]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - block/blk-mq.c
Merge tag 'rpmsg-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[mirror_ubuntu-kernels.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31
32 #include <trace/events/block.h>
33
34 #include <linux/blk-mq.h>
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-mq-tag.h"
40 #include "blk-pm.h"
41 #include "blk-stat.h"
42 #include "blk-mq-sched.h"
43 #include "blk-rq-qos.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_poll_stats_start(struct request_queue *q);
48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49
50 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 {
52 int ddir, sectors, bucket;
53
54 ddir = rq_data_dir(rq);
55 sectors = blk_rq_stats_sectors(rq);
56
57 bucket = ddir + 2 * ilog2(sectors);
58
59 if (bucket < 0)
60 return -1;
61 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
62 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63
64 return bucket;
65 }
66
67 #define BLK_QC_T_SHIFT 16
68 #define BLK_QC_T_INTERNAL (1U << 31)
69
70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
71 blk_qc_t qc)
72 {
73 return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
74 }
75
76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
77 blk_qc_t qc)
78 {
79 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
80
81 if (qc & BLK_QC_T_INTERNAL)
82 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
83 return blk_mq_tag_to_rq(hctx->tags, tag);
84 }
85
86 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
87 {
88 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
89 (rq->tag != -1 ?
90 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
91 }
92
93 /*
94 * Check if any of the ctx, dispatch list or elevator
95 * have pending work in this hardware queue.
96 */
97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
98 {
99 return !list_empty_careful(&hctx->dispatch) ||
100 sbitmap_any_bit_set(&hctx->ctx_map) ||
101 blk_mq_sched_has_work(hctx);
102 }
103
104 /*
105 * Mark this ctx as having pending work in this hardware queue
106 */
107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
108 struct blk_mq_ctx *ctx)
109 {
110 const int bit = ctx->index_hw[hctx->type];
111
112 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
113 sbitmap_set_bit(&hctx->ctx_map, bit);
114 }
115
116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
117 struct blk_mq_ctx *ctx)
118 {
119 const int bit = ctx->index_hw[hctx->type];
120
121 sbitmap_clear_bit(&hctx->ctx_map, bit);
122 }
123
124 struct mq_inflight {
125 struct block_device *part;
126 unsigned int inflight[2];
127 };
128
129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
130 struct request *rq, void *priv,
131 bool reserved)
132 {
133 struct mq_inflight *mi = priv;
134
135 if ((!mi->part->bd_partno || rq->part == mi->part) &&
136 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137 mi->inflight[rq_data_dir(rq)]++;
138
139 return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143 struct block_device *part)
144 {
145 struct mq_inflight mi = { .part = part };
146
147 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149 return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153 unsigned int inflight[2])
154 {
155 struct mq_inflight mi = { .part = part };
156
157 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158 inflight[0] = mi.inflight[0];
159 inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164 mutex_lock(&q->mq_freeze_lock);
165 if (++q->mq_freeze_depth == 1) {
166 percpu_ref_kill(&q->q_usage_counter);
167 mutex_unlock(&q->mq_freeze_lock);
168 if (queue_is_mq(q))
169 blk_mq_run_hw_queues(q, false);
170 } else {
171 mutex_unlock(&q->mq_freeze_lock);
172 }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183 unsigned long timeout)
184 {
185 return wait_event_timeout(q->mq_freeze_wq,
186 percpu_ref_is_zero(&q->q_usage_counter),
187 timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192 * Guarantee no request is in use, so we can change any data structure of
193 * the queue afterward.
194 */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197 /*
198 * In the !blk_mq case we are only calling this to kill the
199 * q_usage_counter, otherwise this increases the freeze depth
200 * and waits for it to return to zero. For this reason there is
201 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202 * exported to drivers as the only user for unfreeze is blk_mq.
203 */
204 blk_freeze_queue_start(q);
205 blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210 /*
211 * ...just an alias to keep freeze and unfreeze actions balanced
212 * in the blk_mq_* namespace
213 */
214 blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 mutex_lock(&q->mq_freeze_lock);
221 if (force_atomic)
222 q->q_usage_counter.data->force_atomic = true;
223 q->mq_freeze_depth--;
224 WARN_ON_ONCE(q->mq_freeze_depth < 0);
225 if (!q->mq_freeze_depth) {
226 percpu_ref_resurrect(&q->q_usage_counter);
227 wake_up_all(&q->mq_freeze_wq);
228 }
229 mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234 __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240 * mpt3sas driver such that this function can be removed.
241 */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244 unsigned long flags;
245
246 spin_lock_irqsave(&q->queue_lock, flags);
247 if (!q->quiesce_depth++)
248 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249 spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255 * @q: request queue.
256 *
257 * Note: it is driver's responsibility for making sure that quiesce has
258 * been started.
259 */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262 struct blk_mq_hw_ctx *hctx;
263 unsigned int i;
264 bool rcu = false;
265
266 queue_for_each_hw_ctx(q, hctx, i) {
267 if (hctx->flags & BLK_MQ_F_BLOCKING)
268 synchronize_srcu(hctx->srcu);
269 else
270 rcu = true;
271 }
272 if (rcu)
273 synchronize_rcu();
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
276
277 /**
278 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
279 * @q: request queue.
280 *
281 * Note: this function does not prevent that the struct request end_io()
282 * callback function is invoked. Once this function is returned, we make
283 * sure no dispatch can happen until the queue is unquiesced via
284 * blk_mq_unquiesce_queue().
285 */
286 void blk_mq_quiesce_queue(struct request_queue *q)
287 {
288 blk_mq_quiesce_queue_nowait(q);
289 blk_mq_wait_quiesce_done(q);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292
293 /*
294 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295 * @q: request queue.
296 *
297 * This function recovers queue into the state before quiescing
298 * which is done by blk_mq_quiesce_queue.
299 */
300 void blk_mq_unquiesce_queue(struct request_queue *q)
301 {
302 unsigned long flags;
303 bool run_queue = false;
304
305 spin_lock_irqsave(&q->queue_lock, flags);
306 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
307 ;
308 } else if (!--q->quiesce_depth) {
309 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310 run_queue = true;
311 }
312 spin_unlock_irqrestore(&q->queue_lock, flags);
313
314 /* dispatch requests which are inserted during quiescing */
315 if (run_queue)
316 blk_mq_run_hw_queues(q, true);
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
319
320 void blk_mq_wake_waiters(struct request_queue *q)
321 {
322 struct blk_mq_hw_ctx *hctx;
323 unsigned int i;
324
325 queue_for_each_hw_ctx(q, hctx, i)
326 if (blk_mq_hw_queue_mapped(hctx))
327 blk_mq_tag_wakeup_all(hctx->tags, true);
328 }
329
330 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
331 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
332 {
333 struct blk_mq_ctx *ctx = data->ctx;
334 struct blk_mq_hw_ctx *hctx = data->hctx;
335 struct request_queue *q = data->q;
336 struct request *rq = tags->static_rqs[tag];
337
338 rq->q = q;
339 rq->mq_ctx = ctx;
340 rq->mq_hctx = hctx;
341 rq->cmd_flags = data->cmd_flags;
342
343 if (data->flags & BLK_MQ_REQ_PM)
344 data->rq_flags |= RQF_PM;
345 if (blk_queue_io_stat(q))
346 data->rq_flags |= RQF_IO_STAT;
347 rq->rq_flags = data->rq_flags;
348
349 if (!(data->rq_flags & RQF_ELV)) {
350 rq->tag = tag;
351 rq->internal_tag = BLK_MQ_NO_TAG;
352 } else {
353 rq->tag = BLK_MQ_NO_TAG;
354 rq->internal_tag = tag;
355 }
356 rq->timeout = 0;
357
358 if (blk_mq_need_time_stamp(rq))
359 rq->start_time_ns = ktime_get_ns();
360 else
361 rq->start_time_ns = 0;
362 rq->rq_disk = NULL;
363 rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365 rq->alloc_time_ns = alloc_time_ns;
366 #endif
367 rq->io_start_time_ns = 0;
368 rq->stats_sectors = 0;
369 rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371 rq->nr_integrity_segments = 0;
372 #endif
373 rq->end_io = NULL;
374 rq->end_io_data = NULL;
375
376 blk_crypto_rq_set_defaults(rq);
377 INIT_LIST_HEAD(&rq->queuelist);
378 /* tag was already set */
379 WRITE_ONCE(rq->deadline, 0);
380 refcount_set(&rq->ref, 1);
381
382 if (rq->rq_flags & RQF_ELV) {
383 struct elevator_queue *e = data->q->elevator;
384
385 rq->elv.icq = NULL;
386 INIT_HLIST_NODE(&rq->hash);
387 RB_CLEAR_NODE(&rq->rb_node);
388
389 if (!op_is_flush(data->cmd_flags) &&
390 e->type->ops.prepare_request) {
391 if (e->type->icq_cache)
392 blk_mq_sched_assign_ioc(rq);
393
394 e->type->ops.prepare_request(rq);
395 rq->rq_flags |= RQF_ELVPRIV;
396 }
397 }
398
399 return rq;
400 }
401
402 static inline struct request *
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
404 u64 alloc_time_ns)
405 {
406 unsigned int tag, tag_offset;
407 struct blk_mq_tags *tags;
408 struct request *rq;
409 unsigned long tag_mask;
410 int i, nr = 0;
411
412 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413 if (unlikely(!tag_mask))
414 return NULL;
415
416 tags = blk_mq_tags_from_data(data);
417 for (i = 0; tag_mask; i++) {
418 if (!(tag_mask & (1UL << i)))
419 continue;
420 tag = tag_offset + i;
421 prefetch(tags->static_rqs[tag]);
422 tag_mask &= ~(1UL << i);
423 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
424 rq_list_add(data->cached_rq, rq);
425 nr++;
426 }
427 /* caller already holds a reference, add for remainder */
428 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
429 data->nr_tags -= nr;
430
431 return rq_list_pop(data->cached_rq);
432 }
433
434 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
435 {
436 struct request_queue *q = data->q;
437 u64 alloc_time_ns = 0;
438 struct request *rq;
439 unsigned int tag;
440
441 /* alloc_time includes depth and tag waits */
442 if (blk_queue_rq_alloc_time(q))
443 alloc_time_ns = ktime_get_ns();
444
445 if (data->cmd_flags & REQ_NOWAIT)
446 data->flags |= BLK_MQ_REQ_NOWAIT;
447
448 if (q->elevator) {
449 struct elevator_queue *e = q->elevator;
450
451 data->rq_flags |= RQF_ELV;
452
453 /*
454 * Flush/passthrough requests are special and go directly to the
455 * dispatch list. Don't include reserved tags in the
456 * limiting, as it isn't useful.
457 */
458 if (!op_is_flush(data->cmd_flags) &&
459 !blk_op_is_passthrough(data->cmd_flags) &&
460 e->type->ops.limit_depth &&
461 !(data->flags & BLK_MQ_REQ_RESERVED))
462 e->type->ops.limit_depth(data->cmd_flags, data);
463 }
464
465 retry:
466 data->ctx = blk_mq_get_ctx(q);
467 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
468 if (!(data->rq_flags & RQF_ELV))
469 blk_mq_tag_busy(data->hctx);
470
471 /*
472 * Try batched alloc if we want more than 1 tag.
473 */
474 if (data->nr_tags > 1) {
475 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
476 if (rq)
477 return rq;
478 data->nr_tags = 1;
479 }
480
481 /*
482 * Waiting allocations only fail because of an inactive hctx. In that
483 * case just retry the hctx assignment and tag allocation as CPU hotplug
484 * should have migrated us to an online CPU by now.
485 */
486 tag = blk_mq_get_tag(data);
487 if (tag == BLK_MQ_NO_TAG) {
488 if (data->flags & BLK_MQ_REQ_NOWAIT)
489 return NULL;
490 /*
491 * Give up the CPU and sleep for a random short time to
492 * ensure that thread using a realtime scheduling class
493 * are migrated off the CPU, and thus off the hctx that
494 * is going away.
495 */
496 msleep(3);
497 goto retry;
498 }
499
500 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
501 alloc_time_ns);
502 }
503
504 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
505 blk_mq_req_flags_t flags)
506 {
507 struct blk_mq_alloc_data data = {
508 .q = q,
509 .flags = flags,
510 .cmd_flags = op,
511 .nr_tags = 1,
512 };
513 struct request *rq;
514 int ret;
515
516 ret = blk_queue_enter(q, flags);
517 if (ret)
518 return ERR_PTR(ret);
519
520 rq = __blk_mq_alloc_requests(&data);
521 if (!rq)
522 goto out_queue_exit;
523 rq->__data_len = 0;
524 rq->__sector = (sector_t) -1;
525 rq->bio = rq->biotail = NULL;
526 return rq;
527 out_queue_exit:
528 blk_queue_exit(q);
529 return ERR_PTR(-EWOULDBLOCK);
530 }
531 EXPORT_SYMBOL(blk_mq_alloc_request);
532
533 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
534 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
535 {
536 struct blk_mq_alloc_data data = {
537 .q = q,
538 .flags = flags,
539 .cmd_flags = op,
540 .nr_tags = 1,
541 };
542 u64 alloc_time_ns = 0;
543 unsigned int cpu;
544 unsigned int tag;
545 int ret;
546
547 /* alloc_time includes depth and tag waits */
548 if (blk_queue_rq_alloc_time(q))
549 alloc_time_ns = ktime_get_ns();
550
551 /*
552 * If the tag allocator sleeps we could get an allocation for a
553 * different hardware context. No need to complicate the low level
554 * allocator for this for the rare use case of a command tied to
555 * a specific queue.
556 */
557 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
558 return ERR_PTR(-EINVAL);
559
560 if (hctx_idx >= q->nr_hw_queues)
561 return ERR_PTR(-EIO);
562
563 ret = blk_queue_enter(q, flags);
564 if (ret)
565 return ERR_PTR(ret);
566
567 /*
568 * Check if the hardware context is actually mapped to anything.
569 * If not tell the caller that it should skip this queue.
570 */
571 ret = -EXDEV;
572 data.hctx = q->queue_hw_ctx[hctx_idx];
573 if (!blk_mq_hw_queue_mapped(data.hctx))
574 goto out_queue_exit;
575 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
576 data.ctx = __blk_mq_get_ctx(q, cpu);
577
578 if (!q->elevator)
579 blk_mq_tag_busy(data.hctx);
580 else
581 data.rq_flags |= RQF_ELV;
582
583 ret = -EWOULDBLOCK;
584 tag = blk_mq_get_tag(&data);
585 if (tag == BLK_MQ_NO_TAG)
586 goto out_queue_exit;
587 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
588 alloc_time_ns);
589
590 out_queue_exit:
591 blk_queue_exit(q);
592 return ERR_PTR(ret);
593 }
594 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
595
596 static void __blk_mq_free_request(struct request *rq)
597 {
598 struct request_queue *q = rq->q;
599 struct blk_mq_ctx *ctx = rq->mq_ctx;
600 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
601 const int sched_tag = rq->internal_tag;
602
603 blk_crypto_free_request(rq);
604 blk_pm_mark_last_busy(rq);
605 rq->mq_hctx = NULL;
606 if (rq->tag != BLK_MQ_NO_TAG)
607 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
608 if (sched_tag != BLK_MQ_NO_TAG)
609 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
610 blk_mq_sched_restart(hctx);
611 blk_queue_exit(q);
612 }
613
614 void blk_mq_free_request(struct request *rq)
615 {
616 struct request_queue *q = rq->q;
617 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
618
619 if (rq->rq_flags & RQF_ELVPRIV) {
620 struct elevator_queue *e = q->elevator;
621
622 if (e->type->ops.finish_request)
623 e->type->ops.finish_request(rq);
624 if (rq->elv.icq) {
625 put_io_context(rq->elv.icq->ioc);
626 rq->elv.icq = NULL;
627 }
628 }
629
630 if (rq->rq_flags & RQF_MQ_INFLIGHT)
631 __blk_mq_dec_active_requests(hctx);
632
633 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
634 laptop_io_completion(q->disk->bdi);
635
636 rq_qos_done(q, rq);
637
638 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
639 if (refcount_dec_and_test(&rq->ref))
640 __blk_mq_free_request(rq);
641 }
642 EXPORT_SYMBOL_GPL(blk_mq_free_request);
643
644 void blk_mq_free_plug_rqs(struct blk_plug *plug)
645 {
646 struct request *rq;
647
648 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
649 blk_mq_free_request(rq);
650 }
651
652 static void req_bio_endio(struct request *rq, struct bio *bio,
653 unsigned int nbytes, blk_status_t error)
654 {
655 if (unlikely(error)) {
656 bio->bi_status = error;
657 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
658 /*
659 * Partial zone append completions cannot be supported as the
660 * BIO fragments may end up not being written sequentially.
661 */
662 if (bio->bi_iter.bi_size != nbytes)
663 bio->bi_status = BLK_STS_IOERR;
664 else
665 bio->bi_iter.bi_sector = rq->__sector;
666 }
667
668 bio_advance(bio, nbytes);
669
670 if (unlikely(rq->rq_flags & RQF_QUIET))
671 bio_set_flag(bio, BIO_QUIET);
672 /* don't actually finish bio if it's part of flush sequence */
673 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
674 bio_endio(bio);
675 }
676
677 static void blk_account_io_completion(struct request *req, unsigned int bytes)
678 {
679 if (req->part && blk_do_io_stat(req)) {
680 const int sgrp = op_stat_group(req_op(req));
681
682 part_stat_lock();
683 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
684 part_stat_unlock();
685 }
686 }
687
688 /**
689 * blk_update_request - Complete multiple bytes without completing the request
690 * @req: the request being processed
691 * @error: block status code
692 * @nr_bytes: number of bytes to complete for @req
693 *
694 * Description:
695 * Ends I/O on a number of bytes attached to @req, but doesn't complete
696 * the request structure even if @req doesn't have leftover.
697 * If @req has leftover, sets it up for the next range of segments.
698 *
699 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
700 * %false return from this function.
701 *
702 * Note:
703 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
704 * except in the consistency check at the end of this function.
705 *
706 * Return:
707 * %false - this request doesn't have any more data
708 * %true - this request has more data
709 **/
710 bool blk_update_request(struct request *req, blk_status_t error,
711 unsigned int nr_bytes)
712 {
713 int total_bytes;
714
715 trace_block_rq_complete(req, error, nr_bytes);
716
717 if (!req->bio)
718 return false;
719
720 #ifdef CONFIG_BLK_DEV_INTEGRITY
721 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
722 error == BLK_STS_OK)
723 req->q->integrity.profile->complete_fn(req, nr_bytes);
724 #endif
725
726 if (unlikely(error && !blk_rq_is_passthrough(req) &&
727 !(req->rq_flags & RQF_QUIET)))
728 blk_print_req_error(req, error);
729
730 blk_account_io_completion(req, nr_bytes);
731
732 total_bytes = 0;
733 while (req->bio) {
734 struct bio *bio = req->bio;
735 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
736
737 if (bio_bytes == bio->bi_iter.bi_size)
738 req->bio = bio->bi_next;
739
740 /* Completion has already been traced */
741 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
742 req_bio_endio(req, bio, bio_bytes, error);
743
744 total_bytes += bio_bytes;
745 nr_bytes -= bio_bytes;
746
747 if (!nr_bytes)
748 break;
749 }
750
751 /*
752 * completely done
753 */
754 if (!req->bio) {
755 /*
756 * Reset counters so that the request stacking driver
757 * can find how many bytes remain in the request
758 * later.
759 */
760 req->__data_len = 0;
761 return false;
762 }
763
764 req->__data_len -= total_bytes;
765
766 /* update sector only for requests with clear definition of sector */
767 if (!blk_rq_is_passthrough(req))
768 req->__sector += total_bytes >> 9;
769
770 /* mixed attributes always follow the first bio */
771 if (req->rq_flags & RQF_MIXED_MERGE) {
772 req->cmd_flags &= ~REQ_FAILFAST_MASK;
773 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
774 }
775
776 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
777 /*
778 * If total number of sectors is less than the first segment
779 * size, something has gone terribly wrong.
780 */
781 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
782 blk_dump_rq_flags(req, "request botched");
783 req->__data_len = blk_rq_cur_bytes(req);
784 }
785
786 /* recalculate the number of segments */
787 req->nr_phys_segments = blk_recalc_rq_segments(req);
788 }
789
790 return true;
791 }
792 EXPORT_SYMBOL_GPL(blk_update_request);
793
794 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
795 {
796 if (rq->rq_flags & RQF_STATS) {
797 blk_mq_poll_stats_start(rq->q);
798 blk_stat_add(rq, now);
799 }
800
801 blk_mq_sched_completed_request(rq, now);
802 blk_account_io_done(rq, now);
803 }
804
805 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
806 {
807 if (blk_mq_need_time_stamp(rq))
808 __blk_mq_end_request_acct(rq, ktime_get_ns());
809
810 if (rq->end_io) {
811 rq_qos_done(rq->q, rq);
812 rq->end_io(rq, error);
813 } else {
814 blk_mq_free_request(rq);
815 }
816 }
817 EXPORT_SYMBOL(__blk_mq_end_request);
818
819 void blk_mq_end_request(struct request *rq, blk_status_t error)
820 {
821 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
822 BUG();
823 __blk_mq_end_request(rq, error);
824 }
825 EXPORT_SYMBOL(blk_mq_end_request);
826
827 #define TAG_COMP_BATCH 32
828
829 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
830 int *tag_array, int nr_tags)
831 {
832 struct request_queue *q = hctx->queue;
833
834 /*
835 * All requests should have been marked as RQF_MQ_INFLIGHT, so
836 * update hctx->nr_active in batch
837 */
838 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
839 __blk_mq_sub_active_requests(hctx, nr_tags);
840
841 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
842 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
843 }
844
845 void blk_mq_end_request_batch(struct io_comp_batch *iob)
846 {
847 int tags[TAG_COMP_BATCH], nr_tags = 0;
848 struct blk_mq_hw_ctx *cur_hctx = NULL;
849 struct request *rq;
850 u64 now = 0;
851
852 if (iob->need_ts)
853 now = ktime_get_ns();
854
855 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
856 prefetch(rq->bio);
857 prefetch(rq->rq_next);
858
859 blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
860 if (iob->need_ts)
861 __blk_mq_end_request_acct(rq, now);
862
863 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
864 if (!refcount_dec_and_test(&rq->ref))
865 continue;
866
867 blk_crypto_free_request(rq);
868 blk_pm_mark_last_busy(rq);
869 rq_qos_done(rq->q, rq);
870
871 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
872 if (cur_hctx)
873 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
874 nr_tags = 0;
875 cur_hctx = rq->mq_hctx;
876 }
877 tags[nr_tags++] = rq->tag;
878 }
879
880 if (nr_tags)
881 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
882 }
883 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
884
885 static void blk_complete_reqs(struct llist_head *list)
886 {
887 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
888 struct request *rq, *next;
889
890 llist_for_each_entry_safe(rq, next, entry, ipi_list)
891 rq->q->mq_ops->complete(rq);
892 }
893
894 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
895 {
896 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
897 }
898
899 static int blk_softirq_cpu_dead(unsigned int cpu)
900 {
901 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
902 return 0;
903 }
904
905 static void __blk_mq_complete_request_remote(void *data)
906 {
907 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
908 }
909
910 static inline bool blk_mq_complete_need_ipi(struct request *rq)
911 {
912 int cpu = raw_smp_processor_id();
913
914 if (!IS_ENABLED(CONFIG_SMP) ||
915 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
916 return false;
917 /*
918 * With force threaded interrupts enabled, raising softirq from an SMP
919 * function call will always result in waking the ksoftirqd thread.
920 * This is probably worse than completing the request on a different
921 * cache domain.
922 */
923 if (force_irqthreads())
924 return false;
925
926 /* same CPU or cache domain? Complete locally */
927 if (cpu == rq->mq_ctx->cpu ||
928 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
929 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
930 return false;
931
932 /* don't try to IPI to an offline CPU */
933 return cpu_online(rq->mq_ctx->cpu);
934 }
935
936 static void blk_mq_complete_send_ipi(struct request *rq)
937 {
938 struct llist_head *list;
939 unsigned int cpu;
940
941 cpu = rq->mq_ctx->cpu;
942 list = &per_cpu(blk_cpu_done, cpu);
943 if (llist_add(&rq->ipi_list, list)) {
944 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
945 smp_call_function_single_async(cpu, &rq->csd);
946 }
947 }
948
949 static void blk_mq_raise_softirq(struct request *rq)
950 {
951 struct llist_head *list;
952
953 preempt_disable();
954 list = this_cpu_ptr(&blk_cpu_done);
955 if (llist_add(&rq->ipi_list, list))
956 raise_softirq(BLOCK_SOFTIRQ);
957 preempt_enable();
958 }
959
960 bool blk_mq_complete_request_remote(struct request *rq)
961 {
962 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
963
964 /*
965 * For a polled request, always complete locallly, it's pointless
966 * to redirect the completion.
967 */
968 if (rq->cmd_flags & REQ_POLLED)
969 return false;
970
971 if (blk_mq_complete_need_ipi(rq)) {
972 blk_mq_complete_send_ipi(rq);
973 return true;
974 }
975
976 if (rq->q->nr_hw_queues == 1) {
977 blk_mq_raise_softirq(rq);
978 return true;
979 }
980 return false;
981 }
982 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
983
984 /**
985 * blk_mq_complete_request - end I/O on a request
986 * @rq: the request being processed
987 *
988 * Description:
989 * Complete a request by scheduling the ->complete_rq operation.
990 **/
991 void blk_mq_complete_request(struct request *rq)
992 {
993 if (!blk_mq_complete_request_remote(rq))
994 rq->q->mq_ops->complete(rq);
995 }
996 EXPORT_SYMBOL(blk_mq_complete_request);
997
998 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
999 __releases(hctx->srcu)
1000 {
1001 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
1002 rcu_read_unlock();
1003 else
1004 srcu_read_unlock(hctx->srcu, srcu_idx);
1005 }
1006
1007 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1008 __acquires(hctx->srcu)
1009 {
1010 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1011 /* shut up gcc false positive */
1012 *srcu_idx = 0;
1013 rcu_read_lock();
1014 } else
1015 *srcu_idx = srcu_read_lock(hctx->srcu);
1016 }
1017
1018 /**
1019 * blk_mq_start_request - Start processing a request
1020 * @rq: Pointer to request to be started
1021 *
1022 * Function used by device drivers to notify the block layer that a request
1023 * is going to be processed now, so blk layer can do proper initializations
1024 * such as starting the timeout timer.
1025 */
1026 void blk_mq_start_request(struct request *rq)
1027 {
1028 struct request_queue *q = rq->q;
1029
1030 trace_block_rq_issue(rq);
1031
1032 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1033 u64 start_time;
1034 #ifdef CONFIG_BLK_CGROUP
1035 if (rq->bio)
1036 start_time = bio_issue_time(&rq->bio->bi_issue);
1037 else
1038 #endif
1039 start_time = ktime_get_ns();
1040 rq->io_start_time_ns = start_time;
1041 rq->stats_sectors = blk_rq_sectors(rq);
1042 rq->rq_flags |= RQF_STATS;
1043 rq_qos_issue(q, rq);
1044 }
1045
1046 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1047
1048 blk_add_timer(rq);
1049 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1050
1051 #ifdef CONFIG_BLK_DEV_INTEGRITY
1052 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1053 q->integrity.profile->prepare_fn(rq);
1054 #endif
1055 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1056 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1057 }
1058 EXPORT_SYMBOL(blk_mq_start_request);
1059
1060 static void __blk_mq_requeue_request(struct request *rq)
1061 {
1062 struct request_queue *q = rq->q;
1063
1064 blk_mq_put_driver_tag(rq);
1065
1066 trace_block_rq_requeue(rq);
1067 rq_qos_requeue(q, rq);
1068
1069 if (blk_mq_request_started(rq)) {
1070 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1071 rq->rq_flags &= ~RQF_TIMED_OUT;
1072 }
1073 }
1074
1075 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1076 {
1077 __blk_mq_requeue_request(rq);
1078
1079 /* this request will be re-inserted to io scheduler queue */
1080 blk_mq_sched_requeue_request(rq);
1081
1082 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1083 }
1084 EXPORT_SYMBOL(blk_mq_requeue_request);
1085
1086 static void blk_mq_requeue_work(struct work_struct *work)
1087 {
1088 struct request_queue *q =
1089 container_of(work, struct request_queue, requeue_work.work);
1090 LIST_HEAD(rq_list);
1091 struct request *rq, *next;
1092
1093 spin_lock_irq(&q->requeue_lock);
1094 list_splice_init(&q->requeue_list, &rq_list);
1095 spin_unlock_irq(&q->requeue_lock);
1096
1097 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1098 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1099 continue;
1100
1101 rq->rq_flags &= ~RQF_SOFTBARRIER;
1102 list_del_init(&rq->queuelist);
1103 /*
1104 * If RQF_DONTPREP, rq has contained some driver specific
1105 * data, so insert it to hctx dispatch list to avoid any
1106 * merge.
1107 */
1108 if (rq->rq_flags & RQF_DONTPREP)
1109 blk_mq_request_bypass_insert(rq, false, false);
1110 else
1111 blk_mq_sched_insert_request(rq, true, false, false);
1112 }
1113
1114 while (!list_empty(&rq_list)) {
1115 rq = list_entry(rq_list.next, struct request, queuelist);
1116 list_del_init(&rq->queuelist);
1117 blk_mq_sched_insert_request(rq, false, false, false);
1118 }
1119
1120 blk_mq_run_hw_queues(q, false);
1121 }
1122
1123 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1124 bool kick_requeue_list)
1125 {
1126 struct request_queue *q = rq->q;
1127 unsigned long flags;
1128
1129 /*
1130 * We abuse this flag that is otherwise used by the I/O scheduler to
1131 * request head insertion from the workqueue.
1132 */
1133 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1134
1135 spin_lock_irqsave(&q->requeue_lock, flags);
1136 if (at_head) {
1137 rq->rq_flags |= RQF_SOFTBARRIER;
1138 list_add(&rq->queuelist, &q->requeue_list);
1139 } else {
1140 list_add_tail(&rq->queuelist, &q->requeue_list);
1141 }
1142 spin_unlock_irqrestore(&q->requeue_lock, flags);
1143
1144 if (kick_requeue_list)
1145 blk_mq_kick_requeue_list(q);
1146 }
1147
1148 void blk_mq_kick_requeue_list(struct request_queue *q)
1149 {
1150 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1151 }
1152 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1153
1154 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1155 unsigned long msecs)
1156 {
1157 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1158 msecs_to_jiffies(msecs));
1159 }
1160 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1161
1162 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
1163 void *priv, bool reserved)
1164 {
1165 /*
1166 * If we find a request that isn't idle and the queue matches,
1167 * we know the queue is busy. Return false to stop the iteration.
1168 */
1169 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1170 bool *busy = priv;
1171
1172 *busy = true;
1173 return false;
1174 }
1175
1176 return true;
1177 }
1178
1179 bool blk_mq_queue_inflight(struct request_queue *q)
1180 {
1181 bool busy = false;
1182
1183 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1184 return busy;
1185 }
1186 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1187
1188 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1189 {
1190 req->rq_flags |= RQF_TIMED_OUT;
1191 if (req->q->mq_ops->timeout) {
1192 enum blk_eh_timer_return ret;
1193
1194 ret = req->q->mq_ops->timeout(req, reserved);
1195 if (ret == BLK_EH_DONE)
1196 return;
1197 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1198 }
1199
1200 blk_add_timer(req);
1201 }
1202
1203 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1204 {
1205 unsigned long deadline;
1206
1207 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1208 return false;
1209 if (rq->rq_flags & RQF_TIMED_OUT)
1210 return false;
1211
1212 deadline = READ_ONCE(rq->deadline);
1213 if (time_after_eq(jiffies, deadline))
1214 return true;
1215
1216 if (*next == 0)
1217 *next = deadline;
1218 else if (time_after(*next, deadline))
1219 *next = deadline;
1220 return false;
1221 }
1222
1223 void blk_mq_put_rq_ref(struct request *rq)
1224 {
1225 if (is_flush_rq(rq))
1226 rq->end_io(rq, 0);
1227 else if (refcount_dec_and_test(&rq->ref))
1228 __blk_mq_free_request(rq);
1229 }
1230
1231 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1232 struct request *rq, void *priv, bool reserved)
1233 {
1234 unsigned long *next = priv;
1235
1236 /*
1237 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1238 * be reallocated underneath the timeout handler's processing, then
1239 * the expire check is reliable. If the request is not expired, then
1240 * it was completed and reallocated as a new request after returning
1241 * from blk_mq_check_expired().
1242 */
1243 if (blk_mq_req_expired(rq, next))
1244 blk_mq_rq_timed_out(rq, reserved);
1245 return true;
1246 }
1247
1248 static void blk_mq_timeout_work(struct work_struct *work)
1249 {
1250 struct request_queue *q =
1251 container_of(work, struct request_queue, timeout_work);
1252 unsigned long next = 0;
1253 struct blk_mq_hw_ctx *hctx;
1254 int i;
1255
1256 /* A deadlock might occur if a request is stuck requiring a
1257 * timeout at the same time a queue freeze is waiting
1258 * completion, since the timeout code would not be able to
1259 * acquire the queue reference here.
1260 *
1261 * That's why we don't use blk_queue_enter here; instead, we use
1262 * percpu_ref_tryget directly, because we need to be able to
1263 * obtain a reference even in the short window between the queue
1264 * starting to freeze, by dropping the first reference in
1265 * blk_freeze_queue_start, and the moment the last request is
1266 * consumed, marked by the instant q_usage_counter reaches
1267 * zero.
1268 */
1269 if (!percpu_ref_tryget(&q->q_usage_counter))
1270 return;
1271
1272 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1273
1274 if (next != 0) {
1275 mod_timer(&q->timeout, next);
1276 } else {
1277 /*
1278 * Request timeouts are handled as a forward rolling timer. If
1279 * we end up here it means that no requests are pending and
1280 * also that no request has been pending for a while. Mark
1281 * each hctx as idle.
1282 */
1283 queue_for_each_hw_ctx(q, hctx, i) {
1284 /* the hctx may be unmapped, so check it here */
1285 if (blk_mq_hw_queue_mapped(hctx))
1286 blk_mq_tag_idle(hctx);
1287 }
1288 }
1289 blk_queue_exit(q);
1290 }
1291
1292 struct flush_busy_ctx_data {
1293 struct blk_mq_hw_ctx *hctx;
1294 struct list_head *list;
1295 };
1296
1297 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1298 {
1299 struct flush_busy_ctx_data *flush_data = data;
1300 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1301 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1302 enum hctx_type type = hctx->type;
1303
1304 spin_lock(&ctx->lock);
1305 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1306 sbitmap_clear_bit(sb, bitnr);
1307 spin_unlock(&ctx->lock);
1308 return true;
1309 }
1310
1311 /*
1312 * Process software queues that have been marked busy, splicing them
1313 * to the for-dispatch
1314 */
1315 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1316 {
1317 struct flush_busy_ctx_data data = {
1318 .hctx = hctx,
1319 .list = list,
1320 };
1321
1322 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1323 }
1324 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1325
1326 struct dispatch_rq_data {
1327 struct blk_mq_hw_ctx *hctx;
1328 struct request *rq;
1329 };
1330
1331 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1332 void *data)
1333 {
1334 struct dispatch_rq_data *dispatch_data = data;
1335 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1336 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1337 enum hctx_type type = hctx->type;
1338
1339 spin_lock(&ctx->lock);
1340 if (!list_empty(&ctx->rq_lists[type])) {
1341 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1342 list_del_init(&dispatch_data->rq->queuelist);
1343 if (list_empty(&ctx->rq_lists[type]))
1344 sbitmap_clear_bit(sb, bitnr);
1345 }
1346 spin_unlock(&ctx->lock);
1347
1348 return !dispatch_data->rq;
1349 }
1350
1351 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1352 struct blk_mq_ctx *start)
1353 {
1354 unsigned off = start ? start->index_hw[hctx->type] : 0;
1355 struct dispatch_rq_data data = {
1356 .hctx = hctx,
1357 .rq = NULL,
1358 };
1359
1360 __sbitmap_for_each_set(&hctx->ctx_map, off,
1361 dispatch_rq_from_ctx, &data);
1362
1363 return data.rq;
1364 }
1365
1366 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1367 {
1368 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1369 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1370 int tag;
1371
1372 blk_mq_tag_busy(rq->mq_hctx);
1373
1374 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1375 bt = &rq->mq_hctx->tags->breserved_tags;
1376 tag_offset = 0;
1377 } else {
1378 if (!hctx_may_queue(rq->mq_hctx, bt))
1379 return false;
1380 }
1381
1382 tag = __sbitmap_queue_get(bt);
1383 if (tag == BLK_MQ_NO_TAG)
1384 return false;
1385
1386 rq->tag = tag + tag_offset;
1387 return true;
1388 }
1389
1390 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1391 {
1392 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1393 return false;
1394
1395 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1396 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1397 rq->rq_flags |= RQF_MQ_INFLIGHT;
1398 __blk_mq_inc_active_requests(hctx);
1399 }
1400 hctx->tags->rqs[rq->tag] = rq;
1401 return true;
1402 }
1403
1404 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1405 int flags, void *key)
1406 {
1407 struct blk_mq_hw_ctx *hctx;
1408
1409 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1410
1411 spin_lock(&hctx->dispatch_wait_lock);
1412 if (!list_empty(&wait->entry)) {
1413 struct sbitmap_queue *sbq;
1414
1415 list_del_init(&wait->entry);
1416 sbq = &hctx->tags->bitmap_tags;
1417 atomic_dec(&sbq->ws_active);
1418 }
1419 spin_unlock(&hctx->dispatch_wait_lock);
1420
1421 blk_mq_run_hw_queue(hctx, true);
1422 return 1;
1423 }
1424
1425 /*
1426 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1427 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1428 * restart. For both cases, take care to check the condition again after
1429 * marking us as waiting.
1430 */
1431 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1432 struct request *rq)
1433 {
1434 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1435 struct wait_queue_head *wq;
1436 wait_queue_entry_t *wait;
1437 bool ret;
1438
1439 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1440 blk_mq_sched_mark_restart_hctx(hctx);
1441
1442 /*
1443 * It's possible that a tag was freed in the window between the
1444 * allocation failure and adding the hardware queue to the wait
1445 * queue.
1446 *
1447 * Don't clear RESTART here, someone else could have set it.
1448 * At most this will cost an extra queue run.
1449 */
1450 return blk_mq_get_driver_tag(rq);
1451 }
1452
1453 wait = &hctx->dispatch_wait;
1454 if (!list_empty_careful(&wait->entry))
1455 return false;
1456
1457 wq = &bt_wait_ptr(sbq, hctx)->wait;
1458
1459 spin_lock_irq(&wq->lock);
1460 spin_lock(&hctx->dispatch_wait_lock);
1461 if (!list_empty(&wait->entry)) {
1462 spin_unlock(&hctx->dispatch_wait_lock);
1463 spin_unlock_irq(&wq->lock);
1464 return false;
1465 }
1466
1467 atomic_inc(&sbq->ws_active);
1468 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1469 __add_wait_queue(wq, wait);
1470
1471 /*
1472 * It's possible that a tag was freed in the window between the
1473 * allocation failure and adding the hardware queue to the wait
1474 * queue.
1475 */
1476 ret = blk_mq_get_driver_tag(rq);
1477 if (!ret) {
1478 spin_unlock(&hctx->dispatch_wait_lock);
1479 spin_unlock_irq(&wq->lock);
1480 return false;
1481 }
1482
1483 /*
1484 * We got a tag, remove ourselves from the wait queue to ensure
1485 * someone else gets the wakeup.
1486 */
1487 list_del_init(&wait->entry);
1488 atomic_dec(&sbq->ws_active);
1489 spin_unlock(&hctx->dispatch_wait_lock);
1490 spin_unlock_irq(&wq->lock);
1491
1492 return true;
1493 }
1494
1495 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1496 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1497 /*
1498 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1499 * - EWMA is one simple way to compute running average value
1500 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1501 * - take 4 as factor for avoiding to get too small(0) result, and this
1502 * factor doesn't matter because EWMA decreases exponentially
1503 */
1504 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1505 {
1506 unsigned int ewma;
1507
1508 ewma = hctx->dispatch_busy;
1509
1510 if (!ewma && !busy)
1511 return;
1512
1513 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1514 if (busy)
1515 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1516 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1517
1518 hctx->dispatch_busy = ewma;
1519 }
1520
1521 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1522
1523 static void blk_mq_handle_dev_resource(struct request *rq,
1524 struct list_head *list)
1525 {
1526 struct request *next =
1527 list_first_entry_or_null(list, struct request, queuelist);
1528
1529 /*
1530 * If an I/O scheduler has been configured and we got a driver tag for
1531 * the next request already, free it.
1532 */
1533 if (next)
1534 blk_mq_put_driver_tag(next);
1535
1536 list_add(&rq->queuelist, list);
1537 __blk_mq_requeue_request(rq);
1538 }
1539
1540 static void blk_mq_handle_zone_resource(struct request *rq,
1541 struct list_head *zone_list)
1542 {
1543 /*
1544 * If we end up here it is because we cannot dispatch a request to a
1545 * specific zone due to LLD level zone-write locking or other zone
1546 * related resource not being available. In this case, set the request
1547 * aside in zone_list for retrying it later.
1548 */
1549 list_add(&rq->queuelist, zone_list);
1550 __blk_mq_requeue_request(rq);
1551 }
1552
1553 enum prep_dispatch {
1554 PREP_DISPATCH_OK,
1555 PREP_DISPATCH_NO_TAG,
1556 PREP_DISPATCH_NO_BUDGET,
1557 };
1558
1559 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1560 bool need_budget)
1561 {
1562 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1563 int budget_token = -1;
1564
1565 if (need_budget) {
1566 budget_token = blk_mq_get_dispatch_budget(rq->q);
1567 if (budget_token < 0) {
1568 blk_mq_put_driver_tag(rq);
1569 return PREP_DISPATCH_NO_BUDGET;
1570 }
1571 blk_mq_set_rq_budget_token(rq, budget_token);
1572 }
1573
1574 if (!blk_mq_get_driver_tag(rq)) {
1575 /*
1576 * The initial allocation attempt failed, so we need to
1577 * rerun the hardware queue when a tag is freed. The
1578 * waitqueue takes care of that. If the queue is run
1579 * before we add this entry back on the dispatch list,
1580 * we'll re-run it below.
1581 */
1582 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1583 /*
1584 * All budgets not got from this function will be put
1585 * together during handling partial dispatch
1586 */
1587 if (need_budget)
1588 blk_mq_put_dispatch_budget(rq->q, budget_token);
1589 return PREP_DISPATCH_NO_TAG;
1590 }
1591 }
1592
1593 return PREP_DISPATCH_OK;
1594 }
1595
1596 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1597 static void blk_mq_release_budgets(struct request_queue *q,
1598 struct list_head *list)
1599 {
1600 struct request *rq;
1601
1602 list_for_each_entry(rq, list, queuelist) {
1603 int budget_token = blk_mq_get_rq_budget_token(rq);
1604
1605 if (budget_token >= 0)
1606 blk_mq_put_dispatch_budget(q, budget_token);
1607 }
1608 }
1609
1610 /*
1611 * Returns true if we did some work AND can potentially do more.
1612 */
1613 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1614 unsigned int nr_budgets)
1615 {
1616 enum prep_dispatch prep;
1617 struct request_queue *q = hctx->queue;
1618 struct request *rq, *nxt;
1619 int errors, queued;
1620 blk_status_t ret = BLK_STS_OK;
1621 LIST_HEAD(zone_list);
1622 bool needs_resource = false;
1623
1624 if (list_empty(list))
1625 return false;
1626
1627 /*
1628 * Now process all the entries, sending them to the driver.
1629 */
1630 errors = queued = 0;
1631 do {
1632 struct blk_mq_queue_data bd;
1633
1634 rq = list_first_entry(list, struct request, queuelist);
1635
1636 WARN_ON_ONCE(hctx != rq->mq_hctx);
1637 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1638 if (prep != PREP_DISPATCH_OK)
1639 break;
1640
1641 list_del_init(&rq->queuelist);
1642
1643 bd.rq = rq;
1644
1645 /*
1646 * Flag last if we have no more requests, or if we have more
1647 * but can't assign a driver tag to it.
1648 */
1649 if (list_empty(list))
1650 bd.last = true;
1651 else {
1652 nxt = list_first_entry(list, struct request, queuelist);
1653 bd.last = !blk_mq_get_driver_tag(nxt);
1654 }
1655
1656 /*
1657 * once the request is queued to lld, no need to cover the
1658 * budget any more
1659 */
1660 if (nr_budgets)
1661 nr_budgets--;
1662 ret = q->mq_ops->queue_rq(hctx, &bd);
1663 switch (ret) {
1664 case BLK_STS_OK:
1665 queued++;
1666 break;
1667 case BLK_STS_RESOURCE:
1668 needs_resource = true;
1669 fallthrough;
1670 case BLK_STS_DEV_RESOURCE:
1671 blk_mq_handle_dev_resource(rq, list);
1672 goto out;
1673 case BLK_STS_ZONE_RESOURCE:
1674 /*
1675 * Move the request to zone_list and keep going through
1676 * the dispatch list to find more requests the drive can
1677 * accept.
1678 */
1679 blk_mq_handle_zone_resource(rq, &zone_list);
1680 needs_resource = true;
1681 break;
1682 default:
1683 errors++;
1684 blk_mq_end_request(rq, ret);
1685 }
1686 } while (!list_empty(list));
1687 out:
1688 if (!list_empty(&zone_list))
1689 list_splice_tail_init(&zone_list, list);
1690
1691 /* If we didn't flush the entire list, we could have told the driver
1692 * there was more coming, but that turned out to be a lie.
1693 */
1694 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1695 q->mq_ops->commit_rqs(hctx);
1696 /*
1697 * Any items that need requeuing? Stuff them into hctx->dispatch,
1698 * that is where we will continue on next queue run.
1699 */
1700 if (!list_empty(list)) {
1701 bool needs_restart;
1702 /* For non-shared tags, the RESTART check will suffice */
1703 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1704 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1705
1706 if (nr_budgets)
1707 blk_mq_release_budgets(q, list);
1708
1709 spin_lock(&hctx->lock);
1710 list_splice_tail_init(list, &hctx->dispatch);
1711 spin_unlock(&hctx->lock);
1712
1713 /*
1714 * Order adding requests to hctx->dispatch and checking
1715 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1716 * in blk_mq_sched_restart(). Avoid restart code path to
1717 * miss the new added requests to hctx->dispatch, meantime
1718 * SCHED_RESTART is observed here.
1719 */
1720 smp_mb();
1721
1722 /*
1723 * If SCHED_RESTART was set by the caller of this function and
1724 * it is no longer set that means that it was cleared by another
1725 * thread and hence that a queue rerun is needed.
1726 *
1727 * If 'no_tag' is set, that means that we failed getting
1728 * a driver tag with an I/O scheduler attached. If our dispatch
1729 * waitqueue is no longer active, ensure that we run the queue
1730 * AFTER adding our entries back to the list.
1731 *
1732 * If no I/O scheduler has been configured it is possible that
1733 * the hardware queue got stopped and restarted before requests
1734 * were pushed back onto the dispatch list. Rerun the queue to
1735 * avoid starvation. Notes:
1736 * - blk_mq_run_hw_queue() checks whether or not a queue has
1737 * been stopped before rerunning a queue.
1738 * - Some but not all block drivers stop a queue before
1739 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1740 * and dm-rq.
1741 *
1742 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1743 * bit is set, run queue after a delay to avoid IO stalls
1744 * that could otherwise occur if the queue is idle. We'll do
1745 * similar if we couldn't get budget or couldn't lock a zone
1746 * and SCHED_RESTART is set.
1747 */
1748 needs_restart = blk_mq_sched_needs_restart(hctx);
1749 if (prep == PREP_DISPATCH_NO_BUDGET)
1750 needs_resource = true;
1751 if (!needs_restart ||
1752 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1753 blk_mq_run_hw_queue(hctx, true);
1754 else if (needs_restart && needs_resource)
1755 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1756
1757 blk_mq_update_dispatch_busy(hctx, true);
1758 return false;
1759 } else
1760 blk_mq_update_dispatch_busy(hctx, false);
1761
1762 return (queued + errors) != 0;
1763 }
1764
1765 /**
1766 * __blk_mq_run_hw_queue - Run a hardware queue.
1767 * @hctx: Pointer to the hardware queue to run.
1768 *
1769 * Send pending requests to the hardware.
1770 */
1771 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1772 {
1773 int srcu_idx;
1774
1775 /*
1776 * We can't run the queue inline with ints disabled. Ensure that
1777 * we catch bad users of this early.
1778 */
1779 WARN_ON_ONCE(in_interrupt());
1780
1781 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1782
1783 hctx_lock(hctx, &srcu_idx);
1784 blk_mq_sched_dispatch_requests(hctx);
1785 hctx_unlock(hctx, srcu_idx);
1786 }
1787
1788 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1789 {
1790 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1791
1792 if (cpu >= nr_cpu_ids)
1793 cpu = cpumask_first(hctx->cpumask);
1794 return cpu;
1795 }
1796
1797 /*
1798 * It'd be great if the workqueue API had a way to pass
1799 * in a mask and had some smarts for more clever placement.
1800 * For now we just round-robin here, switching for every
1801 * BLK_MQ_CPU_WORK_BATCH queued items.
1802 */
1803 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1804 {
1805 bool tried = false;
1806 int next_cpu = hctx->next_cpu;
1807
1808 if (hctx->queue->nr_hw_queues == 1)
1809 return WORK_CPU_UNBOUND;
1810
1811 if (--hctx->next_cpu_batch <= 0) {
1812 select_cpu:
1813 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1814 cpu_online_mask);
1815 if (next_cpu >= nr_cpu_ids)
1816 next_cpu = blk_mq_first_mapped_cpu(hctx);
1817 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1818 }
1819
1820 /*
1821 * Do unbound schedule if we can't find a online CPU for this hctx,
1822 * and it should only happen in the path of handling CPU DEAD.
1823 */
1824 if (!cpu_online(next_cpu)) {
1825 if (!tried) {
1826 tried = true;
1827 goto select_cpu;
1828 }
1829
1830 /*
1831 * Make sure to re-select CPU next time once after CPUs
1832 * in hctx->cpumask become online again.
1833 */
1834 hctx->next_cpu = next_cpu;
1835 hctx->next_cpu_batch = 1;
1836 return WORK_CPU_UNBOUND;
1837 }
1838
1839 hctx->next_cpu = next_cpu;
1840 return next_cpu;
1841 }
1842
1843 /**
1844 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1845 * @hctx: Pointer to the hardware queue to run.
1846 * @async: If we want to run the queue asynchronously.
1847 * @msecs: Milliseconds of delay to wait before running the queue.
1848 *
1849 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1850 * with a delay of @msecs.
1851 */
1852 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1853 unsigned long msecs)
1854 {
1855 if (unlikely(blk_mq_hctx_stopped(hctx)))
1856 return;
1857
1858 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1859 int cpu = get_cpu();
1860 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1861 __blk_mq_run_hw_queue(hctx);
1862 put_cpu();
1863 return;
1864 }
1865
1866 put_cpu();
1867 }
1868
1869 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1870 msecs_to_jiffies(msecs));
1871 }
1872
1873 /**
1874 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1875 * @hctx: Pointer to the hardware queue to run.
1876 * @msecs: Milliseconds of delay to wait before running the queue.
1877 *
1878 * Run a hardware queue asynchronously with a delay of @msecs.
1879 */
1880 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1881 {
1882 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1883 }
1884 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1885
1886 /**
1887 * blk_mq_run_hw_queue - Start to run a hardware queue.
1888 * @hctx: Pointer to the hardware queue to run.
1889 * @async: If we want to run the queue asynchronously.
1890 *
1891 * Check if the request queue is not in a quiesced state and if there are
1892 * pending requests to be sent. If this is true, run the queue to send requests
1893 * to hardware.
1894 */
1895 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1896 {
1897 int srcu_idx;
1898 bool need_run;
1899
1900 /*
1901 * When queue is quiesced, we may be switching io scheduler, or
1902 * updating nr_hw_queues, or other things, and we can't run queue
1903 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1904 *
1905 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1906 * quiesced.
1907 */
1908 hctx_lock(hctx, &srcu_idx);
1909 need_run = !blk_queue_quiesced(hctx->queue) &&
1910 blk_mq_hctx_has_pending(hctx);
1911 hctx_unlock(hctx, srcu_idx);
1912
1913 if (need_run)
1914 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1915 }
1916 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1917
1918 /*
1919 * Is the request queue handled by an IO scheduler that does not respect
1920 * hardware queues when dispatching?
1921 */
1922 static bool blk_mq_has_sqsched(struct request_queue *q)
1923 {
1924 struct elevator_queue *e = q->elevator;
1925
1926 if (e && e->type->ops.dispatch_request &&
1927 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1928 return true;
1929 return false;
1930 }
1931
1932 /*
1933 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1934 * scheduler.
1935 */
1936 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1937 {
1938 struct blk_mq_hw_ctx *hctx;
1939
1940 /*
1941 * If the IO scheduler does not respect hardware queues when
1942 * dispatching, we just don't bother with multiple HW queues and
1943 * dispatch from hctx for the current CPU since running multiple queues
1944 * just causes lock contention inside the scheduler and pointless cache
1945 * bouncing.
1946 */
1947 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1948 raw_smp_processor_id());
1949 if (!blk_mq_hctx_stopped(hctx))
1950 return hctx;
1951 return NULL;
1952 }
1953
1954 /**
1955 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1956 * @q: Pointer to the request queue to run.
1957 * @async: If we want to run the queue asynchronously.
1958 */
1959 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1960 {
1961 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1962 int i;
1963
1964 sq_hctx = NULL;
1965 if (blk_mq_has_sqsched(q))
1966 sq_hctx = blk_mq_get_sq_hctx(q);
1967 queue_for_each_hw_ctx(q, hctx, i) {
1968 if (blk_mq_hctx_stopped(hctx))
1969 continue;
1970 /*
1971 * Dispatch from this hctx either if there's no hctx preferred
1972 * by IO scheduler or if it has requests that bypass the
1973 * scheduler.
1974 */
1975 if (!sq_hctx || sq_hctx == hctx ||
1976 !list_empty_careful(&hctx->dispatch))
1977 blk_mq_run_hw_queue(hctx, async);
1978 }
1979 }
1980 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1981
1982 /**
1983 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1984 * @q: Pointer to the request queue to run.
1985 * @msecs: Milliseconds of delay to wait before running the queues.
1986 */
1987 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1988 {
1989 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1990 int i;
1991
1992 sq_hctx = NULL;
1993 if (blk_mq_has_sqsched(q))
1994 sq_hctx = blk_mq_get_sq_hctx(q);
1995 queue_for_each_hw_ctx(q, hctx, i) {
1996 if (blk_mq_hctx_stopped(hctx))
1997 continue;
1998 /*
1999 * Dispatch from this hctx either if there's no hctx preferred
2000 * by IO scheduler or if it has requests that bypass the
2001 * scheduler.
2002 */
2003 if (!sq_hctx || sq_hctx == hctx ||
2004 !list_empty_careful(&hctx->dispatch))
2005 blk_mq_delay_run_hw_queue(hctx, msecs);
2006 }
2007 }
2008 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2009
2010 /**
2011 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2012 * @q: request queue.
2013 *
2014 * The caller is responsible for serializing this function against
2015 * blk_mq_{start,stop}_hw_queue().
2016 */
2017 bool blk_mq_queue_stopped(struct request_queue *q)
2018 {
2019 struct blk_mq_hw_ctx *hctx;
2020 int i;
2021
2022 queue_for_each_hw_ctx(q, hctx, i)
2023 if (blk_mq_hctx_stopped(hctx))
2024 return true;
2025
2026 return false;
2027 }
2028 EXPORT_SYMBOL(blk_mq_queue_stopped);
2029
2030 /*
2031 * This function is often used for pausing .queue_rq() by driver when
2032 * there isn't enough resource or some conditions aren't satisfied, and
2033 * BLK_STS_RESOURCE is usually returned.
2034 *
2035 * We do not guarantee that dispatch can be drained or blocked
2036 * after blk_mq_stop_hw_queue() returns. Please use
2037 * blk_mq_quiesce_queue() for that requirement.
2038 */
2039 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2040 {
2041 cancel_delayed_work(&hctx->run_work);
2042
2043 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2044 }
2045 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2046
2047 /*
2048 * This function is often used for pausing .queue_rq() by driver when
2049 * there isn't enough resource or some conditions aren't satisfied, and
2050 * BLK_STS_RESOURCE is usually returned.
2051 *
2052 * We do not guarantee that dispatch can be drained or blocked
2053 * after blk_mq_stop_hw_queues() returns. Please use
2054 * blk_mq_quiesce_queue() for that requirement.
2055 */
2056 void blk_mq_stop_hw_queues(struct request_queue *q)
2057 {
2058 struct blk_mq_hw_ctx *hctx;
2059 int i;
2060
2061 queue_for_each_hw_ctx(q, hctx, i)
2062 blk_mq_stop_hw_queue(hctx);
2063 }
2064 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2065
2066 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2067 {
2068 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2069
2070 blk_mq_run_hw_queue(hctx, false);
2071 }
2072 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2073
2074 void blk_mq_start_hw_queues(struct request_queue *q)
2075 {
2076 struct blk_mq_hw_ctx *hctx;
2077 int i;
2078
2079 queue_for_each_hw_ctx(q, hctx, i)
2080 blk_mq_start_hw_queue(hctx);
2081 }
2082 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2083
2084 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2085 {
2086 if (!blk_mq_hctx_stopped(hctx))
2087 return;
2088
2089 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2090 blk_mq_run_hw_queue(hctx, async);
2091 }
2092 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2093
2094 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2095 {
2096 struct blk_mq_hw_ctx *hctx;
2097 int i;
2098
2099 queue_for_each_hw_ctx(q, hctx, i)
2100 blk_mq_start_stopped_hw_queue(hctx, async);
2101 }
2102 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2103
2104 static void blk_mq_run_work_fn(struct work_struct *work)
2105 {
2106 struct blk_mq_hw_ctx *hctx;
2107
2108 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2109
2110 /*
2111 * If we are stopped, don't run the queue.
2112 */
2113 if (blk_mq_hctx_stopped(hctx))
2114 return;
2115
2116 __blk_mq_run_hw_queue(hctx);
2117 }
2118
2119 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2120 struct request *rq,
2121 bool at_head)
2122 {
2123 struct blk_mq_ctx *ctx = rq->mq_ctx;
2124 enum hctx_type type = hctx->type;
2125
2126 lockdep_assert_held(&ctx->lock);
2127
2128 trace_block_rq_insert(rq);
2129
2130 if (at_head)
2131 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2132 else
2133 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2134 }
2135
2136 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2137 bool at_head)
2138 {
2139 struct blk_mq_ctx *ctx = rq->mq_ctx;
2140
2141 lockdep_assert_held(&ctx->lock);
2142
2143 __blk_mq_insert_req_list(hctx, rq, at_head);
2144 blk_mq_hctx_mark_pending(hctx, ctx);
2145 }
2146
2147 /**
2148 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2149 * @rq: Pointer to request to be inserted.
2150 * @at_head: true if the request should be inserted at the head of the list.
2151 * @run_queue: If we should run the hardware queue after inserting the request.
2152 *
2153 * Should only be used carefully, when the caller knows we want to
2154 * bypass a potential IO scheduler on the target device.
2155 */
2156 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2157 bool run_queue)
2158 {
2159 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2160
2161 spin_lock(&hctx->lock);
2162 if (at_head)
2163 list_add(&rq->queuelist, &hctx->dispatch);
2164 else
2165 list_add_tail(&rq->queuelist, &hctx->dispatch);
2166 spin_unlock(&hctx->lock);
2167
2168 if (run_queue)
2169 blk_mq_run_hw_queue(hctx, false);
2170 }
2171
2172 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2173 struct list_head *list)
2174
2175 {
2176 struct request *rq;
2177 enum hctx_type type = hctx->type;
2178
2179 /*
2180 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2181 * offline now
2182 */
2183 list_for_each_entry(rq, list, queuelist) {
2184 BUG_ON(rq->mq_ctx != ctx);
2185 trace_block_rq_insert(rq);
2186 }
2187
2188 spin_lock(&ctx->lock);
2189 list_splice_tail_init(list, &ctx->rq_lists[type]);
2190 blk_mq_hctx_mark_pending(hctx, ctx);
2191 spin_unlock(&ctx->lock);
2192 }
2193
2194 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2195 bool from_schedule)
2196 {
2197 if (hctx->queue->mq_ops->commit_rqs) {
2198 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2199 hctx->queue->mq_ops->commit_rqs(hctx);
2200 }
2201 *queued = 0;
2202 }
2203
2204 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2205 {
2206 struct blk_mq_hw_ctx *hctx = NULL;
2207 struct request *rq;
2208 int queued = 0;
2209 int errors = 0;
2210
2211 while ((rq = rq_list_pop(&plug->mq_list))) {
2212 bool last = rq_list_empty(plug->mq_list);
2213 blk_status_t ret;
2214
2215 if (hctx != rq->mq_hctx) {
2216 if (hctx)
2217 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2218 hctx = rq->mq_hctx;
2219 }
2220
2221 ret = blk_mq_request_issue_directly(rq, last);
2222 switch (ret) {
2223 case BLK_STS_OK:
2224 queued++;
2225 break;
2226 case BLK_STS_RESOURCE:
2227 case BLK_STS_DEV_RESOURCE:
2228 blk_mq_request_bypass_insert(rq, false, last);
2229 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2230 return;
2231 default:
2232 blk_mq_end_request(rq, ret);
2233 errors++;
2234 break;
2235 }
2236 }
2237
2238 /*
2239 * If we didn't flush the entire list, we could have told the driver
2240 * there was more coming, but that turned out to be a lie.
2241 */
2242 if (errors)
2243 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2244 }
2245
2246 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2247 {
2248 struct blk_mq_hw_ctx *this_hctx;
2249 struct blk_mq_ctx *this_ctx;
2250 unsigned int depth;
2251 LIST_HEAD(list);
2252
2253 if (rq_list_empty(plug->mq_list))
2254 return;
2255 plug->rq_count = 0;
2256
2257 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2258 blk_mq_plug_issue_direct(plug, false);
2259 if (rq_list_empty(plug->mq_list))
2260 return;
2261 }
2262
2263 this_hctx = NULL;
2264 this_ctx = NULL;
2265 depth = 0;
2266 do {
2267 struct request *rq;
2268
2269 rq = rq_list_pop(&plug->mq_list);
2270
2271 if (!this_hctx) {
2272 this_hctx = rq->mq_hctx;
2273 this_ctx = rq->mq_ctx;
2274 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2275 trace_block_unplug(this_hctx->queue, depth,
2276 !from_schedule);
2277 blk_mq_sched_insert_requests(this_hctx, this_ctx,
2278 &list, from_schedule);
2279 depth = 0;
2280 this_hctx = rq->mq_hctx;
2281 this_ctx = rq->mq_ctx;
2282
2283 }
2284
2285 list_add(&rq->queuelist, &list);
2286 depth++;
2287 } while (!rq_list_empty(plug->mq_list));
2288
2289 if (!list_empty(&list)) {
2290 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2291 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2292 from_schedule);
2293 }
2294 }
2295
2296 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2297 unsigned int nr_segs)
2298 {
2299 int err;
2300
2301 if (bio->bi_opf & REQ_RAHEAD)
2302 rq->cmd_flags |= REQ_FAILFAST_MASK;
2303
2304 rq->__sector = bio->bi_iter.bi_sector;
2305 rq->write_hint = bio->bi_write_hint;
2306 blk_rq_bio_prep(rq, bio, nr_segs);
2307
2308 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2309 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2310 WARN_ON_ONCE(err);
2311
2312 blk_account_io_start(rq);
2313 }
2314
2315 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2316 struct request *rq, bool last)
2317 {
2318 struct request_queue *q = rq->q;
2319 struct blk_mq_queue_data bd = {
2320 .rq = rq,
2321 .last = last,
2322 };
2323 blk_status_t ret;
2324
2325 /*
2326 * For OK queue, we are done. For error, caller may kill it.
2327 * Any other error (busy), just add it to our list as we
2328 * previously would have done.
2329 */
2330 ret = q->mq_ops->queue_rq(hctx, &bd);
2331 switch (ret) {
2332 case BLK_STS_OK:
2333 blk_mq_update_dispatch_busy(hctx, false);
2334 break;
2335 case BLK_STS_RESOURCE:
2336 case BLK_STS_DEV_RESOURCE:
2337 blk_mq_update_dispatch_busy(hctx, true);
2338 __blk_mq_requeue_request(rq);
2339 break;
2340 default:
2341 blk_mq_update_dispatch_busy(hctx, false);
2342 break;
2343 }
2344
2345 return ret;
2346 }
2347
2348 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2349 struct request *rq,
2350 bool bypass_insert, bool last)
2351 {
2352 struct request_queue *q = rq->q;
2353 bool run_queue = true;
2354 int budget_token;
2355
2356 /*
2357 * RCU or SRCU read lock is needed before checking quiesced flag.
2358 *
2359 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2360 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2361 * and avoid driver to try to dispatch again.
2362 */
2363 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2364 run_queue = false;
2365 bypass_insert = false;
2366 goto insert;
2367 }
2368
2369 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2370 goto insert;
2371
2372 budget_token = blk_mq_get_dispatch_budget(q);
2373 if (budget_token < 0)
2374 goto insert;
2375
2376 blk_mq_set_rq_budget_token(rq, budget_token);
2377
2378 if (!blk_mq_get_driver_tag(rq)) {
2379 blk_mq_put_dispatch_budget(q, budget_token);
2380 goto insert;
2381 }
2382
2383 return __blk_mq_issue_directly(hctx, rq, last);
2384 insert:
2385 if (bypass_insert)
2386 return BLK_STS_RESOURCE;
2387
2388 blk_mq_sched_insert_request(rq, false, run_queue, false);
2389
2390 return BLK_STS_OK;
2391 }
2392
2393 /**
2394 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2395 * @hctx: Pointer of the associated hardware queue.
2396 * @rq: Pointer to request to be sent.
2397 *
2398 * If the device has enough resources to accept a new request now, send the
2399 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2400 * we can try send it another time in the future. Requests inserted at this
2401 * queue have higher priority.
2402 */
2403 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2404 struct request *rq)
2405 {
2406 blk_status_t ret;
2407 int srcu_idx;
2408
2409 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2410
2411 hctx_lock(hctx, &srcu_idx);
2412
2413 ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2414 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2415 blk_mq_request_bypass_insert(rq, false, true);
2416 else if (ret != BLK_STS_OK)
2417 blk_mq_end_request(rq, ret);
2418
2419 hctx_unlock(hctx, srcu_idx);
2420 }
2421
2422 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2423 {
2424 blk_status_t ret;
2425 int srcu_idx;
2426 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2427
2428 hctx_lock(hctx, &srcu_idx);
2429 ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2430 hctx_unlock(hctx, srcu_idx);
2431
2432 return ret;
2433 }
2434
2435 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2436 struct list_head *list)
2437 {
2438 int queued = 0;
2439 int errors = 0;
2440
2441 while (!list_empty(list)) {
2442 blk_status_t ret;
2443 struct request *rq = list_first_entry(list, struct request,
2444 queuelist);
2445
2446 list_del_init(&rq->queuelist);
2447 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2448 if (ret != BLK_STS_OK) {
2449 if (ret == BLK_STS_RESOURCE ||
2450 ret == BLK_STS_DEV_RESOURCE) {
2451 blk_mq_request_bypass_insert(rq, false,
2452 list_empty(list));
2453 break;
2454 }
2455 blk_mq_end_request(rq, ret);
2456 errors++;
2457 } else
2458 queued++;
2459 }
2460
2461 /*
2462 * If we didn't flush the entire list, we could have told
2463 * the driver there was more coming, but that turned out to
2464 * be a lie.
2465 */
2466 if ((!list_empty(list) || errors) &&
2467 hctx->queue->mq_ops->commit_rqs && queued)
2468 hctx->queue->mq_ops->commit_rqs(hctx);
2469 }
2470
2471 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2472 {
2473 if (!plug->multiple_queues) {
2474 struct request *nxt = rq_list_peek(&plug->mq_list);
2475
2476 if (nxt && nxt->q != rq->q)
2477 plug->multiple_queues = true;
2478 }
2479 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2480 plug->has_elevator = true;
2481 rq->rq_next = NULL;
2482 rq_list_add(&plug->mq_list, rq);
2483 plug->rq_count++;
2484 }
2485
2486 /*
2487 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2488 * queues. This is important for md arrays to benefit from merging
2489 * requests.
2490 */
2491 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2492 {
2493 if (plug->multiple_queues)
2494 return BLK_MAX_REQUEST_COUNT * 2;
2495 return BLK_MAX_REQUEST_COUNT;
2496 }
2497
2498 static bool blk_attempt_bio_merge(struct request_queue *q, struct bio *bio,
2499 unsigned int nr_segs, bool *same_queue_rq)
2500 {
2501 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2502 if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq))
2503 return true;
2504 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2505 return true;
2506 }
2507 return false;
2508 }
2509
2510 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2511 struct blk_plug *plug,
2512 struct bio *bio,
2513 unsigned int nsegs,
2514 bool *same_queue_rq)
2515 {
2516 struct blk_mq_alloc_data data = {
2517 .q = q,
2518 .nr_tags = 1,
2519 .cmd_flags = bio->bi_opf,
2520 };
2521 struct request *rq;
2522
2523 if (unlikely(bio_queue_enter(bio)))
2524 return NULL;
2525 if (unlikely(!submit_bio_checks(bio)))
2526 goto put_exit;
2527 if (blk_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2528 goto put_exit;
2529
2530 rq_qos_throttle(q, bio);
2531
2532 if (plug) {
2533 data.nr_tags = plug->nr_ios;
2534 plug->nr_ios = 1;
2535 data.cached_rq = &plug->cached_rq;
2536 }
2537
2538 rq = __blk_mq_alloc_requests(&data);
2539 if (rq)
2540 return rq;
2541
2542 rq_qos_cleanup(q, bio);
2543 if (bio->bi_opf & REQ_NOWAIT)
2544 bio_wouldblock_error(bio);
2545 put_exit:
2546 blk_queue_exit(q);
2547 return NULL;
2548 }
2549
2550 static inline struct request *blk_mq_get_request(struct request_queue *q,
2551 struct blk_plug *plug,
2552 struct bio *bio,
2553 unsigned int nsegs,
2554 bool *same_queue_rq)
2555 {
2556 if (plug) {
2557 struct request *rq;
2558
2559 rq = rq_list_peek(&plug->cached_rq);
2560 if (rq && rq->q == q) {
2561 if (unlikely(!submit_bio_checks(bio)))
2562 return NULL;
2563 if (blk_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2564 return NULL;
2565 plug->cached_rq = rq_list_next(rq);
2566 INIT_LIST_HEAD(&rq->queuelist);
2567 rq_qos_throttle(q, bio);
2568 return rq;
2569 }
2570 }
2571
2572 return blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq);
2573 }
2574
2575 /**
2576 * blk_mq_submit_bio - Create and send a request to block device.
2577 * @bio: Bio pointer.
2578 *
2579 * Builds up a request structure from @q and @bio and send to the device. The
2580 * request may not be queued directly to hardware if:
2581 * * This request can be merged with another one
2582 * * We want to place request at plug queue for possible future merging
2583 * * There is an IO scheduler active at this queue
2584 *
2585 * It will not queue the request if there is an error with the bio, or at the
2586 * request creation.
2587 */
2588 void blk_mq_submit_bio(struct bio *bio)
2589 {
2590 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2591 const int is_sync = op_is_sync(bio->bi_opf);
2592 struct request *rq;
2593 struct blk_plug *plug;
2594 bool same_queue_rq = false;
2595 unsigned int nr_segs = 1;
2596 blk_status_t ret;
2597
2598 if (unlikely(!blk_crypto_bio_prep(&bio)))
2599 return;
2600
2601 blk_queue_bounce(q, &bio);
2602 if (blk_may_split(q, bio))
2603 __blk_queue_split(q, &bio, &nr_segs);
2604
2605 if (!bio_integrity_prep(bio))
2606 return;
2607
2608 plug = blk_mq_plug(q, bio);
2609 rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq);
2610 if (unlikely(!rq))
2611 return;
2612
2613 trace_block_getrq(bio);
2614
2615 rq_qos_track(q, rq, bio);
2616
2617 blk_mq_bio_to_request(rq, bio, nr_segs);
2618
2619 ret = blk_crypto_init_request(rq);
2620 if (ret != BLK_STS_OK) {
2621 bio->bi_status = ret;
2622 bio_endio(bio);
2623 blk_mq_free_request(rq);
2624 return;
2625 }
2626
2627 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2628 return;
2629
2630 if (plug && (q->nr_hw_queues == 1 ||
2631 blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2632 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2633 /*
2634 * Use plugging if we have a ->commit_rqs() hook as well, as
2635 * we know the driver uses bd->last in a smart fashion.
2636 *
2637 * Use normal plugging if this disk is slow HDD, as sequential
2638 * IO may benefit a lot from plug merging.
2639 */
2640 unsigned int request_count = plug->rq_count;
2641 struct request *last = NULL;
2642
2643 if (!request_count) {
2644 trace_block_plug(q);
2645 } else if (!blk_queue_nomerges(q)) {
2646 last = rq_list_peek(&plug->mq_list);
2647 if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE)
2648 last = NULL;
2649 }
2650
2651 if (request_count >= blk_plug_max_rq_count(plug) || last) {
2652 blk_mq_flush_plug_list(plug, false);
2653 trace_block_plug(q);
2654 }
2655
2656 blk_add_rq_to_plug(plug, rq);
2657 } else if (rq->rq_flags & RQF_ELV) {
2658 /* Insert the request at the IO scheduler queue */
2659 blk_mq_sched_insert_request(rq, false, true, true);
2660 } else if (plug && !blk_queue_nomerges(q)) {
2661 struct request *next_rq = NULL;
2662
2663 /*
2664 * We do limited plugging. If the bio can be merged, do that.
2665 * Otherwise the existing request in the plug list will be
2666 * issued. So the plug list will have one request at most
2667 * The plug list might get flushed before this. If that happens,
2668 * the plug list is empty, and same_queue_rq is invalid.
2669 */
2670 if (same_queue_rq) {
2671 next_rq = rq_list_pop(&plug->mq_list);
2672 plug->rq_count--;
2673 }
2674 blk_add_rq_to_plug(plug, rq);
2675 trace_block_plug(q);
2676
2677 if (next_rq) {
2678 trace_block_unplug(q, 1, true);
2679 blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
2680 }
2681 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2682 !rq->mq_hctx->dispatch_busy) {
2683 /*
2684 * There is no scheduler and we can try to send directly
2685 * to the hardware.
2686 */
2687 blk_mq_try_issue_directly(rq->mq_hctx, rq);
2688 } else {
2689 /* Default case. */
2690 blk_mq_sched_insert_request(rq, false, true, true);
2691 }
2692 }
2693
2694 static size_t order_to_size(unsigned int order)
2695 {
2696 return (size_t)PAGE_SIZE << order;
2697 }
2698
2699 /* called before freeing request pool in @tags */
2700 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
2701 struct blk_mq_tags *tags)
2702 {
2703 struct page *page;
2704 unsigned long flags;
2705
2706 /* There is no need to clear a driver tags own mapping */
2707 if (drv_tags == tags)
2708 return;
2709
2710 list_for_each_entry(page, &tags->page_list, lru) {
2711 unsigned long start = (unsigned long)page_address(page);
2712 unsigned long end = start + order_to_size(page->private);
2713 int i;
2714
2715 for (i = 0; i < drv_tags->nr_tags; i++) {
2716 struct request *rq = drv_tags->rqs[i];
2717 unsigned long rq_addr = (unsigned long)rq;
2718
2719 if (rq_addr >= start && rq_addr < end) {
2720 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2721 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2722 }
2723 }
2724 }
2725
2726 /*
2727 * Wait until all pending iteration is done.
2728 *
2729 * Request reference is cleared and it is guaranteed to be observed
2730 * after the ->lock is released.
2731 */
2732 spin_lock_irqsave(&drv_tags->lock, flags);
2733 spin_unlock_irqrestore(&drv_tags->lock, flags);
2734 }
2735
2736 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2737 unsigned int hctx_idx)
2738 {
2739 struct blk_mq_tags *drv_tags;
2740 struct page *page;
2741
2742 if (blk_mq_is_shared_tags(set->flags))
2743 drv_tags = set->shared_tags;
2744 else
2745 drv_tags = set->tags[hctx_idx];
2746
2747 if (tags->static_rqs && set->ops->exit_request) {
2748 int i;
2749
2750 for (i = 0; i < tags->nr_tags; i++) {
2751 struct request *rq = tags->static_rqs[i];
2752
2753 if (!rq)
2754 continue;
2755 set->ops->exit_request(set, rq, hctx_idx);
2756 tags->static_rqs[i] = NULL;
2757 }
2758 }
2759
2760 blk_mq_clear_rq_mapping(drv_tags, tags);
2761
2762 while (!list_empty(&tags->page_list)) {
2763 page = list_first_entry(&tags->page_list, struct page, lru);
2764 list_del_init(&page->lru);
2765 /*
2766 * Remove kmemleak object previously allocated in
2767 * blk_mq_alloc_rqs().
2768 */
2769 kmemleak_free(page_address(page));
2770 __free_pages(page, page->private);
2771 }
2772 }
2773
2774 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2775 {
2776 kfree(tags->rqs);
2777 tags->rqs = NULL;
2778 kfree(tags->static_rqs);
2779 tags->static_rqs = NULL;
2780
2781 blk_mq_free_tags(tags);
2782 }
2783
2784 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2785 unsigned int hctx_idx,
2786 unsigned int nr_tags,
2787 unsigned int reserved_tags)
2788 {
2789 struct blk_mq_tags *tags;
2790 int node;
2791
2792 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2793 if (node == NUMA_NO_NODE)
2794 node = set->numa_node;
2795
2796 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2797 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2798 if (!tags)
2799 return NULL;
2800
2801 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2802 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2803 node);
2804 if (!tags->rqs) {
2805 blk_mq_free_tags(tags);
2806 return NULL;
2807 }
2808
2809 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2810 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2811 node);
2812 if (!tags->static_rqs) {
2813 kfree(tags->rqs);
2814 blk_mq_free_tags(tags);
2815 return NULL;
2816 }
2817
2818 return tags;
2819 }
2820
2821 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2822 unsigned int hctx_idx, int node)
2823 {
2824 int ret;
2825
2826 if (set->ops->init_request) {
2827 ret = set->ops->init_request(set, rq, hctx_idx, node);
2828 if (ret)
2829 return ret;
2830 }
2831
2832 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2833 return 0;
2834 }
2835
2836 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
2837 struct blk_mq_tags *tags,
2838 unsigned int hctx_idx, unsigned int depth)
2839 {
2840 unsigned int i, j, entries_per_page, max_order = 4;
2841 size_t rq_size, left;
2842 int node;
2843
2844 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2845 if (node == NUMA_NO_NODE)
2846 node = set->numa_node;
2847
2848 INIT_LIST_HEAD(&tags->page_list);
2849
2850 /*
2851 * rq_size is the size of the request plus driver payload, rounded
2852 * to the cacheline size
2853 */
2854 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2855 cache_line_size());
2856 left = rq_size * depth;
2857
2858 for (i = 0; i < depth; ) {
2859 int this_order = max_order;
2860 struct page *page;
2861 int to_do;
2862 void *p;
2863
2864 while (this_order && left < order_to_size(this_order - 1))
2865 this_order--;
2866
2867 do {
2868 page = alloc_pages_node(node,
2869 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2870 this_order);
2871 if (page)
2872 break;
2873 if (!this_order--)
2874 break;
2875 if (order_to_size(this_order) < rq_size)
2876 break;
2877 } while (1);
2878
2879 if (!page)
2880 goto fail;
2881
2882 page->private = this_order;
2883 list_add_tail(&page->lru, &tags->page_list);
2884
2885 p = page_address(page);
2886 /*
2887 * Allow kmemleak to scan these pages as they contain pointers
2888 * to additional allocations like via ops->init_request().
2889 */
2890 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2891 entries_per_page = order_to_size(this_order) / rq_size;
2892 to_do = min(entries_per_page, depth - i);
2893 left -= to_do * rq_size;
2894 for (j = 0; j < to_do; j++) {
2895 struct request *rq = p;
2896
2897 tags->static_rqs[i] = rq;
2898 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2899 tags->static_rqs[i] = NULL;
2900 goto fail;
2901 }
2902
2903 p += rq_size;
2904 i++;
2905 }
2906 }
2907 return 0;
2908
2909 fail:
2910 blk_mq_free_rqs(set, tags, hctx_idx);
2911 return -ENOMEM;
2912 }
2913
2914 struct rq_iter_data {
2915 struct blk_mq_hw_ctx *hctx;
2916 bool has_rq;
2917 };
2918
2919 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2920 {
2921 struct rq_iter_data *iter_data = data;
2922
2923 if (rq->mq_hctx != iter_data->hctx)
2924 return true;
2925 iter_data->has_rq = true;
2926 return false;
2927 }
2928
2929 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2930 {
2931 struct blk_mq_tags *tags = hctx->sched_tags ?
2932 hctx->sched_tags : hctx->tags;
2933 struct rq_iter_data data = {
2934 .hctx = hctx,
2935 };
2936
2937 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2938 return data.has_rq;
2939 }
2940
2941 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2942 struct blk_mq_hw_ctx *hctx)
2943 {
2944 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2945 return false;
2946 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2947 return false;
2948 return true;
2949 }
2950
2951 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2952 {
2953 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2954 struct blk_mq_hw_ctx, cpuhp_online);
2955
2956 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2957 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2958 return 0;
2959
2960 /*
2961 * Prevent new request from being allocated on the current hctx.
2962 *
2963 * The smp_mb__after_atomic() Pairs with the implied barrier in
2964 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2965 * seen once we return from the tag allocator.
2966 */
2967 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2968 smp_mb__after_atomic();
2969
2970 /*
2971 * Try to grab a reference to the queue and wait for any outstanding
2972 * requests. If we could not grab a reference the queue has been
2973 * frozen and there are no requests.
2974 */
2975 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2976 while (blk_mq_hctx_has_requests(hctx))
2977 msleep(5);
2978 percpu_ref_put(&hctx->queue->q_usage_counter);
2979 }
2980
2981 return 0;
2982 }
2983
2984 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2985 {
2986 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2987 struct blk_mq_hw_ctx, cpuhp_online);
2988
2989 if (cpumask_test_cpu(cpu, hctx->cpumask))
2990 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2991 return 0;
2992 }
2993
2994 /*
2995 * 'cpu' is going away. splice any existing rq_list entries from this
2996 * software queue to the hw queue dispatch list, and ensure that it
2997 * gets run.
2998 */
2999 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3000 {
3001 struct blk_mq_hw_ctx *hctx;
3002 struct blk_mq_ctx *ctx;
3003 LIST_HEAD(tmp);
3004 enum hctx_type type;
3005
3006 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3007 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3008 return 0;
3009
3010 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3011 type = hctx->type;
3012
3013 spin_lock(&ctx->lock);
3014 if (!list_empty(&ctx->rq_lists[type])) {
3015 list_splice_init(&ctx->rq_lists[type], &tmp);
3016 blk_mq_hctx_clear_pending(hctx, ctx);
3017 }
3018 spin_unlock(&ctx->lock);
3019
3020 if (list_empty(&tmp))
3021 return 0;
3022
3023 spin_lock(&hctx->lock);
3024 list_splice_tail_init(&tmp, &hctx->dispatch);
3025 spin_unlock(&hctx->lock);
3026
3027 blk_mq_run_hw_queue(hctx, true);
3028 return 0;
3029 }
3030
3031 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3032 {
3033 if (!(hctx->flags & BLK_MQ_F_STACKING))
3034 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3035 &hctx->cpuhp_online);
3036 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3037 &hctx->cpuhp_dead);
3038 }
3039
3040 /*
3041 * Before freeing hw queue, clearing the flush request reference in
3042 * tags->rqs[] for avoiding potential UAF.
3043 */
3044 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3045 unsigned int queue_depth, struct request *flush_rq)
3046 {
3047 int i;
3048 unsigned long flags;
3049
3050 /* The hw queue may not be mapped yet */
3051 if (!tags)
3052 return;
3053
3054 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
3055
3056 for (i = 0; i < queue_depth; i++)
3057 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3058
3059 /*
3060 * Wait until all pending iteration is done.
3061 *
3062 * Request reference is cleared and it is guaranteed to be observed
3063 * after the ->lock is released.
3064 */
3065 spin_lock_irqsave(&tags->lock, flags);
3066 spin_unlock_irqrestore(&tags->lock, flags);
3067 }
3068
3069 /* hctx->ctxs will be freed in queue's release handler */
3070 static void blk_mq_exit_hctx(struct request_queue *q,
3071 struct blk_mq_tag_set *set,
3072 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3073 {
3074 struct request *flush_rq = hctx->fq->flush_rq;
3075
3076 if (blk_mq_hw_queue_mapped(hctx))
3077 blk_mq_tag_idle(hctx);
3078
3079 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3080 set->queue_depth, flush_rq);
3081 if (set->ops->exit_request)
3082 set->ops->exit_request(set, flush_rq, hctx_idx);
3083
3084 if (set->ops->exit_hctx)
3085 set->ops->exit_hctx(hctx, hctx_idx);
3086
3087 blk_mq_remove_cpuhp(hctx);
3088
3089 spin_lock(&q->unused_hctx_lock);
3090 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3091 spin_unlock(&q->unused_hctx_lock);
3092 }
3093
3094 static void blk_mq_exit_hw_queues(struct request_queue *q,
3095 struct blk_mq_tag_set *set, int nr_queue)
3096 {
3097 struct blk_mq_hw_ctx *hctx;
3098 unsigned int i;
3099
3100 queue_for_each_hw_ctx(q, hctx, i) {
3101 if (i == nr_queue)
3102 break;
3103 blk_mq_debugfs_unregister_hctx(hctx);
3104 blk_mq_exit_hctx(q, set, hctx, i);
3105 }
3106 }
3107
3108 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
3109 {
3110 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
3111
3112 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
3113 __alignof__(struct blk_mq_hw_ctx)) !=
3114 sizeof(struct blk_mq_hw_ctx));
3115
3116 if (tag_set->flags & BLK_MQ_F_BLOCKING)
3117 hw_ctx_size += sizeof(struct srcu_struct);
3118
3119 return hw_ctx_size;
3120 }
3121
3122 static int blk_mq_init_hctx(struct request_queue *q,
3123 struct blk_mq_tag_set *set,
3124 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3125 {
3126 hctx->queue_num = hctx_idx;
3127
3128 if (!(hctx->flags & BLK_MQ_F_STACKING))
3129 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3130 &hctx->cpuhp_online);
3131 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3132
3133 hctx->tags = set->tags[hctx_idx];
3134
3135 if (set->ops->init_hctx &&
3136 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3137 goto unregister_cpu_notifier;
3138
3139 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3140 hctx->numa_node))
3141 goto exit_hctx;
3142 return 0;
3143
3144 exit_hctx:
3145 if (set->ops->exit_hctx)
3146 set->ops->exit_hctx(hctx, hctx_idx);
3147 unregister_cpu_notifier:
3148 blk_mq_remove_cpuhp(hctx);
3149 return -1;
3150 }
3151
3152 static struct blk_mq_hw_ctx *
3153 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3154 int node)
3155 {
3156 struct blk_mq_hw_ctx *hctx;
3157 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3158
3159 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
3160 if (!hctx)
3161 goto fail_alloc_hctx;
3162
3163 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3164 goto free_hctx;
3165
3166 atomic_set(&hctx->nr_active, 0);
3167 if (node == NUMA_NO_NODE)
3168 node = set->numa_node;
3169 hctx->numa_node = node;
3170
3171 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3172 spin_lock_init(&hctx->lock);
3173 INIT_LIST_HEAD(&hctx->dispatch);
3174 hctx->queue = q;
3175 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3176
3177 INIT_LIST_HEAD(&hctx->hctx_list);
3178
3179 /*
3180 * Allocate space for all possible cpus to avoid allocation at
3181 * runtime
3182 */
3183 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3184 gfp, node);
3185 if (!hctx->ctxs)
3186 goto free_cpumask;
3187
3188 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3189 gfp, node, false, false))
3190 goto free_ctxs;
3191 hctx->nr_ctx = 0;
3192
3193 spin_lock_init(&hctx->dispatch_wait_lock);
3194 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3195 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3196
3197 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3198 if (!hctx->fq)
3199 goto free_bitmap;
3200
3201 if (hctx->flags & BLK_MQ_F_BLOCKING)
3202 init_srcu_struct(hctx->srcu);
3203 blk_mq_hctx_kobj_init(hctx);
3204
3205 return hctx;
3206
3207 free_bitmap:
3208 sbitmap_free(&hctx->ctx_map);
3209 free_ctxs:
3210 kfree(hctx->ctxs);
3211 free_cpumask:
3212 free_cpumask_var(hctx->cpumask);
3213 free_hctx:
3214 kfree(hctx);
3215 fail_alloc_hctx:
3216 return NULL;
3217 }
3218
3219 static void blk_mq_init_cpu_queues(struct request_queue *q,
3220 unsigned int nr_hw_queues)
3221 {
3222 struct blk_mq_tag_set *set = q->tag_set;
3223 unsigned int i, j;
3224
3225 for_each_possible_cpu(i) {
3226 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3227 struct blk_mq_hw_ctx *hctx;
3228 int k;
3229
3230 __ctx->cpu = i;
3231 spin_lock_init(&__ctx->lock);
3232 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3233 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3234
3235 __ctx->queue = q;
3236
3237 /*
3238 * Set local node, IFF we have more than one hw queue. If
3239 * not, we remain on the home node of the device
3240 */
3241 for (j = 0; j < set->nr_maps; j++) {
3242 hctx = blk_mq_map_queue_type(q, j, i);
3243 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3244 hctx->numa_node = cpu_to_node(i);
3245 }
3246 }
3247 }
3248
3249 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3250 unsigned int hctx_idx,
3251 unsigned int depth)
3252 {
3253 struct blk_mq_tags *tags;
3254 int ret;
3255
3256 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3257 if (!tags)
3258 return NULL;
3259
3260 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3261 if (ret) {
3262 blk_mq_free_rq_map(tags);
3263 return NULL;
3264 }
3265
3266 return tags;
3267 }
3268
3269 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3270 int hctx_idx)
3271 {
3272 if (blk_mq_is_shared_tags(set->flags)) {
3273 set->tags[hctx_idx] = set->shared_tags;
3274
3275 return true;
3276 }
3277
3278 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3279 set->queue_depth);
3280
3281 return set->tags[hctx_idx];
3282 }
3283
3284 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3285 struct blk_mq_tags *tags,
3286 unsigned int hctx_idx)
3287 {
3288 if (tags) {
3289 blk_mq_free_rqs(set, tags, hctx_idx);
3290 blk_mq_free_rq_map(tags);
3291 }
3292 }
3293
3294 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3295 unsigned int hctx_idx)
3296 {
3297 if (!blk_mq_is_shared_tags(set->flags))
3298 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3299
3300 set->tags[hctx_idx] = NULL;
3301 }
3302
3303 static void blk_mq_map_swqueue(struct request_queue *q)
3304 {
3305 unsigned int i, j, hctx_idx;
3306 struct blk_mq_hw_ctx *hctx;
3307 struct blk_mq_ctx *ctx;
3308 struct blk_mq_tag_set *set = q->tag_set;
3309
3310 queue_for_each_hw_ctx(q, hctx, i) {
3311 cpumask_clear(hctx->cpumask);
3312 hctx->nr_ctx = 0;
3313 hctx->dispatch_from = NULL;
3314 }
3315
3316 /*
3317 * Map software to hardware queues.
3318 *
3319 * If the cpu isn't present, the cpu is mapped to first hctx.
3320 */
3321 for_each_possible_cpu(i) {
3322
3323 ctx = per_cpu_ptr(q->queue_ctx, i);
3324 for (j = 0; j < set->nr_maps; j++) {
3325 if (!set->map[j].nr_queues) {
3326 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3327 HCTX_TYPE_DEFAULT, i);
3328 continue;
3329 }
3330 hctx_idx = set->map[j].mq_map[i];
3331 /* unmapped hw queue can be remapped after CPU topo changed */
3332 if (!set->tags[hctx_idx] &&
3333 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3334 /*
3335 * If tags initialization fail for some hctx,
3336 * that hctx won't be brought online. In this
3337 * case, remap the current ctx to hctx[0] which
3338 * is guaranteed to always have tags allocated
3339 */
3340 set->map[j].mq_map[i] = 0;
3341 }
3342
3343 hctx = blk_mq_map_queue_type(q, j, i);
3344 ctx->hctxs[j] = hctx;
3345 /*
3346 * If the CPU is already set in the mask, then we've
3347 * mapped this one already. This can happen if
3348 * devices share queues across queue maps.
3349 */
3350 if (cpumask_test_cpu(i, hctx->cpumask))
3351 continue;
3352
3353 cpumask_set_cpu(i, hctx->cpumask);
3354 hctx->type = j;
3355 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3356 hctx->ctxs[hctx->nr_ctx++] = ctx;
3357
3358 /*
3359 * If the nr_ctx type overflows, we have exceeded the
3360 * amount of sw queues we can support.
3361 */
3362 BUG_ON(!hctx->nr_ctx);
3363 }
3364
3365 for (; j < HCTX_MAX_TYPES; j++)
3366 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3367 HCTX_TYPE_DEFAULT, i);
3368 }
3369
3370 queue_for_each_hw_ctx(q, hctx, i) {
3371 /*
3372 * If no software queues are mapped to this hardware queue,
3373 * disable it and free the request entries.
3374 */
3375 if (!hctx->nr_ctx) {
3376 /* Never unmap queue 0. We need it as a
3377 * fallback in case of a new remap fails
3378 * allocation
3379 */
3380 if (i)
3381 __blk_mq_free_map_and_rqs(set, i);
3382
3383 hctx->tags = NULL;
3384 continue;
3385 }
3386
3387 hctx->tags = set->tags[i];
3388 WARN_ON(!hctx->tags);
3389
3390 /*
3391 * Set the map size to the number of mapped software queues.
3392 * This is more accurate and more efficient than looping
3393 * over all possibly mapped software queues.
3394 */
3395 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3396
3397 /*
3398 * Initialize batch roundrobin counts
3399 */
3400 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3401 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3402 }
3403 }
3404
3405 /*
3406 * Caller needs to ensure that we're either frozen/quiesced, or that
3407 * the queue isn't live yet.
3408 */
3409 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3410 {
3411 struct blk_mq_hw_ctx *hctx;
3412 int i;
3413
3414 queue_for_each_hw_ctx(q, hctx, i) {
3415 if (shared) {
3416 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3417 } else {
3418 blk_mq_tag_idle(hctx);
3419 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3420 }
3421 }
3422 }
3423
3424 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3425 bool shared)
3426 {
3427 struct request_queue *q;
3428
3429 lockdep_assert_held(&set->tag_list_lock);
3430
3431 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3432 blk_mq_freeze_queue(q);
3433 queue_set_hctx_shared(q, shared);
3434 blk_mq_unfreeze_queue(q);
3435 }
3436 }
3437
3438 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3439 {
3440 struct blk_mq_tag_set *set = q->tag_set;
3441
3442 mutex_lock(&set->tag_list_lock);
3443 list_del(&q->tag_set_list);
3444 if (list_is_singular(&set->tag_list)) {
3445 /* just transitioned to unshared */
3446 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3447 /* update existing queue */
3448 blk_mq_update_tag_set_shared(set, false);
3449 }
3450 mutex_unlock(&set->tag_list_lock);
3451 INIT_LIST_HEAD(&q->tag_set_list);
3452 }
3453
3454 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3455 struct request_queue *q)
3456 {
3457 mutex_lock(&set->tag_list_lock);
3458
3459 /*
3460 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3461 */
3462 if (!list_empty(&set->tag_list) &&
3463 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3464 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3465 /* update existing queue */
3466 blk_mq_update_tag_set_shared(set, true);
3467 }
3468 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3469 queue_set_hctx_shared(q, true);
3470 list_add_tail(&q->tag_set_list, &set->tag_list);
3471
3472 mutex_unlock(&set->tag_list_lock);
3473 }
3474
3475 /* All allocations will be freed in release handler of q->mq_kobj */
3476 static int blk_mq_alloc_ctxs(struct request_queue *q)
3477 {
3478 struct blk_mq_ctxs *ctxs;
3479 int cpu;
3480
3481 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3482 if (!ctxs)
3483 return -ENOMEM;
3484
3485 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3486 if (!ctxs->queue_ctx)
3487 goto fail;
3488
3489 for_each_possible_cpu(cpu) {
3490 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3491 ctx->ctxs = ctxs;
3492 }
3493
3494 q->mq_kobj = &ctxs->kobj;
3495 q->queue_ctx = ctxs->queue_ctx;
3496
3497 return 0;
3498 fail:
3499 kfree(ctxs);
3500 return -ENOMEM;
3501 }
3502
3503 /*
3504 * It is the actual release handler for mq, but we do it from
3505 * request queue's release handler for avoiding use-after-free
3506 * and headache because q->mq_kobj shouldn't have been introduced,
3507 * but we can't group ctx/kctx kobj without it.
3508 */
3509 void blk_mq_release(struct request_queue *q)
3510 {
3511 struct blk_mq_hw_ctx *hctx, *next;
3512 int i;
3513
3514 queue_for_each_hw_ctx(q, hctx, i)
3515 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3516
3517 /* all hctx are in .unused_hctx_list now */
3518 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3519 list_del_init(&hctx->hctx_list);
3520 kobject_put(&hctx->kobj);
3521 }
3522
3523 kfree(q->queue_hw_ctx);
3524
3525 /*
3526 * release .mq_kobj and sw queue's kobject now because
3527 * both share lifetime with request queue.
3528 */
3529 blk_mq_sysfs_deinit(q);
3530 }
3531
3532 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3533 void *queuedata)
3534 {
3535 struct request_queue *q;
3536 int ret;
3537
3538 q = blk_alloc_queue(set->numa_node);
3539 if (!q)
3540 return ERR_PTR(-ENOMEM);
3541 q->queuedata = queuedata;
3542 ret = blk_mq_init_allocated_queue(set, q);
3543 if (ret) {
3544 blk_cleanup_queue(q);
3545 return ERR_PTR(ret);
3546 }
3547 return q;
3548 }
3549
3550 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3551 {
3552 return blk_mq_init_queue_data(set, NULL);
3553 }
3554 EXPORT_SYMBOL(blk_mq_init_queue);
3555
3556 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3557 struct lock_class_key *lkclass)
3558 {
3559 struct request_queue *q;
3560 struct gendisk *disk;
3561
3562 q = blk_mq_init_queue_data(set, queuedata);
3563 if (IS_ERR(q))
3564 return ERR_CAST(q);
3565
3566 disk = __alloc_disk_node(q, set->numa_node, lkclass);
3567 if (!disk) {
3568 blk_cleanup_queue(q);
3569 return ERR_PTR(-ENOMEM);
3570 }
3571 return disk;
3572 }
3573 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3574
3575 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3576 struct blk_mq_tag_set *set, struct request_queue *q,
3577 int hctx_idx, int node)
3578 {
3579 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3580
3581 /* reuse dead hctx first */
3582 spin_lock(&q->unused_hctx_lock);
3583 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3584 if (tmp->numa_node == node) {
3585 hctx = tmp;
3586 break;
3587 }
3588 }
3589 if (hctx)
3590 list_del_init(&hctx->hctx_list);
3591 spin_unlock(&q->unused_hctx_lock);
3592
3593 if (!hctx)
3594 hctx = blk_mq_alloc_hctx(q, set, node);
3595 if (!hctx)
3596 goto fail;
3597
3598 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3599 goto free_hctx;
3600
3601 return hctx;
3602
3603 free_hctx:
3604 kobject_put(&hctx->kobj);
3605 fail:
3606 return NULL;
3607 }
3608
3609 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3610 struct request_queue *q)
3611 {
3612 int i, j, end;
3613 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3614
3615 if (q->nr_hw_queues < set->nr_hw_queues) {
3616 struct blk_mq_hw_ctx **new_hctxs;
3617
3618 new_hctxs = kcalloc_node(set->nr_hw_queues,
3619 sizeof(*new_hctxs), GFP_KERNEL,
3620 set->numa_node);
3621 if (!new_hctxs)
3622 return;
3623 if (hctxs)
3624 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3625 sizeof(*hctxs));
3626 q->queue_hw_ctx = new_hctxs;
3627 kfree(hctxs);
3628 hctxs = new_hctxs;
3629 }
3630
3631 /* protect against switching io scheduler */
3632 mutex_lock(&q->sysfs_lock);
3633 for (i = 0; i < set->nr_hw_queues; i++) {
3634 int node;
3635 struct blk_mq_hw_ctx *hctx;
3636
3637 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3638 /*
3639 * If the hw queue has been mapped to another numa node,
3640 * we need to realloc the hctx. If allocation fails, fallback
3641 * to use the previous one.
3642 */
3643 if (hctxs[i] && (hctxs[i]->numa_node == node))
3644 continue;
3645
3646 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3647 if (hctx) {
3648 if (hctxs[i])
3649 blk_mq_exit_hctx(q, set, hctxs[i], i);
3650 hctxs[i] = hctx;
3651 } else {
3652 if (hctxs[i])
3653 pr_warn("Allocate new hctx on node %d fails,\
3654 fallback to previous one on node %d\n",
3655 node, hctxs[i]->numa_node);
3656 else
3657 break;
3658 }
3659 }
3660 /*
3661 * Increasing nr_hw_queues fails. Free the newly allocated
3662 * hctxs and keep the previous q->nr_hw_queues.
3663 */
3664 if (i != set->nr_hw_queues) {
3665 j = q->nr_hw_queues;
3666 end = i;
3667 } else {
3668 j = i;
3669 end = q->nr_hw_queues;
3670 q->nr_hw_queues = set->nr_hw_queues;
3671 }
3672
3673 for (; j < end; j++) {
3674 struct blk_mq_hw_ctx *hctx = hctxs[j];
3675
3676 if (hctx) {
3677 blk_mq_exit_hctx(q, set, hctx, j);
3678 hctxs[j] = NULL;
3679 }
3680 }
3681 mutex_unlock(&q->sysfs_lock);
3682 }
3683
3684 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3685 struct request_queue *q)
3686 {
3687 /* mark the queue as mq asap */
3688 q->mq_ops = set->ops;
3689
3690 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3691 blk_mq_poll_stats_bkt,
3692 BLK_MQ_POLL_STATS_BKTS, q);
3693 if (!q->poll_cb)
3694 goto err_exit;
3695
3696 if (blk_mq_alloc_ctxs(q))
3697 goto err_poll;
3698
3699 /* init q->mq_kobj and sw queues' kobjects */
3700 blk_mq_sysfs_init(q);
3701
3702 INIT_LIST_HEAD(&q->unused_hctx_list);
3703 spin_lock_init(&q->unused_hctx_lock);
3704
3705 blk_mq_realloc_hw_ctxs(set, q);
3706 if (!q->nr_hw_queues)
3707 goto err_hctxs;
3708
3709 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3710 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3711
3712 q->tag_set = set;
3713
3714 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3715 if (set->nr_maps > HCTX_TYPE_POLL &&
3716 set->map[HCTX_TYPE_POLL].nr_queues)
3717 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3718
3719 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3720 INIT_LIST_HEAD(&q->requeue_list);
3721 spin_lock_init(&q->requeue_lock);
3722
3723 q->nr_requests = set->queue_depth;
3724
3725 /*
3726 * Default to classic polling
3727 */
3728 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3729
3730 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3731 blk_mq_add_queue_tag_set(set, q);
3732 blk_mq_map_swqueue(q);
3733 return 0;
3734
3735 err_hctxs:
3736 kfree(q->queue_hw_ctx);
3737 q->nr_hw_queues = 0;
3738 blk_mq_sysfs_deinit(q);
3739 err_poll:
3740 blk_stat_free_callback(q->poll_cb);
3741 q->poll_cb = NULL;
3742 err_exit:
3743 q->mq_ops = NULL;
3744 return -ENOMEM;
3745 }
3746 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3747
3748 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3749 void blk_mq_exit_queue(struct request_queue *q)
3750 {
3751 struct blk_mq_tag_set *set = q->tag_set;
3752
3753 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3754 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3755 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3756 blk_mq_del_queue_tag_set(q);
3757 }
3758
3759 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3760 {
3761 int i;
3762
3763 if (blk_mq_is_shared_tags(set->flags)) {
3764 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3765 BLK_MQ_NO_HCTX_IDX,
3766 set->queue_depth);
3767 if (!set->shared_tags)
3768 return -ENOMEM;
3769 }
3770
3771 for (i = 0; i < set->nr_hw_queues; i++) {
3772 if (!__blk_mq_alloc_map_and_rqs(set, i))
3773 goto out_unwind;
3774 cond_resched();
3775 }
3776
3777 return 0;
3778
3779 out_unwind:
3780 while (--i >= 0)
3781 __blk_mq_free_map_and_rqs(set, i);
3782
3783 if (blk_mq_is_shared_tags(set->flags)) {
3784 blk_mq_free_map_and_rqs(set, set->shared_tags,
3785 BLK_MQ_NO_HCTX_IDX);
3786 }
3787
3788 return -ENOMEM;
3789 }
3790
3791 /*
3792 * Allocate the request maps associated with this tag_set. Note that this
3793 * may reduce the depth asked for, if memory is tight. set->queue_depth
3794 * will be updated to reflect the allocated depth.
3795 */
3796 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3797 {
3798 unsigned int depth;
3799 int err;
3800
3801 depth = set->queue_depth;
3802 do {
3803 err = __blk_mq_alloc_rq_maps(set);
3804 if (!err)
3805 break;
3806
3807 set->queue_depth >>= 1;
3808 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3809 err = -ENOMEM;
3810 break;
3811 }
3812 } while (set->queue_depth);
3813
3814 if (!set->queue_depth || err) {
3815 pr_err("blk-mq: failed to allocate request map\n");
3816 return -ENOMEM;
3817 }
3818
3819 if (depth != set->queue_depth)
3820 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3821 depth, set->queue_depth);
3822
3823 return 0;
3824 }
3825
3826 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3827 {
3828 /*
3829 * blk_mq_map_queues() and multiple .map_queues() implementations
3830 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3831 * number of hardware queues.
3832 */
3833 if (set->nr_maps == 1)
3834 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3835
3836 if (set->ops->map_queues && !is_kdump_kernel()) {
3837 int i;
3838
3839 /*
3840 * transport .map_queues is usually done in the following
3841 * way:
3842 *
3843 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3844 * mask = get_cpu_mask(queue)
3845 * for_each_cpu(cpu, mask)
3846 * set->map[x].mq_map[cpu] = queue;
3847 * }
3848 *
3849 * When we need to remap, the table has to be cleared for
3850 * killing stale mapping since one CPU may not be mapped
3851 * to any hw queue.
3852 */
3853 for (i = 0; i < set->nr_maps; i++)
3854 blk_mq_clear_mq_map(&set->map[i]);
3855
3856 return set->ops->map_queues(set);
3857 } else {
3858 BUG_ON(set->nr_maps > 1);
3859 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3860 }
3861 }
3862
3863 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3864 int cur_nr_hw_queues, int new_nr_hw_queues)
3865 {
3866 struct blk_mq_tags **new_tags;
3867
3868 if (cur_nr_hw_queues >= new_nr_hw_queues)
3869 return 0;
3870
3871 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3872 GFP_KERNEL, set->numa_node);
3873 if (!new_tags)
3874 return -ENOMEM;
3875
3876 if (set->tags)
3877 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3878 sizeof(*set->tags));
3879 kfree(set->tags);
3880 set->tags = new_tags;
3881 set->nr_hw_queues = new_nr_hw_queues;
3882
3883 return 0;
3884 }
3885
3886 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3887 int new_nr_hw_queues)
3888 {
3889 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3890 }
3891
3892 /*
3893 * Alloc a tag set to be associated with one or more request queues.
3894 * May fail with EINVAL for various error conditions. May adjust the
3895 * requested depth down, if it's too large. In that case, the set
3896 * value will be stored in set->queue_depth.
3897 */
3898 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3899 {
3900 int i, ret;
3901
3902 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3903
3904 if (!set->nr_hw_queues)
3905 return -EINVAL;
3906 if (!set->queue_depth)
3907 return -EINVAL;
3908 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3909 return -EINVAL;
3910
3911 if (!set->ops->queue_rq)
3912 return -EINVAL;
3913
3914 if (!set->ops->get_budget ^ !set->ops->put_budget)
3915 return -EINVAL;
3916
3917 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3918 pr_info("blk-mq: reduced tag depth to %u\n",
3919 BLK_MQ_MAX_DEPTH);
3920 set->queue_depth = BLK_MQ_MAX_DEPTH;
3921 }
3922
3923 if (!set->nr_maps)
3924 set->nr_maps = 1;
3925 else if (set->nr_maps > HCTX_MAX_TYPES)
3926 return -EINVAL;
3927
3928 /*
3929 * If a crashdump is active, then we are potentially in a very
3930 * memory constrained environment. Limit us to 1 queue and
3931 * 64 tags to prevent using too much memory.
3932 */
3933 if (is_kdump_kernel()) {
3934 set->nr_hw_queues = 1;
3935 set->nr_maps = 1;
3936 set->queue_depth = min(64U, set->queue_depth);
3937 }
3938 /*
3939 * There is no use for more h/w queues than cpus if we just have
3940 * a single map
3941 */
3942 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3943 set->nr_hw_queues = nr_cpu_ids;
3944
3945 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3946 return -ENOMEM;
3947
3948 ret = -ENOMEM;
3949 for (i = 0; i < set->nr_maps; i++) {
3950 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3951 sizeof(set->map[i].mq_map[0]),
3952 GFP_KERNEL, set->numa_node);
3953 if (!set->map[i].mq_map)
3954 goto out_free_mq_map;
3955 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3956 }
3957
3958 ret = blk_mq_update_queue_map(set);
3959 if (ret)
3960 goto out_free_mq_map;
3961
3962 ret = blk_mq_alloc_set_map_and_rqs(set);
3963 if (ret)
3964 goto out_free_mq_map;
3965
3966 mutex_init(&set->tag_list_lock);
3967 INIT_LIST_HEAD(&set->tag_list);
3968
3969 return 0;
3970
3971 out_free_mq_map:
3972 for (i = 0; i < set->nr_maps; i++) {
3973 kfree(set->map[i].mq_map);
3974 set->map[i].mq_map = NULL;
3975 }
3976 kfree(set->tags);
3977 set->tags = NULL;
3978 return ret;
3979 }
3980 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3981
3982 /* allocate and initialize a tagset for a simple single-queue device */
3983 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3984 const struct blk_mq_ops *ops, unsigned int queue_depth,
3985 unsigned int set_flags)
3986 {
3987 memset(set, 0, sizeof(*set));
3988 set->ops = ops;
3989 set->nr_hw_queues = 1;
3990 set->nr_maps = 1;
3991 set->queue_depth = queue_depth;
3992 set->numa_node = NUMA_NO_NODE;
3993 set->flags = set_flags;
3994 return blk_mq_alloc_tag_set(set);
3995 }
3996 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3997
3998 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3999 {
4000 int i, j;
4001
4002 for (i = 0; i < set->nr_hw_queues; i++)
4003 __blk_mq_free_map_and_rqs(set, i);
4004
4005 if (blk_mq_is_shared_tags(set->flags)) {
4006 blk_mq_free_map_and_rqs(set, set->shared_tags,
4007 BLK_MQ_NO_HCTX_IDX);
4008 }
4009
4010 for (j = 0; j < set->nr_maps; j++) {
4011 kfree(set->map[j].mq_map);
4012 set->map[j].mq_map = NULL;
4013 }
4014
4015 kfree(set->tags);
4016 set->tags = NULL;
4017 }
4018 EXPORT_SYMBOL(blk_mq_free_tag_set);
4019
4020 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4021 {
4022 struct blk_mq_tag_set *set = q->tag_set;
4023 struct blk_mq_hw_ctx *hctx;
4024 int i, ret;
4025
4026 if (!set)
4027 return -EINVAL;
4028
4029 if (q->nr_requests == nr)
4030 return 0;
4031
4032 blk_mq_freeze_queue(q);
4033 blk_mq_quiesce_queue(q);
4034
4035 ret = 0;
4036 queue_for_each_hw_ctx(q, hctx, i) {
4037 if (!hctx->tags)
4038 continue;
4039 /*
4040 * If we're using an MQ scheduler, just update the scheduler
4041 * queue depth. This is similar to what the old code would do.
4042 */
4043 if (hctx->sched_tags) {
4044 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4045 nr, true);
4046 } else {
4047 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4048 false);
4049 }
4050 if (ret)
4051 break;
4052 if (q->elevator && q->elevator->type->ops.depth_updated)
4053 q->elevator->type->ops.depth_updated(hctx);
4054 }
4055 if (!ret) {
4056 q->nr_requests = nr;
4057 if (blk_mq_is_shared_tags(set->flags)) {
4058 if (q->elevator)
4059 blk_mq_tag_update_sched_shared_tags(q);
4060 else
4061 blk_mq_tag_resize_shared_tags(set, nr);
4062 }
4063 }
4064
4065 blk_mq_unquiesce_queue(q);
4066 blk_mq_unfreeze_queue(q);
4067
4068 return ret;
4069 }
4070
4071 /*
4072 * request_queue and elevator_type pair.
4073 * It is just used by __blk_mq_update_nr_hw_queues to cache
4074 * the elevator_type associated with a request_queue.
4075 */
4076 struct blk_mq_qe_pair {
4077 struct list_head node;
4078 struct request_queue *q;
4079 struct elevator_type *type;
4080 };
4081
4082 /*
4083 * Cache the elevator_type in qe pair list and switch the
4084 * io scheduler to 'none'
4085 */
4086 static bool blk_mq_elv_switch_none(struct list_head *head,
4087 struct request_queue *q)
4088 {
4089 struct blk_mq_qe_pair *qe;
4090
4091 if (!q->elevator)
4092 return true;
4093
4094 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4095 if (!qe)
4096 return false;
4097
4098 INIT_LIST_HEAD(&qe->node);
4099 qe->q = q;
4100 qe->type = q->elevator->type;
4101 list_add(&qe->node, head);
4102
4103 mutex_lock(&q->sysfs_lock);
4104 /*
4105 * After elevator_switch_mq, the previous elevator_queue will be
4106 * released by elevator_release. The reference of the io scheduler
4107 * module get by elevator_get will also be put. So we need to get
4108 * a reference of the io scheduler module here to prevent it to be
4109 * removed.
4110 */
4111 __module_get(qe->type->elevator_owner);
4112 elevator_switch_mq(q, NULL);
4113 mutex_unlock(&q->sysfs_lock);
4114
4115 return true;
4116 }
4117
4118 static void blk_mq_elv_switch_back(struct list_head *head,
4119 struct request_queue *q)
4120 {
4121 struct blk_mq_qe_pair *qe;
4122 struct elevator_type *t = NULL;
4123
4124 list_for_each_entry(qe, head, node)
4125 if (qe->q == q) {
4126 t = qe->type;
4127 break;
4128 }
4129
4130 if (!t)
4131 return;
4132
4133 list_del(&qe->node);
4134 kfree(qe);
4135
4136 mutex_lock(&q->sysfs_lock);
4137 elevator_switch_mq(q, t);
4138 mutex_unlock(&q->sysfs_lock);
4139 }
4140
4141 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4142 int nr_hw_queues)
4143 {
4144 struct request_queue *q;
4145 LIST_HEAD(head);
4146 int prev_nr_hw_queues;
4147
4148 lockdep_assert_held(&set->tag_list_lock);
4149
4150 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4151 nr_hw_queues = nr_cpu_ids;
4152 if (nr_hw_queues < 1)
4153 return;
4154 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4155 return;
4156
4157 list_for_each_entry(q, &set->tag_list, tag_set_list)
4158 blk_mq_freeze_queue(q);
4159 /*
4160 * Switch IO scheduler to 'none', cleaning up the data associated
4161 * with the previous scheduler. We will switch back once we are done
4162 * updating the new sw to hw queue mappings.
4163 */
4164 list_for_each_entry(q, &set->tag_list, tag_set_list)
4165 if (!blk_mq_elv_switch_none(&head, q))
4166 goto switch_back;
4167
4168 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4169 blk_mq_debugfs_unregister_hctxs(q);
4170 blk_mq_sysfs_unregister(q);
4171 }
4172
4173 prev_nr_hw_queues = set->nr_hw_queues;
4174 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4175 0)
4176 goto reregister;
4177
4178 set->nr_hw_queues = nr_hw_queues;
4179 fallback:
4180 blk_mq_update_queue_map(set);
4181 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4182 blk_mq_realloc_hw_ctxs(set, q);
4183 if (q->nr_hw_queues != set->nr_hw_queues) {
4184 int i = prev_nr_hw_queues;
4185
4186 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4187 nr_hw_queues, prev_nr_hw_queues);
4188 for (; i < set->nr_hw_queues; i++)
4189 __blk_mq_free_map_and_rqs(set, i);
4190
4191 set->nr_hw_queues = prev_nr_hw_queues;
4192 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4193 goto fallback;
4194 }
4195 blk_mq_map_swqueue(q);
4196 }
4197
4198 reregister:
4199 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4200 blk_mq_sysfs_register(q);
4201 blk_mq_debugfs_register_hctxs(q);
4202 }
4203
4204 switch_back:
4205 list_for_each_entry(q, &set->tag_list, tag_set_list)
4206 blk_mq_elv_switch_back(&head, q);
4207
4208 list_for_each_entry(q, &set->tag_list, tag_set_list)
4209 blk_mq_unfreeze_queue(q);
4210 }
4211
4212 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4213 {
4214 mutex_lock(&set->tag_list_lock);
4215 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4216 mutex_unlock(&set->tag_list_lock);
4217 }
4218 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4219
4220 /* Enable polling stats and return whether they were already enabled. */
4221 static bool blk_poll_stats_enable(struct request_queue *q)
4222 {
4223 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4224 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4225 return true;
4226 blk_stat_add_callback(q, q->poll_cb);
4227 return false;
4228 }
4229
4230 static void blk_mq_poll_stats_start(struct request_queue *q)
4231 {
4232 /*
4233 * We don't arm the callback if polling stats are not enabled or the
4234 * callback is already active.
4235 */
4236 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4237 blk_stat_is_active(q->poll_cb))
4238 return;
4239
4240 blk_stat_activate_msecs(q->poll_cb, 100);
4241 }
4242
4243 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4244 {
4245 struct request_queue *q = cb->data;
4246 int bucket;
4247
4248 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4249 if (cb->stat[bucket].nr_samples)
4250 q->poll_stat[bucket] = cb->stat[bucket];
4251 }
4252 }
4253
4254 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4255 struct request *rq)
4256 {
4257 unsigned long ret = 0;
4258 int bucket;
4259
4260 /*
4261 * If stats collection isn't on, don't sleep but turn it on for
4262 * future users
4263 */
4264 if (!blk_poll_stats_enable(q))
4265 return 0;
4266
4267 /*
4268 * As an optimistic guess, use half of the mean service time
4269 * for this type of request. We can (and should) make this smarter.
4270 * For instance, if the completion latencies are tight, we can
4271 * get closer than just half the mean. This is especially
4272 * important on devices where the completion latencies are longer
4273 * than ~10 usec. We do use the stats for the relevant IO size
4274 * if available which does lead to better estimates.
4275 */
4276 bucket = blk_mq_poll_stats_bkt(rq);
4277 if (bucket < 0)
4278 return ret;
4279
4280 if (q->poll_stat[bucket].nr_samples)
4281 ret = (q->poll_stat[bucket].mean + 1) / 2;
4282
4283 return ret;
4284 }
4285
4286 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4287 {
4288 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4289 struct request *rq = blk_qc_to_rq(hctx, qc);
4290 struct hrtimer_sleeper hs;
4291 enum hrtimer_mode mode;
4292 unsigned int nsecs;
4293 ktime_t kt;
4294
4295 /*
4296 * If a request has completed on queue that uses an I/O scheduler, we
4297 * won't get back a request from blk_qc_to_rq.
4298 */
4299 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4300 return false;
4301
4302 /*
4303 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4304 *
4305 * 0: use half of prev avg
4306 * >0: use this specific value
4307 */
4308 if (q->poll_nsec > 0)
4309 nsecs = q->poll_nsec;
4310 else
4311 nsecs = blk_mq_poll_nsecs(q, rq);
4312
4313 if (!nsecs)
4314 return false;
4315
4316 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4317
4318 /*
4319 * This will be replaced with the stats tracking code, using
4320 * 'avg_completion_time / 2' as the pre-sleep target.
4321 */
4322 kt = nsecs;
4323
4324 mode = HRTIMER_MODE_REL;
4325 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4326 hrtimer_set_expires(&hs.timer, kt);
4327
4328 do {
4329 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4330 break;
4331 set_current_state(TASK_UNINTERRUPTIBLE);
4332 hrtimer_sleeper_start_expires(&hs, mode);
4333 if (hs.task)
4334 io_schedule();
4335 hrtimer_cancel(&hs.timer);
4336 mode = HRTIMER_MODE_ABS;
4337 } while (hs.task && !signal_pending(current));
4338
4339 __set_current_state(TASK_RUNNING);
4340 destroy_hrtimer_on_stack(&hs.timer);
4341
4342 /*
4343 * If we sleep, have the caller restart the poll loop to reset the
4344 * state. Like for the other success return cases, the caller is
4345 * responsible for checking if the IO completed. If the IO isn't
4346 * complete, we'll get called again and will go straight to the busy
4347 * poll loop.
4348 */
4349 return true;
4350 }
4351
4352 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4353 struct io_comp_batch *iob, unsigned int flags)
4354 {
4355 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4356 long state = get_current_state();
4357 int ret;
4358
4359 do {
4360 ret = q->mq_ops->poll(hctx, iob);
4361 if (ret > 0) {
4362 __set_current_state(TASK_RUNNING);
4363 return ret;
4364 }
4365
4366 if (signal_pending_state(state, current))
4367 __set_current_state(TASK_RUNNING);
4368 if (task_is_running(current))
4369 return 1;
4370
4371 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4372 break;
4373 cpu_relax();
4374 } while (!need_resched());
4375
4376 __set_current_state(TASK_RUNNING);
4377 return 0;
4378 }
4379
4380 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4381 unsigned int flags)
4382 {
4383 if (!(flags & BLK_POLL_NOSLEEP) &&
4384 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4385 if (blk_mq_poll_hybrid(q, cookie))
4386 return 1;
4387 }
4388 return blk_mq_poll_classic(q, cookie, iob, flags);
4389 }
4390
4391 unsigned int blk_mq_rq_cpu(struct request *rq)
4392 {
4393 return rq->mq_ctx->cpu;
4394 }
4395 EXPORT_SYMBOL(blk_mq_rq_cpu);
4396
4397 static int __init blk_mq_init(void)
4398 {
4399 int i;
4400
4401 for_each_possible_cpu(i)
4402 init_llist_head(&per_cpu(blk_cpu_done, i));
4403 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4404
4405 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4406 "block/softirq:dead", NULL,
4407 blk_softirq_cpu_dead);
4408 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4409 blk_mq_hctx_notify_dead);
4410 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4411 blk_mq_hctx_notify_online,
4412 blk_mq_hctx_notify_offline);
4413 return 0;
4414 }
4415 subsys_initcall(blk_mq_init);