]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge tag 'drm-fixes-for-v4.11-rc5' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 /*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46 {
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
50 }
51
52 /*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 }
61
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 }
67
68 void blk_mq_freeze_queue_start(struct request_queue *q)
69 {
70 int freeze_depth;
71
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
74 percpu_ref_kill(&q->q_usage_counter);
75 blk_mq_run_hw_queues(q, false);
76 }
77 }
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
81 {
82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83 }
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88 {
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92 }
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94
95 /*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
99 void blk_freeze_queue(struct request_queue *q)
100 {
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110 }
111
112 void blk_mq_freeze_queue(struct request_queue *q)
113 {
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119 }
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121
122 void blk_mq_unfreeze_queue(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
129 percpu_ref_reinit(&q->q_usage_counter);
130 wake_up_all(&q->mq_freeze_wq);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134
135 /**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143 void blk_mq_quiesce_queue(struct request_queue *q)
144 {
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
162 void blk_mq_wake_waiters(struct request_queue *q)
163 {
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
177 }
178
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181 return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
187 {
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
191 rq->mq_ctx = ctx;
192 rq->cmd_flags = op;
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
199 rq->rq_disk = NULL;
200 rq->part = NULL;
201 rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
204 set_start_time_ns(rq);
205 rq->io_start_time_ns = 0;
206 #endif
207 rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210 #endif
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
214 rq->extra_len = 0;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[op_is_sync(op)]++;
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
229 {
230 struct request *rq;
231 unsigned int tag;
232
233 tag = blk_mq_get_tag(data);
234 if (tag != BLK_MQ_TAG_FAIL) {
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
238
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
247 rq->tag = tag;
248 rq->internal_tag = -1;
249 data->hctx->tags->rqs[rq->tag] = rq;
250 }
251
252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 return rq;
254 }
255
256 return NULL;
257 }
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
262 {
263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
264 struct request *rq;
265 int ret;
266
267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 if (ret)
269 return ERR_PTR(ret);
270
271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
277 return ERR_PTR(-EWOULDBLOCK);
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
282 return rq;
283 }
284 EXPORT_SYMBOL(blk_mq_alloc_request);
285
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288 {
289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
290 struct request *rq;
291 unsigned int cpu;
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
318 }
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
321
322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323
324 blk_mq_put_ctx(alloc_data.ctx);
325 blk_queue_exit(q);
326
327 if (!rq)
328 return ERR_PTR(-EWOULDBLOCK);
329
330 return rq;
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333
334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
335 struct request *rq)
336 {
337 const int sched_tag = rq->internal_tag;
338 struct request_queue *q = rq->q;
339
340 if (rq->rq_flags & RQF_MQ_INFLIGHT)
341 atomic_dec(&hctx->nr_active);
342
343 wbt_done(q->rq_wb, &rq->issue_stat);
344 rq->rq_flags = 0;
345
346 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
347 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
348 if (rq->tag != -1)
349 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
350 if (sched_tag != -1)
351 blk_mq_sched_completed_request(hctx, rq);
352 blk_mq_sched_restart_queues(hctx);
353 blk_queue_exit(q);
354 }
355
356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
357 struct request *rq)
358 {
359 struct blk_mq_ctx *ctx = rq->mq_ctx;
360
361 ctx->rq_completed[rq_is_sync(rq)]++;
362 __blk_mq_finish_request(hctx, ctx, rq);
363 }
364
365 void blk_mq_finish_request(struct request *rq)
366 {
367 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
368 }
369
370 void blk_mq_free_request(struct request *rq)
371 {
372 blk_mq_sched_put_request(rq);
373 }
374 EXPORT_SYMBOL_GPL(blk_mq_free_request);
375
376 inline void __blk_mq_end_request(struct request *rq, int error)
377 {
378 blk_account_io_done(rq);
379
380 if (rq->end_io) {
381 wbt_done(rq->q->rq_wb, &rq->issue_stat);
382 rq->end_io(rq, error);
383 } else {
384 if (unlikely(blk_bidi_rq(rq)))
385 blk_mq_free_request(rq->next_rq);
386 blk_mq_free_request(rq);
387 }
388 }
389 EXPORT_SYMBOL(__blk_mq_end_request);
390
391 void blk_mq_end_request(struct request *rq, int error)
392 {
393 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
394 BUG();
395 __blk_mq_end_request(rq, error);
396 }
397 EXPORT_SYMBOL(blk_mq_end_request);
398
399 static void __blk_mq_complete_request_remote(void *data)
400 {
401 struct request *rq = data;
402
403 rq->q->softirq_done_fn(rq);
404 }
405
406 static void blk_mq_ipi_complete_request(struct request *rq)
407 {
408 struct blk_mq_ctx *ctx = rq->mq_ctx;
409 bool shared = false;
410 int cpu;
411
412 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
413 rq->q->softirq_done_fn(rq);
414 return;
415 }
416
417 cpu = get_cpu();
418 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
419 shared = cpus_share_cache(cpu, ctx->cpu);
420
421 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
422 rq->csd.func = __blk_mq_complete_request_remote;
423 rq->csd.info = rq;
424 rq->csd.flags = 0;
425 smp_call_function_single_async(ctx->cpu, &rq->csd);
426 } else {
427 rq->q->softirq_done_fn(rq);
428 }
429 put_cpu();
430 }
431
432 static void blk_mq_stat_add(struct request *rq)
433 {
434 if (rq->rq_flags & RQF_STATS) {
435 /*
436 * We could rq->mq_ctx here, but there's less of a risk
437 * of races if we have the completion event add the stats
438 * to the local software queue.
439 */
440 struct blk_mq_ctx *ctx;
441
442 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
443 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
444 }
445 }
446
447 static void __blk_mq_complete_request(struct request *rq)
448 {
449 struct request_queue *q = rq->q;
450
451 blk_mq_stat_add(rq);
452
453 if (!q->softirq_done_fn)
454 blk_mq_end_request(rq, rq->errors);
455 else
456 blk_mq_ipi_complete_request(rq);
457 }
458
459 /**
460 * blk_mq_complete_request - end I/O on a request
461 * @rq: the request being processed
462 *
463 * Description:
464 * Ends all I/O on a request. It does not handle partial completions.
465 * The actual completion happens out-of-order, through a IPI handler.
466 **/
467 void blk_mq_complete_request(struct request *rq, int error)
468 {
469 struct request_queue *q = rq->q;
470
471 if (unlikely(blk_should_fake_timeout(q)))
472 return;
473 if (!blk_mark_rq_complete(rq)) {
474 rq->errors = error;
475 __blk_mq_complete_request(rq);
476 }
477 }
478 EXPORT_SYMBOL(blk_mq_complete_request);
479
480 int blk_mq_request_started(struct request *rq)
481 {
482 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_request_started);
485
486 void blk_mq_start_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489
490 blk_mq_sched_started_request(rq);
491
492 trace_block_rq_issue(q, rq);
493
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
497 wbt_issue(q->rq_wb, &rq->issue_stat);
498 }
499
500 blk_add_timer(rq);
501
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
535 wbt_requeue(q->rq_wb, &rq->issue_stat);
536 blk_mq_sched_requeue_request(rq);
537
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 __blk_mq_requeue_request(rq);
547
548 BUG_ON(blk_queued_rq(rq));
549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 struct request_queue *q =
556 container_of(work, struct request_queue, requeue_work.work);
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 continue;
568
569 rq->rq_flags &= ~RQF_SOFTBARRIER;
570 list_del_init(&rq->queuelist);
571 blk_mq_sched_insert_request(rq, true, false, false, true);
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
577 blk_mq_sched_insert_request(rq, false, false, false, true);
578 }
579
580 blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
585 {
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
597 rq->rq_flags |= RQF_SOFTBARRIER;
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617 {
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
647 return tags->rqs[tag];
648 }
649
650 return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655 unsigned long next;
656 unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 const struct blk_mq_ops *ops = req->q->mq_ops;
662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
675
676 if (ops->timeout)
677 ret = ops->timeout(req, reserved);
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697 {
698 struct blk_mq_timeout_data *data = priv;
699
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
701 return;
702
703 if (time_after_eq(jiffies, rq->deadline)) {
704 if (!blk_mark_rq_complete(rq))
705 blk_mq_rq_timed_out(rq, reserved);
706 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
707 data->next = rq->deadline;
708 data->next_set = 1;
709 }
710 }
711
712 static void blk_mq_timeout_work(struct work_struct *work)
713 {
714 struct request_queue *q =
715 container_of(work, struct request_queue, timeout_work);
716 struct blk_mq_timeout_data data = {
717 .next = 0,
718 .next_set = 0,
719 };
720 int i;
721
722 /* A deadlock might occur if a request is stuck requiring a
723 * timeout at the same time a queue freeze is waiting
724 * completion, since the timeout code would not be able to
725 * acquire the queue reference here.
726 *
727 * That's why we don't use blk_queue_enter here; instead, we use
728 * percpu_ref_tryget directly, because we need to be able to
729 * obtain a reference even in the short window between the queue
730 * starting to freeze, by dropping the first reference in
731 * blk_mq_freeze_queue_start, and the moment the last request is
732 * consumed, marked by the instant q_usage_counter reaches
733 * zero.
734 */
735 if (!percpu_ref_tryget(&q->q_usage_counter))
736 return;
737
738 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739
740 if (data.next_set) {
741 data.next = blk_rq_timeout(round_jiffies_up(data.next));
742 mod_timer(&q->timeout, data.next);
743 } else {
744 struct blk_mq_hw_ctx *hctx;
745
746 queue_for_each_hw_ctx(q, hctx, i) {
747 /* the hctx may be unmapped, so check it here */
748 if (blk_mq_hw_queue_mapped(hctx))
749 blk_mq_tag_idle(hctx);
750 }
751 }
752 blk_queue_exit(q);
753 }
754
755 /*
756 * Reverse check our software queue for entries that we could potentially
757 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
758 * too much time checking for merges.
759 */
760 static bool blk_mq_attempt_merge(struct request_queue *q,
761 struct blk_mq_ctx *ctx, struct bio *bio)
762 {
763 struct request *rq;
764 int checked = 8;
765
766 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
767 bool merged = false;
768
769 if (!checked--)
770 break;
771
772 if (!blk_rq_merge_ok(rq, bio))
773 continue;
774
775 switch (blk_try_merge(rq, bio)) {
776 case ELEVATOR_BACK_MERGE:
777 if (blk_mq_sched_allow_merge(q, rq, bio))
778 merged = bio_attempt_back_merge(q, rq, bio);
779 break;
780 case ELEVATOR_FRONT_MERGE:
781 if (blk_mq_sched_allow_merge(q, rq, bio))
782 merged = bio_attempt_front_merge(q, rq, bio);
783 break;
784 case ELEVATOR_DISCARD_MERGE:
785 merged = bio_attempt_discard_merge(q, rq, bio);
786 break;
787 default:
788 continue;
789 }
790
791 if (merged)
792 ctx->rq_merged++;
793 return merged;
794 }
795
796 return false;
797 }
798
799 struct flush_busy_ctx_data {
800 struct blk_mq_hw_ctx *hctx;
801 struct list_head *list;
802 };
803
804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 {
806 struct flush_busy_ctx_data *flush_data = data;
807 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809
810 sbitmap_clear_bit(sb, bitnr);
811 spin_lock(&ctx->lock);
812 list_splice_tail_init(&ctx->rq_list, flush_data->list);
813 spin_unlock(&ctx->lock);
814 return true;
815 }
816
817 /*
818 * Process software queues that have been marked busy, splicing them
819 * to the for-dispatch
820 */
821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 {
823 struct flush_busy_ctx_data data = {
824 .hctx = hctx,
825 .list = list,
826 };
827
828 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 }
830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831
832 static inline unsigned int queued_to_index(unsigned int queued)
833 {
834 if (!queued)
835 return 0;
836
837 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 }
839
840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841 bool wait)
842 {
843 struct blk_mq_alloc_data data = {
844 .q = rq->q,
845 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847 };
848
849 if (rq->tag != -1) {
850 done:
851 if (hctx)
852 *hctx = data.hctx;
853 return true;
854 }
855
856 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
857 data.flags |= BLK_MQ_REQ_RESERVED;
858
859 rq->tag = blk_mq_get_tag(&data);
860 if (rq->tag >= 0) {
861 if (blk_mq_tag_busy(data.hctx)) {
862 rq->rq_flags |= RQF_MQ_INFLIGHT;
863 atomic_inc(&data.hctx->nr_active);
864 }
865 data.hctx->tags->rqs[rq->tag] = rq;
866 goto done;
867 }
868
869 return false;
870 }
871
872 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
873 struct request *rq)
874 {
875 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876 rq->tag = -1;
877
878 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880 atomic_dec(&hctx->nr_active);
881 }
882 }
883
884 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
885 struct request *rq)
886 {
887 if (rq->tag == -1 || rq->internal_tag == -1)
888 return;
889
890 __blk_mq_put_driver_tag(hctx, rq);
891 }
892
893 static void blk_mq_put_driver_tag(struct request *rq)
894 {
895 struct blk_mq_hw_ctx *hctx;
896
897 if (rq->tag == -1 || rq->internal_tag == -1)
898 return;
899
900 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
901 __blk_mq_put_driver_tag(hctx, rq);
902 }
903
904 /*
905 * If we fail getting a driver tag because all the driver tags are already
906 * assigned and on the dispatch list, BUT the first entry does not have a
907 * tag, then we could deadlock. For that case, move entries with assigned
908 * driver tags to the front, leaving the set of tagged requests in the
909 * same order, and the untagged set in the same order.
910 */
911 static bool reorder_tags_to_front(struct list_head *list)
912 {
913 struct request *rq, *tmp, *first = NULL;
914
915 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
916 if (rq == first)
917 break;
918 if (rq->tag != -1) {
919 list_move(&rq->queuelist, list);
920 if (!first)
921 first = rq;
922 }
923 }
924
925 return first != NULL;
926 }
927
928 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
929 void *key)
930 {
931 struct blk_mq_hw_ctx *hctx;
932
933 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
934
935 list_del(&wait->task_list);
936 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
937 blk_mq_run_hw_queue(hctx, true);
938 return 1;
939 }
940
941 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
942 {
943 struct sbq_wait_state *ws;
944
945 /*
946 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
947 * The thread which wins the race to grab this bit adds the hardware
948 * queue to the wait queue.
949 */
950 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
951 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
952 return false;
953
954 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
955 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
956
957 /*
958 * As soon as this returns, it's no longer safe to fiddle with
959 * hctx->dispatch_wait, since a completion can wake up the wait queue
960 * and unlock the bit.
961 */
962 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
963 return true;
964 }
965
966 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
967 {
968 struct request_queue *q = hctx->queue;
969 struct request *rq;
970 LIST_HEAD(driver_list);
971 struct list_head *dptr;
972 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
973
974 /*
975 * Start off with dptr being NULL, so we start the first request
976 * immediately, even if we have more pending.
977 */
978 dptr = NULL;
979
980 /*
981 * Now process all the entries, sending them to the driver.
982 */
983 errors = queued = 0;
984 while (!list_empty(list)) {
985 struct blk_mq_queue_data bd;
986
987 rq = list_first_entry(list, struct request, queuelist);
988 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
989 if (!queued && reorder_tags_to_front(list))
990 continue;
991
992 /*
993 * The initial allocation attempt failed, so we need to
994 * rerun the hardware queue when a tag is freed.
995 */
996 if (blk_mq_dispatch_wait_add(hctx)) {
997 /*
998 * It's possible that a tag was freed in the
999 * window between the allocation failure and
1000 * adding the hardware queue to the wait queue.
1001 */
1002 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1003 break;
1004 } else {
1005 break;
1006 }
1007 }
1008
1009 list_del_init(&rq->queuelist);
1010
1011 bd.rq = rq;
1012 bd.list = dptr;
1013
1014 /*
1015 * Flag last if we have no more requests, or if we have more
1016 * but can't assign a driver tag to it.
1017 */
1018 if (list_empty(list))
1019 bd.last = true;
1020 else {
1021 struct request *nxt;
1022
1023 nxt = list_first_entry(list, struct request, queuelist);
1024 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1025 }
1026
1027 ret = q->mq_ops->queue_rq(hctx, &bd);
1028 switch (ret) {
1029 case BLK_MQ_RQ_QUEUE_OK:
1030 queued++;
1031 break;
1032 case BLK_MQ_RQ_QUEUE_BUSY:
1033 blk_mq_put_driver_tag_hctx(hctx, rq);
1034 list_add(&rq->queuelist, list);
1035 __blk_mq_requeue_request(rq);
1036 break;
1037 default:
1038 pr_err("blk-mq: bad return on queue: %d\n", ret);
1039 case BLK_MQ_RQ_QUEUE_ERROR:
1040 errors++;
1041 rq->errors = -EIO;
1042 blk_mq_end_request(rq, rq->errors);
1043 break;
1044 }
1045
1046 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1047 break;
1048
1049 /*
1050 * We've done the first request. If we have more than 1
1051 * left in the list, set dptr to defer issue.
1052 */
1053 if (!dptr && list->next != list->prev)
1054 dptr = &driver_list;
1055 }
1056
1057 hctx->dispatched[queued_to_index(queued)]++;
1058
1059 /*
1060 * Any items that need requeuing? Stuff them into hctx->dispatch,
1061 * that is where we will continue on next queue run.
1062 */
1063 if (!list_empty(list)) {
1064 /*
1065 * If we got a driver tag for the next request already,
1066 * free it again.
1067 */
1068 rq = list_first_entry(list, struct request, queuelist);
1069 blk_mq_put_driver_tag(rq);
1070
1071 spin_lock(&hctx->lock);
1072 list_splice_init(list, &hctx->dispatch);
1073 spin_unlock(&hctx->lock);
1074
1075 /*
1076 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1077 * it's possible the queue is stopped and restarted again
1078 * before this. Queue restart will dispatch requests. And since
1079 * requests in rq_list aren't added into hctx->dispatch yet,
1080 * the requests in rq_list might get lost.
1081 *
1082 * blk_mq_run_hw_queue() already checks the STOPPED bit
1083 *
1084 * If RESTART or TAG_WAITING is set, then let completion restart
1085 * the queue instead of potentially looping here.
1086 */
1087 if (!blk_mq_sched_needs_restart(hctx) &&
1088 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1089 blk_mq_run_hw_queue(hctx, true);
1090 }
1091
1092 return (queued + errors) != 0;
1093 }
1094
1095 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1096 {
1097 int srcu_idx;
1098
1099 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1100 cpu_online(hctx->next_cpu));
1101
1102 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1103 rcu_read_lock();
1104 blk_mq_sched_dispatch_requests(hctx);
1105 rcu_read_unlock();
1106 } else {
1107 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1108 blk_mq_sched_dispatch_requests(hctx);
1109 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1110 }
1111 }
1112
1113 /*
1114 * It'd be great if the workqueue API had a way to pass
1115 * in a mask and had some smarts for more clever placement.
1116 * For now we just round-robin here, switching for every
1117 * BLK_MQ_CPU_WORK_BATCH queued items.
1118 */
1119 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1120 {
1121 if (hctx->queue->nr_hw_queues == 1)
1122 return WORK_CPU_UNBOUND;
1123
1124 if (--hctx->next_cpu_batch <= 0) {
1125 int next_cpu;
1126
1127 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1128 if (next_cpu >= nr_cpu_ids)
1129 next_cpu = cpumask_first(hctx->cpumask);
1130
1131 hctx->next_cpu = next_cpu;
1132 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1133 }
1134
1135 return hctx->next_cpu;
1136 }
1137
1138 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1139 {
1140 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1141 !blk_mq_hw_queue_mapped(hctx)))
1142 return;
1143
1144 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1145 int cpu = get_cpu();
1146 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1147 __blk_mq_run_hw_queue(hctx);
1148 put_cpu();
1149 return;
1150 }
1151
1152 put_cpu();
1153 }
1154
1155 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1156 }
1157
1158 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1159 {
1160 struct blk_mq_hw_ctx *hctx;
1161 int i;
1162
1163 queue_for_each_hw_ctx(q, hctx, i) {
1164 if (!blk_mq_hctx_has_pending(hctx) ||
1165 blk_mq_hctx_stopped(hctx))
1166 continue;
1167
1168 blk_mq_run_hw_queue(hctx, async);
1169 }
1170 }
1171 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1172
1173 /**
1174 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1175 * @q: request queue.
1176 *
1177 * The caller is responsible for serializing this function against
1178 * blk_mq_{start,stop}_hw_queue().
1179 */
1180 bool blk_mq_queue_stopped(struct request_queue *q)
1181 {
1182 struct blk_mq_hw_ctx *hctx;
1183 int i;
1184
1185 queue_for_each_hw_ctx(q, hctx, i)
1186 if (blk_mq_hctx_stopped(hctx))
1187 return true;
1188
1189 return false;
1190 }
1191 EXPORT_SYMBOL(blk_mq_queue_stopped);
1192
1193 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1194 {
1195 cancel_work(&hctx->run_work);
1196 cancel_delayed_work(&hctx->delay_work);
1197 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1198 }
1199 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1200
1201 void blk_mq_stop_hw_queues(struct request_queue *q)
1202 {
1203 struct blk_mq_hw_ctx *hctx;
1204 int i;
1205
1206 queue_for_each_hw_ctx(q, hctx, i)
1207 blk_mq_stop_hw_queue(hctx);
1208 }
1209 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1210
1211 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1212 {
1213 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1214
1215 blk_mq_run_hw_queue(hctx, false);
1216 }
1217 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1218
1219 void blk_mq_start_hw_queues(struct request_queue *q)
1220 {
1221 struct blk_mq_hw_ctx *hctx;
1222 int i;
1223
1224 queue_for_each_hw_ctx(q, hctx, i)
1225 blk_mq_start_hw_queue(hctx);
1226 }
1227 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1228
1229 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1230 {
1231 if (!blk_mq_hctx_stopped(hctx))
1232 return;
1233
1234 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235 blk_mq_run_hw_queue(hctx, async);
1236 }
1237 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1238
1239 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1240 {
1241 struct blk_mq_hw_ctx *hctx;
1242 int i;
1243
1244 queue_for_each_hw_ctx(q, hctx, i)
1245 blk_mq_start_stopped_hw_queue(hctx, async);
1246 }
1247 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1248
1249 static void blk_mq_run_work_fn(struct work_struct *work)
1250 {
1251 struct blk_mq_hw_ctx *hctx;
1252
1253 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1254
1255 __blk_mq_run_hw_queue(hctx);
1256 }
1257
1258 static void blk_mq_delay_work_fn(struct work_struct *work)
1259 {
1260 struct blk_mq_hw_ctx *hctx;
1261
1262 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1263
1264 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1265 __blk_mq_run_hw_queue(hctx);
1266 }
1267
1268 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1269 {
1270 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1271 return;
1272
1273 blk_mq_stop_hw_queue(hctx);
1274 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1275 &hctx->delay_work, msecs_to_jiffies(msecs));
1276 }
1277 EXPORT_SYMBOL(blk_mq_delay_queue);
1278
1279 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1280 struct request *rq,
1281 bool at_head)
1282 {
1283 struct blk_mq_ctx *ctx = rq->mq_ctx;
1284
1285 trace_block_rq_insert(hctx->queue, rq);
1286
1287 if (at_head)
1288 list_add(&rq->queuelist, &ctx->rq_list);
1289 else
1290 list_add_tail(&rq->queuelist, &ctx->rq_list);
1291 }
1292
1293 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1294 bool at_head)
1295 {
1296 struct blk_mq_ctx *ctx = rq->mq_ctx;
1297
1298 __blk_mq_insert_req_list(hctx, rq, at_head);
1299 blk_mq_hctx_mark_pending(hctx, ctx);
1300 }
1301
1302 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1303 struct list_head *list)
1304
1305 {
1306 /*
1307 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1308 * offline now
1309 */
1310 spin_lock(&ctx->lock);
1311 while (!list_empty(list)) {
1312 struct request *rq;
1313
1314 rq = list_first_entry(list, struct request, queuelist);
1315 BUG_ON(rq->mq_ctx != ctx);
1316 list_del_init(&rq->queuelist);
1317 __blk_mq_insert_req_list(hctx, rq, false);
1318 }
1319 blk_mq_hctx_mark_pending(hctx, ctx);
1320 spin_unlock(&ctx->lock);
1321 }
1322
1323 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1324 {
1325 struct request *rqa = container_of(a, struct request, queuelist);
1326 struct request *rqb = container_of(b, struct request, queuelist);
1327
1328 return !(rqa->mq_ctx < rqb->mq_ctx ||
1329 (rqa->mq_ctx == rqb->mq_ctx &&
1330 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1331 }
1332
1333 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1334 {
1335 struct blk_mq_ctx *this_ctx;
1336 struct request_queue *this_q;
1337 struct request *rq;
1338 LIST_HEAD(list);
1339 LIST_HEAD(ctx_list);
1340 unsigned int depth;
1341
1342 list_splice_init(&plug->mq_list, &list);
1343
1344 list_sort(NULL, &list, plug_ctx_cmp);
1345
1346 this_q = NULL;
1347 this_ctx = NULL;
1348 depth = 0;
1349
1350 while (!list_empty(&list)) {
1351 rq = list_entry_rq(list.next);
1352 list_del_init(&rq->queuelist);
1353 BUG_ON(!rq->q);
1354 if (rq->mq_ctx != this_ctx) {
1355 if (this_ctx) {
1356 trace_block_unplug(this_q, depth, from_schedule);
1357 blk_mq_sched_insert_requests(this_q, this_ctx,
1358 &ctx_list,
1359 from_schedule);
1360 }
1361
1362 this_ctx = rq->mq_ctx;
1363 this_q = rq->q;
1364 depth = 0;
1365 }
1366
1367 depth++;
1368 list_add_tail(&rq->queuelist, &ctx_list);
1369 }
1370
1371 /*
1372 * If 'this_ctx' is set, we know we have entries to complete
1373 * on 'ctx_list'. Do those.
1374 */
1375 if (this_ctx) {
1376 trace_block_unplug(this_q, depth, from_schedule);
1377 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1378 from_schedule);
1379 }
1380 }
1381
1382 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1383 {
1384 init_request_from_bio(rq, bio);
1385
1386 blk_account_io_start(rq, true);
1387 }
1388
1389 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1390 {
1391 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1392 !blk_queue_nomerges(hctx->queue);
1393 }
1394
1395 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1396 struct blk_mq_ctx *ctx,
1397 struct request *rq, struct bio *bio)
1398 {
1399 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1400 blk_mq_bio_to_request(rq, bio);
1401 spin_lock(&ctx->lock);
1402 insert_rq:
1403 __blk_mq_insert_request(hctx, rq, false);
1404 spin_unlock(&ctx->lock);
1405 return false;
1406 } else {
1407 struct request_queue *q = hctx->queue;
1408
1409 spin_lock(&ctx->lock);
1410 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1411 blk_mq_bio_to_request(rq, bio);
1412 goto insert_rq;
1413 }
1414
1415 spin_unlock(&ctx->lock);
1416 __blk_mq_finish_request(hctx, ctx, rq);
1417 return true;
1418 }
1419 }
1420
1421 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1422 {
1423 if (rq->tag != -1)
1424 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1425
1426 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1427 }
1428
1429 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1430 bool may_sleep)
1431 {
1432 struct request_queue *q = rq->q;
1433 struct blk_mq_queue_data bd = {
1434 .rq = rq,
1435 .list = NULL,
1436 .last = 1
1437 };
1438 struct blk_mq_hw_ctx *hctx;
1439 blk_qc_t new_cookie;
1440 int ret;
1441
1442 if (q->elevator)
1443 goto insert;
1444
1445 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1446 goto insert;
1447
1448 new_cookie = request_to_qc_t(hctx, rq);
1449
1450 /*
1451 * For OK queue, we are done. For error, kill it. Any other
1452 * error (busy), just add it to our list as we previously
1453 * would have done
1454 */
1455 ret = q->mq_ops->queue_rq(hctx, &bd);
1456 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1457 *cookie = new_cookie;
1458 return;
1459 }
1460
1461 __blk_mq_requeue_request(rq);
1462
1463 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1464 *cookie = BLK_QC_T_NONE;
1465 rq->errors = -EIO;
1466 blk_mq_end_request(rq, rq->errors);
1467 return;
1468 }
1469
1470 insert:
1471 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1472 }
1473
1474 /*
1475 * Multiple hardware queue variant. This will not use per-process plugs,
1476 * but will attempt to bypass the hctx queueing if we can go straight to
1477 * hardware for SYNC IO.
1478 */
1479 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1480 {
1481 const int is_sync = op_is_sync(bio->bi_opf);
1482 const int is_flush_fua = op_is_flush(bio->bi_opf);
1483 struct blk_mq_alloc_data data = { .flags = 0 };
1484 struct request *rq;
1485 unsigned int request_count = 0, srcu_idx;
1486 struct blk_plug *plug;
1487 struct request *same_queue_rq = NULL;
1488 blk_qc_t cookie;
1489 unsigned int wb_acct;
1490
1491 blk_queue_bounce(q, &bio);
1492
1493 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1494 bio_io_error(bio);
1495 return BLK_QC_T_NONE;
1496 }
1497
1498 blk_queue_split(q, &bio, q->bio_split);
1499
1500 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1501 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1502 return BLK_QC_T_NONE;
1503
1504 if (blk_mq_sched_bio_merge(q, bio))
1505 return BLK_QC_T_NONE;
1506
1507 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1508
1509 trace_block_getrq(q, bio, bio->bi_opf);
1510
1511 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1512 if (unlikely(!rq)) {
1513 __wbt_done(q->rq_wb, wb_acct);
1514 return BLK_QC_T_NONE;
1515 }
1516
1517 wbt_track(&rq->issue_stat, wb_acct);
1518
1519 cookie = request_to_qc_t(data.hctx, rq);
1520
1521 if (unlikely(is_flush_fua)) {
1522 if (q->elevator)
1523 goto elv_insert;
1524 blk_mq_bio_to_request(rq, bio);
1525 blk_insert_flush(rq);
1526 goto run_queue;
1527 }
1528
1529 plug = current->plug;
1530 /*
1531 * If the driver supports defer issued based on 'last', then
1532 * queue it up like normal since we can potentially save some
1533 * CPU this way.
1534 */
1535 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1536 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1537 struct request *old_rq = NULL;
1538
1539 blk_mq_bio_to_request(rq, bio);
1540
1541 /*
1542 * We do limited plugging. If the bio can be merged, do that.
1543 * Otherwise the existing request in the plug list will be
1544 * issued. So the plug list will have one request at most
1545 */
1546 if (plug) {
1547 /*
1548 * The plug list might get flushed before this. If that
1549 * happens, same_queue_rq is invalid and plug list is
1550 * empty
1551 */
1552 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1553 old_rq = same_queue_rq;
1554 list_del_init(&old_rq->queuelist);
1555 }
1556 list_add_tail(&rq->queuelist, &plug->mq_list);
1557 } else /* is_sync */
1558 old_rq = rq;
1559 blk_mq_put_ctx(data.ctx);
1560 if (!old_rq)
1561 goto done;
1562
1563 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1564 rcu_read_lock();
1565 blk_mq_try_issue_directly(old_rq, &cookie, false);
1566 rcu_read_unlock();
1567 } else {
1568 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1569 blk_mq_try_issue_directly(old_rq, &cookie, true);
1570 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1571 }
1572 goto done;
1573 }
1574
1575 if (q->elevator) {
1576 elv_insert:
1577 blk_mq_put_ctx(data.ctx);
1578 blk_mq_bio_to_request(rq, bio);
1579 blk_mq_sched_insert_request(rq, false, true,
1580 !is_sync || is_flush_fua, true);
1581 goto done;
1582 }
1583 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1584 /*
1585 * For a SYNC request, send it to the hardware immediately. For
1586 * an ASYNC request, just ensure that we run it later on. The
1587 * latter allows for merging opportunities and more efficient
1588 * dispatching.
1589 */
1590 run_queue:
1591 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1592 }
1593 blk_mq_put_ctx(data.ctx);
1594 done:
1595 return cookie;
1596 }
1597
1598 /*
1599 * Single hardware queue variant. This will attempt to use any per-process
1600 * plug for merging and IO deferral.
1601 */
1602 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1603 {
1604 const int is_sync = op_is_sync(bio->bi_opf);
1605 const int is_flush_fua = op_is_flush(bio->bi_opf);
1606 struct blk_plug *plug;
1607 unsigned int request_count = 0;
1608 struct blk_mq_alloc_data data = { .flags = 0 };
1609 struct request *rq;
1610 blk_qc_t cookie;
1611 unsigned int wb_acct;
1612
1613 blk_queue_bounce(q, &bio);
1614
1615 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1616 bio_io_error(bio);
1617 return BLK_QC_T_NONE;
1618 }
1619
1620 blk_queue_split(q, &bio, q->bio_split);
1621
1622 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1623 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1624 return BLK_QC_T_NONE;
1625 } else
1626 request_count = blk_plug_queued_count(q);
1627
1628 if (blk_mq_sched_bio_merge(q, bio))
1629 return BLK_QC_T_NONE;
1630
1631 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1632
1633 trace_block_getrq(q, bio, bio->bi_opf);
1634
1635 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1636 if (unlikely(!rq)) {
1637 __wbt_done(q->rq_wb, wb_acct);
1638 return BLK_QC_T_NONE;
1639 }
1640
1641 wbt_track(&rq->issue_stat, wb_acct);
1642
1643 cookie = request_to_qc_t(data.hctx, rq);
1644
1645 if (unlikely(is_flush_fua)) {
1646 if (q->elevator)
1647 goto elv_insert;
1648 blk_mq_bio_to_request(rq, bio);
1649 blk_insert_flush(rq);
1650 goto run_queue;
1651 }
1652
1653 /*
1654 * A task plug currently exists. Since this is completely lockless,
1655 * utilize that to temporarily store requests until the task is
1656 * either done or scheduled away.
1657 */
1658 plug = current->plug;
1659 if (plug) {
1660 struct request *last = NULL;
1661
1662 blk_mq_bio_to_request(rq, bio);
1663
1664 /*
1665 * @request_count may become stale because of schedule
1666 * out, so check the list again.
1667 */
1668 if (list_empty(&plug->mq_list))
1669 request_count = 0;
1670 if (!request_count)
1671 trace_block_plug(q);
1672 else
1673 last = list_entry_rq(plug->mq_list.prev);
1674
1675 blk_mq_put_ctx(data.ctx);
1676
1677 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1678 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1679 blk_flush_plug_list(plug, false);
1680 trace_block_plug(q);
1681 }
1682
1683 list_add_tail(&rq->queuelist, &plug->mq_list);
1684 return cookie;
1685 }
1686
1687 if (q->elevator) {
1688 elv_insert:
1689 blk_mq_put_ctx(data.ctx);
1690 blk_mq_bio_to_request(rq, bio);
1691 blk_mq_sched_insert_request(rq, false, true,
1692 !is_sync || is_flush_fua, true);
1693 goto done;
1694 }
1695 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1696 /*
1697 * For a SYNC request, send it to the hardware immediately. For
1698 * an ASYNC request, just ensure that we run it later on. The
1699 * latter allows for merging opportunities and more efficient
1700 * dispatching.
1701 */
1702 run_queue:
1703 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1704 }
1705
1706 blk_mq_put_ctx(data.ctx);
1707 done:
1708 return cookie;
1709 }
1710
1711 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1712 unsigned int hctx_idx)
1713 {
1714 struct page *page;
1715
1716 if (tags->rqs && set->ops->exit_request) {
1717 int i;
1718
1719 for (i = 0; i < tags->nr_tags; i++) {
1720 struct request *rq = tags->static_rqs[i];
1721
1722 if (!rq)
1723 continue;
1724 set->ops->exit_request(set->driver_data, rq,
1725 hctx_idx, i);
1726 tags->static_rqs[i] = NULL;
1727 }
1728 }
1729
1730 while (!list_empty(&tags->page_list)) {
1731 page = list_first_entry(&tags->page_list, struct page, lru);
1732 list_del_init(&page->lru);
1733 /*
1734 * Remove kmemleak object previously allocated in
1735 * blk_mq_init_rq_map().
1736 */
1737 kmemleak_free(page_address(page));
1738 __free_pages(page, page->private);
1739 }
1740 }
1741
1742 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1743 {
1744 kfree(tags->rqs);
1745 tags->rqs = NULL;
1746 kfree(tags->static_rqs);
1747 tags->static_rqs = NULL;
1748
1749 blk_mq_free_tags(tags);
1750 }
1751
1752 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1753 unsigned int hctx_idx,
1754 unsigned int nr_tags,
1755 unsigned int reserved_tags)
1756 {
1757 struct blk_mq_tags *tags;
1758 int node;
1759
1760 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1761 if (node == NUMA_NO_NODE)
1762 node = set->numa_node;
1763
1764 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1765 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1766 if (!tags)
1767 return NULL;
1768
1769 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1770 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1771 node);
1772 if (!tags->rqs) {
1773 blk_mq_free_tags(tags);
1774 return NULL;
1775 }
1776
1777 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779 node);
1780 if (!tags->static_rqs) {
1781 kfree(tags->rqs);
1782 blk_mq_free_tags(tags);
1783 return NULL;
1784 }
1785
1786 return tags;
1787 }
1788
1789 static size_t order_to_size(unsigned int order)
1790 {
1791 return (size_t)PAGE_SIZE << order;
1792 }
1793
1794 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1795 unsigned int hctx_idx, unsigned int depth)
1796 {
1797 unsigned int i, j, entries_per_page, max_order = 4;
1798 size_t rq_size, left;
1799 int node;
1800
1801 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1802 if (node == NUMA_NO_NODE)
1803 node = set->numa_node;
1804
1805 INIT_LIST_HEAD(&tags->page_list);
1806
1807 /*
1808 * rq_size is the size of the request plus driver payload, rounded
1809 * to the cacheline size
1810 */
1811 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1812 cache_line_size());
1813 left = rq_size * depth;
1814
1815 for (i = 0; i < depth; ) {
1816 int this_order = max_order;
1817 struct page *page;
1818 int to_do;
1819 void *p;
1820
1821 while (this_order && left < order_to_size(this_order - 1))
1822 this_order--;
1823
1824 do {
1825 page = alloc_pages_node(node,
1826 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1827 this_order);
1828 if (page)
1829 break;
1830 if (!this_order--)
1831 break;
1832 if (order_to_size(this_order) < rq_size)
1833 break;
1834 } while (1);
1835
1836 if (!page)
1837 goto fail;
1838
1839 page->private = this_order;
1840 list_add_tail(&page->lru, &tags->page_list);
1841
1842 p = page_address(page);
1843 /*
1844 * Allow kmemleak to scan these pages as they contain pointers
1845 * to additional allocations like via ops->init_request().
1846 */
1847 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1848 entries_per_page = order_to_size(this_order) / rq_size;
1849 to_do = min(entries_per_page, depth - i);
1850 left -= to_do * rq_size;
1851 for (j = 0; j < to_do; j++) {
1852 struct request *rq = p;
1853
1854 tags->static_rqs[i] = rq;
1855 if (set->ops->init_request) {
1856 if (set->ops->init_request(set->driver_data,
1857 rq, hctx_idx, i,
1858 node)) {
1859 tags->static_rqs[i] = NULL;
1860 goto fail;
1861 }
1862 }
1863
1864 p += rq_size;
1865 i++;
1866 }
1867 }
1868 return 0;
1869
1870 fail:
1871 blk_mq_free_rqs(set, tags, hctx_idx);
1872 return -ENOMEM;
1873 }
1874
1875 /*
1876 * 'cpu' is going away. splice any existing rq_list entries from this
1877 * software queue to the hw queue dispatch list, and ensure that it
1878 * gets run.
1879 */
1880 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1881 {
1882 struct blk_mq_hw_ctx *hctx;
1883 struct blk_mq_ctx *ctx;
1884 LIST_HEAD(tmp);
1885
1886 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1887 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1888
1889 spin_lock(&ctx->lock);
1890 if (!list_empty(&ctx->rq_list)) {
1891 list_splice_init(&ctx->rq_list, &tmp);
1892 blk_mq_hctx_clear_pending(hctx, ctx);
1893 }
1894 spin_unlock(&ctx->lock);
1895
1896 if (list_empty(&tmp))
1897 return 0;
1898
1899 spin_lock(&hctx->lock);
1900 list_splice_tail_init(&tmp, &hctx->dispatch);
1901 spin_unlock(&hctx->lock);
1902
1903 blk_mq_run_hw_queue(hctx, true);
1904 return 0;
1905 }
1906
1907 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1908 {
1909 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1910 &hctx->cpuhp_dead);
1911 }
1912
1913 /* hctx->ctxs will be freed in queue's release handler */
1914 static void blk_mq_exit_hctx(struct request_queue *q,
1915 struct blk_mq_tag_set *set,
1916 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1917 {
1918 unsigned flush_start_tag = set->queue_depth;
1919
1920 blk_mq_tag_idle(hctx);
1921
1922 if (set->ops->exit_request)
1923 set->ops->exit_request(set->driver_data,
1924 hctx->fq->flush_rq, hctx_idx,
1925 flush_start_tag + hctx_idx);
1926
1927 if (set->ops->exit_hctx)
1928 set->ops->exit_hctx(hctx, hctx_idx);
1929
1930 if (hctx->flags & BLK_MQ_F_BLOCKING)
1931 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1932
1933 blk_mq_remove_cpuhp(hctx);
1934 blk_free_flush_queue(hctx->fq);
1935 sbitmap_free(&hctx->ctx_map);
1936 }
1937
1938 static void blk_mq_exit_hw_queues(struct request_queue *q,
1939 struct blk_mq_tag_set *set, int nr_queue)
1940 {
1941 struct blk_mq_hw_ctx *hctx;
1942 unsigned int i;
1943
1944 queue_for_each_hw_ctx(q, hctx, i) {
1945 if (i == nr_queue)
1946 break;
1947 blk_mq_exit_hctx(q, set, hctx, i);
1948 }
1949 }
1950
1951 static int blk_mq_init_hctx(struct request_queue *q,
1952 struct blk_mq_tag_set *set,
1953 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1954 {
1955 int node;
1956 unsigned flush_start_tag = set->queue_depth;
1957
1958 node = hctx->numa_node;
1959 if (node == NUMA_NO_NODE)
1960 node = hctx->numa_node = set->numa_node;
1961
1962 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1963 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1964 spin_lock_init(&hctx->lock);
1965 INIT_LIST_HEAD(&hctx->dispatch);
1966 hctx->queue = q;
1967 hctx->queue_num = hctx_idx;
1968 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1969
1970 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1971
1972 hctx->tags = set->tags[hctx_idx];
1973
1974 /*
1975 * Allocate space for all possible cpus to avoid allocation at
1976 * runtime
1977 */
1978 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1979 GFP_KERNEL, node);
1980 if (!hctx->ctxs)
1981 goto unregister_cpu_notifier;
1982
1983 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1984 node))
1985 goto free_ctxs;
1986
1987 hctx->nr_ctx = 0;
1988
1989 if (set->ops->init_hctx &&
1990 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1991 goto free_bitmap;
1992
1993 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1994 if (!hctx->fq)
1995 goto exit_hctx;
1996
1997 if (set->ops->init_request &&
1998 set->ops->init_request(set->driver_data,
1999 hctx->fq->flush_rq, hctx_idx,
2000 flush_start_tag + hctx_idx, node))
2001 goto free_fq;
2002
2003 if (hctx->flags & BLK_MQ_F_BLOCKING)
2004 init_srcu_struct(&hctx->queue_rq_srcu);
2005
2006 return 0;
2007
2008 free_fq:
2009 kfree(hctx->fq);
2010 exit_hctx:
2011 if (set->ops->exit_hctx)
2012 set->ops->exit_hctx(hctx, hctx_idx);
2013 free_bitmap:
2014 sbitmap_free(&hctx->ctx_map);
2015 free_ctxs:
2016 kfree(hctx->ctxs);
2017 unregister_cpu_notifier:
2018 blk_mq_remove_cpuhp(hctx);
2019 return -1;
2020 }
2021
2022 static void blk_mq_init_cpu_queues(struct request_queue *q,
2023 unsigned int nr_hw_queues)
2024 {
2025 unsigned int i;
2026
2027 for_each_possible_cpu(i) {
2028 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2029 struct blk_mq_hw_ctx *hctx;
2030
2031 __ctx->cpu = i;
2032 spin_lock_init(&__ctx->lock);
2033 INIT_LIST_HEAD(&__ctx->rq_list);
2034 __ctx->queue = q;
2035 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2036 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2037
2038 /* If the cpu isn't online, the cpu is mapped to first hctx */
2039 if (!cpu_online(i))
2040 continue;
2041
2042 hctx = blk_mq_map_queue(q, i);
2043
2044 /*
2045 * Set local node, IFF we have more than one hw queue. If
2046 * not, we remain on the home node of the device
2047 */
2048 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2049 hctx->numa_node = local_memory_node(cpu_to_node(i));
2050 }
2051 }
2052
2053 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2054 {
2055 int ret = 0;
2056
2057 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2058 set->queue_depth, set->reserved_tags);
2059 if (!set->tags[hctx_idx])
2060 return false;
2061
2062 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2063 set->queue_depth);
2064 if (!ret)
2065 return true;
2066
2067 blk_mq_free_rq_map(set->tags[hctx_idx]);
2068 set->tags[hctx_idx] = NULL;
2069 return false;
2070 }
2071
2072 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2073 unsigned int hctx_idx)
2074 {
2075 if (set->tags[hctx_idx]) {
2076 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2077 blk_mq_free_rq_map(set->tags[hctx_idx]);
2078 set->tags[hctx_idx] = NULL;
2079 }
2080 }
2081
2082 static void blk_mq_map_swqueue(struct request_queue *q,
2083 const struct cpumask *online_mask)
2084 {
2085 unsigned int i, hctx_idx;
2086 struct blk_mq_hw_ctx *hctx;
2087 struct blk_mq_ctx *ctx;
2088 struct blk_mq_tag_set *set = q->tag_set;
2089
2090 /*
2091 * Avoid others reading imcomplete hctx->cpumask through sysfs
2092 */
2093 mutex_lock(&q->sysfs_lock);
2094
2095 queue_for_each_hw_ctx(q, hctx, i) {
2096 cpumask_clear(hctx->cpumask);
2097 hctx->nr_ctx = 0;
2098 }
2099
2100 /*
2101 * Map software to hardware queues
2102 */
2103 for_each_possible_cpu(i) {
2104 /* If the cpu isn't online, the cpu is mapped to first hctx */
2105 if (!cpumask_test_cpu(i, online_mask))
2106 continue;
2107
2108 hctx_idx = q->mq_map[i];
2109 /* unmapped hw queue can be remapped after CPU topo changed */
2110 if (!set->tags[hctx_idx] &&
2111 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2112 /*
2113 * If tags initialization fail for some hctx,
2114 * that hctx won't be brought online. In this
2115 * case, remap the current ctx to hctx[0] which
2116 * is guaranteed to always have tags allocated
2117 */
2118 q->mq_map[i] = 0;
2119 }
2120
2121 ctx = per_cpu_ptr(q->queue_ctx, i);
2122 hctx = blk_mq_map_queue(q, i);
2123
2124 cpumask_set_cpu(i, hctx->cpumask);
2125 ctx->index_hw = hctx->nr_ctx;
2126 hctx->ctxs[hctx->nr_ctx++] = ctx;
2127 }
2128
2129 mutex_unlock(&q->sysfs_lock);
2130
2131 queue_for_each_hw_ctx(q, hctx, i) {
2132 /*
2133 * If no software queues are mapped to this hardware queue,
2134 * disable it and free the request entries.
2135 */
2136 if (!hctx->nr_ctx) {
2137 /* Never unmap queue 0. We need it as a
2138 * fallback in case of a new remap fails
2139 * allocation
2140 */
2141 if (i && set->tags[i])
2142 blk_mq_free_map_and_requests(set, i);
2143
2144 hctx->tags = NULL;
2145 continue;
2146 }
2147
2148 hctx->tags = set->tags[i];
2149 WARN_ON(!hctx->tags);
2150
2151 /*
2152 * Set the map size to the number of mapped software queues.
2153 * This is more accurate and more efficient than looping
2154 * over all possibly mapped software queues.
2155 */
2156 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2157
2158 /*
2159 * Initialize batch roundrobin counts
2160 */
2161 hctx->next_cpu = cpumask_first(hctx->cpumask);
2162 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2163 }
2164 }
2165
2166 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2167 {
2168 struct blk_mq_hw_ctx *hctx;
2169 int i;
2170
2171 queue_for_each_hw_ctx(q, hctx, i) {
2172 if (shared)
2173 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2174 else
2175 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2176 }
2177 }
2178
2179 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2180 {
2181 struct request_queue *q;
2182
2183 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2184 blk_mq_freeze_queue(q);
2185 queue_set_hctx_shared(q, shared);
2186 blk_mq_unfreeze_queue(q);
2187 }
2188 }
2189
2190 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2191 {
2192 struct blk_mq_tag_set *set = q->tag_set;
2193
2194 mutex_lock(&set->tag_list_lock);
2195 list_del_init(&q->tag_set_list);
2196 if (list_is_singular(&set->tag_list)) {
2197 /* just transitioned to unshared */
2198 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2199 /* update existing queue */
2200 blk_mq_update_tag_set_depth(set, false);
2201 }
2202 mutex_unlock(&set->tag_list_lock);
2203 }
2204
2205 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2206 struct request_queue *q)
2207 {
2208 q->tag_set = set;
2209
2210 mutex_lock(&set->tag_list_lock);
2211
2212 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2213 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2214 set->flags |= BLK_MQ_F_TAG_SHARED;
2215 /* update existing queue */
2216 blk_mq_update_tag_set_depth(set, true);
2217 }
2218 if (set->flags & BLK_MQ_F_TAG_SHARED)
2219 queue_set_hctx_shared(q, true);
2220 list_add_tail(&q->tag_set_list, &set->tag_list);
2221
2222 mutex_unlock(&set->tag_list_lock);
2223 }
2224
2225 /*
2226 * It is the actual release handler for mq, but we do it from
2227 * request queue's release handler for avoiding use-after-free
2228 * and headache because q->mq_kobj shouldn't have been introduced,
2229 * but we can't group ctx/kctx kobj without it.
2230 */
2231 void blk_mq_release(struct request_queue *q)
2232 {
2233 struct blk_mq_hw_ctx *hctx;
2234 unsigned int i;
2235
2236 blk_mq_sched_teardown(q);
2237
2238 /* hctx kobj stays in hctx */
2239 queue_for_each_hw_ctx(q, hctx, i) {
2240 if (!hctx)
2241 continue;
2242 kobject_put(&hctx->kobj);
2243 }
2244
2245 q->mq_map = NULL;
2246
2247 kfree(q->queue_hw_ctx);
2248
2249 /*
2250 * release .mq_kobj and sw queue's kobject now because
2251 * both share lifetime with request queue.
2252 */
2253 blk_mq_sysfs_deinit(q);
2254
2255 free_percpu(q->queue_ctx);
2256 }
2257
2258 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2259 {
2260 struct request_queue *uninit_q, *q;
2261
2262 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2263 if (!uninit_q)
2264 return ERR_PTR(-ENOMEM);
2265
2266 q = blk_mq_init_allocated_queue(set, uninit_q);
2267 if (IS_ERR(q))
2268 blk_cleanup_queue(uninit_q);
2269
2270 return q;
2271 }
2272 EXPORT_SYMBOL(blk_mq_init_queue);
2273
2274 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2275 struct request_queue *q)
2276 {
2277 int i, j;
2278 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2279
2280 blk_mq_sysfs_unregister(q);
2281 for (i = 0; i < set->nr_hw_queues; i++) {
2282 int node;
2283
2284 if (hctxs[i])
2285 continue;
2286
2287 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2288 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2289 GFP_KERNEL, node);
2290 if (!hctxs[i])
2291 break;
2292
2293 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2294 node)) {
2295 kfree(hctxs[i]);
2296 hctxs[i] = NULL;
2297 break;
2298 }
2299
2300 atomic_set(&hctxs[i]->nr_active, 0);
2301 hctxs[i]->numa_node = node;
2302 hctxs[i]->queue_num = i;
2303
2304 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2305 free_cpumask_var(hctxs[i]->cpumask);
2306 kfree(hctxs[i]);
2307 hctxs[i] = NULL;
2308 break;
2309 }
2310 blk_mq_hctx_kobj_init(hctxs[i]);
2311 }
2312 for (j = i; j < q->nr_hw_queues; j++) {
2313 struct blk_mq_hw_ctx *hctx = hctxs[j];
2314
2315 if (hctx) {
2316 if (hctx->tags)
2317 blk_mq_free_map_and_requests(set, j);
2318 blk_mq_exit_hctx(q, set, hctx, j);
2319 kobject_put(&hctx->kobj);
2320 hctxs[j] = NULL;
2321
2322 }
2323 }
2324 q->nr_hw_queues = i;
2325 blk_mq_sysfs_register(q);
2326 }
2327
2328 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2329 struct request_queue *q)
2330 {
2331 /* mark the queue as mq asap */
2332 q->mq_ops = set->ops;
2333
2334 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2335 if (!q->queue_ctx)
2336 goto err_exit;
2337
2338 /* init q->mq_kobj and sw queues' kobjects */
2339 blk_mq_sysfs_init(q);
2340
2341 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2342 GFP_KERNEL, set->numa_node);
2343 if (!q->queue_hw_ctx)
2344 goto err_percpu;
2345
2346 q->mq_map = set->mq_map;
2347
2348 blk_mq_realloc_hw_ctxs(set, q);
2349 if (!q->nr_hw_queues)
2350 goto err_hctxs;
2351
2352 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2353 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2354
2355 q->nr_queues = nr_cpu_ids;
2356
2357 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2358
2359 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2360 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2361
2362 q->sg_reserved_size = INT_MAX;
2363
2364 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2365 INIT_LIST_HEAD(&q->requeue_list);
2366 spin_lock_init(&q->requeue_lock);
2367
2368 if (q->nr_hw_queues > 1)
2369 blk_queue_make_request(q, blk_mq_make_request);
2370 else
2371 blk_queue_make_request(q, blk_sq_make_request);
2372
2373 /*
2374 * Do this after blk_queue_make_request() overrides it...
2375 */
2376 q->nr_requests = set->queue_depth;
2377
2378 /*
2379 * Default to classic polling
2380 */
2381 q->poll_nsec = -1;
2382
2383 if (set->ops->complete)
2384 blk_queue_softirq_done(q, set->ops->complete);
2385
2386 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2387
2388 get_online_cpus();
2389 mutex_lock(&all_q_mutex);
2390
2391 list_add_tail(&q->all_q_node, &all_q_list);
2392 blk_mq_add_queue_tag_set(set, q);
2393 blk_mq_map_swqueue(q, cpu_online_mask);
2394
2395 mutex_unlock(&all_q_mutex);
2396 put_online_cpus();
2397
2398 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2399 int ret;
2400
2401 ret = blk_mq_sched_init(q);
2402 if (ret)
2403 return ERR_PTR(ret);
2404 }
2405
2406 return q;
2407
2408 err_hctxs:
2409 kfree(q->queue_hw_ctx);
2410 err_percpu:
2411 free_percpu(q->queue_ctx);
2412 err_exit:
2413 q->mq_ops = NULL;
2414 return ERR_PTR(-ENOMEM);
2415 }
2416 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2417
2418 void blk_mq_free_queue(struct request_queue *q)
2419 {
2420 struct blk_mq_tag_set *set = q->tag_set;
2421
2422 mutex_lock(&all_q_mutex);
2423 list_del_init(&q->all_q_node);
2424 mutex_unlock(&all_q_mutex);
2425
2426 wbt_exit(q);
2427
2428 blk_mq_del_queue_tag_set(q);
2429
2430 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2431 }
2432
2433 /* Basically redo blk_mq_init_queue with queue frozen */
2434 static void blk_mq_queue_reinit(struct request_queue *q,
2435 const struct cpumask *online_mask)
2436 {
2437 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2438
2439 blk_mq_sysfs_unregister(q);
2440
2441 /*
2442 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2443 * we should change hctx numa_node according to new topology (this
2444 * involves free and re-allocate memory, worthy doing?)
2445 */
2446
2447 blk_mq_map_swqueue(q, online_mask);
2448
2449 blk_mq_sysfs_register(q);
2450 }
2451
2452 /*
2453 * New online cpumask which is going to be set in this hotplug event.
2454 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2455 * one-by-one and dynamically allocating this could result in a failure.
2456 */
2457 static struct cpumask cpuhp_online_new;
2458
2459 static void blk_mq_queue_reinit_work(void)
2460 {
2461 struct request_queue *q;
2462
2463 mutex_lock(&all_q_mutex);
2464 /*
2465 * We need to freeze and reinit all existing queues. Freezing
2466 * involves synchronous wait for an RCU grace period and doing it
2467 * one by one may take a long time. Start freezing all queues in
2468 * one swoop and then wait for the completions so that freezing can
2469 * take place in parallel.
2470 */
2471 list_for_each_entry(q, &all_q_list, all_q_node)
2472 blk_mq_freeze_queue_start(q);
2473 list_for_each_entry(q, &all_q_list, all_q_node)
2474 blk_mq_freeze_queue_wait(q);
2475
2476 list_for_each_entry(q, &all_q_list, all_q_node)
2477 blk_mq_queue_reinit(q, &cpuhp_online_new);
2478
2479 list_for_each_entry(q, &all_q_list, all_q_node)
2480 blk_mq_unfreeze_queue(q);
2481
2482 mutex_unlock(&all_q_mutex);
2483 }
2484
2485 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2486 {
2487 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2488 blk_mq_queue_reinit_work();
2489 return 0;
2490 }
2491
2492 /*
2493 * Before hotadded cpu starts handling requests, new mappings must be
2494 * established. Otherwise, these requests in hw queue might never be
2495 * dispatched.
2496 *
2497 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2498 * for CPU0, and ctx1 for CPU1).
2499 *
2500 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2501 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2502 *
2503 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2504 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2505 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2506 * ignored.
2507 */
2508 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2509 {
2510 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2511 cpumask_set_cpu(cpu, &cpuhp_online_new);
2512 blk_mq_queue_reinit_work();
2513 return 0;
2514 }
2515
2516 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2517 {
2518 int i;
2519
2520 for (i = 0; i < set->nr_hw_queues; i++)
2521 if (!__blk_mq_alloc_rq_map(set, i))
2522 goto out_unwind;
2523
2524 return 0;
2525
2526 out_unwind:
2527 while (--i >= 0)
2528 blk_mq_free_rq_map(set->tags[i]);
2529
2530 return -ENOMEM;
2531 }
2532
2533 /*
2534 * Allocate the request maps associated with this tag_set. Note that this
2535 * may reduce the depth asked for, if memory is tight. set->queue_depth
2536 * will be updated to reflect the allocated depth.
2537 */
2538 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2539 {
2540 unsigned int depth;
2541 int err;
2542
2543 depth = set->queue_depth;
2544 do {
2545 err = __blk_mq_alloc_rq_maps(set);
2546 if (!err)
2547 break;
2548
2549 set->queue_depth >>= 1;
2550 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2551 err = -ENOMEM;
2552 break;
2553 }
2554 } while (set->queue_depth);
2555
2556 if (!set->queue_depth || err) {
2557 pr_err("blk-mq: failed to allocate request map\n");
2558 return -ENOMEM;
2559 }
2560
2561 if (depth != set->queue_depth)
2562 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2563 depth, set->queue_depth);
2564
2565 return 0;
2566 }
2567
2568 /*
2569 * Alloc a tag set to be associated with one or more request queues.
2570 * May fail with EINVAL for various error conditions. May adjust the
2571 * requested depth down, if if it too large. In that case, the set
2572 * value will be stored in set->queue_depth.
2573 */
2574 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2575 {
2576 int ret;
2577
2578 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2579
2580 if (!set->nr_hw_queues)
2581 return -EINVAL;
2582 if (!set->queue_depth)
2583 return -EINVAL;
2584 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2585 return -EINVAL;
2586
2587 if (!set->ops->queue_rq)
2588 return -EINVAL;
2589
2590 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2591 pr_info("blk-mq: reduced tag depth to %u\n",
2592 BLK_MQ_MAX_DEPTH);
2593 set->queue_depth = BLK_MQ_MAX_DEPTH;
2594 }
2595
2596 /*
2597 * If a crashdump is active, then we are potentially in a very
2598 * memory constrained environment. Limit us to 1 queue and
2599 * 64 tags to prevent using too much memory.
2600 */
2601 if (is_kdump_kernel()) {
2602 set->nr_hw_queues = 1;
2603 set->queue_depth = min(64U, set->queue_depth);
2604 }
2605 /*
2606 * There is no use for more h/w queues than cpus.
2607 */
2608 if (set->nr_hw_queues > nr_cpu_ids)
2609 set->nr_hw_queues = nr_cpu_ids;
2610
2611 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2612 GFP_KERNEL, set->numa_node);
2613 if (!set->tags)
2614 return -ENOMEM;
2615
2616 ret = -ENOMEM;
2617 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2618 GFP_KERNEL, set->numa_node);
2619 if (!set->mq_map)
2620 goto out_free_tags;
2621
2622 if (set->ops->map_queues)
2623 ret = set->ops->map_queues(set);
2624 else
2625 ret = blk_mq_map_queues(set);
2626 if (ret)
2627 goto out_free_mq_map;
2628
2629 ret = blk_mq_alloc_rq_maps(set);
2630 if (ret)
2631 goto out_free_mq_map;
2632
2633 mutex_init(&set->tag_list_lock);
2634 INIT_LIST_HEAD(&set->tag_list);
2635
2636 return 0;
2637
2638 out_free_mq_map:
2639 kfree(set->mq_map);
2640 set->mq_map = NULL;
2641 out_free_tags:
2642 kfree(set->tags);
2643 set->tags = NULL;
2644 return ret;
2645 }
2646 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2647
2648 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2649 {
2650 int i;
2651
2652 for (i = 0; i < nr_cpu_ids; i++)
2653 blk_mq_free_map_and_requests(set, i);
2654
2655 kfree(set->mq_map);
2656 set->mq_map = NULL;
2657
2658 kfree(set->tags);
2659 set->tags = NULL;
2660 }
2661 EXPORT_SYMBOL(blk_mq_free_tag_set);
2662
2663 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2664 {
2665 struct blk_mq_tag_set *set = q->tag_set;
2666 struct blk_mq_hw_ctx *hctx;
2667 int i, ret;
2668
2669 if (!set)
2670 return -EINVAL;
2671
2672 blk_mq_freeze_queue(q);
2673 blk_mq_quiesce_queue(q);
2674
2675 ret = 0;
2676 queue_for_each_hw_ctx(q, hctx, i) {
2677 if (!hctx->tags)
2678 continue;
2679 /*
2680 * If we're using an MQ scheduler, just update the scheduler
2681 * queue depth. This is similar to what the old code would do.
2682 */
2683 if (!hctx->sched_tags) {
2684 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2685 min(nr, set->queue_depth),
2686 false);
2687 } else {
2688 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2689 nr, true);
2690 }
2691 if (ret)
2692 break;
2693 }
2694
2695 if (!ret)
2696 q->nr_requests = nr;
2697
2698 blk_mq_unfreeze_queue(q);
2699 blk_mq_start_stopped_hw_queues(q, true);
2700
2701 return ret;
2702 }
2703
2704 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2705 {
2706 struct request_queue *q;
2707
2708 if (nr_hw_queues > nr_cpu_ids)
2709 nr_hw_queues = nr_cpu_ids;
2710 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2711 return;
2712
2713 list_for_each_entry(q, &set->tag_list, tag_set_list)
2714 blk_mq_freeze_queue(q);
2715
2716 set->nr_hw_queues = nr_hw_queues;
2717 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2718 blk_mq_realloc_hw_ctxs(set, q);
2719
2720 /*
2721 * Manually set the make_request_fn as blk_queue_make_request
2722 * resets a lot of the queue settings.
2723 */
2724 if (q->nr_hw_queues > 1)
2725 q->make_request_fn = blk_mq_make_request;
2726 else
2727 q->make_request_fn = blk_sq_make_request;
2728
2729 blk_mq_queue_reinit(q, cpu_online_mask);
2730 }
2731
2732 list_for_each_entry(q, &set->tag_list, tag_set_list)
2733 blk_mq_unfreeze_queue(q);
2734 }
2735 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2736
2737 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2738 struct blk_mq_hw_ctx *hctx,
2739 struct request *rq)
2740 {
2741 struct blk_rq_stat stat[2];
2742 unsigned long ret = 0;
2743
2744 /*
2745 * If stats collection isn't on, don't sleep but turn it on for
2746 * future users
2747 */
2748 if (!blk_stat_enable(q))
2749 return 0;
2750
2751 /*
2752 * We don't have to do this once per IO, should optimize this
2753 * to just use the current window of stats until it changes
2754 */
2755 memset(&stat, 0, sizeof(stat));
2756 blk_hctx_stat_get(hctx, stat);
2757
2758 /*
2759 * As an optimistic guess, use half of the mean service time
2760 * for this type of request. We can (and should) make this smarter.
2761 * For instance, if the completion latencies are tight, we can
2762 * get closer than just half the mean. This is especially
2763 * important on devices where the completion latencies are longer
2764 * than ~10 usec.
2765 */
2766 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2767 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2768 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2769 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2770
2771 return ret;
2772 }
2773
2774 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2775 struct blk_mq_hw_ctx *hctx,
2776 struct request *rq)
2777 {
2778 struct hrtimer_sleeper hs;
2779 enum hrtimer_mode mode;
2780 unsigned int nsecs;
2781 ktime_t kt;
2782
2783 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2784 return false;
2785
2786 /*
2787 * poll_nsec can be:
2788 *
2789 * -1: don't ever hybrid sleep
2790 * 0: use half of prev avg
2791 * >0: use this specific value
2792 */
2793 if (q->poll_nsec == -1)
2794 return false;
2795 else if (q->poll_nsec > 0)
2796 nsecs = q->poll_nsec;
2797 else
2798 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2799
2800 if (!nsecs)
2801 return false;
2802
2803 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2804
2805 /*
2806 * This will be replaced with the stats tracking code, using
2807 * 'avg_completion_time / 2' as the pre-sleep target.
2808 */
2809 kt = nsecs;
2810
2811 mode = HRTIMER_MODE_REL;
2812 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2813 hrtimer_set_expires(&hs.timer, kt);
2814
2815 hrtimer_init_sleeper(&hs, current);
2816 do {
2817 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2818 break;
2819 set_current_state(TASK_UNINTERRUPTIBLE);
2820 hrtimer_start_expires(&hs.timer, mode);
2821 if (hs.task)
2822 io_schedule();
2823 hrtimer_cancel(&hs.timer);
2824 mode = HRTIMER_MODE_ABS;
2825 } while (hs.task && !signal_pending(current));
2826
2827 __set_current_state(TASK_RUNNING);
2828 destroy_hrtimer_on_stack(&hs.timer);
2829 return true;
2830 }
2831
2832 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2833 {
2834 struct request_queue *q = hctx->queue;
2835 long state;
2836
2837 /*
2838 * If we sleep, have the caller restart the poll loop to reset
2839 * the state. Like for the other success return cases, the
2840 * caller is responsible for checking if the IO completed. If
2841 * the IO isn't complete, we'll get called again and will go
2842 * straight to the busy poll loop.
2843 */
2844 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2845 return true;
2846
2847 hctx->poll_considered++;
2848
2849 state = current->state;
2850 while (!need_resched()) {
2851 int ret;
2852
2853 hctx->poll_invoked++;
2854
2855 ret = q->mq_ops->poll(hctx, rq->tag);
2856 if (ret > 0) {
2857 hctx->poll_success++;
2858 set_current_state(TASK_RUNNING);
2859 return true;
2860 }
2861
2862 if (signal_pending_state(state, current))
2863 set_current_state(TASK_RUNNING);
2864
2865 if (current->state == TASK_RUNNING)
2866 return true;
2867 if (ret < 0)
2868 break;
2869 cpu_relax();
2870 }
2871
2872 return false;
2873 }
2874
2875 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2876 {
2877 struct blk_mq_hw_ctx *hctx;
2878 struct blk_plug *plug;
2879 struct request *rq;
2880
2881 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2882 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2883 return false;
2884
2885 plug = current->plug;
2886 if (plug)
2887 blk_flush_plug_list(plug, false);
2888
2889 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2890 if (!blk_qc_t_is_internal(cookie))
2891 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2892 else
2893 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2894
2895 return __blk_mq_poll(hctx, rq);
2896 }
2897 EXPORT_SYMBOL_GPL(blk_mq_poll);
2898
2899 void blk_mq_disable_hotplug(void)
2900 {
2901 mutex_lock(&all_q_mutex);
2902 }
2903
2904 void blk_mq_enable_hotplug(void)
2905 {
2906 mutex_unlock(&all_q_mutex);
2907 }
2908
2909 static int __init blk_mq_init(void)
2910 {
2911 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2912 blk_mq_hctx_notify_dead);
2913
2914 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2915 blk_mq_queue_reinit_prepare,
2916 blk_mq_queue_reinit_dead);
2917 return 0;
2918 }
2919 subsys_initcall(blk_mq_init);