]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: abstract tag allocation out into sbitmap library
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36
37 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38
39 /*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44 return sbitmap_any_bit_set(&hctx->ctx_map);
45 }
46
47 /*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 }
56
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59 {
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 }
62
63 void blk_mq_freeze_queue_start(struct request_queue *q)
64 {
65 int freeze_depth;
66
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
71 }
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
76 {
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 }
79
80 /*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
84 void blk_freeze_queue(struct request_queue *q)
85 {
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95 }
96
97 void blk_mq_freeze_queue(struct request_queue *q)
98 {
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106
107 void blk_mq_unfreeze_queue(struct request_queue *q)
108 {
109 int freeze_depth;
110
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
116 }
117 }
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119
120 void blk_mq_wake_waiters(struct request_queue *q)
121 {
122 struct blk_mq_hw_ctx *hctx;
123 unsigned int i;
124
125 queue_for_each_hw_ctx(q, hctx, i)
126 if (blk_mq_hw_queue_mapped(hctx))
127 blk_mq_tag_wakeup_all(hctx->tags, true);
128
129 /*
130 * If we are called because the queue has now been marked as
131 * dying, we need to ensure that processes currently waiting on
132 * the queue are notified as well.
133 */
134 wake_up_all(&q->mq_freeze_wq);
135 }
136
137 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
138 {
139 return blk_mq_has_free_tags(hctx->tags);
140 }
141 EXPORT_SYMBOL(blk_mq_can_queue);
142
143 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
144 struct request *rq, int op,
145 unsigned int op_flags)
146 {
147 if (blk_queue_io_stat(q))
148 op_flags |= REQ_IO_STAT;
149
150 INIT_LIST_HEAD(&rq->queuelist);
151 /* csd/requeue_work/fifo_time is initialized before use */
152 rq->q = q;
153 rq->mq_ctx = ctx;
154 req_set_op_attrs(rq, op, op_flags);
155 /* do not touch atomic flags, it needs atomic ops against the timer */
156 rq->cpu = -1;
157 INIT_HLIST_NODE(&rq->hash);
158 RB_CLEAR_NODE(&rq->rb_node);
159 rq->rq_disk = NULL;
160 rq->part = NULL;
161 rq->start_time = jiffies;
162 #ifdef CONFIG_BLK_CGROUP
163 rq->rl = NULL;
164 set_start_time_ns(rq);
165 rq->io_start_time_ns = 0;
166 #endif
167 rq->nr_phys_segments = 0;
168 #if defined(CONFIG_BLK_DEV_INTEGRITY)
169 rq->nr_integrity_segments = 0;
170 #endif
171 rq->special = NULL;
172 /* tag was already set */
173 rq->errors = 0;
174
175 rq->cmd = rq->__cmd;
176
177 rq->extra_len = 0;
178 rq->sense_len = 0;
179 rq->resid_len = 0;
180 rq->sense = NULL;
181
182 INIT_LIST_HEAD(&rq->timeout_list);
183 rq->timeout = 0;
184
185 rq->end_io = NULL;
186 rq->end_io_data = NULL;
187 rq->next_rq = NULL;
188
189 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
190 }
191
192 static struct request *
193 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
194 {
195 struct request *rq;
196 unsigned int tag;
197
198 tag = blk_mq_get_tag(data);
199 if (tag != BLK_MQ_TAG_FAIL) {
200 rq = data->hctx->tags->rqs[tag];
201
202 if (blk_mq_tag_busy(data->hctx)) {
203 rq->cmd_flags = REQ_MQ_INFLIGHT;
204 atomic_inc(&data->hctx->nr_active);
205 }
206
207 rq->tag = tag;
208 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
209 return rq;
210 }
211
212 return NULL;
213 }
214
215 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
216 unsigned int flags)
217 {
218 struct blk_mq_ctx *ctx;
219 struct blk_mq_hw_ctx *hctx;
220 struct request *rq;
221 struct blk_mq_alloc_data alloc_data;
222 int ret;
223
224 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
225 if (ret)
226 return ERR_PTR(ret);
227
228 ctx = blk_mq_get_ctx(q);
229 hctx = q->mq_ops->map_queue(q, ctx->cpu);
230 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
231
232 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
233 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
234 __blk_mq_run_hw_queue(hctx);
235 blk_mq_put_ctx(ctx);
236
237 ctx = blk_mq_get_ctx(q);
238 hctx = q->mq_ops->map_queue(q, ctx->cpu);
239 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
240 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
241 ctx = alloc_data.ctx;
242 }
243 blk_mq_put_ctx(ctx);
244 if (!rq) {
245 blk_queue_exit(q);
246 return ERR_PTR(-EWOULDBLOCK);
247 }
248
249 rq->__data_len = 0;
250 rq->__sector = (sector_t) -1;
251 rq->bio = rq->biotail = NULL;
252 return rq;
253 }
254 EXPORT_SYMBOL(blk_mq_alloc_request);
255
256 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
257 unsigned int flags, unsigned int hctx_idx)
258 {
259 struct blk_mq_hw_ctx *hctx;
260 struct blk_mq_ctx *ctx;
261 struct request *rq;
262 struct blk_mq_alloc_data alloc_data;
263 int ret;
264
265 /*
266 * If the tag allocator sleeps we could get an allocation for a
267 * different hardware context. No need to complicate the low level
268 * allocator for this for the rare use case of a command tied to
269 * a specific queue.
270 */
271 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
272 return ERR_PTR(-EINVAL);
273
274 if (hctx_idx >= q->nr_hw_queues)
275 return ERR_PTR(-EIO);
276
277 ret = blk_queue_enter(q, true);
278 if (ret)
279 return ERR_PTR(ret);
280
281 hctx = q->queue_hw_ctx[hctx_idx];
282 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
283
284 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
285 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
286 if (!rq) {
287 blk_queue_exit(q);
288 return ERR_PTR(-EWOULDBLOCK);
289 }
290
291 return rq;
292 }
293 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
294
295 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
296 struct blk_mq_ctx *ctx, struct request *rq)
297 {
298 const int tag = rq->tag;
299 struct request_queue *q = rq->q;
300
301 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
302 atomic_dec(&hctx->nr_active);
303 rq->cmd_flags = 0;
304
305 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
306 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
307 blk_queue_exit(q);
308 }
309
310 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
311 {
312 struct blk_mq_ctx *ctx = rq->mq_ctx;
313
314 ctx->rq_completed[rq_is_sync(rq)]++;
315 __blk_mq_free_request(hctx, ctx, rq);
316
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
319
320 void blk_mq_free_request(struct request *rq)
321 {
322 struct blk_mq_hw_ctx *hctx;
323 struct request_queue *q = rq->q;
324
325 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
326 blk_mq_free_hctx_request(hctx, rq);
327 }
328 EXPORT_SYMBOL_GPL(blk_mq_free_request);
329
330 inline void __blk_mq_end_request(struct request *rq, int error)
331 {
332 blk_account_io_done(rq);
333
334 if (rq->end_io) {
335 rq->end_io(rq, error);
336 } else {
337 if (unlikely(blk_bidi_rq(rq)))
338 blk_mq_free_request(rq->next_rq);
339 blk_mq_free_request(rq);
340 }
341 }
342 EXPORT_SYMBOL(__blk_mq_end_request);
343
344 void blk_mq_end_request(struct request *rq, int error)
345 {
346 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
347 BUG();
348 __blk_mq_end_request(rq, error);
349 }
350 EXPORT_SYMBOL(blk_mq_end_request);
351
352 static void __blk_mq_complete_request_remote(void *data)
353 {
354 struct request *rq = data;
355
356 rq->q->softirq_done_fn(rq);
357 }
358
359 static void blk_mq_ipi_complete_request(struct request *rq)
360 {
361 struct blk_mq_ctx *ctx = rq->mq_ctx;
362 bool shared = false;
363 int cpu;
364
365 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
366 rq->q->softirq_done_fn(rq);
367 return;
368 }
369
370 cpu = get_cpu();
371 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
372 shared = cpus_share_cache(cpu, ctx->cpu);
373
374 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
375 rq->csd.func = __blk_mq_complete_request_remote;
376 rq->csd.info = rq;
377 rq->csd.flags = 0;
378 smp_call_function_single_async(ctx->cpu, &rq->csd);
379 } else {
380 rq->q->softirq_done_fn(rq);
381 }
382 put_cpu();
383 }
384
385 static void __blk_mq_complete_request(struct request *rq)
386 {
387 struct request_queue *q = rq->q;
388
389 if (!q->softirq_done_fn)
390 blk_mq_end_request(rq, rq->errors);
391 else
392 blk_mq_ipi_complete_request(rq);
393 }
394
395 /**
396 * blk_mq_complete_request - end I/O on a request
397 * @rq: the request being processed
398 *
399 * Description:
400 * Ends all I/O on a request. It does not handle partial completions.
401 * The actual completion happens out-of-order, through a IPI handler.
402 **/
403 void blk_mq_complete_request(struct request *rq, int error)
404 {
405 struct request_queue *q = rq->q;
406
407 if (unlikely(blk_should_fake_timeout(q)))
408 return;
409 if (!blk_mark_rq_complete(rq)) {
410 rq->errors = error;
411 __blk_mq_complete_request(rq);
412 }
413 }
414 EXPORT_SYMBOL(blk_mq_complete_request);
415
416 int blk_mq_request_started(struct request *rq)
417 {
418 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
419 }
420 EXPORT_SYMBOL_GPL(blk_mq_request_started);
421
422 void blk_mq_start_request(struct request *rq)
423 {
424 struct request_queue *q = rq->q;
425
426 trace_block_rq_issue(q, rq);
427
428 rq->resid_len = blk_rq_bytes(rq);
429 if (unlikely(blk_bidi_rq(rq)))
430 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
431
432 blk_add_timer(rq);
433
434 /*
435 * Ensure that ->deadline is visible before set the started
436 * flag and clear the completed flag.
437 */
438 smp_mb__before_atomic();
439
440 /*
441 * Mark us as started and clear complete. Complete might have been
442 * set if requeue raced with timeout, which then marked it as
443 * complete. So be sure to clear complete again when we start
444 * the request, otherwise we'll ignore the completion event.
445 */
446 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
447 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
448 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
449 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
450
451 if (q->dma_drain_size && blk_rq_bytes(rq)) {
452 /*
453 * Make sure space for the drain appears. We know we can do
454 * this because max_hw_segments has been adjusted to be one
455 * fewer than the device can handle.
456 */
457 rq->nr_phys_segments++;
458 }
459 }
460 EXPORT_SYMBOL(blk_mq_start_request);
461
462 static void __blk_mq_requeue_request(struct request *rq)
463 {
464 struct request_queue *q = rq->q;
465
466 trace_block_rq_requeue(q, rq);
467
468 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
469 if (q->dma_drain_size && blk_rq_bytes(rq))
470 rq->nr_phys_segments--;
471 }
472 }
473
474 void blk_mq_requeue_request(struct request *rq)
475 {
476 __blk_mq_requeue_request(rq);
477
478 BUG_ON(blk_queued_rq(rq));
479 blk_mq_add_to_requeue_list(rq, true);
480 }
481 EXPORT_SYMBOL(blk_mq_requeue_request);
482
483 static void blk_mq_requeue_work(struct work_struct *work)
484 {
485 struct request_queue *q =
486 container_of(work, struct request_queue, requeue_work.work);
487 LIST_HEAD(rq_list);
488 struct request *rq, *next;
489 unsigned long flags;
490
491 spin_lock_irqsave(&q->requeue_lock, flags);
492 list_splice_init(&q->requeue_list, &rq_list);
493 spin_unlock_irqrestore(&q->requeue_lock, flags);
494
495 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
496 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
497 continue;
498
499 rq->cmd_flags &= ~REQ_SOFTBARRIER;
500 list_del_init(&rq->queuelist);
501 blk_mq_insert_request(rq, true, false, false);
502 }
503
504 while (!list_empty(&rq_list)) {
505 rq = list_entry(rq_list.next, struct request, queuelist);
506 list_del_init(&rq->queuelist);
507 blk_mq_insert_request(rq, false, false, false);
508 }
509
510 /*
511 * Use the start variant of queue running here, so that running
512 * the requeue work will kick stopped queues.
513 */
514 blk_mq_start_hw_queues(q);
515 }
516
517 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
518 {
519 struct request_queue *q = rq->q;
520 unsigned long flags;
521
522 /*
523 * We abuse this flag that is otherwise used by the I/O scheduler to
524 * request head insertation from the workqueue.
525 */
526 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
527
528 spin_lock_irqsave(&q->requeue_lock, flags);
529 if (at_head) {
530 rq->cmd_flags |= REQ_SOFTBARRIER;
531 list_add(&rq->queuelist, &q->requeue_list);
532 } else {
533 list_add_tail(&rq->queuelist, &q->requeue_list);
534 }
535 spin_unlock_irqrestore(&q->requeue_lock, flags);
536 }
537 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
538
539 void blk_mq_cancel_requeue_work(struct request_queue *q)
540 {
541 cancel_delayed_work_sync(&q->requeue_work);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
544
545 void blk_mq_kick_requeue_list(struct request_queue *q)
546 {
547 kblockd_schedule_delayed_work(&q->requeue_work, 0);
548 }
549 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
550
551 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
552 unsigned long msecs)
553 {
554 kblockd_schedule_delayed_work(&q->requeue_work,
555 msecs_to_jiffies(msecs));
556 }
557 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
558
559 void blk_mq_abort_requeue_list(struct request_queue *q)
560 {
561 unsigned long flags;
562 LIST_HEAD(rq_list);
563
564 spin_lock_irqsave(&q->requeue_lock, flags);
565 list_splice_init(&q->requeue_list, &rq_list);
566 spin_unlock_irqrestore(&q->requeue_lock, flags);
567
568 while (!list_empty(&rq_list)) {
569 struct request *rq;
570
571 rq = list_first_entry(&rq_list, struct request, queuelist);
572 list_del_init(&rq->queuelist);
573 rq->errors = -EIO;
574 blk_mq_end_request(rq, rq->errors);
575 }
576 }
577 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
578
579 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
580 {
581 if (tag < tags->nr_tags) {
582 prefetch(tags->rqs[tag]);
583 return tags->rqs[tag];
584 }
585
586 return NULL;
587 }
588 EXPORT_SYMBOL(blk_mq_tag_to_rq);
589
590 struct blk_mq_timeout_data {
591 unsigned long next;
592 unsigned int next_set;
593 };
594
595 void blk_mq_rq_timed_out(struct request *req, bool reserved)
596 {
597 struct blk_mq_ops *ops = req->q->mq_ops;
598 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
599
600 /*
601 * We know that complete is set at this point. If STARTED isn't set
602 * anymore, then the request isn't active and the "timeout" should
603 * just be ignored. This can happen due to the bitflag ordering.
604 * Timeout first checks if STARTED is set, and if it is, assumes
605 * the request is active. But if we race with completion, then
606 * we both flags will get cleared. So check here again, and ignore
607 * a timeout event with a request that isn't active.
608 */
609 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
610 return;
611
612 if (ops->timeout)
613 ret = ops->timeout(req, reserved);
614
615 switch (ret) {
616 case BLK_EH_HANDLED:
617 __blk_mq_complete_request(req);
618 break;
619 case BLK_EH_RESET_TIMER:
620 blk_add_timer(req);
621 blk_clear_rq_complete(req);
622 break;
623 case BLK_EH_NOT_HANDLED:
624 break;
625 default:
626 printk(KERN_ERR "block: bad eh return: %d\n", ret);
627 break;
628 }
629 }
630
631 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
632 struct request *rq, void *priv, bool reserved)
633 {
634 struct blk_mq_timeout_data *data = priv;
635
636 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
637 /*
638 * If a request wasn't started before the queue was
639 * marked dying, kill it here or it'll go unnoticed.
640 */
641 if (unlikely(blk_queue_dying(rq->q))) {
642 rq->errors = -EIO;
643 blk_mq_end_request(rq, rq->errors);
644 }
645 return;
646 }
647
648 if (time_after_eq(jiffies, rq->deadline)) {
649 if (!blk_mark_rq_complete(rq))
650 blk_mq_rq_timed_out(rq, reserved);
651 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
652 data->next = rq->deadline;
653 data->next_set = 1;
654 }
655 }
656
657 static void blk_mq_timeout_work(struct work_struct *work)
658 {
659 struct request_queue *q =
660 container_of(work, struct request_queue, timeout_work);
661 struct blk_mq_timeout_data data = {
662 .next = 0,
663 .next_set = 0,
664 };
665 int i;
666
667 /* A deadlock might occur if a request is stuck requiring a
668 * timeout at the same time a queue freeze is waiting
669 * completion, since the timeout code would not be able to
670 * acquire the queue reference here.
671 *
672 * That's why we don't use blk_queue_enter here; instead, we use
673 * percpu_ref_tryget directly, because we need to be able to
674 * obtain a reference even in the short window between the queue
675 * starting to freeze, by dropping the first reference in
676 * blk_mq_freeze_queue_start, and the moment the last request is
677 * consumed, marked by the instant q_usage_counter reaches
678 * zero.
679 */
680 if (!percpu_ref_tryget(&q->q_usage_counter))
681 return;
682
683 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
684
685 if (data.next_set) {
686 data.next = blk_rq_timeout(round_jiffies_up(data.next));
687 mod_timer(&q->timeout, data.next);
688 } else {
689 struct blk_mq_hw_ctx *hctx;
690
691 queue_for_each_hw_ctx(q, hctx, i) {
692 /* the hctx may be unmapped, so check it here */
693 if (blk_mq_hw_queue_mapped(hctx))
694 blk_mq_tag_idle(hctx);
695 }
696 }
697 blk_queue_exit(q);
698 }
699
700 /*
701 * Reverse check our software queue for entries that we could potentially
702 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
703 * too much time checking for merges.
704 */
705 static bool blk_mq_attempt_merge(struct request_queue *q,
706 struct blk_mq_ctx *ctx, struct bio *bio)
707 {
708 struct request *rq;
709 int checked = 8;
710
711 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
712 int el_ret;
713
714 if (!checked--)
715 break;
716
717 if (!blk_rq_merge_ok(rq, bio))
718 continue;
719
720 el_ret = blk_try_merge(rq, bio);
721 if (el_ret == ELEVATOR_BACK_MERGE) {
722 if (bio_attempt_back_merge(q, rq, bio)) {
723 ctx->rq_merged++;
724 return true;
725 }
726 break;
727 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
728 if (bio_attempt_front_merge(q, rq, bio)) {
729 ctx->rq_merged++;
730 return true;
731 }
732 break;
733 }
734 }
735
736 return false;
737 }
738
739 struct flush_busy_ctx_data {
740 struct blk_mq_hw_ctx *hctx;
741 struct list_head *list;
742 };
743
744 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
745 {
746 struct flush_busy_ctx_data *flush_data = data;
747 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
748 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
749
750 sbitmap_clear_bit(sb, bitnr);
751 spin_lock(&ctx->lock);
752 list_splice_tail_init(&ctx->rq_list, flush_data->list);
753 spin_unlock(&ctx->lock);
754 return true;
755 }
756
757 /*
758 * Process software queues that have been marked busy, splicing them
759 * to the for-dispatch
760 */
761 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
762 {
763 struct flush_busy_ctx_data data = {
764 .hctx = hctx,
765 .list = list,
766 };
767
768 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
769 }
770
771 static inline unsigned int queued_to_index(unsigned int queued)
772 {
773 if (!queued)
774 return 0;
775
776 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
777 }
778
779 /*
780 * Run this hardware queue, pulling any software queues mapped to it in.
781 * Note that this function currently has various problems around ordering
782 * of IO. In particular, we'd like FIFO behaviour on handling existing
783 * items on the hctx->dispatch list. Ignore that for now.
784 */
785 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
786 {
787 struct request_queue *q = hctx->queue;
788 struct request *rq;
789 LIST_HEAD(rq_list);
790 LIST_HEAD(driver_list);
791 struct list_head *dptr;
792 int queued;
793
794 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
795 return;
796
797 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
798 cpu_online(hctx->next_cpu));
799
800 hctx->run++;
801
802 /*
803 * Touch any software queue that has pending entries.
804 */
805 flush_busy_ctxs(hctx, &rq_list);
806
807 /*
808 * If we have previous entries on our dispatch list, grab them
809 * and stuff them at the front for more fair dispatch.
810 */
811 if (!list_empty_careful(&hctx->dispatch)) {
812 spin_lock(&hctx->lock);
813 if (!list_empty(&hctx->dispatch))
814 list_splice_init(&hctx->dispatch, &rq_list);
815 spin_unlock(&hctx->lock);
816 }
817
818 /*
819 * Start off with dptr being NULL, so we start the first request
820 * immediately, even if we have more pending.
821 */
822 dptr = NULL;
823
824 /*
825 * Now process all the entries, sending them to the driver.
826 */
827 queued = 0;
828 while (!list_empty(&rq_list)) {
829 struct blk_mq_queue_data bd;
830 int ret;
831
832 rq = list_first_entry(&rq_list, struct request, queuelist);
833 list_del_init(&rq->queuelist);
834
835 bd.rq = rq;
836 bd.list = dptr;
837 bd.last = list_empty(&rq_list);
838
839 ret = q->mq_ops->queue_rq(hctx, &bd);
840 switch (ret) {
841 case BLK_MQ_RQ_QUEUE_OK:
842 queued++;
843 break;
844 case BLK_MQ_RQ_QUEUE_BUSY:
845 list_add(&rq->queuelist, &rq_list);
846 __blk_mq_requeue_request(rq);
847 break;
848 default:
849 pr_err("blk-mq: bad return on queue: %d\n", ret);
850 case BLK_MQ_RQ_QUEUE_ERROR:
851 rq->errors = -EIO;
852 blk_mq_end_request(rq, rq->errors);
853 break;
854 }
855
856 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
857 break;
858
859 /*
860 * We've done the first request. If we have more than 1
861 * left in the list, set dptr to defer issue.
862 */
863 if (!dptr && rq_list.next != rq_list.prev)
864 dptr = &driver_list;
865 }
866
867 hctx->dispatched[queued_to_index(queued)]++;
868
869 /*
870 * Any items that need requeuing? Stuff them into hctx->dispatch,
871 * that is where we will continue on next queue run.
872 */
873 if (!list_empty(&rq_list)) {
874 spin_lock(&hctx->lock);
875 list_splice(&rq_list, &hctx->dispatch);
876 spin_unlock(&hctx->lock);
877 /*
878 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
879 * it's possible the queue is stopped and restarted again
880 * before this. Queue restart will dispatch requests. And since
881 * requests in rq_list aren't added into hctx->dispatch yet,
882 * the requests in rq_list might get lost.
883 *
884 * blk_mq_run_hw_queue() already checks the STOPPED bit
885 **/
886 blk_mq_run_hw_queue(hctx, true);
887 }
888 }
889
890 /*
891 * It'd be great if the workqueue API had a way to pass
892 * in a mask and had some smarts for more clever placement.
893 * For now we just round-robin here, switching for every
894 * BLK_MQ_CPU_WORK_BATCH queued items.
895 */
896 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
897 {
898 if (hctx->queue->nr_hw_queues == 1)
899 return WORK_CPU_UNBOUND;
900
901 if (--hctx->next_cpu_batch <= 0) {
902 int cpu = hctx->next_cpu, next_cpu;
903
904 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
905 if (next_cpu >= nr_cpu_ids)
906 next_cpu = cpumask_first(hctx->cpumask);
907
908 hctx->next_cpu = next_cpu;
909 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
910
911 return cpu;
912 }
913
914 return hctx->next_cpu;
915 }
916
917 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
918 {
919 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
920 !blk_mq_hw_queue_mapped(hctx)))
921 return;
922
923 if (!async) {
924 int cpu = get_cpu();
925 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
926 __blk_mq_run_hw_queue(hctx);
927 put_cpu();
928 return;
929 }
930
931 put_cpu();
932 }
933
934 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
935 }
936
937 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
938 {
939 struct blk_mq_hw_ctx *hctx;
940 int i;
941
942 queue_for_each_hw_ctx(q, hctx, i) {
943 if ((!blk_mq_hctx_has_pending(hctx) &&
944 list_empty_careful(&hctx->dispatch)) ||
945 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
946 continue;
947
948 blk_mq_run_hw_queue(hctx, async);
949 }
950 }
951 EXPORT_SYMBOL(blk_mq_run_hw_queues);
952
953 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
954 {
955 cancel_work(&hctx->run_work);
956 cancel_delayed_work(&hctx->delay_work);
957 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
958 }
959 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
960
961 void blk_mq_stop_hw_queues(struct request_queue *q)
962 {
963 struct blk_mq_hw_ctx *hctx;
964 int i;
965
966 queue_for_each_hw_ctx(q, hctx, i)
967 blk_mq_stop_hw_queue(hctx);
968 }
969 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
970
971 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
972 {
973 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
974
975 blk_mq_run_hw_queue(hctx, false);
976 }
977 EXPORT_SYMBOL(blk_mq_start_hw_queue);
978
979 void blk_mq_start_hw_queues(struct request_queue *q)
980 {
981 struct blk_mq_hw_ctx *hctx;
982 int i;
983
984 queue_for_each_hw_ctx(q, hctx, i)
985 blk_mq_start_hw_queue(hctx);
986 }
987 EXPORT_SYMBOL(blk_mq_start_hw_queues);
988
989 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
990 {
991 struct blk_mq_hw_ctx *hctx;
992 int i;
993
994 queue_for_each_hw_ctx(q, hctx, i) {
995 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
996 continue;
997
998 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
999 blk_mq_run_hw_queue(hctx, async);
1000 }
1001 }
1002 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1003
1004 static void blk_mq_run_work_fn(struct work_struct *work)
1005 {
1006 struct blk_mq_hw_ctx *hctx;
1007
1008 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1009
1010 __blk_mq_run_hw_queue(hctx);
1011 }
1012
1013 static void blk_mq_delay_work_fn(struct work_struct *work)
1014 {
1015 struct blk_mq_hw_ctx *hctx;
1016
1017 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1018
1019 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1020 __blk_mq_run_hw_queue(hctx);
1021 }
1022
1023 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1024 {
1025 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1026 return;
1027
1028 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1029 &hctx->delay_work, msecs_to_jiffies(msecs));
1030 }
1031 EXPORT_SYMBOL(blk_mq_delay_queue);
1032
1033 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1034 struct request *rq,
1035 bool at_head)
1036 {
1037 struct blk_mq_ctx *ctx = rq->mq_ctx;
1038
1039 trace_block_rq_insert(hctx->queue, rq);
1040
1041 if (at_head)
1042 list_add(&rq->queuelist, &ctx->rq_list);
1043 else
1044 list_add_tail(&rq->queuelist, &ctx->rq_list);
1045 }
1046
1047 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1048 struct request *rq, bool at_head)
1049 {
1050 struct blk_mq_ctx *ctx = rq->mq_ctx;
1051
1052 __blk_mq_insert_req_list(hctx, rq, at_head);
1053 blk_mq_hctx_mark_pending(hctx, ctx);
1054 }
1055
1056 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1057 bool async)
1058 {
1059 struct blk_mq_ctx *ctx = rq->mq_ctx;
1060 struct request_queue *q = rq->q;
1061 struct blk_mq_hw_ctx *hctx;
1062
1063 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1064
1065 spin_lock(&ctx->lock);
1066 __blk_mq_insert_request(hctx, rq, at_head);
1067 spin_unlock(&ctx->lock);
1068
1069 if (run_queue)
1070 blk_mq_run_hw_queue(hctx, async);
1071 }
1072
1073 static void blk_mq_insert_requests(struct request_queue *q,
1074 struct blk_mq_ctx *ctx,
1075 struct list_head *list,
1076 int depth,
1077 bool from_schedule)
1078
1079 {
1080 struct blk_mq_hw_ctx *hctx;
1081
1082 trace_block_unplug(q, depth, !from_schedule);
1083
1084 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1085
1086 /*
1087 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1088 * offline now
1089 */
1090 spin_lock(&ctx->lock);
1091 while (!list_empty(list)) {
1092 struct request *rq;
1093
1094 rq = list_first_entry(list, struct request, queuelist);
1095 BUG_ON(rq->mq_ctx != ctx);
1096 list_del_init(&rq->queuelist);
1097 __blk_mq_insert_req_list(hctx, rq, false);
1098 }
1099 blk_mq_hctx_mark_pending(hctx, ctx);
1100 spin_unlock(&ctx->lock);
1101
1102 blk_mq_run_hw_queue(hctx, from_schedule);
1103 }
1104
1105 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1106 {
1107 struct request *rqa = container_of(a, struct request, queuelist);
1108 struct request *rqb = container_of(b, struct request, queuelist);
1109
1110 return !(rqa->mq_ctx < rqb->mq_ctx ||
1111 (rqa->mq_ctx == rqb->mq_ctx &&
1112 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1113 }
1114
1115 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1116 {
1117 struct blk_mq_ctx *this_ctx;
1118 struct request_queue *this_q;
1119 struct request *rq;
1120 LIST_HEAD(list);
1121 LIST_HEAD(ctx_list);
1122 unsigned int depth;
1123
1124 list_splice_init(&plug->mq_list, &list);
1125
1126 list_sort(NULL, &list, plug_ctx_cmp);
1127
1128 this_q = NULL;
1129 this_ctx = NULL;
1130 depth = 0;
1131
1132 while (!list_empty(&list)) {
1133 rq = list_entry_rq(list.next);
1134 list_del_init(&rq->queuelist);
1135 BUG_ON(!rq->q);
1136 if (rq->mq_ctx != this_ctx) {
1137 if (this_ctx) {
1138 blk_mq_insert_requests(this_q, this_ctx,
1139 &ctx_list, depth,
1140 from_schedule);
1141 }
1142
1143 this_ctx = rq->mq_ctx;
1144 this_q = rq->q;
1145 depth = 0;
1146 }
1147
1148 depth++;
1149 list_add_tail(&rq->queuelist, &ctx_list);
1150 }
1151
1152 /*
1153 * If 'this_ctx' is set, we know we have entries to complete
1154 * on 'ctx_list'. Do those.
1155 */
1156 if (this_ctx) {
1157 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1158 from_schedule);
1159 }
1160 }
1161
1162 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1163 {
1164 init_request_from_bio(rq, bio);
1165
1166 blk_account_io_start(rq, 1);
1167 }
1168
1169 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1170 {
1171 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1172 !blk_queue_nomerges(hctx->queue);
1173 }
1174
1175 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1176 struct blk_mq_ctx *ctx,
1177 struct request *rq, struct bio *bio)
1178 {
1179 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1180 blk_mq_bio_to_request(rq, bio);
1181 spin_lock(&ctx->lock);
1182 insert_rq:
1183 __blk_mq_insert_request(hctx, rq, false);
1184 spin_unlock(&ctx->lock);
1185 return false;
1186 } else {
1187 struct request_queue *q = hctx->queue;
1188
1189 spin_lock(&ctx->lock);
1190 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1191 blk_mq_bio_to_request(rq, bio);
1192 goto insert_rq;
1193 }
1194
1195 spin_unlock(&ctx->lock);
1196 __blk_mq_free_request(hctx, ctx, rq);
1197 return true;
1198 }
1199 }
1200
1201 struct blk_map_ctx {
1202 struct blk_mq_hw_ctx *hctx;
1203 struct blk_mq_ctx *ctx;
1204 };
1205
1206 static struct request *blk_mq_map_request(struct request_queue *q,
1207 struct bio *bio,
1208 struct blk_map_ctx *data)
1209 {
1210 struct blk_mq_hw_ctx *hctx;
1211 struct blk_mq_ctx *ctx;
1212 struct request *rq;
1213 int op = bio_data_dir(bio);
1214 int op_flags = 0;
1215 struct blk_mq_alloc_data alloc_data;
1216
1217 blk_queue_enter_live(q);
1218 ctx = blk_mq_get_ctx(q);
1219 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1220
1221 if (rw_is_sync(bio_op(bio), bio->bi_opf))
1222 op_flags |= REQ_SYNC;
1223
1224 trace_block_getrq(q, bio, op);
1225 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1226 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1227 if (unlikely(!rq)) {
1228 __blk_mq_run_hw_queue(hctx);
1229 blk_mq_put_ctx(ctx);
1230 trace_block_sleeprq(q, bio, op);
1231
1232 ctx = blk_mq_get_ctx(q);
1233 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1234 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1235 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1236 ctx = alloc_data.ctx;
1237 hctx = alloc_data.hctx;
1238 }
1239
1240 hctx->queued++;
1241 data->hctx = hctx;
1242 data->ctx = ctx;
1243 return rq;
1244 }
1245
1246 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1247 {
1248 int ret;
1249 struct request_queue *q = rq->q;
1250 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1251 rq->mq_ctx->cpu);
1252 struct blk_mq_queue_data bd = {
1253 .rq = rq,
1254 .list = NULL,
1255 .last = 1
1256 };
1257 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1258
1259 /*
1260 * For OK queue, we are done. For error, kill it. Any other
1261 * error (busy), just add it to our list as we previously
1262 * would have done
1263 */
1264 ret = q->mq_ops->queue_rq(hctx, &bd);
1265 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1266 *cookie = new_cookie;
1267 return 0;
1268 }
1269
1270 __blk_mq_requeue_request(rq);
1271
1272 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1273 *cookie = BLK_QC_T_NONE;
1274 rq->errors = -EIO;
1275 blk_mq_end_request(rq, rq->errors);
1276 return 0;
1277 }
1278
1279 return -1;
1280 }
1281
1282 /*
1283 * Multiple hardware queue variant. This will not use per-process plugs,
1284 * but will attempt to bypass the hctx queueing if we can go straight to
1285 * hardware for SYNC IO.
1286 */
1287 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1288 {
1289 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1290 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1291 struct blk_map_ctx data;
1292 struct request *rq;
1293 unsigned int request_count = 0;
1294 struct blk_plug *plug;
1295 struct request *same_queue_rq = NULL;
1296 blk_qc_t cookie;
1297
1298 blk_queue_bounce(q, &bio);
1299
1300 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1301 bio_io_error(bio);
1302 return BLK_QC_T_NONE;
1303 }
1304
1305 blk_queue_split(q, &bio, q->bio_split);
1306
1307 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1308 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1309 return BLK_QC_T_NONE;
1310
1311 rq = blk_mq_map_request(q, bio, &data);
1312 if (unlikely(!rq))
1313 return BLK_QC_T_NONE;
1314
1315 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1316
1317 if (unlikely(is_flush_fua)) {
1318 blk_mq_bio_to_request(rq, bio);
1319 blk_insert_flush(rq);
1320 goto run_queue;
1321 }
1322
1323 plug = current->plug;
1324 /*
1325 * If the driver supports defer issued based on 'last', then
1326 * queue it up like normal since we can potentially save some
1327 * CPU this way.
1328 */
1329 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1330 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1331 struct request *old_rq = NULL;
1332
1333 blk_mq_bio_to_request(rq, bio);
1334
1335 /*
1336 * We do limited pluging. If the bio can be merged, do that.
1337 * Otherwise the existing request in the plug list will be
1338 * issued. So the plug list will have one request at most
1339 */
1340 if (plug) {
1341 /*
1342 * The plug list might get flushed before this. If that
1343 * happens, same_queue_rq is invalid and plug list is
1344 * empty
1345 */
1346 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1347 old_rq = same_queue_rq;
1348 list_del_init(&old_rq->queuelist);
1349 }
1350 list_add_tail(&rq->queuelist, &plug->mq_list);
1351 } else /* is_sync */
1352 old_rq = rq;
1353 blk_mq_put_ctx(data.ctx);
1354 if (!old_rq)
1355 goto done;
1356 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1357 goto done;
1358 blk_mq_insert_request(old_rq, false, true, true);
1359 goto done;
1360 }
1361
1362 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1363 /*
1364 * For a SYNC request, send it to the hardware immediately. For
1365 * an ASYNC request, just ensure that we run it later on. The
1366 * latter allows for merging opportunities and more efficient
1367 * dispatching.
1368 */
1369 run_queue:
1370 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1371 }
1372 blk_mq_put_ctx(data.ctx);
1373 done:
1374 return cookie;
1375 }
1376
1377 /*
1378 * Single hardware queue variant. This will attempt to use any per-process
1379 * plug for merging and IO deferral.
1380 */
1381 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1382 {
1383 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1384 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1385 struct blk_plug *plug;
1386 unsigned int request_count = 0;
1387 struct blk_map_ctx data;
1388 struct request *rq;
1389 blk_qc_t cookie;
1390
1391 blk_queue_bounce(q, &bio);
1392
1393 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1394 bio_io_error(bio);
1395 return BLK_QC_T_NONE;
1396 }
1397
1398 blk_queue_split(q, &bio, q->bio_split);
1399
1400 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1401 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1402 return BLK_QC_T_NONE;
1403 } else
1404 request_count = blk_plug_queued_count(q);
1405
1406 rq = blk_mq_map_request(q, bio, &data);
1407 if (unlikely(!rq))
1408 return BLK_QC_T_NONE;
1409
1410 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1411
1412 if (unlikely(is_flush_fua)) {
1413 blk_mq_bio_to_request(rq, bio);
1414 blk_insert_flush(rq);
1415 goto run_queue;
1416 }
1417
1418 /*
1419 * A task plug currently exists. Since this is completely lockless,
1420 * utilize that to temporarily store requests until the task is
1421 * either done or scheduled away.
1422 */
1423 plug = current->plug;
1424 if (plug) {
1425 blk_mq_bio_to_request(rq, bio);
1426 if (!request_count)
1427 trace_block_plug(q);
1428
1429 blk_mq_put_ctx(data.ctx);
1430
1431 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1432 blk_flush_plug_list(plug, false);
1433 trace_block_plug(q);
1434 }
1435
1436 list_add_tail(&rq->queuelist, &plug->mq_list);
1437 return cookie;
1438 }
1439
1440 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1441 /*
1442 * For a SYNC request, send it to the hardware immediately. For
1443 * an ASYNC request, just ensure that we run it later on. The
1444 * latter allows for merging opportunities and more efficient
1445 * dispatching.
1446 */
1447 run_queue:
1448 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1449 }
1450
1451 blk_mq_put_ctx(data.ctx);
1452 return cookie;
1453 }
1454
1455 /*
1456 * Default mapping to a software queue, since we use one per CPU.
1457 */
1458 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1459 {
1460 return q->queue_hw_ctx[q->mq_map[cpu]];
1461 }
1462 EXPORT_SYMBOL(blk_mq_map_queue);
1463
1464 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1465 struct blk_mq_tags *tags, unsigned int hctx_idx)
1466 {
1467 struct page *page;
1468
1469 if (tags->rqs && set->ops->exit_request) {
1470 int i;
1471
1472 for (i = 0; i < tags->nr_tags; i++) {
1473 if (!tags->rqs[i])
1474 continue;
1475 set->ops->exit_request(set->driver_data, tags->rqs[i],
1476 hctx_idx, i);
1477 tags->rqs[i] = NULL;
1478 }
1479 }
1480
1481 while (!list_empty(&tags->page_list)) {
1482 page = list_first_entry(&tags->page_list, struct page, lru);
1483 list_del_init(&page->lru);
1484 /*
1485 * Remove kmemleak object previously allocated in
1486 * blk_mq_init_rq_map().
1487 */
1488 kmemleak_free(page_address(page));
1489 __free_pages(page, page->private);
1490 }
1491
1492 kfree(tags->rqs);
1493
1494 blk_mq_free_tags(tags);
1495 }
1496
1497 static size_t order_to_size(unsigned int order)
1498 {
1499 return (size_t)PAGE_SIZE << order;
1500 }
1501
1502 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1503 unsigned int hctx_idx)
1504 {
1505 struct blk_mq_tags *tags;
1506 unsigned int i, j, entries_per_page, max_order = 4;
1507 size_t rq_size, left;
1508
1509 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1510 set->numa_node,
1511 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1512 if (!tags)
1513 return NULL;
1514
1515 INIT_LIST_HEAD(&tags->page_list);
1516
1517 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1518 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1519 set->numa_node);
1520 if (!tags->rqs) {
1521 blk_mq_free_tags(tags);
1522 return NULL;
1523 }
1524
1525 /*
1526 * rq_size is the size of the request plus driver payload, rounded
1527 * to the cacheline size
1528 */
1529 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1530 cache_line_size());
1531 left = rq_size * set->queue_depth;
1532
1533 for (i = 0; i < set->queue_depth; ) {
1534 int this_order = max_order;
1535 struct page *page;
1536 int to_do;
1537 void *p;
1538
1539 while (this_order && left < order_to_size(this_order - 1))
1540 this_order--;
1541
1542 do {
1543 page = alloc_pages_node(set->numa_node,
1544 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1545 this_order);
1546 if (page)
1547 break;
1548 if (!this_order--)
1549 break;
1550 if (order_to_size(this_order) < rq_size)
1551 break;
1552 } while (1);
1553
1554 if (!page)
1555 goto fail;
1556
1557 page->private = this_order;
1558 list_add_tail(&page->lru, &tags->page_list);
1559
1560 p = page_address(page);
1561 /*
1562 * Allow kmemleak to scan these pages as they contain pointers
1563 * to additional allocations like via ops->init_request().
1564 */
1565 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1566 entries_per_page = order_to_size(this_order) / rq_size;
1567 to_do = min(entries_per_page, set->queue_depth - i);
1568 left -= to_do * rq_size;
1569 for (j = 0; j < to_do; j++) {
1570 tags->rqs[i] = p;
1571 if (set->ops->init_request) {
1572 if (set->ops->init_request(set->driver_data,
1573 tags->rqs[i], hctx_idx, i,
1574 set->numa_node)) {
1575 tags->rqs[i] = NULL;
1576 goto fail;
1577 }
1578 }
1579
1580 p += rq_size;
1581 i++;
1582 }
1583 }
1584 return tags;
1585
1586 fail:
1587 blk_mq_free_rq_map(set, tags, hctx_idx);
1588 return NULL;
1589 }
1590
1591 /*
1592 * 'cpu' is going away. splice any existing rq_list entries from this
1593 * software queue to the hw queue dispatch list, and ensure that it
1594 * gets run.
1595 */
1596 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1597 {
1598 struct blk_mq_ctx *ctx;
1599 LIST_HEAD(tmp);
1600
1601 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1602
1603 spin_lock(&ctx->lock);
1604 if (!list_empty(&ctx->rq_list)) {
1605 list_splice_init(&ctx->rq_list, &tmp);
1606 blk_mq_hctx_clear_pending(hctx, ctx);
1607 }
1608 spin_unlock(&ctx->lock);
1609
1610 if (list_empty(&tmp))
1611 return NOTIFY_OK;
1612
1613 spin_lock(&hctx->lock);
1614 list_splice_tail_init(&tmp, &hctx->dispatch);
1615 spin_unlock(&hctx->lock);
1616
1617 blk_mq_run_hw_queue(hctx, true);
1618 return NOTIFY_OK;
1619 }
1620
1621 static int blk_mq_hctx_notify(void *data, unsigned long action,
1622 unsigned int cpu)
1623 {
1624 struct blk_mq_hw_ctx *hctx = data;
1625
1626 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1627 return blk_mq_hctx_cpu_offline(hctx, cpu);
1628
1629 /*
1630 * In case of CPU online, tags may be reallocated
1631 * in blk_mq_map_swqueue() after mapping is updated.
1632 */
1633
1634 return NOTIFY_OK;
1635 }
1636
1637 /* hctx->ctxs will be freed in queue's release handler */
1638 static void blk_mq_exit_hctx(struct request_queue *q,
1639 struct blk_mq_tag_set *set,
1640 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1641 {
1642 unsigned flush_start_tag = set->queue_depth;
1643
1644 blk_mq_tag_idle(hctx);
1645
1646 if (set->ops->exit_request)
1647 set->ops->exit_request(set->driver_data,
1648 hctx->fq->flush_rq, hctx_idx,
1649 flush_start_tag + hctx_idx);
1650
1651 if (set->ops->exit_hctx)
1652 set->ops->exit_hctx(hctx, hctx_idx);
1653
1654 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1655 blk_free_flush_queue(hctx->fq);
1656 sbitmap_free(&hctx->ctx_map);
1657 }
1658
1659 static void blk_mq_exit_hw_queues(struct request_queue *q,
1660 struct blk_mq_tag_set *set, int nr_queue)
1661 {
1662 struct blk_mq_hw_ctx *hctx;
1663 unsigned int i;
1664
1665 queue_for_each_hw_ctx(q, hctx, i) {
1666 if (i == nr_queue)
1667 break;
1668 blk_mq_exit_hctx(q, set, hctx, i);
1669 }
1670 }
1671
1672 static void blk_mq_free_hw_queues(struct request_queue *q,
1673 struct blk_mq_tag_set *set)
1674 {
1675 struct blk_mq_hw_ctx *hctx;
1676 unsigned int i;
1677
1678 queue_for_each_hw_ctx(q, hctx, i)
1679 free_cpumask_var(hctx->cpumask);
1680 }
1681
1682 static int blk_mq_init_hctx(struct request_queue *q,
1683 struct blk_mq_tag_set *set,
1684 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1685 {
1686 int node;
1687 unsigned flush_start_tag = set->queue_depth;
1688
1689 node = hctx->numa_node;
1690 if (node == NUMA_NO_NODE)
1691 node = hctx->numa_node = set->numa_node;
1692
1693 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1694 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1695 spin_lock_init(&hctx->lock);
1696 INIT_LIST_HEAD(&hctx->dispatch);
1697 hctx->queue = q;
1698 hctx->queue_num = hctx_idx;
1699 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1700
1701 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1702 blk_mq_hctx_notify, hctx);
1703 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1704
1705 hctx->tags = set->tags[hctx_idx];
1706
1707 /*
1708 * Allocate space for all possible cpus to avoid allocation at
1709 * runtime
1710 */
1711 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1712 GFP_KERNEL, node);
1713 if (!hctx->ctxs)
1714 goto unregister_cpu_notifier;
1715
1716 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1717 node))
1718 goto free_ctxs;
1719
1720 hctx->nr_ctx = 0;
1721
1722 if (set->ops->init_hctx &&
1723 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1724 goto free_bitmap;
1725
1726 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1727 if (!hctx->fq)
1728 goto exit_hctx;
1729
1730 if (set->ops->init_request &&
1731 set->ops->init_request(set->driver_data,
1732 hctx->fq->flush_rq, hctx_idx,
1733 flush_start_tag + hctx_idx, node))
1734 goto free_fq;
1735
1736 return 0;
1737
1738 free_fq:
1739 kfree(hctx->fq);
1740 exit_hctx:
1741 if (set->ops->exit_hctx)
1742 set->ops->exit_hctx(hctx, hctx_idx);
1743 free_bitmap:
1744 sbitmap_free(&hctx->ctx_map);
1745 free_ctxs:
1746 kfree(hctx->ctxs);
1747 unregister_cpu_notifier:
1748 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1749
1750 return -1;
1751 }
1752
1753 static void blk_mq_init_cpu_queues(struct request_queue *q,
1754 unsigned int nr_hw_queues)
1755 {
1756 unsigned int i;
1757
1758 for_each_possible_cpu(i) {
1759 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1760 struct blk_mq_hw_ctx *hctx;
1761
1762 memset(__ctx, 0, sizeof(*__ctx));
1763 __ctx->cpu = i;
1764 spin_lock_init(&__ctx->lock);
1765 INIT_LIST_HEAD(&__ctx->rq_list);
1766 __ctx->queue = q;
1767
1768 /* If the cpu isn't online, the cpu is mapped to first hctx */
1769 if (!cpu_online(i))
1770 continue;
1771
1772 hctx = q->mq_ops->map_queue(q, i);
1773
1774 /*
1775 * Set local node, IFF we have more than one hw queue. If
1776 * not, we remain on the home node of the device
1777 */
1778 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1779 hctx->numa_node = local_memory_node(cpu_to_node(i));
1780 }
1781 }
1782
1783 static void blk_mq_map_swqueue(struct request_queue *q,
1784 const struct cpumask *online_mask)
1785 {
1786 unsigned int i;
1787 struct blk_mq_hw_ctx *hctx;
1788 struct blk_mq_ctx *ctx;
1789 struct blk_mq_tag_set *set = q->tag_set;
1790
1791 /*
1792 * Avoid others reading imcomplete hctx->cpumask through sysfs
1793 */
1794 mutex_lock(&q->sysfs_lock);
1795
1796 queue_for_each_hw_ctx(q, hctx, i) {
1797 cpumask_clear(hctx->cpumask);
1798 hctx->nr_ctx = 0;
1799 }
1800
1801 /*
1802 * Map software to hardware queues
1803 */
1804 for_each_possible_cpu(i) {
1805 /* If the cpu isn't online, the cpu is mapped to first hctx */
1806 if (!cpumask_test_cpu(i, online_mask))
1807 continue;
1808
1809 ctx = per_cpu_ptr(q->queue_ctx, i);
1810 hctx = q->mq_ops->map_queue(q, i);
1811
1812 cpumask_set_cpu(i, hctx->cpumask);
1813 ctx->index_hw = hctx->nr_ctx;
1814 hctx->ctxs[hctx->nr_ctx++] = ctx;
1815 }
1816
1817 mutex_unlock(&q->sysfs_lock);
1818
1819 queue_for_each_hw_ctx(q, hctx, i) {
1820 /*
1821 * If no software queues are mapped to this hardware queue,
1822 * disable it and free the request entries.
1823 */
1824 if (!hctx->nr_ctx) {
1825 if (set->tags[i]) {
1826 blk_mq_free_rq_map(set, set->tags[i], i);
1827 set->tags[i] = NULL;
1828 }
1829 hctx->tags = NULL;
1830 continue;
1831 }
1832
1833 /* unmapped hw queue can be remapped after CPU topo changed */
1834 if (!set->tags[i])
1835 set->tags[i] = blk_mq_init_rq_map(set, i);
1836 hctx->tags = set->tags[i];
1837 WARN_ON(!hctx->tags);
1838
1839 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1840 /*
1841 * Set the map size to the number of mapped software queues.
1842 * This is more accurate and more efficient than looping
1843 * over all possibly mapped software queues.
1844 */
1845 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1846
1847 /*
1848 * Initialize batch roundrobin counts
1849 */
1850 hctx->next_cpu = cpumask_first(hctx->cpumask);
1851 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1852 }
1853 }
1854
1855 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1856 {
1857 struct blk_mq_hw_ctx *hctx;
1858 int i;
1859
1860 queue_for_each_hw_ctx(q, hctx, i) {
1861 if (shared)
1862 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1863 else
1864 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1865 }
1866 }
1867
1868 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1869 {
1870 struct request_queue *q;
1871
1872 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1873 blk_mq_freeze_queue(q);
1874 queue_set_hctx_shared(q, shared);
1875 blk_mq_unfreeze_queue(q);
1876 }
1877 }
1878
1879 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1880 {
1881 struct blk_mq_tag_set *set = q->tag_set;
1882
1883 mutex_lock(&set->tag_list_lock);
1884 list_del_init(&q->tag_set_list);
1885 if (list_is_singular(&set->tag_list)) {
1886 /* just transitioned to unshared */
1887 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1888 /* update existing queue */
1889 blk_mq_update_tag_set_depth(set, false);
1890 }
1891 mutex_unlock(&set->tag_list_lock);
1892 }
1893
1894 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1895 struct request_queue *q)
1896 {
1897 q->tag_set = set;
1898
1899 mutex_lock(&set->tag_list_lock);
1900
1901 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1902 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1903 set->flags |= BLK_MQ_F_TAG_SHARED;
1904 /* update existing queue */
1905 blk_mq_update_tag_set_depth(set, true);
1906 }
1907 if (set->flags & BLK_MQ_F_TAG_SHARED)
1908 queue_set_hctx_shared(q, true);
1909 list_add_tail(&q->tag_set_list, &set->tag_list);
1910
1911 mutex_unlock(&set->tag_list_lock);
1912 }
1913
1914 /*
1915 * It is the actual release handler for mq, but we do it from
1916 * request queue's release handler for avoiding use-after-free
1917 * and headache because q->mq_kobj shouldn't have been introduced,
1918 * but we can't group ctx/kctx kobj without it.
1919 */
1920 void blk_mq_release(struct request_queue *q)
1921 {
1922 struct blk_mq_hw_ctx *hctx;
1923 unsigned int i;
1924
1925 /* hctx kobj stays in hctx */
1926 queue_for_each_hw_ctx(q, hctx, i) {
1927 if (!hctx)
1928 continue;
1929 kfree(hctx->ctxs);
1930 kfree(hctx);
1931 }
1932
1933 kfree(q->mq_map);
1934 q->mq_map = NULL;
1935
1936 kfree(q->queue_hw_ctx);
1937
1938 /* ctx kobj stays in queue_ctx */
1939 free_percpu(q->queue_ctx);
1940 }
1941
1942 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1943 {
1944 struct request_queue *uninit_q, *q;
1945
1946 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1947 if (!uninit_q)
1948 return ERR_PTR(-ENOMEM);
1949
1950 q = blk_mq_init_allocated_queue(set, uninit_q);
1951 if (IS_ERR(q))
1952 blk_cleanup_queue(uninit_q);
1953
1954 return q;
1955 }
1956 EXPORT_SYMBOL(blk_mq_init_queue);
1957
1958 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1959 struct request_queue *q)
1960 {
1961 int i, j;
1962 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1963
1964 blk_mq_sysfs_unregister(q);
1965 for (i = 0; i < set->nr_hw_queues; i++) {
1966 int node;
1967
1968 if (hctxs[i])
1969 continue;
1970
1971 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1972 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1973 GFP_KERNEL, node);
1974 if (!hctxs[i])
1975 break;
1976
1977 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1978 node)) {
1979 kfree(hctxs[i]);
1980 hctxs[i] = NULL;
1981 break;
1982 }
1983
1984 atomic_set(&hctxs[i]->nr_active, 0);
1985 hctxs[i]->numa_node = node;
1986 hctxs[i]->queue_num = i;
1987
1988 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1989 free_cpumask_var(hctxs[i]->cpumask);
1990 kfree(hctxs[i]);
1991 hctxs[i] = NULL;
1992 break;
1993 }
1994 blk_mq_hctx_kobj_init(hctxs[i]);
1995 }
1996 for (j = i; j < q->nr_hw_queues; j++) {
1997 struct blk_mq_hw_ctx *hctx = hctxs[j];
1998
1999 if (hctx) {
2000 if (hctx->tags) {
2001 blk_mq_free_rq_map(set, hctx->tags, j);
2002 set->tags[j] = NULL;
2003 }
2004 blk_mq_exit_hctx(q, set, hctx, j);
2005 free_cpumask_var(hctx->cpumask);
2006 kobject_put(&hctx->kobj);
2007 kfree(hctx->ctxs);
2008 kfree(hctx);
2009 hctxs[j] = NULL;
2010
2011 }
2012 }
2013 q->nr_hw_queues = i;
2014 blk_mq_sysfs_register(q);
2015 }
2016
2017 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2018 struct request_queue *q)
2019 {
2020 /* mark the queue as mq asap */
2021 q->mq_ops = set->ops;
2022
2023 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2024 if (!q->queue_ctx)
2025 goto err_exit;
2026
2027 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2028 GFP_KERNEL, set->numa_node);
2029 if (!q->queue_hw_ctx)
2030 goto err_percpu;
2031
2032 q->mq_map = blk_mq_make_queue_map(set);
2033 if (!q->mq_map)
2034 goto err_map;
2035
2036 blk_mq_realloc_hw_ctxs(set, q);
2037 if (!q->nr_hw_queues)
2038 goto err_hctxs;
2039
2040 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2041 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2042
2043 q->nr_queues = nr_cpu_ids;
2044
2045 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2046
2047 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2048 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2049
2050 q->sg_reserved_size = INT_MAX;
2051
2052 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2053 INIT_LIST_HEAD(&q->requeue_list);
2054 spin_lock_init(&q->requeue_lock);
2055
2056 if (q->nr_hw_queues > 1)
2057 blk_queue_make_request(q, blk_mq_make_request);
2058 else
2059 blk_queue_make_request(q, blk_sq_make_request);
2060
2061 /*
2062 * Do this after blk_queue_make_request() overrides it...
2063 */
2064 q->nr_requests = set->queue_depth;
2065
2066 if (set->ops->complete)
2067 blk_queue_softirq_done(q, set->ops->complete);
2068
2069 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2070
2071 get_online_cpus();
2072 mutex_lock(&all_q_mutex);
2073
2074 list_add_tail(&q->all_q_node, &all_q_list);
2075 blk_mq_add_queue_tag_set(set, q);
2076 blk_mq_map_swqueue(q, cpu_online_mask);
2077
2078 mutex_unlock(&all_q_mutex);
2079 put_online_cpus();
2080
2081 return q;
2082
2083 err_hctxs:
2084 kfree(q->mq_map);
2085 err_map:
2086 kfree(q->queue_hw_ctx);
2087 err_percpu:
2088 free_percpu(q->queue_ctx);
2089 err_exit:
2090 q->mq_ops = NULL;
2091 return ERR_PTR(-ENOMEM);
2092 }
2093 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2094
2095 void blk_mq_free_queue(struct request_queue *q)
2096 {
2097 struct blk_mq_tag_set *set = q->tag_set;
2098
2099 mutex_lock(&all_q_mutex);
2100 list_del_init(&q->all_q_node);
2101 mutex_unlock(&all_q_mutex);
2102
2103 blk_mq_del_queue_tag_set(q);
2104
2105 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2106 blk_mq_free_hw_queues(q, set);
2107 }
2108
2109 /* Basically redo blk_mq_init_queue with queue frozen */
2110 static void blk_mq_queue_reinit(struct request_queue *q,
2111 const struct cpumask *online_mask)
2112 {
2113 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2114
2115 blk_mq_sysfs_unregister(q);
2116
2117 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2118
2119 /*
2120 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2121 * we should change hctx numa_node according to new topology (this
2122 * involves free and re-allocate memory, worthy doing?)
2123 */
2124
2125 blk_mq_map_swqueue(q, online_mask);
2126
2127 blk_mq_sysfs_register(q);
2128 }
2129
2130 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2131 unsigned long action, void *hcpu)
2132 {
2133 struct request_queue *q;
2134 int cpu = (unsigned long)hcpu;
2135 /*
2136 * New online cpumask which is going to be set in this hotplug event.
2137 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2138 * one-by-one and dynamically allocating this could result in a failure.
2139 */
2140 static struct cpumask online_new;
2141
2142 /*
2143 * Before hotadded cpu starts handling requests, new mappings must
2144 * be established. Otherwise, these requests in hw queue might
2145 * never be dispatched.
2146 *
2147 * For example, there is a single hw queue (hctx) and two CPU queues
2148 * (ctx0 for CPU0, and ctx1 for CPU1).
2149 *
2150 * Now CPU1 is just onlined and a request is inserted into
2151 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2152 * still zero.
2153 *
2154 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2155 * set in pending bitmap and tries to retrieve requests in
2156 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2157 * so the request in ctx1->rq_list is ignored.
2158 */
2159 switch (action & ~CPU_TASKS_FROZEN) {
2160 case CPU_DEAD:
2161 case CPU_UP_CANCELED:
2162 cpumask_copy(&online_new, cpu_online_mask);
2163 break;
2164 case CPU_UP_PREPARE:
2165 cpumask_copy(&online_new, cpu_online_mask);
2166 cpumask_set_cpu(cpu, &online_new);
2167 break;
2168 default:
2169 return NOTIFY_OK;
2170 }
2171
2172 mutex_lock(&all_q_mutex);
2173
2174 /*
2175 * We need to freeze and reinit all existing queues. Freezing
2176 * involves synchronous wait for an RCU grace period and doing it
2177 * one by one may take a long time. Start freezing all queues in
2178 * one swoop and then wait for the completions so that freezing can
2179 * take place in parallel.
2180 */
2181 list_for_each_entry(q, &all_q_list, all_q_node)
2182 blk_mq_freeze_queue_start(q);
2183 list_for_each_entry(q, &all_q_list, all_q_node) {
2184 blk_mq_freeze_queue_wait(q);
2185
2186 /*
2187 * timeout handler can't touch hw queue during the
2188 * reinitialization
2189 */
2190 del_timer_sync(&q->timeout);
2191 }
2192
2193 list_for_each_entry(q, &all_q_list, all_q_node)
2194 blk_mq_queue_reinit(q, &online_new);
2195
2196 list_for_each_entry(q, &all_q_list, all_q_node)
2197 blk_mq_unfreeze_queue(q);
2198
2199 mutex_unlock(&all_q_mutex);
2200 return NOTIFY_OK;
2201 }
2202
2203 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2204 {
2205 int i;
2206
2207 for (i = 0; i < set->nr_hw_queues; i++) {
2208 set->tags[i] = blk_mq_init_rq_map(set, i);
2209 if (!set->tags[i])
2210 goto out_unwind;
2211 }
2212
2213 return 0;
2214
2215 out_unwind:
2216 while (--i >= 0)
2217 blk_mq_free_rq_map(set, set->tags[i], i);
2218
2219 return -ENOMEM;
2220 }
2221
2222 /*
2223 * Allocate the request maps associated with this tag_set. Note that this
2224 * may reduce the depth asked for, if memory is tight. set->queue_depth
2225 * will be updated to reflect the allocated depth.
2226 */
2227 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2228 {
2229 unsigned int depth;
2230 int err;
2231
2232 depth = set->queue_depth;
2233 do {
2234 err = __blk_mq_alloc_rq_maps(set);
2235 if (!err)
2236 break;
2237
2238 set->queue_depth >>= 1;
2239 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2240 err = -ENOMEM;
2241 break;
2242 }
2243 } while (set->queue_depth);
2244
2245 if (!set->queue_depth || err) {
2246 pr_err("blk-mq: failed to allocate request map\n");
2247 return -ENOMEM;
2248 }
2249
2250 if (depth != set->queue_depth)
2251 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2252 depth, set->queue_depth);
2253
2254 return 0;
2255 }
2256
2257 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2258 {
2259 return tags->cpumask;
2260 }
2261 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2262
2263 /*
2264 * Alloc a tag set to be associated with one or more request queues.
2265 * May fail with EINVAL for various error conditions. May adjust the
2266 * requested depth down, if if it too large. In that case, the set
2267 * value will be stored in set->queue_depth.
2268 */
2269 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2270 {
2271 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2272
2273 if (!set->nr_hw_queues)
2274 return -EINVAL;
2275 if (!set->queue_depth)
2276 return -EINVAL;
2277 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2278 return -EINVAL;
2279
2280 if (!set->ops->queue_rq || !set->ops->map_queue)
2281 return -EINVAL;
2282
2283 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2284 pr_info("blk-mq: reduced tag depth to %u\n",
2285 BLK_MQ_MAX_DEPTH);
2286 set->queue_depth = BLK_MQ_MAX_DEPTH;
2287 }
2288
2289 /*
2290 * If a crashdump is active, then we are potentially in a very
2291 * memory constrained environment. Limit us to 1 queue and
2292 * 64 tags to prevent using too much memory.
2293 */
2294 if (is_kdump_kernel()) {
2295 set->nr_hw_queues = 1;
2296 set->queue_depth = min(64U, set->queue_depth);
2297 }
2298 /*
2299 * There is no use for more h/w queues than cpus.
2300 */
2301 if (set->nr_hw_queues > nr_cpu_ids)
2302 set->nr_hw_queues = nr_cpu_ids;
2303
2304 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2305 GFP_KERNEL, set->numa_node);
2306 if (!set->tags)
2307 return -ENOMEM;
2308
2309 if (blk_mq_alloc_rq_maps(set))
2310 goto enomem;
2311
2312 mutex_init(&set->tag_list_lock);
2313 INIT_LIST_HEAD(&set->tag_list);
2314
2315 return 0;
2316 enomem:
2317 kfree(set->tags);
2318 set->tags = NULL;
2319 return -ENOMEM;
2320 }
2321 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2322
2323 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2324 {
2325 int i;
2326
2327 for (i = 0; i < nr_cpu_ids; i++) {
2328 if (set->tags[i])
2329 blk_mq_free_rq_map(set, set->tags[i], i);
2330 }
2331
2332 kfree(set->tags);
2333 set->tags = NULL;
2334 }
2335 EXPORT_SYMBOL(blk_mq_free_tag_set);
2336
2337 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2338 {
2339 struct blk_mq_tag_set *set = q->tag_set;
2340 struct blk_mq_hw_ctx *hctx;
2341 int i, ret;
2342
2343 if (!set || nr > set->queue_depth)
2344 return -EINVAL;
2345
2346 ret = 0;
2347 queue_for_each_hw_ctx(q, hctx, i) {
2348 if (!hctx->tags)
2349 continue;
2350 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2351 if (ret)
2352 break;
2353 }
2354
2355 if (!ret)
2356 q->nr_requests = nr;
2357
2358 return ret;
2359 }
2360
2361 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2362 {
2363 struct request_queue *q;
2364
2365 if (nr_hw_queues > nr_cpu_ids)
2366 nr_hw_queues = nr_cpu_ids;
2367 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2368 return;
2369
2370 list_for_each_entry(q, &set->tag_list, tag_set_list)
2371 blk_mq_freeze_queue(q);
2372
2373 set->nr_hw_queues = nr_hw_queues;
2374 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2375 blk_mq_realloc_hw_ctxs(set, q);
2376
2377 if (q->nr_hw_queues > 1)
2378 blk_queue_make_request(q, blk_mq_make_request);
2379 else
2380 blk_queue_make_request(q, blk_sq_make_request);
2381
2382 blk_mq_queue_reinit(q, cpu_online_mask);
2383 }
2384
2385 list_for_each_entry(q, &set->tag_list, tag_set_list)
2386 blk_mq_unfreeze_queue(q);
2387 }
2388 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2389
2390 void blk_mq_disable_hotplug(void)
2391 {
2392 mutex_lock(&all_q_mutex);
2393 }
2394
2395 void blk_mq_enable_hotplug(void)
2396 {
2397 mutex_unlock(&all_q_mutex);
2398 }
2399
2400 static int __init blk_mq_init(void)
2401 {
2402 blk_mq_cpu_init();
2403
2404 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2405
2406 return 0;
2407 }
2408 subsys_initcall(blk_mq_init);