]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: make the sysfs mq/ layout reflect current mappings
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
37 unsigned int cpu)
38 {
39 return per_cpu_ptr(q->queue_ctx, cpu);
40 }
41
42 /*
43 * This assumes per-cpu software queueing queues. They could be per-node
44 * as well, for instance. For now this is hardcoded as-is. Note that we don't
45 * care about preemption, since we know the ctx's are persistent. This does
46 * mean that we can't rely on ctx always matching the currently running CPU.
47 */
48 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
49 {
50 return __blk_mq_get_ctx(q, get_cpu());
51 }
52
53 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
54 {
55 put_cpu();
56 }
57
58 /*
59 * Check if any of the ctx's have pending work in this hardware queue
60 */
61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
62 {
63 unsigned int i;
64
65 for (i = 0; i < hctx->ctx_map.map_size; i++)
66 if (hctx->ctx_map.map[i].word)
67 return true;
68
69 return false;
70 }
71
72 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
76 }
77
78 #define CTX_TO_BIT(hctx, ctx) \
79 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
80
81 /*
82 * Mark this ctx as having pending work in this hardware queue
83 */
84 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
88
89 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
90 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
91 }
92
93 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
94 struct blk_mq_ctx *ctx)
95 {
96 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
97
98 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
99 }
100
101 static int blk_mq_queue_enter(struct request_queue *q)
102 {
103 int ret;
104
105 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
106 smp_wmb();
107 /* we have problems to freeze the queue if it's initializing */
108 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
109 return 0;
110
111 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
112
113 spin_lock_irq(q->queue_lock);
114 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
115 !blk_queue_bypass(q) || blk_queue_dying(q),
116 *q->queue_lock);
117 /* inc usage with lock hold to avoid freeze_queue runs here */
118 if (!ret && !blk_queue_dying(q))
119 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
120 else if (blk_queue_dying(q))
121 ret = -ENODEV;
122 spin_unlock_irq(q->queue_lock);
123
124 return ret;
125 }
126
127 static void blk_mq_queue_exit(struct request_queue *q)
128 {
129 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130 }
131
132 static void __blk_mq_drain_queue(struct request_queue *q)
133 {
134 while (true) {
135 s64 count;
136
137 spin_lock_irq(q->queue_lock);
138 count = percpu_counter_sum(&q->mq_usage_counter);
139 spin_unlock_irq(q->queue_lock);
140
141 if (count == 0)
142 break;
143 blk_mq_run_queues(q, false);
144 msleep(10);
145 }
146 }
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 static void blk_mq_freeze_queue(struct request_queue *q)
153 {
154 bool drain;
155
156 spin_lock_irq(q->queue_lock);
157 drain = !q->bypass_depth++;
158 queue_flag_set(QUEUE_FLAG_BYPASS, q);
159 spin_unlock_irq(q->queue_lock);
160
161 if (drain)
162 __blk_mq_drain_queue(q);
163 }
164
165 void blk_mq_drain_queue(struct request_queue *q)
166 {
167 __blk_mq_drain_queue(q);
168 }
169
170 static void blk_mq_unfreeze_queue(struct request_queue *q)
171 {
172 bool wake = false;
173
174 spin_lock_irq(q->queue_lock);
175 if (!--q->bypass_depth) {
176 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
177 wake = true;
178 }
179 WARN_ON_ONCE(q->bypass_depth < 0);
180 spin_unlock_irq(q->queue_lock);
181 if (wake)
182 wake_up_all(&q->mq_freeze_wq);
183 }
184
185 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
186 {
187 return blk_mq_has_free_tags(hctx->tags);
188 }
189 EXPORT_SYMBOL(blk_mq_can_queue);
190
191 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
192 struct request *rq, unsigned int rw_flags)
193 {
194 if (blk_queue_io_stat(q))
195 rw_flags |= REQ_IO_STAT;
196
197 INIT_LIST_HEAD(&rq->queuelist);
198 /* csd/requeue_work/fifo_time is initialized before use */
199 rq->q = q;
200 rq->mq_ctx = ctx;
201 rq->cmd_flags |= rw_flags;
202 /* do not touch atomic flags, it needs atomic ops against the timer */
203 rq->cpu = -1;
204 INIT_HLIST_NODE(&rq->hash);
205 RB_CLEAR_NODE(&rq->rb_node);
206 rq->rq_disk = NULL;
207 rq->part = NULL;
208 #ifdef CONFIG_BLK_CGROUP
209 rq->rl = NULL;
210 set_start_time_ns(rq);
211 rq->io_start_time_ns = 0;
212 #endif
213 rq->nr_phys_segments = 0;
214 #if defined(CONFIG_BLK_DEV_INTEGRITY)
215 rq->nr_integrity_segments = 0;
216 #endif
217 rq->special = NULL;
218 /* tag was already set */
219 rq->errors = 0;
220
221 rq->extra_len = 0;
222 rq->sense_len = 0;
223 rq->resid_len = 0;
224 rq->sense = NULL;
225
226 INIT_LIST_HEAD(&rq->timeout_list);
227 rq->end_io = NULL;
228 rq->end_io_data = NULL;
229 rq->next_rq = NULL;
230
231 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
232 }
233
234 static struct request *
235 __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
236 struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
237 {
238 struct request *rq;
239 unsigned int tag;
240
241 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
242 if (tag != BLK_MQ_TAG_FAIL) {
243 rq = hctx->tags->rqs[tag];
244
245 rq->cmd_flags = 0;
246 if (blk_mq_tag_busy(hctx)) {
247 rq->cmd_flags = REQ_MQ_INFLIGHT;
248 atomic_inc(&hctx->nr_active);
249 }
250
251 rq->tag = tag;
252 blk_mq_rq_ctx_init(q, ctx, rq, rw);
253 return rq;
254 }
255
256 return NULL;
257 }
258
259 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
260 bool reserved)
261 {
262 struct blk_mq_ctx *ctx;
263 struct blk_mq_hw_ctx *hctx;
264 struct request *rq;
265
266 if (blk_mq_queue_enter(q))
267 return NULL;
268
269 ctx = blk_mq_get_ctx(q);
270 hctx = q->mq_ops->map_queue(q, ctx->cpu);
271
272 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT,
273 reserved);
274 if (!rq && (gfp & __GFP_WAIT)) {
275 __blk_mq_run_hw_queue(hctx);
276 blk_mq_put_ctx(ctx);
277
278 ctx = blk_mq_get_ctx(q);
279 hctx = q->mq_ops->map_queue(q, ctx->cpu);
280 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved);
281 }
282 blk_mq_put_ctx(ctx);
283 return rq;
284 }
285 EXPORT_SYMBOL(blk_mq_alloc_request);
286
287 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
288 struct blk_mq_ctx *ctx, struct request *rq)
289 {
290 const int tag = rq->tag;
291 struct request_queue *q = rq->q;
292
293 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
294 atomic_dec(&hctx->nr_active);
295
296 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
297 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
298 blk_mq_queue_exit(q);
299 }
300
301 void blk_mq_free_request(struct request *rq)
302 {
303 struct blk_mq_ctx *ctx = rq->mq_ctx;
304 struct blk_mq_hw_ctx *hctx;
305 struct request_queue *q = rq->q;
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
308
309 hctx = q->mq_ops->map_queue(q, ctx->cpu);
310 __blk_mq_free_request(hctx, ctx, rq);
311 }
312
313 /*
314 * Clone all relevant state from a request that has been put on hold in
315 * the flush state machine into the preallocated flush request that hangs
316 * off the request queue.
317 *
318 * For a driver the flush request should be invisible, that's why we are
319 * impersonating the original request here.
320 */
321 void blk_mq_clone_flush_request(struct request *flush_rq,
322 struct request *orig_rq)
323 {
324 struct blk_mq_hw_ctx *hctx =
325 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
326
327 flush_rq->mq_ctx = orig_rq->mq_ctx;
328 flush_rq->tag = orig_rq->tag;
329 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
330 hctx->cmd_size);
331 }
332
333 inline void __blk_mq_end_io(struct request *rq, int error)
334 {
335 blk_account_io_done(rq);
336
337 if (rq->end_io) {
338 rq->end_io(rq, error);
339 } else {
340 if (unlikely(blk_bidi_rq(rq)))
341 blk_mq_free_request(rq->next_rq);
342 blk_mq_free_request(rq);
343 }
344 }
345 EXPORT_SYMBOL(__blk_mq_end_io);
346
347 void blk_mq_end_io(struct request *rq, int error)
348 {
349 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
350 BUG();
351 __blk_mq_end_io(rq, error);
352 }
353 EXPORT_SYMBOL(blk_mq_end_io);
354
355 static void __blk_mq_complete_request_remote(void *data)
356 {
357 struct request *rq = data;
358
359 rq->q->softirq_done_fn(rq);
360 }
361
362 void __blk_mq_complete_request(struct request *rq)
363 {
364 struct blk_mq_ctx *ctx = rq->mq_ctx;
365 bool shared = false;
366 int cpu;
367
368 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
369 rq->q->softirq_done_fn(rq);
370 return;
371 }
372
373 cpu = get_cpu();
374 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
375 shared = cpus_share_cache(cpu, ctx->cpu);
376
377 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
378 rq->csd.func = __blk_mq_complete_request_remote;
379 rq->csd.info = rq;
380 rq->csd.flags = 0;
381 smp_call_function_single_async(ctx->cpu, &rq->csd);
382 } else {
383 rq->q->softirq_done_fn(rq);
384 }
385 put_cpu();
386 }
387
388 /**
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
391 *
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
395 **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq)) {
403 if (q->softirq_done_fn)
404 __blk_mq_complete_request(rq);
405 else
406 blk_mq_end_io(rq, rq->errors);
407 }
408 }
409 EXPORT_SYMBOL(blk_mq_complete_request);
410
411 static void blk_mq_start_request(struct request *rq, bool last)
412 {
413 struct request_queue *q = rq->q;
414
415 trace_block_rq_issue(q, rq);
416
417 rq->resid_len = blk_rq_bytes(rq);
418 if (unlikely(blk_bidi_rq(rq)))
419 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
420
421 /*
422 * Just mark start time and set the started bit. Due to memory
423 * ordering, we know we'll see the correct deadline as long as
424 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
425 * unless one has been set in the request.
426 */
427 if (!rq->timeout)
428 rq->deadline = jiffies + q->rq_timeout;
429 else
430 rq->deadline = jiffies + rq->timeout;
431
432 /*
433 * Mark us as started and clear complete. Complete might have been
434 * set if requeue raced with timeout, which then marked it as
435 * complete. So be sure to clear complete again when we start
436 * the request, otherwise we'll ignore the completion event.
437 */
438 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
439 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
440 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
441 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
442
443 if (q->dma_drain_size && blk_rq_bytes(rq)) {
444 /*
445 * Make sure space for the drain appears. We know we can do
446 * this because max_hw_segments has been adjusted to be one
447 * fewer than the device can handle.
448 */
449 rq->nr_phys_segments++;
450 }
451
452 /*
453 * Flag the last request in the series so that drivers know when IO
454 * should be kicked off, if they don't do it on a per-request basis.
455 *
456 * Note: the flag isn't the only condition drivers should do kick off.
457 * If drive is busy, the last request might not have the bit set.
458 */
459 if (last)
460 rq->cmd_flags |= REQ_END;
461 }
462
463 static void __blk_mq_requeue_request(struct request *rq)
464 {
465 struct request_queue *q = rq->q;
466
467 trace_block_rq_requeue(q, rq);
468 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
469
470 rq->cmd_flags &= ~REQ_END;
471
472 if (q->dma_drain_size && blk_rq_bytes(rq))
473 rq->nr_phys_segments--;
474 }
475
476 void blk_mq_requeue_request(struct request *rq)
477 {
478 __blk_mq_requeue_request(rq);
479 blk_clear_rq_complete(rq);
480
481 BUG_ON(blk_queued_rq(rq));
482 blk_mq_add_to_requeue_list(rq, true);
483 }
484 EXPORT_SYMBOL(blk_mq_requeue_request);
485
486 static void blk_mq_requeue_work(struct work_struct *work)
487 {
488 struct request_queue *q =
489 container_of(work, struct request_queue, requeue_work);
490 LIST_HEAD(rq_list);
491 struct request *rq, *next;
492 unsigned long flags;
493
494 spin_lock_irqsave(&q->requeue_lock, flags);
495 list_splice_init(&q->requeue_list, &rq_list);
496 spin_unlock_irqrestore(&q->requeue_lock, flags);
497
498 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
499 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
500 continue;
501
502 rq->cmd_flags &= ~REQ_SOFTBARRIER;
503 list_del_init(&rq->queuelist);
504 blk_mq_insert_request(rq, true, false, false);
505 }
506
507 while (!list_empty(&rq_list)) {
508 rq = list_entry(rq_list.next, struct request, queuelist);
509 list_del_init(&rq->queuelist);
510 blk_mq_insert_request(rq, false, false, false);
511 }
512
513 blk_mq_run_queues(q, false);
514 }
515
516 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
517 {
518 struct request_queue *q = rq->q;
519 unsigned long flags;
520
521 /*
522 * We abuse this flag that is otherwise used by the I/O scheduler to
523 * request head insertation from the workqueue.
524 */
525 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
526
527 spin_lock_irqsave(&q->requeue_lock, flags);
528 if (at_head) {
529 rq->cmd_flags |= REQ_SOFTBARRIER;
530 list_add(&rq->queuelist, &q->requeue_list);
531 } else {
532 list_add_tail(&rq->queuelist, &q->requeue_list);
533 }
534 spin_unlock_irqrestore(&q->requeue_lock, flags);
535 }
536 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
537
538 void blk_mq_kick_requeue_list(struct request_queue *q)
539 {
540 kblockd_schedule_work(&q->requeue_work);
541 }
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
543
544 struct request *blk_mq_tag_to_rq(struct blk_mq_hw_ctx *hctx, unsigned int tag)
545 {
546 struct request_queue *q = hctx->queue;
547
548 if ((q->flush_rq->cmd_flags & REQ_FLUSH_SEQ) &&
549 q->flush_rq->tag == tag)
550 return q->flush_rq;
551
552 return hctx->tags->rqs[tag];
553 }
554 EXPORT_SYMBOL(blk_mq_tag_to_rq);
555
556 struct blk_mq_timeout_data {
557 struct blk_mq_hw_ctx *hctx;
558 unsigned long *next;
559 unsigned int *next_set;
560 };
561
562 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
563 {
564 struct blk_mq_timeout_data *data = __data;
565 struct blk_mq_hw_ctx *hctx = data->hctx;
566 unsigned int tag;
567
568 /* It may not be in flight yet (this is where
569 * the REQ_ATOMIC_STARTED flag comes in). The requests are
570 * statically allocated, so we know it's always safe to access the
571 * memory associated with a bit offset into ->rqs[].
572 */
573 tag = 0;
574 do {
575 struct request *rq;
576
577 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
578 if (tag >= hctx->tags->nr_tags)
579 break;
580
581 rq = blk_mq_tag_to_rq(hctx, tag++);
582 if (rq->q != hctx->queue)
583 continue;
584 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
585 continue;
586
587 blk_rq_check_expired(rq, data->next, data->next_set);
588 } while (1);
589 }
590
591 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
592 unsigned long *next,
593 unsigned int *next_set)
594 {
595 struct blk_mq_timeout_data data = {
596 .hctx = hctx,
597 .next = next,
598 .next_set = next_set,
599 };
600
601 /*
602 * Ask the tagging code to iterate busy requests, so we can
603 * check them for timeout.
604 */
605 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
606 }
607
608 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
609 {
610 struct request_queue *q = rq->q;
611
612 /*
613 * We know that complete is set at this point. If STARTED isn't set
614 * anymore, then the request isn't active and the "timeout" should
615 * just be ignored. This can happen due to the bitflag ordering.
616 * Timeout first checks if STARTED is set, and if it is, assumes
617 * the request is active. But if we race with completion, then
618 * we both flags will get cleared. So check here again, and ignore
619 * a timeout event with a request that isn't active.
620 */
621 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
622 return BLK_EH_NOT_HANDLED;
623
624 if (!q->mq_ops->timeout)
625 return BLK_EH_RESET_TIMER;
626
627 return q->mq_ops->timeout(rq);
628 }
629
630 static void blk_mq_rq_timer(unsigned long data)
631 {
632 struct request_queue *q = (struct request_queue *) data;
633 struct blk_mq_hw_ctx *hctx;
634 unsigned long next = 0;
635 int i, next_set = 0;
636
637 queue_for_each_hw_ctx(q, hctx, i) {
638 /*
639 * If not software queues are currently mapped to this
640 * hardware queue, there's nothing to check
641 */
642 if (!hctx->nr_ctx || !hctx->tags)
643 continue;
644
645 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
646 }
647
648 if (next_set) {
649 next = blk_rq_timeout(round_jiffies_up(next));
650 mod_timer(&q->timeout, next);
651 } else {
652 queue_for_each_hw_ctx(q, hctx, i)
653 blk_mq_tag_idle(hctx);
654 }
655 }
656
657 /*
658 * Reverse check our software queue for entries that we could potentially
659 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
660 * too much time checking for merges.
661 */
662 static bool blk_mq_attempt_merge(struct request_queue *q,
663 struct blk_mq_ctx *ctx, struct bio *bio)
664 {
665 struct request *rq;
666 int checked = 8;
667
668 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
669 int el_ret;
670
671 if (!checked--)
672 break;
673
674 if (!blk_rq_merge_ok(rq, bio))
675 continue;
676
677 el_ret = blk_try_merge(rq, bio);
678 if (el_ret == ELEVATOR_BACK_MERGE) {
679 if (bio_attempt_back_merge(q, rq, bio)) {
680 ctx->rq_merged++;
681 return true;
682 }
683 break;
684 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
685 if (bio_attempt_front_merge(q, rq, bio)) {
686 ctx->rq_merged++;
687 return true;
688 }
689 break;
690 }
691 }
692
693 return false;
694 }
695
696 /*
697 * Process software queues that have been marked busy, splicing them
698 * to the for-dispatch
699 */
700 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
701 {
702 struct blk_mq_ctx *ctx;
703 int i;
704
705 for (i = 0; i < hctx->ctx_map.map_size; i++) {
706 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
707 unsigned int off, bit;
708
709 if (!bm->word)
710 continue;
711
712 bit = 0;
713 off = i * hctx->ctx_map.bits_per_word;
714 do {
715 bit = find_next_bit(&bm->word, bm->depth, bit);
716 if (bit >= bm->depth)
717 break;
718
719 ctx = hctx->ctxs[bit + off];
720 clear_bit(bit, &bm->word);
721 spin_lock(&ctx->lock);
722 list_splice_tail_init(&ctx->rq_list, list);
723 spin_unlock(&ctx->lock);
724
725 bit++;
726 } while (1);
727 }
728 }
729
730 /*
731 * Run this hardware queue, pulling any software queues mapped to it in.
732 * Note that this function currently has various problems around ordering
733 * of IO. In particular, we'd like FIFO behaviour on handling existing
734 * items on the hctx->dispatch list. Ignore that for now.
735 */
736 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
737 {
738 struct request_queue *q = hctx->queue;
739 struct request *rq;
740 LIST_HEAD(rq_list);
741 int queued;
742
743 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
744
745 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
746 return;
747
748 hctx->run++;
749
750 /*
751 * Touch any software queue that has pending entries.
752 */
753 flush_busy_ctxs(hctx, &rq_list);
754
755 /*
756 * If we have previous entries on our dispatch list, grab them
757 * and stuff them at the front for more fair dispatch.
758 */
759 if (!list_empty_careful(&hctx->dispatch)) {
760 spin_lock(&hctx->lock);
761 if (!list_empty(&hctx->dispatch))
762 list_splice_init(&hctx->dispatch, &rq_list);
763 spin_unlock(&hctx->lock);
764 }
765
766 /*
767 * Now process all the entries, sending them to the driver.
768 */
769 queued = 0;
770 while (!list_empty(&rq_list)) {
771 int ret;
772
773 rq = list_first_entry(&rq_list, struct request, queuelist);
774 list_del_init(&rq->queuelist);
775
776 blk_mq_start_request(rq, list_empty(&rq_list));
777
778 ret = q->mq_ops->queue_rq(hctx, rq);
779 switch (ret) {
780 case BLK_MQ_RQ_QUEUE_OK:
781 queued++;
782 continue;
783 case BLK_MQ_RQ_QUEUE_BUSY:
784 list_add(&rq->queuelist, &rq_list);
785 __blk_mq_requeue_request(rq);
786 break;
787 default:
788 pr_err("blk-mq: bad return on queue: %d\n", ret);
789 case BLK_MQ_RQ_QUEUE_ERROR:
790 rq->errors = -EIO;
791 blk_mq_end_io(rq, rq->errors);
792 break;
793 }
794
795 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
796 break;
797 }
798
799 if (!queued)
800 hctx->dispatched[0]++;
801 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
802 hctx->dispatched[ilog2(queued) + 1]++;
803
804 /*
805 * Any items that need requeuing? Stuff them into hctx->dispatch,
806 * that is where we will continue on next queue run.
807 */
808 if (!list_empty(&rq_list)) {
809 spin_lock(&hctx->lock);
810 list_splice(&rq_list, &hctx->dispatch);
811 spin_unlock(&hctx->lock);
812 }
813 }
814
815 /*
816 * It'd be great if the workqueue API had a way to pass
817 * in a mask and had some smarts for more clever placement.
818 * For now we just round-robin here, switching for every
819 * BLK_MQ_CPU_WORK_BATCH queued items.
820 */
821 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
822 {
823 int cpu = hctx->next_cpu;
824
825 if (--hctx->next_cpu_batch <= 0) {
826 int next_cpu;
827
828 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
829 if (next_cpu >= nr_cpu_ids)
830 next_cpu = cpumask_first(hctx->cpumask);
831
832 hctx->next_cpu = next_cpu;
833 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
834 }
835
836 return cpu;
837 }
838
839 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
840 {
841 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
842 return;
843
844 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
845 __blk_mq_run_hw_queue(hctx);
846 else if (hctx->queue->nr_hw_queues == 1)
847 kblockd_schedule_delayed_work(&hctx->run_work, 0);
848 else {
849 unsigned int cpu;
850
851 cpu = blk_mq_hctx_next_cpu(hctx);
852 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
853 }
854 }
855
856 void blk_mq_run_queues(struct request_queue *q, bool async)
857 {
858 struct blk_mq_hw_ctx *hctx;
859 int i;
860
861 queue_for_each_hw_ctx(q, hctx, i) {
862 if ((!blk_mq_hctx_has_pending(hctx) &&
863 list_empty_careful(&hctx->dispatch)) ||
864 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
865 continue;
866
867 preempt_disable();
868 blk_mq_run_hw_queue(hctx, async);
869 preempt_enable();
870 }
871 }
872 EXPORT_SYMBOL(blk_mq_run_queues);
873
874 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
875 {
876 cancel_delayed_work(&hctx->run_work);
877 cancel_delayed_work(&hctx->delay_work);
878 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
879 }
880 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
881
882 void blk_mq_stop_hw_queues(struct request_queue *q)
883 {
884 struct blk_mq_hw_ctx *hctx;
885 int i;
886
887 queue_for_each_hw_ctx(q, hctx, i)
888 blk_mq_stop_hw_queue(hctx);
889 }
890 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
891
892 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
893 {
894 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
895
896 preempt_disable();
897 __blk_mq_run_hw_queue(hctx);
898 preempt_enable();
899 }
900 EXPORT_SYMBOL(blk_mq_start_hw_queue);
901
902 void blk_mq_start_hw_queues(struct request_queue *q)
903 {
904 struct blk_mq_hw_ctx *hctx;
905 int i;
906
907 queue_for_each_hw_ctx(q, hctx, i)
908 blk_mq_start_hw_queue(hctx);
909 }
910 EXPORT_SYMBOL(blk_mq_start_hw_queues);
911
912
913 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
914 {
915 struct blk_mq_hw_ctx *hctx;
916 int i;
917
918 queue_for_each_hw_ctx(q, hctx, i) {
919 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
920 continue;
921
922 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
923 preempt_disable();
924 blk_mq_run_hw_queue(hctx, async);
925 preempt_enable();
926 }
927 }
928 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
929
930 static void blk_mq_run_work_fn(struct work_struct *work)
931 {
932 struct blk_mq_hw_ctx *hctx;
933
934 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
935
936 __blk_mq_run_hw_queue(hctx);
937 }
938
939 static void blk_mq_delay_work_fn(struct work_struct *work)
940 {
941 struct blk_mq_hw_ctx *hctx;
942
943 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
944
945 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
946 __blk_mq_run_hw_queue(hctx);
947 }
948
949 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
950 {
951 unsigned long tmo = msecs_to_jiffies(msecs);
952
953 if (hctx->queue->nr_hw_queues == 1)
954 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
955 else {
956 unsigned int cpu;
957
958 cpu = blk_mq_hctx_next_cpu(hctx);
959 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
960 }
961 }
962 EXPORT_SYMBOL(blk_mq_delay_queue);
963
964 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
965 struct request *rq, bool at_head)
966 {
967 struct blk_mq_ctx *ctx = rq->mq_ctx;
968
969 trace_block_rq_insert(hctx->queue, rq);
970
971 if (at_head)
972 list_add(&rq->queuelist, &ctx->rq_list);
973 else
974 list_add_tail(&rq->queuelist, &ctx->rq_list);
975
976 blk_mq_hctx_mark_pending(hctx, ctx);
977
978 /*
979 * We do this early, to ensure we are on the right CPU.
980 */
981 blk_add_timer(rq);
982 }
983
984 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
985 bool async)
986 {
987 struct request_queue *q = rq->q;
988 struct blk_mq_hw_ctx *hctx;
989 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
990
991 current_ctx = blk_mq_get_ctx(q);
992 if (!cpu_online(ctx->cpu))
993 rq->mq_ctx = ctx = current_ctx;
994
995 hctx = q->mq_ops->map_queue(q, ctx->cpu);
996
997 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
998 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
999 blk_insert_flush(rq);
1000 } else {
1001 spin_lock(&ctx->lock);
1002 __blk_mq_insert_request(hctx, rq, at_head);
1003 spin_unlock(&ctx->lock);
1004 }
1005
1006 if (run_queue)
1007 blk_mq_run_hw_queue(hctx, async);
1008
1009 blk_mq_put_ctx(current_ctx);
1010 }
1011
1012 static void blk_mq_insert_requests(struct request_queue *q,
1013 struct blk_mq_ctx *ctx,
1014 struct list_head *list,
1015 int depth,
1016 bool from_schedule)
1017
1018 {
1019 struct blk_mq_hw_ctx *hctx;
1020 struct blk_mq_ctx *current_ctx;
1021
1022 trace_block_unplug(q, depth, !from_schedule);
1023
1024 current_ctx = blk_mq_get_ctx(q);
1025
1026 if (!cpu_online(ctx->cpu))
1027 ctx = current_ctx;
1028 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1029
1030 /*
1031 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1032 * offline now
1033 */
1034 spin_lock(&ctx->lock);
1035 while (!list_empty(list)) {
1036 struct request *rq;
1037
1038 rq = list_first_entry(list, struct request, queuelist);
1039 list_del_init(&rq->queuelist);
1040 rq->mq_ctx = ctx;
1041 __blk_mq_insert_request(hctx, rq, false);
1042 }
1043 spin_unlock(&ctx->lock);
1044
1045 blk_mq_run_hw_queue(hctx, from_schedule);
1046 blk_mq_put_ctx(current_ctx);
1047 }
1048
1049 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1050 {
1051 struct request *rqa = container_of(a, struct request, queuelist);
1052 struct request *rqb = container_of(b, struct request, queuelist);
1053
1054 return !(rqa->mq_ctx < rqb->mq_ctx ||
1055 (rqa->mq_ctx == rqb->mq_ctx &&
1056 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1057 }
1058
1059 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1060 {
1061 struct blk_mq_ctx *this_ctx;
1062 struct request_queue *this_q;
1063 struct request *rq;
1064 LIST_HEAD(list);
1065 LIST_HEAD(ctx_list);
1066 unsigned int depth;
1067
1068 list_splice_init(&plug->mq_list, &list);
1069
1070 list_sort(NULL, &list, plug_ctx_cmp);
1071
1072 this_q = NULL;
1073 this_ctx = NULL;
1074 depth = 0;
1075
1076 while (!list_empty(&list)) {
1077 rq = list_entry_rq(list.next);
1078 list_del_init(&rq->queuelist);
1079 BUG_ON(!rq->q);
1080 if (rq->mq_ctx != this_ctx) {
1081 if (this_ctx) {
1082 blk_mq_insert_requests(this_q, this_ctx,
1083 &ctx_list, depth,
1084 from_schedule);
1085 }
1086
1087 this_ctx = rq->mq_ctx;
1088 this_q = rq->q;
1089 depth = 0;
1090 }
1091
1092 depth++;
1093 list_add_tail(&rq->queuelist, &ctx_list);
1094 }
1095
1096 /*
1097 * If 'this_ctx' is set, we know we have entries to complete
1098 * on 'ctx_list'. Do those.
1099 */
1100 if (this_ctx) {
1101 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1102 from_schedule);
1103 }
1104 }
1105
1106 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1107 {
1108 init_request_from_bio(rq, bio);
1109
1110 if (blk_do_io_stat(rq)) {
1111 rq->start_time = jiffies;
1112 blk_account_io_start(rq, 1);
1113 }
1114 }
1115
1116 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1117 struct blk_mq_ctx *ctx,
1118 struct request *rq, struct bio *bio)
1119 {
1120 struct request_queue *q = hctx->queue;
1121
1122 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1123 blk_mq_bio_to_request(rq, bio);
1124 spin_lock(&ctx->lock);
1125 insert_rq:
1126 __blk_mq_insert_request(hctx, rq, false);
1127 spin_unlock(&ctx->lock);
1128 return false;
1129 } else {
1130 spin_lock(&ctx->lock);
1131 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1132 blk_mq_bio_to_request(rq, bio);
1133 goto insert_rq;
1134 }
1135
1136 spin_unlock(&ctx->lock);
1137 __blk_mq_free_request(hctx, ctx, rq);
1138 return true;
1139 }
1140 }
1141
1142 struct blk_map_ctx {
1143 struct blk_mq_hw_ctx *hctx;
1144 struct blk_mq_ctx *ctx;
1145 };
1146
1147 static struct request *blk_mq_map_request(struct request_queue *q,
1148 struct bio *bio,
1149 struct blk_map_ctx *data)
1150 {
1151 struct blk_mq_hw_ctx *hctx;
1152 struct blk_mq_ctx *ctx;
1153 struct request *rq;
1154 int rw = bio_data_dir(bio);
1155
1156 if (unlikely(blk_mq_queue_enter(q))) {
1157 bio_endio(bio, -EIO);
1158 return NULL;
1159 }
1160
1161 ctx = blk_mq_get_ctx(q);
1162 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1163
1164 if (rw_is_sync(bio->bi_rw))
1165 rw |= REQ_SYNC;
1166
1167 trace_block_getrq(q, bio, rw);
1168 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
1169 if (unlikely(!rq)) {
1170 __blk_mq_run_hw_queue(hctx);
1171 blk_mq_put_ctx(ctx);
1172 trace_block_sleeprq(q, bio, rw);
1173
1174 ctx = blk_mq_get_ctx(q);
1175 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1176 rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
1177 __GFP_WAIT|GFP_ATOMIC, false);
1178 }
1179
1180 hctx->queued++;
1181 data->hctx = hctx;
1182 data->ctx = ctx;
1183 return rq;
1184 }
1185
1186 /*
1187 * Multiple hardware queue variant. This will not use per-process plugs,
1188 * but will attempt to bypass the hctx queueing if we can go straight to
1189 * hardware for SYNC IO.
1190 */
1191 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1192 {
1193 const int is_sync = rw_is_sync(bio->bi_rw);
1194 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1195 struct blk_map_ctx data;
1196 struct request *rq;
1197
1198 blk_queue_bounce(q, &bio);
1199
1200 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1201 bio_endio(bio, -EIO);
1202 return;
1203 }
1204
1205 rq = blk_mq_map_request(q, bio, &data);
1206 if (unlikely(!rq))
1207 return;
1208
1209 if (unlikely(is_flush_fua)) {
1210 blk_mq_bio_to_request(rq, bio);
1211 blk_insert_flush(rq);
1212 goto run_queue;
1213 }
1214
1215 if (is_sync) {
1216 int ret;
1217
1218 blk_mq_bio_to_request(rq, bio);
1219 blk_mq_start_request(rq, true);
1220
1221 /*
1222 * For OK queue, we are done. For error, kill it. Any other
1223 * error (busy), just add it to our list as we previously
1224 * would have done
1225 */
1226 ret = q->mq_ops->queue_rq(data.hctx, rq);
1227 if (ret == BLK_MQ_RQ_QUEUE_OK)
1228 goto done;
1229 else {
1230 __blk_mq_requeue_request(rq);
1231
1232 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1233 rq->errors = -EIO;
1234 blk_mq_end_io(rq, rq->errors);
1235 goto done;
1236 }
1237 }
1238 }
1239
1240 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1241 /*
1242 * For a SYNC request, send it to the hardware immediately. For
1243 * an ASYNC request, just ensure that we run it later on. The
1244 * latter allows for merging opportunities and more efficient
1245 * dispatching.
1246 */
1247 run_queue:
1248 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1249 }
1250 done:
1251 blk_mq_put_ctx(data.ctx);
1252 }
1253
1254 /*
1255 * Single hardware queue variant. This will attempt to use any per-process
1256 * plug for merging and IO deferral.
1257 */
1258 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1259 {
1260 const int is_sync = rw_is_sync(bio->bi_rw);
1261 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1262 unsigned int use_plug, request_count = 0;
1263 struct blk_map_ctx data;
1264 struct request *rq;
1265
1266 /*
1267 * If we have multiple hardware queues, just go directly to
1268 * one of those for sync IO.
1269 */
1270 use_plug = !is_flush_fua && !is_sync;
1271
1272 blk_queue_bounce(q, &bio);
1273
1274 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1275 bio_endio(bio, -EIO);
1276 return;
1277 }
1278
1279 if (use_plug && !blk_queue_nomerges(q) &&
1280 blk_attempt_plug_merge(q, bio, &request_count))
1281 return;
1282
1283 rq = blk_mq_map_request(q, bio, &data);
1284
1285 if (unlikely(is_flush_fua)) {
1286 blk_mq_bio_to_request(rq, bio);
1287 blk_insert_flush(rq);
1288 goto run_queue;
1289 }
1290
1291 /*
1292 * A task plug currently exists. Since this is completely lockless,
1293 * utilize that to temporarily store requests until the task is
1294 * either done or scheduled away.
1295 */
1296 if (use_plug) {
1297 struct blk_plug *plug = current->plug;
1298
1299 if (plug) {
1300 blk_mq_bio_to_request(rq, bio);
1301 if (list_empty(&plug->mq_list))
1302 trace_block_plug(q);
1303 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1304 blk_flush_plug_list(plug, false);
1305 trace_block_plug(q);
1306 }
1307 list_add_tail(&rq->queuelist, &plug->mq_list);
1308 blk_mq_put_ctx(data.ctx);
1309 return;
1310 }
1311 }
1312
1313 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1314 /*
1315 * For a SYNC request, send it to the hardware immediately. For
1316 * an ASYNC request, just ensure that we run it later on. The
1317 * latter allows for merging opportunities and more efficient
1318 * dispatching.
1319 */
1320 run_queue:
1321 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1322 }
1323
1324 blk_mq_put_ctx(data.ctx);
1325 }
1326
1327 /*
1328 * Default mapping to a software queue, since we use one per CPU.
1329 */
1330 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1331 {
1332 return q->queue_hw_ctx[q->mq_map[cpu]];
1333 }
1334 EXPORT_SYMBOL(blk_mq_map_queue);
1335
1336 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1337 struct blk_mq_tags *tags, unsigned int hctx_idx)
1338 {
1339 struct page *page;
1340
1341 if (tags->rqs && set->ops->exit_request) {
1342 int i;
1343
1344 for (i = 0; i < tags->nr_tags; i++) {
1345 if (!tags->rqs[i])
1346 continue;
1347 set->ops->exit_request(set->driver_data, tags->rqs[i],
1348 hctx_idx, i);
1349 }
1350 }
1351
1352 while (!list_empty(&tags->page_list)) {
1353 page = list_first_entry(&tags->page_list, struct page, lru);
1354 list_del_init(&page->lru);
1355 __free_pages(page, page->private);
1356 }
1357
1358 kfree(tags->rqs);
1359
1360 blk_mq_free_tags(tags);
1361 }
1362
1363 static size_t order_to_size(unsigned int order)
1364 {
1365 return (size_t)PAGE_SIZE << order;
1366 }
1367
1368 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1369 unsigned int hctx_idx)
1370 {
1371 struct blk_mq_tags *tags;
1372 unsigned int i, j, entries_per_page, max_order = 4;
1373 size_t rq_size, left;
1374
1375 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1376 set->numa_node);
1377 if (!tags)
1378 return NULL;
1379
1380 INIT_LIST_HEAD(&tags->page_list);
1381
1382 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1383 GFP_KERNEL, set->numa_node);
1384 if (!tags->rqs) {
1385 blk_mq_free_tags(tags);
1386 return NULL;
1387 }
1388
1389 /*
1390 * rq_size is the size of the request plus driver payload, rounded
1391 * to the cacheline size
1392 */
1393 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1394 cache_line_size());
1395 left = rq_size * set->queue_depth;
1396
1397 for (i = 0; i < set->queue_depth; ) {
1398 int this_order = max_order;
1399 struct page *page;
1400 int to_do;
1401 void *p;
1402
1403 while (left < order_to_size(this_order - 1) && this_order)
1404 this_order--;
1405
1406 do {
1407 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1408 this_order);
1409 if (page)
1410 break;
1411 if (!this_order--)
1412 break;
1413 if (order_to_size(this_order) < rq_size)
1414 break;
1415 } while (1);
1416
1417 if (!page)
1418 goto fail;
1419
1420 page->private = this_order;
1421 list_add_tail(&page->lru, &tags->page_list);
1422
1423 p = page_address(page);
1424 entries_per_page = order_to_size(this_order) / rq_size;
1425 to_do = min(entries_per_page, set->queue_depth - i);
1426 left -= to_do * rq_size;
1427 for (j = 0; j < to_do; j++) {
1428 tags->rqs[i] = p;
1429 if (set->ops->init_request) {
1430 if (set->ops->init_request(set->driver_data,
1431 tags->rqs[i], hctx_idx, i,
1432 set->numa_node))
1433 goto fail;
1434 }
1435
1436 p += rq_size;
1437 i++;
1438 }
1439 }
1440
1441 return tags;
1442
1443 fail:
1444 pr_warn("%s: failed to allocate requests\n", __func__);
1445 blk_mq_free_rq_map(set, tags, hctx_idx);
1446 return NULL;
1447 }
1448
1449 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1450 {
1451 kfree(bitmap->map);
1452 }
1453
1454 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1455 {
1456 unsigned int bpw = 8, total, num_maps, i;
1457
1458 bitmap->bits_per_word = bpw;
1459
1460 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1461 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1462 GFP_KERNEL, node);
1463 if (!bitmap->map)
1464 return -ENOMEM;
1465
1466 bitmap->map_size = num_maps;
1467
1468 total = nr_cpu_ids;
1469 for (i = 0; i < num_maps; i++) {
1470 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1471 total -= bitmap->map[i].depth;
1472 }
1473
1474 return 0;
1475 }
1476
1477 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1478 {
1479 struct request_queue *q = hctx->queue;
1480 struct blk_mq_ctx *ctx;
1481 LIST_HEAD(tmp);
1482
1483 /*
1484 * Move ctx entries to new CPU, if this one is going away.
1485 */
1486 ctx = __blk_mq_get_ctx(q, cpu);
1487
1488 spin_lock(&ctx->lock);
1489 if (!list_empty(&ctx->rq_list)) {
1490 list_splice_init(&ctx->rq_list, &tmp);
1491 blk_mq_hctx_clear_pending(hctx, ctx);
1492 }
1493 spin_unlock(&ctx->lock);
1494
1495 if (list_empty(&tmp))
1496 return NOTIFY_OK;
1497
1498 ctx = blk_mq_get_ctx(q);
1499 spin_lock(&ctx->lock);
1500
1501 while (!list_empty(&tmp)) {
1502 struct request *rq;
1503
1504 rq = list_first_entry(&tmp, struct request, queuelist);
1505 rq->mq_ctx = ctx;
1506 list_move_tail(&rq->queuelist, &ctx->rq_list);
1507 }
1508
1509 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1510 blk_mq_hctx_mark_pending(hctx, ctx);
1511
1512 spin_unlock(&ctx->lock);
1513
1514 blk_mq_run_hw_queue(hctx, true);
1515 blk_mq_put_ctx(ctx);
1516 return NOTIFY_OK;
1517 }
1518
1519 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1520 {
1521 struct request_queue *q = hctx->queue;
1522 struct blk_mq_tag_set *set = q->tag_set;
1523
1524 if (set->tags[hctx->queue_num])
1525 return NOTIFY_OK;
1526
1527 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1528 if (!set->tags[hctx->queue_num])
1529 return NOTIFY_STOP;
1530
1531 hctx->tags = set->tags[hctx->queue_num];
1532 return NOTIFY_OK;
1533 }
1534
1535 static int blk_mq_hctx_notify(void *data, unsigned long action,
1536 unsigned int cpu)
1537 {
1538 struct blk_mq_hw_ctx *hctx = data;
1539
1540 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1541 return blk_mq_hctx_cpu_offline(hctx, cpu);
1542 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1543 return blk_mq_hctx_cpu_online(hctx, cpu);
1544
1545 return NOTIFY_OK;
1546 }
1547
1548 static void blk_mq_exit_hw_queues(struct request_queue *q,
1549 struct blk_mq_tag_set *set, int nr_queue)
1550 {
1551 struct blk_mq_hw_ctx *hctx;
1552 unsigned int i;
1553
1554 queue_for_each_hw_ctx(q, hctx, i) {
1555 if (i == nr_queue)
1556 break;
1557
1558 if (set->ops->exit_hctx)
1559 set->ops->exit_hctx(hctx, i);
1560
1561 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1562 kfree(hctx->ctxs);
1563 blk_mq_free_bitmap(&hctx->ctx_map);
1564 }
1565
1566 }
1567
1568 static void blk_mq_free_hw_queues(struct request_queue *q,
1569 struct blk_mq_tag_set *set)
1570 {
1571 struct blk_mq_hw_ctx *hctx;
1572 unsigned int i;
1573
1574 queue_for_each_hw_ctx(q, hctx, i) {
1575 free_cpumask_var(hctx->cpumask);
1576 kfree(hctx);
1577 }
1578 }
1579
1580 static int blk_mq_init_hw_queues(struct request_queue *q,
1581 struct blk_mq_tag_set *set)
1582 {
1583 struct blk_mq_hw_ctx *hctx;
1584 unsigned int i;
1585
1586 /*
1587 * Initialize hardware queues
1588 */
1589 queue_for_each_hw_ctx(q, hctx, i) {
1590 int node;
1591
1592 node = hctx->numa_node;
1593 if (node == NUMA_NO_NODE)
1594 node = hctx->numa_node = set->numa_node;
1595
1596 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1597 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1598 spin_lock_init(&hctx->lock);
1599 INIT_LIST_HEAD(&hctx->dispatch);
1600 hctx->queue = q;
1601 hctx->queue_num = i;
1602 hctx->flags = set->flags;
1603 hctx->cmd_size = set->cmd_size;
1604
1605 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1606 blk_mq_hctx_notify, hctx);
1607 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1608
1609 hctx->tags = set->tags[i];
1610
1611 /*
1612 * Allocate space for all possible cpus to avoid allocation in
1613 * runtime
1614 */
1615 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1616 GFP_KERNEL, node);
1617 if (!hctx->ctxs)
1618 break;
1619
1620 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1621 break;
1622
1623 hctx->nr_ctx = 0;
1624
1625 if (set->ops->init_hctx &&
1626 set->ops->init_hctx(hctx, set->driver_data, i))
1627 break;
1628 }
1629
1630 if (i == q->nr_hw_queues)
1631 return 0;
1632
1633 /*
1634 * Init failed
1635 */
1636 blk_mq_exit_hw_queues(q, set, i);
1637
1638 return 1;
1639 }
1640
1641 static void blk_mq_init_cpu_queues(struct request_queue *q,
1642 unsigned int nr_hw_queues)
1643 {
1644 unsigned int i;
1645
1646 for_each_possible_cpu(i) {
1647 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1648 struct blk_mq_hw_ctx *hctx;
1649
1650 memset(__ctx, 0, sizeof(*__ctx));
1651 __ctx->cpu = i;
1652 spin_lock_init(&__ctx->lock);
1653 INIT_LIST_HEAD(&__ctx->rq_list);
1654 __ctx->queue = q;
1655
1656 /* If the cpu isn't online, the cpu is mapped to first hctx */
1657 if (!cpu_online(i))
1658 continue;
1659
1660 hctx = q->mq_ops->map_queue(q, i);
1661 cpumask_set_cpu(i, hctx->cpumask);
1662 hctx->nr_ctx++;
1663
1664 /*
1665 * Set local node, IFF we have more than one hw queue. If
1666 * not, we remain on the home node of the device
1667 */
1668 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1669 hctx->numa_node = cpu_to_node(i);
1670 }
1671 }
1672
1673 static void blk_mq_map_swqueue(struct request_queue *q)
1674 {
1675 unsigned int i;
1676 struct blk_mq_hw_ctx *hctx;
1677 struct blk_mq_ctx *ctx;
1678
1679 queue_for_each_hw_ctx(q, hctx, i) {
1680 cpumask_clear(hctx->cpumask);
1681 hctx->nr_ctx = 0;
1682 }
1683
1684 /*
1685 * Map software to hardware queues
1686 */
1687 queue_for_each_ctx(q, ctx, i) {
1688 /* If the cpu isn't online, the cpu is mapped to first hctx */
1689 if (!cpu_online(i))
1690 continue;
1691
1692 hctx = q->mq_ops->map_queue(q, i);
1693 cpumask_set_cpu(i, hctx->cpumask);
1694 ctx->index_hw = hctx->nr_ctx;
1695 hctx->ctxs[hctx->nr_ctx++] = ctx;
1696 }
1697
1698 queue_for_each_hw_ctx(q, hctx, i) {
1699 /*
1700 * If not software queues are mapped to this hardware queue,
1701 * disable it and free the request entries
1702 */
1703 if (!hctx->nr_ctx) {
1704 struct blk_mq_tag_set *set = q->tag_set;
1705
1706 if (set->tags[i]) {
1707 blk_mq_free_rq_map(set, set->tags[i], i);
1708 set->tags[i] = NULL;
1709 hctx->tags = NULL;
1710 }
1711 continue;
1712 }
1713
1714 /*
1715 * Initialize batch roundrobin counts
1716 */
1717 hctx->next_cpu = cpumask_first(hctx->cpumask);
1718 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1719 }
1720 }
1721
1722 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1723 {
1724 struct blk_mq_hw_ctx *hctx;
1725 struct request_queue *q;
1726 bool shared;
1727 int i;
1728
1729 if (set->tag_list.next == set->tag_list.prev)
1730 shared = false;
1731 else
1732 shared = true;
1733
1734 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1735 blk_mq_freeze_queue(q);
1736
1737 queue_for_each_hw_ctx(q, hctx, i) {
1738 if (shared)
1739 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1740 else
1741 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1742 }
1743 blk_mq_unfreeze_queue(q);
1744 }
1745 }
1746
1747 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1748 {
1749 struct blk_mq_tag_set *set = q->tag_set;
1750
1751 blk_mq_freeze_queue(q);
1752
1753 mutex_lock(&set->tag_list_lock);
1754 list_del_init(&q->tag_set_list);
1755 blk_mq_update_tag_set_depth(set);
1756 mutex_unlock(&set->tag_list_lock);
1757
1758 blk_mq_unfreeze_queue(q);
1759 }
1760
1761 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1762 struct request_queue *q)
1763 {
1764 q->tag_set = set;
1765
1766 mutex_lock(&set->tag_list_lock);
1767 list_add_tail(&q->tag_set_list, &set->tag_list);
1768 blk_mq_update_tag_set_depth(set);
1769 mutex_unlock(&set->tag_list_lock);
1770 }
1771
1772 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1773 {
1774 struct blk_mq_hw_ctx **hctxs;
1775 struct blk_mq_ctx *ctx;
1776 struct request_queue *q;
1777 unsigned int *map;
1778 int i;
1779
1780 ctx = alloc_percpu(struct blk_mq_ctx);
1781 if (!ctx)
1782 return ERR_PTR(-ENOMEM);
1783
1784 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1785 set->numa_node);
1786
1787 if (!hctxs)
1788 goto err_percpu;
1789
1790 map = blk_mq_make_queue_map(set);
1791 if (!map)
1792 goto err_map;
1793
1794 for (i = 0; i < set->nr_hw_queues; i++) {
1795 int node = blk_mq_hw_queue_to_node(map, i);
1796
1797 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1798 GFP_KERNEL, node);
1799 if (!hctxs[i])
1800 goto err_hctxs;
1801
1802 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1803 goto err_hctxs;
1804
1805 atomic_set(&hctxs[i]->nr_active, 0);
1806 hctxs[i]->numa_node = node;
1807 hctxs[i]->queue_num = i;
1808 }
1809
1810 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1811 if (!q)
1812 goto err_hctxs;
1813
1814 if (percpu_counter_init(&q->mq_usage_counter, 0))
1815 goto err_map;
1816
1817 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1818 blk_queue_rq_timeout(q, 30000);
1819
1820 q->nr_queues = nr_cpu_ids;
1821 q->nr_hw_queues = set->nr_hw_queues;
1822 q->mq_map = map;
1823
1824 q->queue_ctx = ctx;
1825 q->queue_hw_ctx = hctxs;
1826
1827 q->mq_ops = set->ops;
1828 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1829
1830 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1831 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1832
1833 q->sg_reserved_size = INT_MAX;
1834
1835 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1836 INIT_LIST_HEAD(&q->requeue_list);
1837 spin_lock_init(&q->requeue_lock);
1838
1839 if (q->nr_hw_queues > 1)
1840 blk_queue_make_request(q, blk_mq_make_request);
1841 else
1842 blk_queue_make_request(q, blk_sq_make_request);
1843
1844 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1845 if (set->timeout)
1846 blk_queue_rq_timeout(q, set->timeout);
1847
1848 /*
1849 * Do this after blk_queue_make_request() overrides it...
1850 */
1851 q->nr_requests = set->queue_depth;
1852
1853 if (set->ops->complete)
1854 blk_queue_softirq_done(q, set->ops->complete);
1855
1856 blk_mq_init_flush(q);
1857 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1858
1859 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1860 set->cmd_size, cache_line_size()),
1861 GFP_KERNEL);
1862 if (!q->flush_rq)
1863 goto err_hw;
1864
1865 if (blk_mq_init_hw_queues(q, set))
1866 goto err_flush_rq;
1867
1868 mutex_lock(&all_q_mutex);
1869 list_add_tail(&q->all_q_node, &all_q_list);
1870 mutex_unlock(&all_q_mutex);
1871
1872 blk_mq_add_queue_tag_set(set, q);
1873
1874 blk_mq_map_swqueue(q);
1875
1876 return q;
1877
1878 err_flush_rq:
1879 kfree(q->flush_rq);
1880 err_hw:
1881 blk_cleanup_queue(q);
1882 err_hctxs:
1883 kfree(map);
1884 for (i = 0; i < set->nr_hw_queues; i++) {
1885 if (!hctxs[i])
1886 break;
1887 free_cpumask_var(hctxs[i]->cpumask);
1888 kfree(hctxs[i]);
1889 }
1890 err_map:
1891 kfree(hctxs);
1892 err_percpu:
1893 free_percpu(ctx);
1894 return ERR_PTR(-ENOMEM);
1895 }
1896 EXPORT_SYMBOL(blk_mq_init_queue);
1897
1898 void blk_mq_free_queue(struct request_queue *q)
1899 {
1900 struct blk_mq_tag_set *set = q->tag_set;
1901
1902 blk_mq_del_queue_tag_set(q);
1903
1904 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1905 blk_mq_free_hw_queues(q, set);
1906
1907 percpu_counter_destroy(&q->mq_usage_counter);
1908
1909 free_percpu(q->queue_ctx);
1910 kfree(q->queue_hw_ctx);
1911 kfree(q->mq_map);
1912
1913 q->queue_ctx = NULL;
1914 q->queue_hw_ctx = NULL;
1915 q->mq_map = NULL;
1916
1917 mutex_lock(&all_q_mutex);
1918 list_del_init(&q->all_q_node);
1919 mutex_unlock(&all_q_mutex);
1920 }
1921
1922 /* Basically redo blk_mq_init_queue with queue frozen */
1923 static void blk_mq_queue_reinit(struct request_queue *q)
1924 {
1925 blk_mq_freeze_queue(q);
1926
1927 blk_mq_sysfs_unregister(q);
1928
1929 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1930
1931 /*
1932 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1933 * we should change hctx numa_node according to new topology (this
1934 * involves free and re-allocate memory, worthy doing?)
1935 */
1936
1937 blk_mq_map_swqueue(q);
1938
1939 blk_mq_sysfs_register(q);
1940
1941 blk_mq_unfreeze_queue(q);
1942 }
1943
1944 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1945 unsigned long action, void *hcpu)
1946 {
1947 struct request_queue *q;
1948
1949 /*
1950 * Before new mappings are established, hotadded cpu might already
1951 * start handling requests. This doesn't break anything as we map
1952 * offline CPUs to first hardware queue. We will re-init the queue
1953 * below to get optimal settings.
1954 */
1955 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1956 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1957 return NOTIFY_OK;
1958
1959 mutex_lock(&all_q_mutex);
1960 list_for_each_entry(q, &all_q_list, all_q_node)
1961 blk_mq_queue_reinit(q);
1962 mutex_unlock(&all_q_mutex);
1963 return NOTIFY_OK;
1964 }
1965
1966 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1967 {
1968 int i;
1969
1970 if (!set->nr_hw_queues)
1971 return -EINVAL;
1972 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1973 return -EINVAL;
1974 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1975 return -EINVAL;
1976
1977 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1978 return -EINVAL;
1979
1980
1981 set->tags = kmalloc_node(set->nr_hw_queues *
1982 sizeof(struct blk_mq_tags *),
1983 GFP_KERNEL, set->numa_node);
1984 if (!set->tags)
1985 goto out;
1986
1987 for (i = 0; i < set->nr_hw_queues; i++) {
1988 set->tags[i] = blk_mq_init_rq_map(set, i);
1989 if (!set->tags[i])
1990 goto out_unwind;
1991 }
1992
1993 mutex_init(&set->tag_list_lock);
1994 INIT_LIST_HEAD(&set->tag_list);
1995
1996 return 0;
1997
1998 out_unwind:
1999 while (--i >= 0)
2000 blk_mq_free_rq_map(set, set->tags[i], i);
2001 out:
2002 return -ENOMEM;
2003 }
2004 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2005
2006 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2007 {
2008 int i;
2009
2010 for (i = 0; i < set->nr_hw_queues; i++) {
2011 if (set->tags[i])
2012 blk_mq_free_rq_map(set, set->tags[i], i);
2013 }
2014
2015 kfree(set->tags);
2016 }
2017 EXPORT_SYMBOL(blk_mq_free_tag_set);
2018
2019 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2020 {
2021 struct blk_mq_tag_set *set = q->tag_set;
2022 struct blk_mq_hw_ctx *hctx;
2023 int i, ret;
2024
2025 if (!set || nr > set->queue_depth)
2026 return -EINVAL;
2027
2028 ret = 0;
2029 queue_for_each_hw_ctx(q, hctx, i) {
2030 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2031 if (ret)
2032 break;
2033 }
2034
2035 if (!ret)
2036 q->nr_requests = nr;
2037
2038 return ret;
2039 }
2040
2041 void blk_mq_disable_hotplug(void)
2042 {
2043 mutex_lock(&all_q_mutex);
2044 }
2045
2046 void blk_mq_enable_hotplug(void)
2047 {
2048 mutex_unlock(&all_q_mutex);
2049 }
2050
2051 static int __init blk_mq_init(void)
2052 {
2053 blk_mq_cpu_init();
2054
2055 /* Must be called after percpu_counter_hotcpu_callback() */
2056 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2057
2058 return 0;
2059 }
2060 subsys_initcall(blk_mq_init);