_tryget directly, because we need to be able to
734 * obtain a reference even in the short window between the queue
735 * starting to freeze, by dropping the first reference in
736 * blk_mq_freeze_queue_start, and the moment the last request is
737 * consumed, marked by the instant q_usage_counter reaches
738 * zero.
739 */
740 if (!percpu_ref_tryget(&q->q_usage_counter))
741 return;
742
743 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
744
745 if (data.next_set) {
746 data.next = blk_rq_timeout(round_jiffies_up(data.next));
747 mod_timer(&q->timeout, data.next);
748 } else {
749 struct blk_mq_hw_ctx *hctx;
750
751 queue_for_each_hw_ctx(q, hctx, i) {
752 /* the hctx may be unmapped, so check it here */
753 if (blk_mq_hw_queue_mapped(hctx))
754 blk_mq_tag_idle(hctx);
755 }
756 }
757 blk_queue_exit(q);
758 }
759
760 /*
761 * Reverse check our software queue for entries that we could potentially
762 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
763 * too much time checking for merges.
764 */
765 static bool blk_mq_attempt_merge(struct request_queue *q,
766 struct blk_mq_ctx *ctx, struct bio *bio)
767 {
768 struct request *rq;
769 int checked = 8;
770
771 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
772 bool merged = false;
773
774 if (!checked--)
775 break;
776
777 if (!blk_rq_merge_ok(rq, bio))
778 continue;
779
780 switch (blk_try_merge(rq, bio)) {
781 case ELEVATOR_BACK_MERGE:
782 if (blk_mq_sched_allow_merge(q, rq, bio))
783 merged = bio_attempt_back_merge(q, rq, bio);
784 break;
785 case ELEVATOR_FRONT_MERGE:
786 if (blk_mq_sched_allow_merge(q, rq, bio))
787 merged = bio_attempt_front_merge(q, rq, bio);
788 break;
789 case ELEVATOR_DISCARD_MERGE:
790 merged = bio_attempt_discard_merge(q, rq, bio);
791 break;
792 default:
793 continue;
794 }
795
796 if (merged)
797 ctx->rq_merged++;
798 return merged;
799 }
800
801 return false;
802 }
803
804 struct flush_busy_ctx_data {
805 struct blk_mq_hw_ctx *hctx;
806 struct list_head *list;
807 };
808
809 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
810 {
811 struct flush_busy_ctx_data *flush_data = data;
812 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
813 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
814
815 sbitmap_clear_bit(sb, bitnr);
816 spin_lock(&ctx->lock);
817 list_splice_tail_init(&ctx->rq_list, flush_data->list);
818 spin_unlock(&ctx->lock);
819 return true;
820 }
821
822 /*
823 * Process software queues that have been marked busy, splicing them
824 * to the for-dispatch
825 */
826 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
827 {
828 struct flush_busy_ctx_data data = {
829 .hctx = hctx,
830 .list = list,
831 };
832
833 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
834 }
835 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
836
837 static inline unsigned int queued_to_index(unsigned int queued)
838 {
839 if (!queued)
840 return 0;
841
842 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
843 }
844
845 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
846 bool wait)
847 {
848 struct blk_mq_alloc_data data = {
849 .q = rq->q,
850 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
851 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
852 };
853
854 if (rq->tag != -1) {
855 done:
856 if (hctx)
857 *hctx = data.hctx;
858 return true;
859 }
860
861 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
862 data.flags |= BLK_MQ_REQ_RESERVED;
863
864 rq->tag = blk_mq_get_tag(&data);
865 if (rq->tag >= 0) {
866 if (blk_mq_tag_busy(data.hctx)) {
867 rq->rq_flags |= RQF_MQ_INFLIGHT;
868 atomic_inc(&data.hctx->nr_active);
869 }
870 data.hctx->tags->rqs[rq->tag] = rq;
871 goto done;
872 }
873
874 return false;
875 }
876
877 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
878 struct request *rq)
879 {
880 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
881 rq->tag = -1;
882
883 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
884 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
885 atomic_dec(&hctx->nr_active);
886 }
887 }
888
889 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
890 struct request *rq)
891 {
892 if (rq->tag == -1 || rq->internal_tag == -1)
893 return;
894
895 __blk_mq_put_driver_tag(hctx, rq);
896 }
897
898 static void blk_mq_put_driver_tag(struct request *rq)
899 {
900 struct blk_mq_hw_ctx *hctx;
901
902 if (rq->tag == -1 || rq->internal_tag == -1)
903 return;
904
905 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
906 __blk_mq_put_driver_tag(hctx, rq);
907 }
908
909 /*
910 * If we fail getting a driver tag because all the driver tags are already
911 * assigned and on the dispatch list, BUT the first entry does not have a
912 * tag, then we could deadlock. For that case, move entries with assigned
913 * driver tags to the front, leaving the set of tagged requests in the
914 * same order, and the untagged set in the same order.
915 */
916 static bool reorder_tags_to_front(struct list_head *list)
917 {
918 struct request *rq, *tmp, *first = NULL;
919
920 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
921 if (rq == first)
922 break;
923 if (rq->tag != -1) {
924 list_move(&rq->queuelist, list);
925 if (!first)
926 first = rq;
927 }
928 }
929
930 return first != NULL;
931 }
932
933 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
934 void *key)
935 {
936 struct blk_mq_hw_ctx *hctx;
937
938 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
939
940 list_del(&wait->task_list);
941 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
942 blk_mq_run_hw_queue(hctx, true);
943 return 1;
944 }
945
946 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
947 {
948 struct sbq_wait_state *ws;
949
950 /*
951 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
952 * The thread which wins the race to grab this bit adds the hardware
953 * queue to the wait queue.
954 */
955 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
956 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
957 return false;
958
959 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
960 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
961
962 /*
963 * As soon as this returns, it's no longer safe to fiddle with
964 * hctx->dispatch_wait, since a completion can wake up the wait queue
965 * and unlock the bit.
966 */
967 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
968 return true;
969 }
970
971 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
972 {
973 struct request_queue *q = hctx->queue;
974 struct request *rq;
975 LIST_HEAD(driver_list);
976 struct list_head *dptr;
977 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
978
979 /*
980 * Start off with dptr being NULL, so we start the first request
981 * immediately, even if we have more pending.
982 */
983 dptr = NULL;
984
985 /*
986 * Now process all the entries, sending them to the driver.
987 */
988 queued = 0;
989 while (!list_empty(list)) {
990 struct blk_mq_queue_data bd;
991
992 rq = list_first_entry(list, struct request, queuelist);
993 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
994 if (!queued && reorder_tags_to_front(list))
995 continue;
996
997 /*
998 * The initial allocation attempt failed, so we need to
999 * rerun the hardware queue when a tag is freed.
1000 */
1001 if (blk_mq_dispatch_wait_add(hctx)) {
1002 /*
1003 * It's possible that a tag was freed in the
1004 * window between the allocation failure and
1005 * adding the hardware queue to the wait queue.
1006 */
1007 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1008 break;
1009 } else {
1010 break;
1011 }
1012 }
1013
1014 list_del_init(&rq->queuelist);
1015
1016 bd.rq = rq;
1017 bd.list = dptr;
1018
1019 /*
1020 * Flag last if we have no more requests, or if we have more
1021 * but can't assign a driver tag to it.
1022 */
1023 if (list_empty(list))
1024 bd.last = true;
1025 else {
1026 struct request *nxt;
1027
1028 nxt = list_first_entry(list, struct request, queuelist);
1029 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1030 }
1031
1032 ret = q->mq_ops->queue_rq(hctx, &bd);
1033 switch (ret) {
1034 case BLK_MQ_RQ_QUEUE_OK:
1035 queued++;
1036 break;
1037 case BLK_MQ_RQ_QUEUE_BUSY:
1038 blk_mq_put_driver_tag_hctx(hctx, rq);
1039 list_add(&rq->queuelist, list);
1040 __blk_mq_requeue_request(rq);
1041 break;
1042 default:
1043 pr_err("blk-mq: bad return on queue: %d\n", ret);
1044 case BLK_MQ_RQ_QUEUE_ERROR:
1045 rq->errors = -EIO;
1046 blk_mq_end_request(rq, rq->errors);
1047 break;
1048 }
1049
1050 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1051 break;
1052
1053 /*
1054 * We've done the first request. If we have more than 1
1055 * left in the list, set dptr to defer issue.
1056 */
1057 if (!dptr && list->next != list->prev)
1058 dptr = &driver_list;
1059 }
1060
1061 hctx->dispatched[queued_to_index(queued)]++;
1062
1063 /*
1064 * Any items that need requeuing? Stuff them into hctx->dispatch,
1065 * that is where we will continue on next queue run.
1066 */
1067 if (!list_empty(list)) {
1068 /*
1069 * If we got a driver tag for the next request already,
1070 * free it again.
1071 */
1072 rq = list_first_entry(list, struct request, queuelist);
1073 blk_mq_put_driver_tag(rq);
1074
1075 spin_lock(&hctx->lock);
1076 list_splice_init(list, &hctx->dispatch);
1077 spin_unlock(&hctx->lock);
1078
1079 /*
1080 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1081 * it's possible the queue is stopped and restarted again
1082 * before this. Queue restart will dispatch requests. And since
1083 * requests in rq_list aren't added into hctx->dispatch yet,
1084 * the requests in rq_list might get lost.
1085 *
1086 * blk_mq_run_hw_queue() already checks the STOPPED bit
1087 *
1088 * If RESTART or TAG_WAITING is set, then let completion restart
1089 * the queue instead of potentially looping here.
1090 */
1091 if (!blk_mq_sched_needs_restart(hctx) &&
1092 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1093 blk_mq_run_hw_queue(hctx, true);
1094 }
1095
1096 return queued != 0;
1097 }
1098
1099 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1100 {
1101 int srcu_idx;
1102
1103 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1104 cpu_online(hctx->next_cpu));
1105
1106 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1107 rcu_read_lock();
1108 blk_mq_sched_dispatch_requests(hctx);
1109 rcu_read_unlock();
1110 } else {
1111 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1112 blk_mq_sched_dispatch_requests(hctx);
1113 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1114 }
1115 }
1116
1117 /*
1118 * It'd be great if the workqueue API had a way to pass
1119 * in a mask and had some smarts for more clever placement.
1120 * For now we just round-robin here, switching for every
1121 * BLK_MQ_CPU_WORK_BATCH queued items.
1122 */
1123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1124 {
1125 if (hctx->queue->nr_hw_queues == 1)
1126 return WORK_CPU_UNBOUND;
1127
1128 if (--hctx->next_cpu_batch <= 0) {
1129 int next_cpu;
1130
1131 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1132 if (next_cpu >= nr_cpu_ids)
1133 next_cpu = cpumask_first(hctx->cpumask);
1134
1135 hctx->next_cpu = next_cpu;
1136 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1137 }
1138
1139 return hctx->next_cpu;
1140 }
1141
1142 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1143 {
1144 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1145 !blk_mq_hw_queue_mapped(hctx)))
1146 return;
1147
1148 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1149 int cpu = get_cpu();
1150 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1151 __blk_mq_run_hw_queue(hctx);
1152 put_cpu();
1153 return;
1154 }
1155
1156 put_cpu();
1157 }
1158
1159 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1160 }
1161
1162 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1163 {
1164 struct blk_mq_hw_ctx *hctx;
1165 int i;
1166
1167 queue_for_each_hw_ctx(q, hctx, i) {
1168 if (!blk_mq_hctx_has_pending(hctx) ||
1169 blk_mq_hctx_stopped(hctx))
1170 continue;
1171
1172 blk_mq_run_hw_queue(hctx, async);
1173 }
1174 }
1175 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1176
1177 /**
1178 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1179 * @q: request queue.
1180 *
1181 * The caller is responsible for serializing this function against
1182 * blk_mq_{start,stop}_hw_queue().
1183 */
1184 bool blk_mq_queue_stopped(struct request_queue *q)
1185 {
1186 struct blk_mq_hw_ctx *hctx;
1187 int i;
1188
1189 queue_for_each_hw_ctx(q, hctx, i)
1190 if (blk_mq_hctx_stopped(hctx))
1191 return true;
1192
1193 return false;
1194 }
1195 EXPORT_SYMBOL(blk_mq_queue_stopped);
1196
1197 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1198 {
1199 cancel_work(&hctx->run_work);
1200 cancel_delayed_work(&hctx->delay_work);
1201 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1202 }
1203 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1204
1205 void blk_mq_stop_hw_queues(struct request_queue *q)
1206 {
1207 struct blk_mq_hw_ctx *hctx;
1208 int i;
1209
1210 queue_for_each_hw_ctx(q, hctx, i)
1211 blk_mq_stop_hw_queue(hctx);
1212 }
1213 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1214
1215 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1216 {
1217 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1218
1219 blk_mq_run_hw_queue(hctx, false);
1220 }
1221 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1222
1223 void blk_mq_start_hw_queues(struct request_queue *q)
1224 {
1225 struct blk_mq_hw_ctx *hctx;
1226 int i;
1227
1228 queue_for_each_hw_ctx(q, hctx, i)
1229 blk_mq_start_hw_queue(hctx);
1230 }
1231 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1232
1233 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1234 {
1235 if (!blk_mq_hctx_stopped(hctx))
1236 return;
1237
1238 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1239 blk_mq_run_hw_queue(hctx, async);
1240 }
1241 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1242
1243 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1244 {
1245 struct blk_mq_hw_ctx *hctx;
1246 int i;
1247
1248 queue_for_each_hw_ctx(q, hctx, i)
1249 blk_mq_start_stopped_hw_queue(hctx, async);
1250 }
1251 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1252
1253 static void blk_mq_run_work_fn(struct work_struct *work)
1254 {
1255 struct blk_mq_hw_ctx *hctx;
1256
1257 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1258
1259 __blk_mq_run_hw_queue(hctx);
1260 }
1261
1262 static void blk_mq_delay_work_fn(struct work_struct *work)
1263 {
1264 struct blk_mq_hw_ctx *hctx;
1265
1266 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1267
1268 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1269 __blk_mq_run_hw_queue(hctx);
1270 }
1271
1272 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1273 {
1274 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1275 return;
1276
1277 blk_mq_stop_hw_queue(hctx);
1278 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1279 &hctx->delay_work, msecs_to_jiffies(msecs));
1280 }
1281 EXPORT_SYMBOL(blk_mq_delay_queue);
1282
1283 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1284 struct request *rq,
1285 bool at_head)
1286 {
1287 struct blk_mq_ctx *ctx = rq->mq_ctx;
1288
1289 trace_block_rq_insert(hctx->queue, rq);
1290
1291 if (at_head)
1292 list_add(&rq->queuelist, &ctx->rq_list);
1293 else
1294 list_add_tail(&rq->queuelist, &ctx->rq_list);
1295 }
1296
1297 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1298 bool at_head)
1299 {
1300 struct blk_mq_ctx *ctx = rq->mq_ctx;
1301
1302 __blk_mq_insert_req_list(hctx, rq, at_head);
1303 blk_mq_hctx_mark_pending(hctx, ctx);
1304 }
1305
1306 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1307 struct list_head *list)
1308
1309 {
1310 /*
1311 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1312 * offline now
1313 */
1314 spin_lock(&ctx->lock);
1315 while (!list_empty(list)) {
1316 struct request *rq;
1317
1318 rq = list_first_entry(list, struct request, queuelist);
1319 BUG_ON(rq->mq_ctx != ctx);
1320 list_del_init(&rq->queuelist);
1321 __blk_mq_insert_req_list(hctx, rq, false);
1322 }
1323 blk_mq_hctx_mark_pending(hctx, ctx);
1324 spin_unlock(&ctx->lock);
1325 }
1326
1327 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1328 {
1329 struct request *rqa = container_of(a, struct request, queuelist);
1330 struct request *rqb = container_of(b, struct request, queuelist);
1331
1332 return !(rqa->mq_ctx < rqb->mq_ctx ||
1333 (rqa->mq_ctx == rqb->mq_ctx &&
1334 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1335 }
1336
1337 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1338 {
1339 struct blk_mq_ctx *this_ctx;
1340 struct request_queue *this_q;
1341 struct request *rq;
1342 LIST_HEAD(list);
1343 LIST_HEAD(ctx_list);
1344 unsigned int depth;
1345
1346 list_splice_init(&plug->mq_list, &list);
1347
1348 list_sort(NULL, &list, plug_ctx_cmp);
1349
1350 this_q = NULL;
1351 this_ctx = NULL;
1352 depth = 0;
1353
1354 while (!list_empty(&list)) {
1355 rq = list_entry_rq(list.next);
1356 list_del_init(&rq->queuelist);
1357 BUG_ON(!rq->q);
1358 if (rq->mq_ctx != this_ctx) {
1359 if (this_ctx) {
1360 trace_block_unplug(this_q, depth, from_schedule);
1361 blk_mq_sched_insert_requests(this_q, this_ctx,
1362 &ctx_list,
1363 from_schedule);
1364 }
1365
1366 this_ctx = rq->mq_ctx;
1367 this_q = rq->q;
1368 depth = 0;
1369 }
1370
1371 depth++;
1372 list_add_tail(&rq->queuelist, &ctx_list);
1373 }
1374
1375 /*
1376 * If 'this_ctx' is set, we know we have entries to complete
1377 * on 'ctx_list'. Do those.
1378 */
1379 if (this_ctx) {
1380 trace_block_unplug(this_q, depth, from_schedule);
1381 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1382 from_schedule);
1383 }
1384 }
1385
1386 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1387 {
1388 init_request_from_bio(rq, bio);
1389
1390 blk_account_io_start(rq, true);
1391 }
1392
1393 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1394 {
1395 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1396 !blk_queue_nomerges(hctx->queue);
1397 }
1398
1399 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1400 struct blk_mq_ctx *ctx,
1401 struct request *rq, struct bio *bio)
1402 {
1403 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1404 blk_mq_bio_to_request(rq, bio);
1405 spin_lock(&ctx->lock);
1406 insert_rq:
1407 __blk_mq_insert_request(hctx, rq, false);
1408 spin_unlock(&ctx->lock);
1409 return false;
1410 } else {
1411 struct request_queue *q = hctx->queue;
1412
1413 spin_lock(&ctx->lock);
1414 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1415 blk_mq_bio_to_request(rq, bio);
1416 goto insert_rq;
1417 }
1418
1419 spin_unlock(&ctx->lock);
1420 __blk_mq_finish_request(hctx, ctx, rq);
1421 return true;
1422 }
1423 }
1424
1425 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1426 {
1427 if (rq->tag != -1)
1428 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1429
1430 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1431 }
1432
1433 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1434 bool may_sleep)
1435 {
1436 struct request_queue *q = rq->q;
1437 struct blk_mq_queue_data bd = {
1438 .rq = rq,
1439 .list = NULL,
1440 .last = 1
1441 };
1442 struct blk_mq_hw_ctx *hctx;
1443 blk_qc_t new_cookie;
1444 int ret;
1445
1446 if (q->elevator)
1447 goto insert;
1448
1449 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1450 goto insert;
1451
1452 new_cookie = request_to_qc_t(hctx, rq);
1453
1454 /*
1455 * For OK queue, we are done. For error, kill it. Any other
1456 * error (busy), just add it to our list as we previously
1457 * would have done
1458 */
1459 ret = q->mq_ops->queue_rq(hctx, &bd);
1460 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1461 *cookie = new_cookie;
1462 return;
1463 }
1464
1465 __blk_mq_requeue_request(rq);
1466
1467 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1468 *cookie = BLK_QC_T_NONE;
1469 rq->errors = -EIO;
1470 blk_mq_end_request(rq, rq->errors);
1471 return;
1472 }
1473
1474 insert:
1475 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1476 }
1477
1478 /*
1479 * Multiple hardware queue variant. This will not use per-process plugs,
1480 * but will attempt to bypass the hctx queueing if we can go straight to
1481 * hardware for SYNC IO.
1482 */
1483 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1484 {
1485 const int is_sync = op_is_sync(bio->bi_opf);
1486 const int is_flush_fua = op_is_flush(bio->bi_opf);
1487 struct blk_mq_alloc_data data = { .flags = 0 };
1488 struct request *rq;
1489 unsigned int request_count = 0, srcu_idx;
1490 struct blk_plug *plug;
1491 struct request *same_queue_rq = NULL;
1492 blk_qc_t cookie;
1493 unsigned int wb_acct;
1494
1495 blk_queue_bounce(q, &bio);
1496
1497 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1498 bio_io_error(bio);
1499 return BLK_QC_T_NONE;
1500 }
1501
1502 blk_queue_split(q, &bio, q->bio_split);
1503
1504 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1505 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1506 return BLK_QC_T_NONE;
1507
1508 if (blk_mq_sched_bio_merge(q, bio))
1509 return BLK_QC_T_NONE;
1510
1511 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1512
1513 trace_block_getrq(q, bio, bio->bi_opf);
1514
1515 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1516 if (unlikely(!rq)) {
1517 __wbt_done(q->rq_wb, wb_acct);
1518 return BLK_QC_T_NONE;
1519 }
1520
1521 wbt_track(&rq->issue_stat, wb_acct);
1522
1523 cookie = request_to_qc_t(data.hctx, rq);
1524
1525 if (unlikely(is_flush_fua)) {
1526 if (q->elevator)
1527 goto elv_insert;
1528 blk_mq_bio_to_request(rq, bio);
1529 blk_insert_flush(rq);
1530 goto run_queue;
1531 }
1532
1533 plug = current->plug;
1534 /*
1535 * If the driver supports defer issued based on 'last', then
1536 * queue it up like normal since we can potentially save some
1537 * CPU this way.
1538 */
1539 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1540 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1541 struct request *old_rq = NULL;
1542
1543 blk_mq_bio_to_request(rq, bio);
1544
1545 /*
1546 * We do limited plugging. If the bio can be merged, do that.
1547 * Otherwise the existing request in the plug list will be
1548 * issued. So the plug list will have one request at most
1549 */
1550 if (plug) {
1551 /*
1552 * The plug list might get flushed before this. If that
1553 * happens, same_queue_rq is invalid and plug list is
1554 * empty
1555 */
1556 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1557 old_rq = same_queue_rq;
1558 list_del_init(&old_rq->queuelist);
1559 }
1560 list_add_tail(&rq->queuelist, &plug->mq_list);
1561 } else /* is_sync */
1562 old_rq = rq;
1563 blk_mq_put_ctx(data.ctx);
1564 if (!old_rq)
1565 goto done;
1566
1567 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1568 rcu_read_lock();
1569 blk_mq_try_issue_directly(old_rq, &cookie, false);
1570 rcu_read_unlock();
1571 } else {
1572 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1573 blk_mq_try_issue_directly(old_rq, &cookie, true);
1574 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1575 }
1576 goto done;
1577 }
1578
1579 if (q->elevator) {
1580 elv_insert:
1581 blk_mq_put_ctx(data.ctx);
1582 blk_mq_bio_to_request(rq, bio);
1583 blk_mq_sched_insert_request(rq, false, true,
1584 !is_sync || is_flush_fua, true);
1585 goto done;
1586 }
1587 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1588 /*
1589 * For a SYNC request, send it to the hardware immediately. For
1590 * an ASYNC request, just ensure that we run it later on. The
1591 * latter allows for merging opportunities and more efficient
1592 * dispatching.
1593 */
1594 run_queue:
1595 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1596 }
1597 blk_mq_put_ctx(data.ctx);
1598 done:
1599 return cookie;
1600 }
1601
1602 /*
1603 * Single hardware queue variant. This will attempt to use any per-process
1604 * plug for merging and IO deferral.
1605 */
1606 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1607 {
1608 const int is_sync = op_is_sync(bio->bi_opf);
1609 const int is_flush_fua = op_is_flush(bio->bi_opf);
1610 struct blk_plug *plug;
1611 unsigned int request_count = 0;
1612 struct blk_mq_alloc_data data = { .flags = 0 };
1613 struct request *rq;
1614 blk_qc_t cookie;
1615 unsigned int wb_acct;
1616
1617 blk_queue_bounce(q, &bio);
1618
1619 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1620 bio_io_error(bio);
1621 return BLK_QC_T_NONE;
1622 }
1623
1624 blk_queue_split(q, &bio, q->bio_split);
1625
1626 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1627 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1628 return BLK_QC_T_NONE;
1629 } else
1630 request_count = blk_plug_queued_count(q);
1631
1632 if (blk_mq_sched_bio_merge(q, bio))
1633 return BLK_QC_T_NONE;
1634
1635 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1636
1637 trace_block_getrq(q, bio, bio->bi_opf);
1638
1639 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1640 if (unlikely(!rq)) {
1641 __wbt_done(q->rq_wb, wb_acct);
1642 return BLK_QC_T_NONE;
1643 }
1644
1645 wbt_track(&rq->issue_stat, wb_acct);
1646
1647 cookie = request_to_qc_t(data.hctx, rq);
1648
1649 if (unlikely(is_flush_fua)) {
1650 if (q->elevator)
1651 goto elv_insert;
1652 blk_mq_bio_to_request(rq, bio);
1653 blk_insert_flush(rq);
1654 goto run_queue;
1655 }
1656
1657 /*
1658 * A task plug currently exists. Since this is completely lockless,
1659 * utilize that to temporarily store requests until the task is
1660 * either done or scheduled away.
1661 */
1662 plug = current->plug;
1663 if (plug) {
1664 struct request *last = NULL;
1665
1666 blk_mq_bio_to_request(rq, bio);
1667
1668 /*
1669 * @request_count may become stale because of schedule
1670 * out, so check the list again.
1671 */
1672 if (list_empty(&plug->mq_list))
1673 request_count = 0;
1674 if (!request_count)
1675 trace_block_plug(q);
1676 else
1677 last = list_entry_rq(plug->mq_list.prev);
1678
1679 blk_mq_put_ctx(data.ctx);
1680
1681 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1682 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1683 blk_flush_plug_list(plug, false);
1684 trace_block_plug(q);
1685 }
1686
1687 list_add_tail(&rq->queuelist, &plug->mq_list);
1688 return cookie;
1689 }
1690
1691 if (q->elevator) {
1692 elv_insert:
1693 blk_mq_put_ctx(data.ctx);
1694 blk_mq_bio_to_request(rq, bio);
1695 blk_mq_sched_insert_request(rq, false, true,
1696 !is_sync || is_flush_fua, true);
1697 goto done;
1698 }
1699 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1700 /*
1701 * For a SYNC request, send it to the hardware immediately. For
1702 * an ASYNC request, just ensure that we run it later on. The
1703 * latter allows for merging opportunities and more efficient
1704 * dispatching.
1705 */
1706 run_queue:
1707 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1708 }
1709
1710 blk_mq_put_ctx(data.ctx);
1711 done:
1712 return cookie;
1713 }
1714
1715 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1716 unsigned int hctx_idx)
1717 {
1718 struct page *page;
1719
1720 if (tags->rqs && set->ops->exit_request) {
1721 int i;
1722
1723 for (i = 0; i < tags->nr_tags; i++) {
1724 struct request *rq = tags->static_rqs[i];
1725
1726 if (!rq)
1727 continue;
1728 set->ops->exit_request(set->driver_data, rq,
1729 hctx_idx, i);
1730 tags->static_rqs[i] = NULL;
1731 }
1732 }
1733
1734 while (!list_empty(&tags->page_list)) {
1735 page = list_first_entry(&tags->page_list, struct page, lru);
1736 list_del_init(&page->lru);
1737 /*
1738 * Remove kmemleak object previously allocated in
1739 * blk_mq_init_rq_map().
1740 */
1741 kmemleak_free(page_address(page));
1742 __free_pages(page, page->private);
1743 }
1744 }
1745
1746 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1747 {
1748 kfree(tags->rqs);
1749 tags->rqs = NULL;
1750 kfree(tags->static_rqs);
1751 tags->static_rqs = NULL;
1752
1753 blk_mq_free_tags(tags);
1754 }
1755
1756 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1757 unsigned int hctx_idx,
1758 unsigned int nr_tags,
1759 unsigned int reserved_tags)
1760 {
1761 struct blk_mq_tags *tags;
1762 int node;
1763
1764 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1765 if (node == NUMA_NO_NODE)
1766 node = set->numa_node;
1767
1768 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1769 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1770 if (!tags)
1771 return NULL;
1772
1773 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1774 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1775 node);
1776 if (!tags->rqs) {
1777 blk_mq_free_tags(tags);
1778 return NULL;
1779 }
1780
1781 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1782 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1783 node);
1784 if (!tags->static_rqs) {
1785 kfree(tags->rqs);
1786 blk_mq_free_tags(tags);
1787 return NULL;
1788 }
1789
1790 return tags;
1791 }
1792
1793 static size_t order_to_size(unsigned int order)
1794 {
1795 return (size_t)PAGE_SIZE << order;
1796 }
1797
1798 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1799 unsigned int hctx_idx, unsigned int depth)
1800 {
1801 unsigned int i, j, entries_per_page, max_order = 4;
1802 size_t rq_size, left;
1803 int node;
1804
1805 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1806 if (node == NUMA_NO_NODE)
1807 node = set->numa_node;
1808
1809 INIT_LIST_HEAD(&tags->page_list);
1810
1811 /*
1812 * rq_size is the size of the request plus driver payload, rounded
1813 * to the cacheline size
1814 */
1815 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1816 cache_line_size());
1817 left = rq_size * depth;
1818
1819 for (i = 0; i < depth; ) {
1820 int this_order = max_order;
1821 struct page *page;
1822 int to_do;
1823 void *p;
1824
1825 while (this_order && left < order_to_size(this_order - 1))
1826 this_order--;
1827
1828 do {
1829 page = alloc_pages_node(node,
1830 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1831 this_order);
1832 if (page)
1833 break;
1834 if (!this_order--)
1835 break;
1836 if (order_to_size(this_order) < rq_size)
1837 break;
1838 } while (1);
1839
1840 if (!page)
1841 goto fail;
1842
1843 page->private = this_order;
1844 list_add_tail(&page->lru, &tags->page_list);
1845
1846 p = page_address(page);
1847 /*
1848 * Allow kmemleak to scan these pages as they contain pointers
1849 * to additional allocations like via ops->init_request().
1850 */
1851 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1852 entries_per_page = order_to_size(this_order) / rq_size;
1853 to_do = min(entries_per_page, depth - i);
1854 left -= to_do * rq_size;
1855 for (j = 0; j < to_do; j++) {
1856 struct request *rq = p;
1857
1858 tags->static_rqs[i] = rq;
1859 if (set->ops->init_request) {
1860 if (set->ops->init_request(set->driver_data,
1861 rq, hctx_idx, i,
1862 node)) {
1863 tags->static_rqs[i] = NULL;
1864 goto fail;
1865 }
1866 }
1867
1868 p += rq_size;
1869 i++;
1870 }
1871 }
1872 return 0;
1873
1874 fail:
1875 blk_mq_free_rqs(set, tags, hctx_idx);
1876 return -ENOMEM;
1877 }
1878
1879 /*
1880 * 'cpu' is going away. splice any existing rq_list entries from this
1881 * software queue to the hw queue dispatch list, and ensure that it
1882 * gets run.
1883 */
1884 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1885 {
1886 struct blk_mq_hw_ctx *hctx;
1887 struct blk_mq_ctx *ctx;
1888 LIST_HEAD(tmp);
1889
1890 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1891 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1892
1893 spin_lock(&ctx->lock);
1894 if (!list_empty(&ctx->rq_list)) {
1895 list_splice_init(&ctx->rq_list, &tmp);
1896 blk_mq_hctx_clear_pending(hctx, ctx);
1897 }
1898 spin_unlock(&ctx->lock);
1899
1900 if (list_empty(&tmp))
1901 return 0;
1902
1903 spin_lock(&hctx->lock);
1904 list_splice_tail_init(&tmp, &hctx->dispatch);
1905 spin_unlock(&hctx->lock);
1906
1907 blk_mq_run_hw_queue(hctx, true);
1908 return 0;
1909 }
1910
1911 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1912 {
1913 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1914 &hctx->cpuhp_dead);
1915 }
1916
1917 /* hctx->ctxs will be freed in queue's release handler */
1918 static void blk_mq_exit_hctx(struct request_queue *q,
1919 struct blk_mq_tag_set *set,
1920 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1921 {
1922 unsigned flush_start_tag = set->queue_depth;
1923
1924 blk_mq_tag_idle(hctx);
1925
1926 if (set->ops->exit_request)
1927 set->ops->exit_request(set->driver_data,
1928 hctx->fq->flush_rq, hctx_idx,
1929 flush_start_tag + hctx_idx);
1930
1931 if (set->ops->exit_hctx)
1932 set->ops->exit_hctx(hctx, hctx_idx);
1933
1934 if (hctx->flags & BLK_MQ_F_BLOCKING)
1935 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1936
1937 blk_mq_remove_cpuhp(hctx);
1938 blk_free_flush_queue(hctx->fq);
1939 sbitmap_free(&hctx->ctx_map);
1940 }
1941
1942 static void blk_mq_exit_hw_queues(struct request_queue *q,
1943 struct blk_mq_tag_set *set, int nr_queue)
1944 {
1945 struct blk_mq_hw_ctx *hctx;
1946 unsigned int i;
1947
1948 queue_for_each_hw_ctx(q, hctx, i) {
1949 if (i == nr_queue)
1950 break;
1951 blk_mq_exit_hctx(q, set, hctx, i);
1952 }
1953 }
1954
1955 static int blk_mq_init_hctx(struct request_queue *q,
1956 struct blk_mq_tag_set *set,
1957 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1958 {
1959 int node;
1960 unsigned flush_start_tag = set->queue_depth;
1961
1962 node = hctx->numa_node;
1963 if (node == NUMA_NO_NODE)
1964 node = hctx->numa_node = set->numa_node;
1965
1966 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1967 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1968 spin_lock_init(&hctx->lock);
1969 INIT_LIST_HEAD(&hctx->dispatch);
1970 hctx->queue = q;
1971 hctx->queue_num = hctx_idx;
1972 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1973
1974 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1975
1976 hctx->tags = set->tags[hctx_idx];
1977
1978 /*
1979 * Allocate space for all possible cpus to avoid allocation at
1980 * runtime
1981 */
1982 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1983 GFP_KERNEL, node);
1984 if (!hctx->ctxs)
1985 goto unregister_cpu_notifier;
1986
1987 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1988 node))
1989 goto free_ctxs;
1990
1991 hctx->nr_ctx = 0;
1992
1993 if (set->ops->init_hctx &&
1994 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1995 goto free_bitmap;
1996
1997 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1998 if (!hctx->fq)
1999 goto exit_hctx;
2000
2001 if (set->ops->init_request &&
2002 set->ops->init_request(set->driver_data,
2003 hctx->fq->flush_rq, hctx_idx,
2004 flush_start_tag + hctx_idx, node))
2005 goto free_fq;
2006
2007 if (hctx->flags & BLK_MQ_F_BLOCKING)
2008 init_srcu_struct(&hctx->queue_rq_srcu);
2009
2010 return 0;
2011
2012 free_fq:
2013 kfree(hctx->fq);
2014 exit_hctx:
2015 if (set->ops->exit_hctx)
2016 set->ops->exit_hctx(hctx, hctx_idx);
2017 free_bitmap:
2018 sbitmap_free(&hctx->ctx_map);
2019 free_ctxs:
2020 kfree(hctx->ctxs);
2021 unregister_cpu_notifier:
2022 blk_mq_remove_cpuhp(hctx);
2023 return -1;
2024 }
2025
2026 static void blk_mq_init_cpu_queues(struct request_queue *q,
2027 unsigned int nr_hw_queues)
2028 {
2029 unsigned int i;
2030
2031 for_each_possible_cpu(i) {
2032 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2033 struct blk_mq_hw_ctx *hctx;
2034
2035 __ctx->cpu = i;
2036 spin_lock_init(&__ctx->lock);
2037 INIT_LIST_HEAD(&__ctx->rq_list);
2038 __ctx->queue = q;
2039
2040 /* If the cpu isn't online, the cpu is mapped to first hctx */
2041 if (!cpu_online(i))
2042 continue;
2043
2044 hctx = blk_mq_map_queue(q, i);
2045
2046 /*
2047 * Set local node, IFF we have more than one hw queue. If
2048 * not, we remain on the home node of the device
2049 */
2050 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2051 hctx->numa_node = local_memory_node(cpu_to_node(i));
2052 }
2053 }
2054
2055 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2056 {
2057 int ret = 0;
2058
2059 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2060 set->queue_depth, set->reserved_tags);
2061 if (!set->tags[hctx_idx])
2062 return false;
2063
2064 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2065 set->queue_depth);
2066 if (!ret)
2067 return true;
2068
2069 blk_mq_free_rq_map(set->tags[hctx_idx]);
2070 set->tags[hctx_idx] = NULL;
2071 return false;
2072 }
2073
2074 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2075 unsigned int hctx_idx)
2076 {
2077 if (set->tags[hctx_idx]) {
2078 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2079 blk_mq_free_rq_map(set->tags[hctx_idx]);
2080 set->tags[hctx_idx] = NULL;
2081 }
2082 }
2083
2084 static void blk_mq_map_swqueue(struct request_queue *q,
2085 const struct cpumask *online_mask)
2086 {
2087 unsigned int i, hctx_idx;
2088 struct blk_mq_hw_ctx *hctx;
2089 struct blk_mq_ctx *ctx;
2090 struct blk_mq_tag_set *set = q->tag_set;
2091
2092 /*
2093 * Avoid others reading imcomplete hctx->cpumask through sysfs
2094 */
2095 mutex_lock(&q->sysfs_lock);
2096
2097 queue_for_each_hw_ctx(q, hctx, i) {
2098 cpumask_clear(hctx->cpumask);
2099 hctx->nr_ctx = 0;
2100 }
2101
2102 /*
2103 * Map software to hardware queues
2104 */
2105 for_each_possible_cpu(i) {
2106 /* If the cpu isn't online, the cpu is mapped to first hctx */
2107 if (!cpumask_test_cpu(i, online_mask))
2108 continue;
2109
2110 hctx_idx = q->mq_map[i];
2111 /* unmapped hw queue can be remapped after CPU topo changed */
2112 if (!set->tags[hctx_idx] &&
2113 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2114 /*
2115 * If tags initialization fail for some hctx,
2116 * that hctx won't be brought online. In this
2117 * case, remap the current ctx to hctx[0] which
2118 * is guaranteed to always have tags allocated
2119 */
2120 q->mq_map[i] = 0;
2121 }
2122
2123 ctx = per_cpu_ptr(q->queue_ctx, i);
2124 hctx = blk_mq_map_queue(q, i);
2125
2126 cpumask_set_cpu(i, hctx->cpumask);
2127 ctx->index_hw = hctx->nr_ctx;
2128 hctx->ctxs[hctx->nr_ctx++] = ctx;
2129 }
2130
2131 mutex_unlock(&q->sysfs_lock);
2132
2133 queue_for_each_hw_ctx(q, hctx, i) {
2134 /*
2135 * If no software queues are mapped to this hardware queue,
2136 * disable it and free the request entries.
2137 */
2138 if (!hctx->nr_ctx) {
2139 /* Never unmap queue 0. We need it as a
2140 * fallback in case of a new remap fails
2141 * allocation
2142 */
2143 if (i && set->tags[i])
2144 blk_mq_free_map_and_requests(set, i);
2145
2146 hctx->tags = NULL;
2147 continue;
2148 }
2149
2150 hctx->tags = set->tags[i];
2151 WARN_ON(!hctx->tags);
2152
2153 /*
2154 * Set the map size to the number of mapped software queues.
2155 * This is more accurate and more efficient than looping
2156 * over all possibly mapped software queues.
2157 */
2158 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2159
2160 /*
2161 * Initialize batch roundrobin counts
2162 */
2163 hctx->next_cpu = cpumask_first(hctx->cpumask);
2164 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2165 }
2166 }
2167
2168 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2169 {
2170 struct blk_mq_hw_ctx *hctx;
2171 int i;
2172
2173 queue_for_each_hw_ctx(q, hctx, i) {
2174 if (shared)
2175 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2176 else
2177 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2178 }
2179 }
2180
2181 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2182 {
2183 struct request_queue *q;
2184
2185 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2186 blk_mq_freeze_queue(q);
2187 queue_set_hctx_shared(q, shared);
2188 blk_mq_unfreeze_queue(q);
2189 }
2190 }
2191
2192 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2193 {
2194 struct blk_mq_tag_set *set = q->tag_set;
2195
2196 mutex_lock(&set->tag_list_lock);
2197 list_del_init(&q->tag_set_list);
2198 if (list_is_singular(&set->tag_list)) {
2199 /* just transitioned to unshared */
2200 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2201 /* update existing queue */
2202 blk_mq_update_tag_set_depth(set, false);
2203 }
2204 mutex_unlock(&set->tag_list_lock);
2205 }
2206
2207 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2208 struct request_queue *q)
2209 {
2210 q->tag_set = set;
2211
2212 mutex_lock(&set->tag_list_lock);
2213
2214 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2215 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2216 set->flags |= BLK_MQ_F_TAG_SHARED;
2217 /* update existing queue */
2218 blk_mq_update_tag_set_depth(set, true);
2219 }
2220 if (set->flags & BLK_MQ_F_TAG_SHARED)
2221 queue_set_hctx_shared(q, true);
2222 list_add_tail(&q->tag_set_list, &set->tag_list);
2223
2224 mutex_unlock(&set->tag_list_lock);
2225 }
2226
2227 /*
2228 * It is the actual release handler for mq, but we do it from
2229 * request queue's release handler for avoiding use-after-free
2230 * and headache because q->mq_kobj shouldn't have been introduced,
2231 * but we can't group ctx/kctx kobj without it.
2232 */
2233 void blk_mq_release(struct request_queue *q)
2234 {
2235 struct blk_mq_hw_ctx *hctx;
2236 unsigned int i;
2237
2238 blk_mq_sched_teardown(q);
2239
2240 /* hctx kobj stays in hctx */
2241 queue_for_each_hw_ctx(q, hctx, i) {
2242 if (!hctx)
2243 continue;
2244 kobject_put(&hctx->kobj);
2245 }
2246
2247 q->mq_map = NULL;
2248
2249 kfree(q->queue_hw_ctx);
2250
2251 /*
2252 * release .mq_kobj and sw queue's kobject now because
2253 * both share lifetime with request queue.
2254 */
2255 blk_mq_sysfs_deinit(q);
2256
2257 free_percpu(q->queue_ctx);
2258 }
2259
2260 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2261 {
2262 struct request_queue *uninit_q, *q;
2263
2264 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2265 if (!uninit_q)
2266 return ERR_PTR(-ENOMEM);
2267
2268 q = blk_mq_init_allocated_queue(set, uninit_q);
2269 if (IS_ERR(q))
2270 blk_cleanup_queue(uninit_q);
2271
2272 return q;
2273 }
2274 EXPORT_SYMBOL(blk_mq_init_queue);
2275
2276 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2277 struct request_queue *q)
2278 {
2279 int i, j;
2280 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2281
2282 blk_mq_sysfs_unregister(q);
2283 for (i = 0; i < set->nr_hw_queues; i++) {
2284 int node;
2285
2286 if (hctxs[i])
2287 continue;
2288
2289 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2290 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2291 GFP_KERNEL, node);
2292 if (!hctxs[i])
2293 break;
2294
2295 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2296 node)) {
2297 kfree(hctxs[i]);
2298 hctxs[i] = NULL;
2299 break;
2300 }
2301
2302 atomic_set(&hctxs[i]->nr_active, 0);
2303 hctxs[i]->numa_node = node;
2304 hctxs[i]->queue_num = i;
2305
2306 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2307 free_cpumask_var(hctxs[i]->cpumask);
2308 kfree(hctxs[i]);
2309 hctxs[i] = NULL;
2310 break;
2311 }
2312 blk_mq_hctx_kobj_init(hctxs[i]);
2313 }
2314 for (j = i; j < q->nr_hw_queues; j++) {
2315 struct blk_mq_hw_ctx *hctx = hctxs[j];
2316
2317 if (hctx) {
2318 if (hctx->tags)
2319 blk_mq_free_map_and_requests(set, j);
2320 blk_mq_exit_hctx(q, set, hctx, j);
2321 kobject_put(&hctx->kobj);
2322 hctxs[j] = NULL;
2323
2324 }
2325 }
2326 q->nr_hw_queues = i;
2327 blk_mq_sysfs_register(q);
2328 }
2329
2330 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2331 struct request_queue *q)
2332 {
2333 /* mark the queue as mq asap */
2334 q->mq_ops = set->ops;
2335
2336 q->stats = blk_alloc_queue_stats();
2337 if (!q->stats)
2338 goto err_exit;
2339
2340 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2341 blk_stat_rq_ddir, 2, q);
2342 if (!q->poll_cb)
2343 goto err_exit;
2344
2345 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2346 if (!q->queue_ctx)
2347 goto err_exit;
2348
2349 /* init q->mq_kobj and sw queues' kobjects */
2350 blk_mq_sysfs_init(q);
2351
2352 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2353 GFP_KERNEL, set->numa_node);
2354 if (!q->queue_hw_ctx)
2355 goto err_percpu;
2356
2357 q->mq_map = set->mq_map;
2358
2359 blk_mq_realloc_hw_ctxs(set, q);
2360 if (!q->nr_hw_queues)
2361 goto err_hctxs;
2362
2363 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2364 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2365
2366 q->nr_queues = nr_cpu_ids;
2367
2368 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2369
2370 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2371 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2372
2373 q->sg_reserved_size = INT_MAX;
2374
2375 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2376 INIT_LIST_HEAD(&q->requeue_list);
2377 spin_lock_init(&q->requeue_lock);
2378
2379 if (q->nr_hw_queues > 1)
2380 blk_queue_make_request(q, blk_mq_make_request);
2381 else
2382 blk_queue_make_request(q, blk_sq_make_request);
2383
2384 /*
2385 * Do this after blk_queue_make_request() overrides it...
2386 */
2387 q->nr_requests = set->queue_depth;
2388
2389 /*
2390 * Default to classic polling
2391 */
2392 q->poll_nsec = -1;
2393
2394 if (set->ops->complete)
2395 blk_queue_softirq_done(q, set->ops->complete);
2396
2397 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2398
2399 get_online_cpus();
2400 mutex_lock(&all_q_mutex);
2401
2402 list_add_tail(&q->all_q_node, &all_q_list);
2403 blk_mq_add_queue_tag_set(set, q);
2404 blk_mq_map_swqueue(q, cpu_online_mask);
2405
2406 mutex_unlock(&all_q_mutex);
2407 put_online_cpus();
2408
2409 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2410 int ret;
2411
2412 ret = blk_mq_sched_init(q);
2413 if (ret)
2414 return ERR_PTR(ret);
2415 }
2416
2417 return q;
2418
2419 err_hctxs:
2420 kfree(q->queue_hw_ctx);
2421 err_percpu:
2422 free_percpu(q->queue_ctx);
2423 err_exit:
2424 q->mq_ops = NULL;
2425 return ERR_PTR(-ENOMEM);
2426 }
2427 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2428
2429 void blk_mq_free_queue(struct request_queue *q)
2430 {
2431 struct blk_mq_tag_set *set = q->tag_set;
2432
2433 mutex_lock(&all_q_mutex);
2434 list_del_init(&q->all_q_node);
2435 mutex_unlock(&all_q_mutex);
2436
2437 blk_mq_del_queue_tag_set(q);
2438
2439 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2440 }
2441
2442 /* Basically redo blk_mq_init_queue with queue frozen */
2443 static void blk_mq_queue_reinit(struct request_queue *q,
2444 const struct cpumask *online_mask)
2445 {
2446 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2447
2448 blk_mq_sysfs_unregister(q);
2449
2450 /*
2451 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2452 * we should change hctx numa_node according to new topology (this
2453 * involves free and re-allocate memory, worthy doing?)
2454 */
2455
2456 blk_mq_map_swqueue(q, online_mask);
2457
2458 blk_mq_sysfs_register(q);
2459 }
2460
2461 /*
2462 * New online cpumask which is going to be set in this hotplug event.
2463 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2464 * one-by-one and dynamically allocating this could result in a failure.
2465 */
2466 static struct cpumask cpuhp_online_new;
2467
2468 static void blk_mq_queue_reinit_work(void)
2469 {
2470 struct request_queue *q;
2471
2472 mutex_lock(&all_q_mutex);
2473 /*
2474 * We need to freeze and reinit all existing queues. Freezing
2475 * involves synchronous wait for an RCU grace period and doing it
2476 * one by one may take a long time. Start freezing all queues in
2477 * one swoop and then wait for the completions so that freezing can
2478 * take place in parallel.
2479 */
2480 list_for_each_entry(q, &all_q_list, all_q_node)
2481 blk_mq_freeze_queue_start(q);
2482 list_for_each_entry(q, &all_q_list, all_q_node)
2483 blk_mq_freeze_queue_wait(q);
2484
2485 list_for_each_entry(q, &all_q_list, all_q_node)
2486 blk_mq_queue_reinit(q, &cpuhp_online_new);
2487
2488 list_for_each_entry(q, &all_q_list, all_q_node)
2489 blk_mq_unfreeze_queue(q);
2490
2491 mutex_unlock(&all_q_mutex);
2492 }
2493
2494 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2495 {
2496 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2497 blk_mq_queue_reinit_work();
2498 return 0;
2499 }
2500
2501 /*
2502 * Before hotadded cpu starts handling requests, new mappings must be
2503 * established. Otherwise, these requests in hw queue might never be
2504 * dispatched.
2505 *
2506 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2507 * for CPU0, and ctx1 for CPU1).
2508 *
2509 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2510 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2511 *
2512 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2513 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2514 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2515 * ignored.
2516 */
2517 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2518 {
2519 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2520 cpumask_set_cpu(cpu, &cpuhp_online_new);
2521 blk_mq_queue_reinit_work();
2522 return 0;
2523 }
2524
2525 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2526 {
2527 int i;
2528
2529 for (i = 0; i < set->nr_hw_queues; i++)
2530 if (!__blk_mq_alloc_rq_map(set, i))
2531 goto out_unwind;
2532
2533 return 0;
2534
2535 out_unwind:
2536 while (--i >= 0)
2537 blk_mq_free_rq_map(set->tags[i]);
2538
2539 return -ENOMEM;
2540 }
2541
2542 /*
2543 * Allocate the request maps associated with this tag_set. Note that this
2544 * may reduce the depth asked for, if memory is tight. set->queue_depth
2545 * will be updated to reflect the allocated depth.
2546 */
2547 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2548 {
2549 unsigned int depth;
2550 int err;
2551
2552 depth = set->queue_depth;
2553 do {
2554 err = __blk_mq_alloc_rq_maps(set);
2555 if (!err)
2556 break;
2557
2558 set->queue_depth >>= 1;
2559 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2560 err = -ENOMEM;
2561 break;
2562 }
2563 } while (set->queue_depth);
2564
2565 if (!set->queue_depth || err) {
2566 pr_err("blk-mq: failed to allocate request map\n");
2567 return -ENOMEM;
2568 }
2569
2570 if (depth != set->queue_depth)
2571 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2572 depth, set->queue_depth);
2573
2574 return 0;
2575 }
2576
2577 /*
2578 * Alloc a tag set to be associated with one or more request queues.
2579 * May fail with EINVAL for various error conditions. May adjust the
2580 * requested depth down, if if it too large. In that case, the set
2581 * value will be stored in set->queue_depth.
2582 */
2583 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2584 {
2585 int ret;
2586
2587 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2588
2589 if (!set->nr_hw_queues)
2590 return -EINVAL;
2591 if (!set->queue_depth)
2592 return -EINVAL;
2593 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2594 return -EINVAL;
2595
2596 if (!set->ops->queue_rq)
2597 return -EINVAL;
2598
2599 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2600 pr_info("blk-mq: reduced tag depth to %u\n",
2601 BLK_MQ_MAX_DEPTH);
2602 set->queue_depth = BLK_MQ_MAX_DEPTH;
2603 }
2604
2605 /*
2606 * If a crashdump is active, then we are potentially in a very
2607 * memory constrained environment. Limit us to 1 queue and
2608 * 64 tags to prevent using too much memory.
2609 */
2610 if (is_kdump_kernel()) {
2611 set->nr_hw_queues = 1;
2612 set->queue_depth = min(64U, set->queue_depth);
2613 }
2614 /*
2615 * There is no use for more h/w queues than cpus.
2616 */
2617 if (set->nr_hw_queues > nr_cpu_ids)
2618 set->nr_hw_queues = nr_cpu_ids;
2619
2620 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2621 GFP_KERNEL, set->numa_node);
2622 if (!set->tags)
2623 return -ENOMEM;
2624
2625 ret = -ENOMEM;
2626 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2627 GFP_KERNEL, set->numa_node);
2628 if (!set->mq_map)
2629 goto out_free_tags;
2630
2631 if (set->ops->map_queues)
2632 ret = set->ops->map_queues(set);
2633 else
2634 ret = blk_mq_map_queues(set);
2635 if (ret)
2636 goto out_free_mq_map;
2637
2638 ret = blk_mq_alloc_rq_maps(set);
2639 if (ret)
2640 goto out_free_mq_map;
2641
2642 mutex_init(&set->tag_list_lock);
2643 INIT_LIST_HEAD(&set->tag_list);
2644
2645 return 0;
2646
2647 out_free_mq_map:
2648 kfree(set->mq_map);
2649 set->mq_map = NULL;
2650 out_free_tags:
2651 kfree(set->tags);
2652 set->tags = NULL;
2653 return ret;
2654 }
2655 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2656
2657 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2658 {
2659 int i;
2660
2661 for (i = 0; i < nr_cpu_ids; i++)
2662 blk_mq_free_map_and_requests(set, i);
2663
2664 kfree(set->mq_map);
2665 set->mq_map = NULL;
2666
2667 kfree(set->tags);
2668 set->tags = NULL;
2669 }
2670 EXPORT_SYMBOL(blk_mq_free_tag_set);
2671
2672 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2673 {
2674 struct blk_mq_tag_set *set = q->tag_set;
2675 struct blk_mq_hw_ctx *hctx;
2676 int i, ret;
2677
2678 if (!set)
2679 return -EINVAL;
2680
2681 blk_mq_freeze_queue(q);
2682 blk_mq_quiesce_queue(q);
2683
2684 ret = 0;
2685 queue_for_each_hw_ctx(q, hctx, i) {
2686 if (!hctx->tags)
2687 continue;
2688 /*
2689 * If we're using an MQ scheduler, just update the scheduler
2690 * queue depth. This is similar to what the old code would do.
2691 */
2692 if (!hctx->sched_tags) {
2693 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2694 min(nr, set->queue_depth),
2695 false);
2696 } else {
2697 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2698 nr, true);
2699 }
2700 if (ret)
2701 break;
2702 }
2703
2704 if (!ret)
2705 q->nr_requests = nr;
2706
2707 blk_mq_unfreeze_queue(q);
2708 blk_mq_start_stopped_hw_queues(q, true);
2709
2710 return ret;
2711 }
2712
2713 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2714 {
2715 struct request_queue *q;
2716
2717 if (nr_hw_queues > nr_cpu_ids)
2718 nr_hw_queues = nr_cpu_ids;
2719 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2720 return;
2721
2722 list_for_each_entry(q, &set->tag_list, tag_set_list)
2723 blk_mq_freeze_queue(q);
2724
2725 set->nr_hw_queues = nr_hw_queues;
2726 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2727 blk_mq_realloc_hw_ctxs(set, q);
2728
2729 /*
2730 * Manually set the make_request_fn as blk_queue_make_request
2731 * resets a lot of the queue settings.
2732 */
2733 if (q->nr_hw_queues > 1)
2734 q->make_request_fn = blk_mq_make_request;
2735 else
2736 q->make_request_fn = blk_sq_make_request;
2737
2738 blk_mq_queue_reinit(q, cpu_online_mask);
2739 }
2740
2741 list_for_each_entry(q, &set->tag_list, tag_set_list)
2742 blk_mq_unfreeze_queue(q);
2743 }
2744 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2745
2746 /* Enable polling stats and return whether they were already enabled. */
2747 static bool blk_poll_stats_enable(struct request_queue *q)
2748 {
2749 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2750 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2751 return true;
2752 blk_stat_add_callback(q, q->poll_cb);
2753 return false;
2754 }
2755
2756 static void blk_mq_poll_stats_start(struct request_queue *q)
2757 {
2758 /*
2759 * We don't arm the callback if polling stats are not enabled or the
2760 * callback is already active.
2761 */
2762 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2763 blk_stat_is_active(q->poll_cb))
2764 return;
2765
2766 blk_stat_activate_msecs(q->poll_cb, 100);
2767 }
2768
2769 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2770 {
2771 struct request_queue *q = cb->data;
2772
2773 if (cb->stat[READ].nr_samples)
2774 q->poll_stat[READ] = cb->stat[READ];
2775 if (cb->stat[WRITE].nr_samples)
2776 q->poll_stat[WRITE] = cb->stat[WRITE];
2777 }
2778
2779 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2780 struct blk_mq_hw_ctx *hctx,
2781 struct request *rq)
2782 {
2783 unsigned long ret = 0;
2784
2785 /*
2786 * If stats collection isn't on, don't sleep but turn it on for
2787 * future users
2788 */
2789 if (!blk_poll_stats_enable(q))
2790 return 0;
2791
2792 /*
2793 * As an optimistic guess, use half of the mean service time
2794 * for this type of request. We can (and should) make this smarter.
2795 * For instance, if the completion latencies are tight, we can
2796 * get closer than just half the mean. This is especially
2797 * important on devices where the completion latencies are longer
2798 * than ~10 usec.
2799 */
2800 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2801 ret = (q->poll_stat[READ].mean + 1) / 2;
2802 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2803 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2804
2805 return ret;
2806 }
2807
2808 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2809 struct blk_mq_hw_ctx *hctx,
2810 struct request *rq)
2811 {
2812 struct hrtimer_sleeper hs;
2813 enum hrtimer_mode mode;
2814 unsigned int nsecs;
2815 ktime_t kt;
2816
2817 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2818 return false;
2819
2820 /*
2821 * poll_nsec can be:
2822 *
2823 * -1: don't ever hybrid sleep
2824 * 0: use half of prev avg
2825 * >0: use this specific value
2826 */
2827 if (q->poll_nsec == -1)
2828 return false;
2829 else if (q->poll_nsec > 0)
2830 nsecs = q->poll_nsec;
2831 else
2832 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2833
2834 if (!nsecs)
2835 return false;
2836
2837 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2838
2839 /*
2840 * This will be replaced with the stats tracking code, using
2841 * 'avg_completion_time / 2' as the pre-sleep target.
2842 */
2843 kt = nsecs;
2844
2845 mode = HRTIMER_MODE_REL;
2846 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2847 hrtimer_set_expires(&hs.timer, kt);
2848
2849 hrtimer_init_sleeper(&hs, current);
2850 do {
2851 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2852 break;
2853 set_current_state(TASK_UNINTERRUPTIBLE);
2854 hrtimer_start_expires(&hs.timer, mode);
2855 if (hs.task)
2856 io_schedule();
2857 hrtimer_cancel(&hs.timer);
2858 mode = HRTIMER_MODE_ABS;
2859 } while (hs.task && !signal_pending(current));
2860
2861 __set_current_state(TASK_RUNNING);
2862 destroy_hrtimer_on_stack(&hs.timer);
2863 return true;
2864 }
2865
2866 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2867 {
2868 struct request_queue *q = hctx->queue;
2869 long state;
2870
2871 /*
2872 * If we sleep, have the caller restart the poll loop to reset
2873 * the state. Like for the other success return cases, the
2874 * caller is responsible for checking if the IO completed. If
2875 * the IO isn't complete, we'll get called again and will go
2876 * straight to the busy poll loop.
2877 */
2878 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2879 return true;
2880
2881 hctx->poll_considered++;
2882
2883 state = current->state;
2884 while (!need_resched()) {
2885 int ret;
2886
2887 hctx->poll_invoked++;
2888
2889 ret = q->mq_ops->poll(hctx, rq->tag);
2890 if (ret > 0) {
2891 hctx->poll_success++;
2892 set_current_state(TASK_RUNNING);
2893 return true;
2894 }
2895
2896 if (signal_pending_state(state, current))
2897 set_current_state(TASK_RUNNING);
2898
2899 if (current->state == TASK_RUNNING)
2900 return true;
2901 if (ret < 0)
2902 break;
2903 cpu_relax();
2904 }
2905
2906 return false;
2907 }
2908
2909 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2910 {
2911 struct blk_mq_hw_ctx *hctx;
2912 struct blk_plug *plug;
2913 struct request *rq;
2914
2915 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2916 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2917 return false;
2918
2919 plug = current->plug;
2920 if (plug)
2921 blk_flush_plug_list(plug, false);
2922
2923 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2924 if (!blk_qc_t_is_internal(cookie))
2925 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2926 else
2927 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2928
2929 return __blk_mq_poll(hctx, rq);
2930 }
2931 EXPORT_SYMBOL_GPL(blk_mq_poll);
2932
2933 void blk_mq_disable_hotplug(void)
2934 {
2935 mutex_lock(&all_q_mutex);
2936 }
2937
2938 void blk_mq_enable_hotplug(void)
2939 {
2940 mutex_unlock(&all_q_mutex);
2941 }
2942
2943 static int __init blk_mq_init(void)
2944 {
2945 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2946 blk_mq_hctx_notify_dead);
2947
2948 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2949 blk_mq_queue_reinit_prepare,
2950 blk_mq_queue_reinit_dead);
2951 return 0;
2952 }
2953 subsys_initcall(blk_mq_init);