]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq: make blk_mq_alloc_request_hctx() allocate a scheduler request
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55 {
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62 {
63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 int freeze_depth;
69
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
72 percpu_ref_kill(&q->q_usage_counter);
73 blk_mq_run_hw_queues(q, false);
74 }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 int freeze_depth;
113
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
117 percpu_ref_reinit(&q->q_usage_counter);
118 wake_up_all(&q->mq_freeze_wq);
119 }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
175 {
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
179 rq->mq_ctx = ctx;
180 rq->cmd_flags = op;
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
202 rq->extra_len = 0;
203
204 INIT_LIST_HEAD(&rq->timeout_list);
205 rq->timeout = 0;
206
207 rq->end_io = NULL;
208 rq->end_io_data = NULL;
209 rq->next_rq = NULL;
210
211 ctx->rq_dispatched[op_is_sync(op)]++;
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214
215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
216 unsigned int op)
217 {
218 struct request *rq;
219 unsigned int tag;
220
221 tag = blk_mq_get_tag(data);
222 if (tag != BLK_MQ_TAG_FAIL) {
223 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
224
225 rq = tags->static_rqs[tag];
226
227 if (data->flags & BLK_MQ_REQ_INTERNAL) {
228 rq->tag = -1;
229 rq->internal_tag = tag;
230 } else {
231 if (blk_mq_tag_busy(data->hctx)) {
232 rq->rq_flags = RQF_MQ_INFLIGHT;
233 atomic_inc(&data->hctx->nr_active);
234 }
235 rq->tag = tag;
236 rq->internal_tag = -1;
237 }
238
239 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 return rq;
241 }
242
243 return NULL;
244 }
245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246
247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 unsigned int flags)
249 {
250 struct blk_mq_alloc_data alloc_data = { .flags = flags };
251 struct request *rq;
252 int ret;
253
254 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 if (ret)
256 return ERR_PTR(ret);
257
258 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259
260 blk_mq_put_ctx(alloc_data.ctx);
261 blk_queue_exit(q);
262
263 if (!rq)
264 return ERR_PTR(-EWOULDBLOCK);
265
266 rq->__data_len = 0;
267 rq->__sector = (sector_t) -1;
268 rq->bio = rq->biotail = NULL;
269 return rq;
270 }
271 EXPORT_SYMBOL(blk_mq_alloc_request);
272
273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
274 unsigned int flags, unsigned int hctx_idx)
275 {
276 struct blk_mq_alloc_data alloc_data = { .flags = flags };
277 struct request *rq;
278 unsigned int cpu;
279 int ret;
280
281 /*
282 * If the tag allocator sleeps we could get an allocation for a
283 * different hardware context. No need to complicate the low level
284 * allocator for this for the rare use case of a command tied to
285 * a specific queue.
286 */
287 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
288 return ERR_PTR(-EINVAL);
289
290 if (hctx_idx >= q->nr_hw_queues)
291 return ERR_PTR(-EIO);
292
293 ret = blk_queue_enter(q, true);
294 if (ret)
295 return ERR_PTR(ret);
296
297 /*
298 * Check if the hardware context is actually mapped to anything.
299 * If not tell the caller that it should skip this queue.
300 */
301 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
302 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
303 blk_queue_exit(q);
304 return ERR_PTR(-EXDEV);
305 }
306 cpu = cpumask_first(alloc_data.hctx->cpumask);
307 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
308
309 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
310
311 blk_mq_put_ctx(alloc_data.ctx);
312 blk_queue_exit(q);
313
314 if (!rq)
315 return ERR_PTR(-EWOULDBLOCK);
316
317 return rq;
318 }
319 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
320
321 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
322 struct request *rq)
323 {
324 const int sched_tag = rq->internal_tag;
325 struct request_queue *q = rq->q;
326
327 if (rq->rq_flags & RQF_MQ_INFLIGHT)
328 atomic_dec(&hctx->nr_active);
329
330 wbt_done(q->rq_wb, &rq->issue_stat);
331 rq->rq_flags = 0;
332
333 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
334 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
335 if (rq->tag != -1)
336 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
337 if (sched_tag != -1)
338 blk_mq_sched_completed_request(hctx, rq);
339 blk_mq_sched_restart_queues(hctx);
340 blk_queue_exit(q);
341 }
342
343 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
344 struct request *rq)
345 {
346 struct blk_mq_ctx *ctx = rq->mq_ctx;
347
348 ctx->rq_completed[rq_is_sync(rq)]++;
349 __blk_mq_finish_request(hctx, ctx, rq);
350 }
351
352 void blk_mq_finish_request(struct request *rq)
353 {
354 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
355 }
356
357 void blk_mq_free_request(struct request *rq)
358 {
359 blk_mq_sched_put_request(rq);
360 }
361 EXPORT_SYMBOL_GPL(blk_mq_free_request);
362
363 inline void __blk_mq_end_request(struct request *rq, int error)
364 {
365 blk_account_io_done(rq);
366
367 if (rq->end_io) {
368 wbt_done(rq->q->rq_wb, &rq->issue_stat);
369 rq->end_io(rq, error);
370 } else {
371 if (unlikely(blk_bidi_rq(rq)))
372 blk_mq_free_request(rq->next_rq);
373 blk_mq_free_request(rq);
374 }
375 }
376 EXPORT_SYMBOL(__blk_mq_end_request);
377
378 void blk_mq_end_request(struct request *rq, int error)
379 {
380 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
381 BUG();
382 __blk_mq_end_request(rq, error);
383 }
384 EXPORT_SYMBOL(blk_mq_end_request);
385
386 static void __blk_mq_complete_request_remote(void *data)
387 {
388 struct request *rq = data;
389
390 rq->q->softirq_done_fn(rq);
391 }
392
393 static void blk_mq_ipi_complete_request(struct request *rq)
394 {
395 struct blk_mq_ctx *ctx = rq->mq_ctx;
396 bool shared = false;
397 int cpu;
398
399 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
400 rq->q->softirq_done_fn(rq);
401 return;
402 }
403
404 cpu = get_cpu();
405 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
406 shared = cpus_share_cache(cpu, ctx->cpu);
407
408 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
409 rq->csd.func = __blk_mq_complete_request_remote;
410 rq->csd.info = rq;
411 rq->csd.flags = 0;
412 smp_call_function_single_async(ctx->cpu, &rq->csd);
413 } else {
414 rq->q->softirq_done_fn(rq);
415 }
416 put_cpu();
417 }
418
419 static void blk_mq_stat_add(struct request *rq)
420 {
421 if (rq->rq_flags & RQF_STATS) {
422 /*
423 * We could rq->mq_ctx here, but there's less of a risk
424 * of races if we have the completion event add the stats
425 * to the local software queue.
426 */
427 struct blk_mq_ctx *ctx;
428
429 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
430 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
431 }
432 }
433
434 static void __blk_mq_complete_request(struct request *rq)
435 {
436 struct request_queue *q = rq->q;
437
438 blk_mq_stat_add(rq);
439
440 if (!q->softirq_done_fn)
441 blk_mq_end_request(rq, rq->errors);
442 else
443 blk_mq_ipi_complete_request(rq);
444 }
445
446 /**
447 * blk_mq_complete_request - end I/O on a request
448 * @rq: the request being processed
449 *
450 * Description:
451 * Ends all I/O on a request. It does not handle partial completions.
452 * The actual completion happens out-of-order, through a IPI handler.
453 **/
454 void blk_mq_complete_request(struct request *rq, int error)
455 {
456 struct request_queue *q = rq->q;
457
458 if (unlikely(blk_should_fake_timeout(q)))
459 return;
460 if (!blk_mark_rq_complete(rq)) {
461 rq->errors = error;
462 __blk_mq_complete_request(rq);
463 }
464 }
465 EXPORT_SYMBOL(blk_mq_complete_request);
466
467 int blk_mq_request_started(struct request *rq)
468 {
469 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
470 }
471 EXPORT_SYMBOL_GPL(blk_mq_request_started);
472
473 void blk_mq_start_request(struct request *rq)
474 {
475 struct request_queue *q = rq->q;
476
477 blk_mq_sched_started_request(rq);
478
479 trace_block_rq_issue(q, rq);
480
481 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
482 blk_stat_set_issue_time(&rq->issue_stat);
483 rq->rq_flags |= RQF_STATS;
484 wbt_issue(q->rq_wb, &rq->issue_stat);
485 }
486
487 blk_add_timer(rq);
488
489 /*
490 * Ensure that ->deadline is visible before set the started
491 * flag and clear the completed flag.
492 */
493 smp_mb__before_atomic();
494
495 /*
496 * Mark us as started and clear complete. Complete might have been
497 * set if requeue raced with timeout, which then marked it as
498 * complete. So be sure to clear complete again when we start
499 * the request, otherwise we'll ignore the completion event.
500 */
501 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
502 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
503 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
504 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
505
506 if (q->dma_drain_size && blk_rq_bytes(rq)) {
507 /*
508 * Make sure space for the drain appears. We know we can do
509 * this because max_hw_segments has been adjusted to be one
510 * fewer than the device can handle.
511 */
512 rq->nr_phys_segments++;
513 }
514 }
515 EXPORT_SYMBOL(blk_mq_start_request);
516
517 static void __blk_mq_requeue_request(struct request *rq)
518 {
519 struct request_queue *q = rq->q;
520
521 trace_block_rq_requeue(q, rq);
522 wbt_requeue(q->rq_wb, &rq->issue_stat);
523 blk_mq_sched_requeue_request(rq);
524
525 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
526 if (q->dma_drain_size && blk_rq_bytes(rq))
527 rq->nr_phys_segments--;
528 }
529 }
530
531 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
532 {
533 __blk_mq_requeue_request(rq);
534
535 BUG_ON(blk_queued_rq(rq));
536 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
537 }
538 EXPORT_SYMBOL(blk_mq_requeue_request);
539
540 static void blk_mq_requeue_work(struct work_struct *work)
541 {
542 struct request_queue *q =
543 container_of(work, struct request_queue, requeue_work.work);
544 LIST_HEAD(rq_list);
545 struct request *rq, *next;
546 unsigned long flags;
547
548 spin_lock_irqsave(&q->requeue_lock, flags);
549 list_splice_init(&q->requeue_list, &rq_list);
550 spin_unlock_irqrestore(&q->requeue_lock, flags);
551
552 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
553 if (!(rq->rq_flags & RQF_SOFTBARRIER))
554 continue;
555
556 rq->rq_flags &= ~RQF_SOFTBARRIER;
557 list_del_init(&rq->queuelist);
558 blk_mq_sched_insert_request(rq, true, false, false, true);
559 }
560
561 while (!list_empty(&rq_list)) {
562 rq = list_entry(rq_list.next, struct request, queuelist);
563 list_del_init(&rq->queuelist);
564 blk_mq_sched_insert_request(rq, false, false, false, true);
565 }
566
567 blk_mq_run_hw_queues(q, false);
568 }
569
570 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
571 bool kick_requeue_list)
572 {
573 struct request_queue *q = rq->q;
574 unsigned long flags;
575
576 /*
577 * We abuse this flag that is otherwise used by the I/O scheduler to
578 * request head insertation from the workqueue.
579 */
580 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
581
582 spin_lock_irqsave(&q->requeue_lock, flags);
583 if (at_head) {
584 rq->rq_flags |= RQF_SOFTBARRIER;
585 list_add(&rq->queuelist, &q->requeue_list);
586 } else {
587 list_add_tail(&rq->queuelist, &q->requeue_list);
588 }
589 spin_unlock_irqrestore(&q->requeue_lock, flags);
590
591 if (kick_requeue_list)
592 blk_mq_kick_requeue_list(q);
593 }
594 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
595
596 void blk_mq_kick_requeue_list(struct request_queue *q)
597 {
598 kblockd_schedule_delayed_work(&q->requeue_work, 0);
599 }
600 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
601
602 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
603 unsigned long msecs)
604 {
605 kblockd_schedule_delayed_work(&q->requeue_work,
606 msecs_to_jiffies(msecs));
607 }
608 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
609
610 void blk_mq_abort_requeue_list(struct request_queue *q)
611 {
612 unsigned long flags;
613 LIST_HEAD(rq_list);
614
615 spin_lock_irqsave(&q->requeue_lock, flags);
616 list_splice_init(&q->requeue_list, &rq_list);
617 spin_unlock_irqrestore(&q->requeue_lock, flags);
618
619 while (!list_empty(&rq_list)) {
620 struct request *rq;
621
622 rq = list_first_entry(&rq_list, struct request, queuelist);
623 list_del_init(&rq->queuelist);
624 rq->errors = -EIO;
625 blk_mq_end_request(rq, rq->errors);
626 }
627 }
628 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
629
630 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
631 {
632 if (tag < tags->nr_tags) {
633 prefetch(tags->rqs[tag]);
634 return tags->rqs[tag];
635 }
636
637 return NULL;
638 }
639 EXPORT_SYMBOL(blk_mq_tag_to_rq);
640
641 struct blk_mq_timeout_data {
642 unsigned long next;
643 unsigned int next_set;
644 };
645
646 void blk_mq_rq_timed_out(struct request *req, bool reserved)
647 {
648 const struct blk_mq_ops *ops = req->q->mq_ops;
649 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
650
651 /*
652 * We know that complete is set at this point. If STARTED isn't set
653 * anymore, then the request isn't active and the "timeout" should
654 * just be ignored. This can happen due to the bitflag ordering.
655 * Timeout first checks if STARTED is set, and if it is, assumes
656 * the request is active. But if we race with completion, then
657 * we both flags will get cleared. So check here again, and ignore
658 * a timeout event with a request that isn't active.
659 */
660 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
661 return;
662
663 if (ops->timeout)
664 ret = ops->timeout(req, reserved);
665
666 switch (ret) {
667 case BLK_EH_HANDLED:
668 __blk_mq_complete_request(req);
669 break;
670 case BLK_EH_RESET_TIMER:
671 blk_add_timer(req);
672 blk_clear_rq_complete(req);
673 break;
674 case BLK_EH_NOT_HANDLED:
675 break;
676 default:
677 printk(KERN_ERR "block: bad eh return: %d\n", ret);
678 break;
679 }
680 }
681
682 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
683 struct request *rq, void *priv, bool reserved)
684 {
685 struct blk_mq_timeout_data *data = priv;
686
687 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
688 /*
689 * If a request wasn't started before the queue was
690 * marked dying, kill it here or it'll go unnoticed.
691 */
692 if (unlikely(blk_queue_dying(rq->q))) {
693 rq->errors = -EIO;
694 blk_mq_end_request(rq, rq->errors);
695 }
696 return;
697 }
698
699 if (time_after_eq(jiffies, rq->deadline)) {
700 if (!blk_mark_rq_complete(rq))
701 blk_mq_rq_timed_out(rq, reserved);
702 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
703 data->next = rq->deadline;
704 data->next_set = 1;
705 }
706 }
707
708 static void blk_mq_timeout_work(struct work_struct *work)
709 {
710 struct request_queue *q =
711 container_of(work, struct request_queue, timeout_work);
712 struct blk_mq_timeout_data data = {
713 .next = 0,
714 .next_set = 0,
715 };
716 int i;
717
718 /* A deadlock might occur if a request is stuck requiring a
719 * timeout at the same time a queue freeze is waiting
720 * completion, since the timeout code would not be able to
721 * acquire the queue reference here.
722 *
723 * That's why we don't use blk_queue_enter here; instead, we use
724 * percpu_ref_tryget directly, because we need to be able to
725 * obtain a reference even in the short window between the queue
726 * starting to freeze, by dropping the first reference in
727 * blk_mq_freeze_queue_start, and the moment the last request is
728 * consumed, marked by the instant q_usage_counter reaches
729 * zero.
730 */
731 if (!percpu_ref_tryget(&q->q_usage_counter))
732 return;
733
734 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
735
736 if (data.next_set) {
737 data.next = blk_rq_timeout(round_jiffies_up(data.next));
738 mod_timer(&q->timeout, data.next);
739 } else {
740 struct blk_mq_hw_ctx *hctx;
741
742 queue_for_each_hw_ctx(q, hctx, i) {
743 /* the hctx may be unmapped, so check it here */
744 if (blk_mq_hw_queue_mapped(hctx))
745 blk_mq_tag_idle(hctx);
746 }
747 }
748 blk_queue_exit(q);
749 }
750
751 /*
752 * Reverse check our software queue for entries that we could potentially
753 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
754 * too much time checking for merges.
755 */
756 static bool blk_mq_attempt_merge(struct request_queue *q,
757 struct blk_mq_ctx *ctx, struct bio *bio)
758 {
759 struct request *rq;
760 int checked = 8;
761
762 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
763 bool merged = false;
764
765 if (!checked--)
766 break;
767
768 if (!blk_rq_merge_ok(rq, bio))
769 continue;
770
771 switch (blk_try_merge(rq, bio)) {
772 case ELEVATOR_BACK_MERGE:
773 if (blk_mq_sched_allow_merge(q, rq, bio))
774 merged = bio_attempt_back_merge(q, rq, bio);
775 break;
776 case ELEVATOR_FRONT_MERGE:
777 if (blk_mq_sched_allow_merge(q, rq, bio))
778 merged = bio_attempt_front_merge(q, rq, bio);
779 break;
780 case ELEVATOR_DISCARD_MERGE:
781 merged = bio_attempt_discard_merge(q, rq, bio);
782 break;
783 default:
784 continue;
785 }
786
787 if (merged)
788 ctx->rq_merged++;
789 return merged;
790 }
791
792 return false;
793 }
794
795 struct flush_busy_ctx_data {
796 struct blk_mq_hw_ctx *hctx;
797 struct list_head *list;
798 };
799
800 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
801 {
802 struct flush_busy_ctx_data *flush_data = data;
803 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
804 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
805
806 sbitmap_clear_bit(sb, bitnr);
807 spin_lock(&ctx->lock);
808 list_splice_tail_init(&ctx->rq_list, flush_data->list);
809 spin_unlock(&ctx->lock);
810 return true;
811 }
812
813 /*
814 * Process software queues that have been marked busy, splicing them
815 * to the for-dispatch
816 */
817 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
818 {
819 struct flush_busy_ctx_data data = {
820 .hctx = hctx,
821 .list = list,
822 };
823
824 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
825 }
826 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
827
828 static inline unsigned int queued_to_index(unsigned int queued)
829 {
830 if (!queued)
831 return 0;
832
833 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
834 }
835
836 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
837 bool wait)
838 {
839 struct blk_mq_alloc_data data = {
840 .q = rq->q,
841 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
842 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
843 };
844
845 if (rq->tag != -1) {
846 done:
847 if (hctx)
848 *hctx = data.hctx;
849 return true;
850 }
851
852 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
853 data.flags |= BLK_MQ_REQ_RESERVED;
854
855 rq->tag = blk_mq_get_tag(&data);
856 if (rq->tag >= 0) {
857 if (blk_mq_tag_busy(data.hctx)) {
858 rq->rq_flags |= RQF_MQ_INFLIGHT;
859 atomic_inc(&data.hctx->nr_active);
860 }
861 data.hctx->tags->rqs[rq->tag] = rq;
862 goto done;
863 }
864
865 return false;
866 }
867
868 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
869 struct request *rq)
870 {
871 if (rq->tag == -1 || rq->internal_tag == -1)
872 return;
873
874 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
875 rq->tag = -1;
876
877 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
878 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
879 atomic_dec(&hctx->nr_active);
880 }
881 }
882
883 /*
884 * If we fail getting a driver tag because all the driver tags are already
885 * assigned and on the dispatch list, BUT the first entry does not have a
886 * tag, then we could deadlock. For that case, move entries with assigned
887 * driver tags to the front, leaving the set of tagged requests in the
888 * same order, and the untagged set in the same order.
889 */
890 static bool reorder_tags_to_front(struct list_head *list)
891 {
892 struct request *rq, *tmp, *first = NULL;
893
894 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
895 if (rq == first)
896 break;
897 if (rq->tag != -1) {
898 list_move(&rq->queuelist, list);
899 if (!first)
900 first = rq;
901 }
902 }
903
904 return first != NULL;
905 }
906
907 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
908 void *key)
909 {
910 struct blk_mq_hw_ctx *hctx;
911
912 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
913
914 list_del(&wait->task_list);
915 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
916 blk_mq_run_hw_queue(hctx, true);
917 return 1;
918 }
919
920 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
921 {
922 struct sbq_wait_state *ws;
923
924 /*
925 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
926 * The thread which wins the race to grab this bit adds the hardware
927 * queue to the wait queue.
928 */
929 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
930 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
931 return false;
932
933 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
934 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
935
936 /*
937 * As soon as this returns, it's no longer safe to fiddle with
938 * hctx->dispatch_wait, since a completion can wake up the wait queue
939 * and unlock the bit.
940 */
941 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
942 return true;
943 }
944
945 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
946 {
947 struct request_queue *q = hctx->queue;
948 struct request *rq;
949 LIST_HEAD(driver_list);
950 struct list_head *dptr;
951 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
952
953 /*
954 * Start off with dptr being NULL, so we start the first request
955 * immediately, even if we have more pending.
956 */
957 dptr = NULL;
958
959 /*
960 * Now process all the entries, sending them to the driver.
961 */
962 queued = 0;
963 while (!list_empty(list)) {
964 struct blk_mq_queue_data bd;
965
966 rq = list_first_entry(list, struct request, queuelist);
967 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
968 if (!queued && reorder_tags_to_front(list))
969 continue;
970
971 /*
972 * The initial allocation attempt failed, so we need to
973 * rerun the hardware queue when a tag is freed.
974 */
975 if (blk_mq_dispatch_wait_add(hctx)) {
976 /*
977 * It's possible that a tag was freed in the
978 * window between the allocation failure and
979 * adding the hardware queue to the wait queue.
980 */
981 if (!blk_mq_get_driver_tag(rq, &hctx, false))
982 break;
983 } else {
984 break;
985 }
986 }
987
988 list_del_init(&rq->queuelist);
989
990 bd.rq = rq;
991 bd.list = dptr;
992 bd.last = list_empty(list);
993
994 ret = q->mq_ops->queue_rq(hctx, &bd);
995 switch (ret) {
996 case BLK_MQ_RQ_QUEUE_OK:
997 queued++;
998 break;
999 case BLK_MQ_RQ_QUEUE_BUSY:
1000 blk_mq_put_driver_tag(hctx, rq);
1001 list_add(&rq->queuelist, list);
1002 __blk_mq_requeue_request(rq);
1003 break;
1004 default:
1005 pr_err("blk-mq: bad return on queue: %d\n", ret);
1006 case BLK_MQ_RQ_QUEUE_ERROR:
1007 rq->errors = -EIO;
1008 blk_mq_end_request(rq, rq->errors);
1009 break;
1010 }
1011
1012 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1013 break;
1014
1015 /*
1016 * We've done the first request. If we have more than 1
1017 * left in the list, set dptr to defer issue.
1018 */
1019 if (!dptr && list->next != list->prev)
1020 dptr = &driver_list;
1021 }
1022
1023 hctx->dispatched[queued_to_index(queued)]++;
1024
1025 /*
1026 * Any items that need requeuing? Stuff them into hctx->dispatch,
1027 * that is where we will continue on next queue run.
1028 */
1029 if (!list_empty(list)) {
1030 spin_lock(&hctx->lock);
1031 list_splice_init(list, &hctx->dispatch);
1032 spin_unlock(&hctx->lock);
1033
1034 /*
1035 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1036 * it's possible the queue is stopped and restarted again
1037 * before this. Queue restart will dispatch requests. And since
1038 * requests in rq_list aren't added into hctx->dispatch yet,
1039 * the requests in rq_list might get lost.
1040 *
1041 * blk_mq_run_hw_queue() already checks the STOPPED bit
1042 *
1043 * If RESTART or TAG_WAITING is set, then let completion restart
1044 * the queue instead of potentially looping here.
1045 */
1046 if (!blk_mq_sched_needs_restart(hctx) &&
1047 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1048 blk_mq_run_hw_queue(hctx, true);
1049 }
1050
1051 return queued != 0;
1052 }
1053
1054 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1055 {
1056 int srcu_idx;
1057
1058 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1059 cpu_online(hctx->next_cpu));
1060
1061 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1062 rcu_read_lock();
1063 blk_mq_sched_dispatch_requests(hctx);
1064 rcu_read_unlock();
1065 } else {
1066 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1067 blk_mq_sched_dispatch_requests(hctx);
1068 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1069 }
1070 }
1071
1072 /*
1073 * It'd be great if the workqueue API had a way to pass
1074 * in a mask and had some smarts for more clever placement.
1075 * For now we just round-robin here, switching for every
1076 * BLK_MQ_CPU_WORK_BATCH queued items.
1077 */
1078 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1079 {
1080 if (hctx->queue->nr_hw_queues == 1)
1081 return WORK_CPU_UNBOUND;
1082
1083 if (--hctx->next_cpu_batch <= 0) {
1084 int next_cpu;
1085
1086 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1087 if (next_cpu >= nr_cpu_ids)
1088 next_cpu = cpumask_first(hctx->cpumask);
1089
1090 hctx->next_cpu = next_cpu;
1091 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1092 }
1093
1094 return hctx->next_cpu;
1095 }
1096
1097 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1098 {
1099 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1100 !blk_mq_hw_queue_mapped(hctx)))
1101 return;
1102
1103 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1104 int cpu = get_cpu();
1105 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1106 __blk_mq_run_hw_queue(hctx);
1107 put_cpu();
1108 return;
1109 }
1110
1111 put_cpu();
1112 }
1113
1114 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1115 }
1116
1117 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1118 {
1119 struct blk_mq_hw_ctx *hctx;
1120 int i;
1121
1122 queue_for_each_hw_ctx(q, hctx, i) {
1123 if (!blk_mq_hctx_has_pending(hctx) ||
1124 blk_mq_hctx_stopped(hctx))
1125 continue;
1126
1127 blk_mq_run_hw_queue(hctx, async);
1128 }
1129 }
1130 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1131
1132 /**
1133 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1134 * @q: request queue.
1135 *
1136 * The caller is responsible for serializing this function against
1137 * blk_mq_{start,stop}_hw_queue().
1138 */
1139 bool blk_mq_queue_stopped(struct request_queue *q)
1140 {
1141 struct blk_mq_hw_ctx *hctx;
1142 int i;
1143
1144 queue_for_each_hw_ctx(q, hctx, i)
1145 if (blk_mq_hctx_stopped(hctx))
1146 return true;
1147
1148 return false;
1149 }
1150 EXPORT_SYMBOL(blk_mq_queue_stopped);
1151
1152 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1153 {
1154 cancel_work(&hctx->run_work);
1155 cancel_delayed_work(&hctx->delay_work);
1156 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1157 }
1158 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1159
1160 void blk_mq_stop_hw_queues(struct request_queue *q)
1161 {
1162 struct blk_mq_hw_ctx *hctx;
1163 int i;
1164
1165 queue_for_each_hw_ctx(q, hctx, i)
1166 blk_mq_stop_hw_queue(hctx);
1167 }
1168 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1169
1170 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1171 {
1172 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1173
1174 blk_mq_run_hw_queue(hctx, false);
1175 }
1176 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1177
1178 void blk_mq_start_hw_queues(struct request_queue *q)
1179 {
1180 struct blk_mq_hw_ctx *hctx;
1181 int i;
1182
1183 queue_for_each_hw_ctx(q, hctx, i)
1184 blk_mq_start_hw_queue(hctx);
1185 }
1186 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1187
1188 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1189 {
1190 if (!blk_mq_hctx_stopped(hctx))
1191 return;
1192
1193 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1194 blk_mq_run_hw_queue(hctx, async);
1195 }
1196 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1197
1198 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1199 {
1200 struct blk_mq_hw_ctx *hctx;
1201 int i;
1202
1203 queue_for_each_hw_ctx(q, hctx, i)
1204 blk_mq_start_stopped_hw_queue(hctx, async);
1205 }
1206 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1207
1208 static void blk_mq_run_work_fn(struct work_struct *work)
1209 {
1210 struct blk_mq_hw_ctx *hctx;
1211
1212 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1213
1214 __blk_mq_run_hw_queue(hctx);
1215 }
1216
1217 static void blk_mq_delay_work_fn(struct work_struct *work)
1218 {
1219 struct blk_mq_hw_ctx *hctx;
1220
1221 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1222
1223 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1224 __blk_mq_run_hw_queue(hctx);
1225 }
1226
1227 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1228 {
1229 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1230 return;
1231
1232 blk_mq_stop_hw_queue(hctx);
1233 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1234 &hctx->delay_work, msecs_to_jiffies(msecs));
1235 }
1236 EXPORT_SYMBOL(blk_mq_delay_queue);
1237
1238 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1239 struct request *rq,
1240 bool at_head)
1241 {
1242 struct blk_mq_ctx *ctx = rq->mq_ctx;
1243
1244 trace_block_rq_insert(hctx->queue, rq);
1245
1246 if (at_head)
1247 list_add(&rq->queuelist, &ctx->rq_list);
1248 else
1249 list_add_tail(&rq->queuelist, &ctx->rq_list);
1250 }
1251
1252 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1253 bool at_head)
1254 {
1255 struct blk_mq_ctx *ctx = rq->mq_ctx;
1256
1257 __blk_mq_insert_req_list(hctx, rq, at_head);
1258 blk_mq_hctx_mark_pending(hctx, ctx);
1259 }
1260
1261 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1262 struct list_head *list)
1263
1264 {
1265 /*
1266 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1267 * offline now
1268 */
1269 spin_lock(&ctx->lock);
1270 while (!list_empty(list)) {
1271 struct request *rq;
1272
1273 rq = list_first_entry(list, struct request, queuelist);
1274 BUG_ON(rq->mq_ctx != ctx);
1275 list_del_init(&rq->queuelist);
1276 __blk_mq_insert_req_list(hctx, rq, false);
1277 }
1278 blk_mq_hctx_mark_pending(hctx, ctx);
1279 spin_unlock(&ctx->lock);
1280 }
1281
1282 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1283 {
1284 struct request *rqa = container_of(a, struct request, queuelist);
1285 struct request *rqb = container_of(b, struct request, queuelist);
1286
1287 return !(rqa->mq_ctx < rqb->mq_ctx ||
1288 (rqa->mq_ctx == rqb->mq_ctx &&
1289 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1290 }
1291
1292 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1293 {
1294 struct blk_mq_ctx *this_ctx;
1295 struct request_queue *this_q;
1296 struct request *rq;
1297 LIST_HEAD(list);
1298 LIST_HEAD(ctx_list);
1299 unsigned int depth;
1300
1301 list_splice_init(&plug->mq_list, &list);
1302
1303 list_sort(NULL, &list, plug_ctx_cmp);
1304
1305 this_q = NULL;
1306 this_ctx = NULL;
1307 depth = 0;
1308
1309 while (!list_empty(&list)) {
1310 rq = list_entry_rq(list.next);
1311 list_del_init(&rq->queuelist);
1312 BUG_ON(!rq->q);
1313 if (rq->mq_ctx != this_ctx) {
1314 if (this_ctx) {
1315 trace_block_unplug(this_q, depth, from_schedule);
1316 blk_mq_sched_insert_requests(this_q, this_ctx,
1317 &ctx_list,
1318 from_schedule);
1319 }
1320
1321 this_ctx = rq->mq_ctx;
1322 this_q = rq->q;
1323 depth = 0;
1324 }
1325
1326 depth++;
1327 list_add_tail(&rq->queuelist, &ctx_list);
1328 }
1329
1330 /*
1331 * If 'this_ctx' is set, we know we have entries to complete
1332 * on 'ctx_list'. Do those.
1333 */
1334 if (this_ctx) {
1335 trace_block_unplug(this_q, depth, from_schedule);
1336 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1337 from_schedule);
1338 }
1339 }
1340
1341 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1342 {
1343 init_request_from_bio(rq, bio);
1344
1345 blk_account_io_start(rq, true);
1346 }
1347
1348 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1349 {
1350 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1351 !blk_queue_nomerges(hctx->queue);
1352 }
1353
1354 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1355 struct blk_mq_ctx *ctx,
1356 struct request *rq, struct bio *bio)
1357 {
1358 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1359 blk_mq_bio_to_request(rq, bio);
1360 spin_lock(&ctx->lock);
1361 insert_rq:
1362 __blk_mq_insert_request(hctx, rq, false);
1363 spin_unlock(&ctx->lock);
1364 return false;
1365 } else {
1366 struct request_queue *q = hctx->queue;
1367
1368 spin_lock(&ctx->lock);
1369 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1370 blk_mq_bio_to_request(rq, bio);
1371 goto insert_rq;
1372 }
1373
1374 spin_unlock(&ctx->lock);
1375 __blk_mq_finish_request(hctx, ctx, rq);
1376 return true;
1377 }
1378 }
1379
1380 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1381 {
1382 if (rq->tag != -1)
1383 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1384
1385 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1386 }
1387
1388 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1389 {
1390 struct request_queue *q = rq->q;
1391 struct blk_mq_queue_data bd = {
1392 .rq = rq,
1393 .list = NULL,
1394 .last = 1
1395 };
1396 struct blk_mq_hw_ctx *hctx;
1397 blk_qc_t new_cookie;
1398 int ret;
1399
1400 if (q->elevator)
1401 goto insert;
1402
1403 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1404 goto insert;
1405
1406 new_cookie = request_to_qc_t(hctx, rq);
1407
1408 /*
1409 * For OK queue, we are done. For error, kill it. Any other
1410 * error (busy), just add it to our list as we previously
1411 * would have done
1412 */
1413 ret = q->mq_ops->queue_rq(hctx, &bd);
1414 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1415 *cookie = new_cookie;
1416 return;
1417 }
1418
1419 __blk_mq_requeue_request(rq);
1420
1421 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1422 *cookie = BLK_QC_T_NONE;
1423 rq->errors = -EIO;
1424 blk_mq_end_request(rq, rq->errors);
1425 return;
1426 }
1427
1428 insert:
1429 blk_mq_sched_insert_request(rq, false, true, true, false);
1430 }
1431
1432 /*
1433 * Multiple hardware queue variant. This will not use per-process plugs,
1434 * but will attempt to bypass the hctx queueing if we can go straight to
1435 * hardware for SYNC IO.
1436 */
1437 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1438 {
1439 const int is_sync = op_is_sync(bio->bi_opf);
1440 const int is_flush_fua = op_is_flush(bio->bi_opf);
1441 struct blk_mq_alloc_data data = { .flags = 0 };
1442 struct request *rq;
1443 unsigned int request_count = 0, srcu_idx;
1444 struct blk_plug *plug;
1445 struct request *same_queue_rq = NULL;
1446 blk_qc_t cookie;
1447 unsigned int wb_acct;
1448
1449 blk_queue_bounce(q, &bio);
1450
1451 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1452 bio_io_error(bio);
1453 return BLK_QC_T_NONE;
1454 }
1455
1456 blk_queue_split(q, &bio, q->bio_split);
1457
1458 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1459 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1460 return BLK_QC_T_NONE;
1461
1462 if (blk_mq_sched_bio_merge(q, bio))
1463 return BLK_QC_T_NONE;
1464
1465 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1466
1467 trace_block_getrq(q, bio, bio->bi_opf);
1468
1469 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1470 if (unlikely(!rq)) {
1471 __wbt_done(q->rq_wb, wb_acct);
1472 return BLK_QC_T_NONE;
1473 }
1474
1475 wbt_track(&rq->issue_stat, wb_acct);
1476
1477 cookie = request_to_qc_t(data.hctx, rq);
1478
1479 if (unlikely(is_flush_fua)) {
1480 if (q->elevator)
1481 goto elv_insert;
1482 blk_mq_bio_to_request(rq, bio);
1483 blk_insert_flush(rq);
1484 goto run_queue;
1485 }
1486
1487 plug = current->plug;
1488 /*
1489 * If the driver supports defer issued based on 'last', then
1490 * queue it up like normal since we can potentially save some
1491 * CPU this way.
1492 */
1493 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1494 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1495 struct request *old_rq = NULL;
1496
1497 blk_mq_bio_to_request(rq, bio);
1498
1499 /*
1500 * We do limited plugging. If the bio can be merged, do that.
1501 * Otherwise the existing request in the plug list will be
1502 * issued. So the plug list will have one request at most
1503 */
1504 if (plug) {
1505 /*
1506 * The plug list might get flushed before this. If that
1507 * happens, same_queue_rq is invalid and plug list is
1508 * empty
1509 */
1510 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1511 old_rq = same_queue_rq;
1512 list_del_init(&old_rq->queuelist);
1513 }
1514 list_add_tail(&rq->queuelist, &plug->mq_list);
1515 } else /* is_sync */
1516 old_rq = rq;
1517 blk_mq_put_ctx(data.ctx);
1518 if (!old_rq)
1519 goto done;
1520
1521 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1522 rcu_read_lock();
1523 blk_mq_try_issue_directly(old_rq, &cookie);
1524 rcu_read_unlock();
1525 } else {
1526 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1527 blk_mq_try_issue_directly(old_rq, &cookie);
1528 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1529 }
1530 goto done;
1531 }
1532
1533 if (q->elevator) {
1534 elv_insert:
1535 blk_mq_put_ctx(data.ctx);
1536 blk_mq_bio_to_request(rq, bio);
1537 blk_mq_sched_insert_request(rq, false, true,
1538 !is_sync || is_flush_fua, true);
1539 goto done;
1540 }
1541 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1542 /*
1543 * For a SYNC request, send it to the hardware immediately. For
1544 * an ASYNC request, just ensure that we run it later on. The
1545 * latter allows for merging opportunities and more efficient
1546 * dispatching.
1547 */
1548 run_queue:
1549 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1550 }
1551 blk_mq_put_ctx(data.ctx);
1552 done:
1553 return cookie;
1554 }
1555
1556 /*
1557 * Single hardware queue variant. This will attempt to use any per-process
1558 * plug for merging and IO deferral.
1559 */
1560 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1561 {
1562 const int is_sync = op_is_sync(bio->bi_opf);
1563 const int is_flush_fua = op_is_flush(bio->bi_opf);
1564 struct blk_plug *plug;
1565 unsigned int request_count = 0;
1566 struct blk_mq_alloc_data data = { .flags = 0 };
1567 struct request *rq;
1568 blk_qc_t cookie;
1569 unsigned int wb_acct;
1570
1571 blk_queue_bounce(q, &bio);
1572
1573 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1574 bio_io_error(bio);
1575 return BLK_QC_T_NONE;
1576 }
1577
1578 blk_queue_split(q, &bio, q->bio_split);
1579
1580 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1581 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1582 return BLK_QC_T_NONE;
1583 } else
1584 request_count = blk_plug_queued_count(q);
1585
1586 if (blk_mq_sched_bio_merge(q, bio))
1587 return BLK_QC_T_NONE;
1588
1589 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1590
1591 trace_block_getrq(q, bio, bio->bi_opf);
1592
1593 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1594 if (unlikely(!rq)) {
1595 __wbt_done(q->rq_wb, wb_acct);
1596 return BLK_QC_T_NONE;
1597 }
1598
1599 wbt_track(&rq->issue_stat, wb_acct);
1600
1601 cookie = request_to_qc_t(data.hctx, rq);
1602
1603 if (unlikely(is_flush_fua)) {
1604 if (q->elevator)
1605 goto elv_insert;
1606 blk_mq_bio_to_request(rq, bio);
1607 blk_insert_flush(rq);
1608 goto run_queue;
1609 }
1610
1611 /*
1612 * A task plug currently exists. Since this is completely lockless,
1613 * utilize that to temporarily store requests until the task is
1614 * either done or scheduled away.
1615 */
1616 plug = current->plug;
1617 if (plug) {
1618 struct request *last = NULL;
1619
1620 blk_mq_bio_to_request(rq, bio);
1621
1622 /*
1623 * @request_count may become stale because of schedule
1624 * out, so check the list again.
1625 */
1626 if (list_empty(&plug->mq_list))
1627 request_count = 0;
1628 if (!request_count)
1629 trace_block_plug(q);
1630 else
1631 last = list_entry_rq(plug->mq_list.prev);
1632
1633 blk_mq_put_ctx(data.ctx);
1634
1635 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1636 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1637 blk_flush_plug_list(plug, false);
1638 trace_block_plug(q);
1639 }
1640
1641 list_add_tail(&rq->queuelist, &plug->mq_list);
1642 return cookie;
1643 }
1644
1645 if (q->elevator) {
1646 elv_insert:
1647 blk_mq_put_ctx(data.ctx);
1648 blk_mq_bio_to_request(rq, bio);
1649 blk_mq_sched_insert_request(rq, false, true,
1650 !is_sync || is_flush_fua, true);
1651 goto done;
1652 }
1653 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1654 /*
1655 * For a SYNC request, send it to the hardware immediately. For
1656 * an ASYNC request, just ensure that we run it later on. The
1657 * latter allows for merging opportunities and more efficient
1658 * dispatching.
1659 */
1660 run_queue:
1661 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1662 }
1663
1664 blk_mq_put_ctx(data.ctx);
1665 done:
1666 return cookie;
1667 }
1668
1669 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1670 unsigned int hctx_idx)
1671 {
1672 struct page *page;
1673
1674 if (tags->rqs && set->ops->exit_request) {
1675 int i;
1676
1677 for (i = 0; i < tags->nr_tags; i++) {
1678 struct request *rq = tags->static_rqs[i];
1679
1680 if (!rq)
1681 continue;
1682 set->ops->exit_request(set->driver_data, rq,
1683 hctx_idx, i);
1684 tags->static_rqs[i] = NULL;
1685 }
1686 }
1687
1688 while (!list_empty(&tags->page_list)) {
1689 page = list_first_entry(&tags->page_list, struct page, lru);
1690 list_del_init(&page->lru);
1691 /*
1692 * Remove kmemleak object previously allocated in
1693 * blk_mq_init_rq_map().
1694 */
1695 kmemleak_free(page_address(page));
1696 __free_pages(page, page->private);
1697 }
1698 }
1699
1700 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1701 {
1702 kfree(tags->rqs);
1703 tags->rqs = NULL;
1704 kfree(tags->static_rqs);
1705 tags->static_rqs = NULL;
1706
1707 blk_mq_free_tags(tags);
1708 }
1709
1710 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1711 unsigned int hctx_idx,
1712 unsigned int nr_tags,
1713 unsigned int reserved_tags)
1714 {
1715 struct blk_mq_tags *tags;
1716 int node;
1717
1718 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1719 if (node == NUMA_NO_NODE)
1720 node = set->numa_node;
1721
1722 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1723 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1724 if (!tags)
1725 return NULL;
1726
1727 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1728 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1729 node);
1730 if (!tags->rqs) {
1731 blk_mq_free_tags(tags);
1732 return NULL;
1733 }
1734
1735 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1736 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1737 node);
1738 if (!tags->static_rqs) {
1739 kfree(tags->rqs);
1740 blk_mq_free_tags(tags);
1741 return NULL;
1742 }
1743
1744 return tags;
1745 }
1746
1747 static size_t order_to_size(unsigned int order)
1748 {
1749 return (size_t)PAGE_SIZE << order;
1750 }
1751
1752 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1753 unsigned int hctx_idx, unsigned int depth)
1754 {
1755 unsigned int i, j, entries_per_page, max_order = 4;
1756 size_t rq_size, left;
1757 int node;
1758
1759 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1760 if (node == NUMA_NO_NODE)
1761 node = set->numa_node;
1762
1763 INIT_LIST_HEAD(&tags->page_list);
1764
1765 /*
1766 * rq_size is the size of the request plus driver payload, rounded
1767 * to the cacheline size
1768 */
1769 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1770 cache_line_size());
1771 left = rq_size * depth;
1772
1773 for (i = 0; i < depth; ) {
1774 int this_order = max_order;
1775 struct page *page;
1776 int to_do;
1777 void *p;
1778
1779 while (this_order && left < order_to_size(this_order - 1))
1780 this_order--;
1781
1782 do {
1783 page = alloc_pages_node(node,
1784 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1785 this_order);
1786 if (page)
1787 break;
1788 if (!this_order--)
1789 break;
1790 if (order_to_size(this_order) < rq_size)
1791 break;
1792 } while (1);
1793
1794 if (!page)
1795 goto fail;
1796
1797 page->private = this_order;
1798 list_add_tail(&page->lru, &tags->page_list);
1799
1800 p = page_address(page);
1801 /*
1802 * Allow kmemleak to scan these pages as they contain pointers
1803 * to additional allocations like via ops->init_request().
1804 */
1805 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1806 entries_per_page = order_to_size(this_order) / rq_size;
1807 to_do = min(entries_per_page, depth - i);
1808 left -= to_do * rq_size;
1809 for (j = 0; j < to_do; j++) {
1810 struct request *rq = p;
1811
1812 tags->static_rqs[i] = rq;
1813 if (set->ops->init_request) {
1814 if (set->ops->init_request(set->driver_data,
1815 rq, hctx_idx, i,
1816 node)) {
1817 tags->static_rqs[i] = NULL;
1818 goto fail;
1819 }
1820 }
1821
1822 p += rq_size;
1823 i++;
1824 }
1825 }
1826 return 0;
1827
1828 fail:
1829 blk_mq_free_rqs(set, tags, hctx_idx);
1830 return -ENOMEM;
1831 }
1832
1833 /*
1834 * 'cpu' is going away. splice any existing rq_list entries from this
1835 * software queue to the hw queue dispatch list, and ensure that it
1836 * gets run.
1837 */
1838 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1839 {
1840 struct blk_mq_hw_ctx *hctx;
1841 struct blk_mq_ctx *ctx;
1842 LIST_HEAD(tmp);
1843
1844 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1845 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1846
1847 spin_lock(&ctx->lock);
1848 if (!list_empty(&ctx->rq_list)) {
1849 list_splice_init(&ctx->rq_list, &tmp);
1850 blk_mq_hctx_clear_pending(hctx, ctx);
1851 }
1852 spin_unlock(&ctx->lock);
1853
1854 if (list_empty(&tmp))
1855 return 0;
1856
1857 spin_lock(&hctx->lock);
1858 list_splice_tail_init(&tmp, &hctx->dispatch);
1859 spin_unlock(&hctx->lock);
1860
1861 blk_mq_run_hw_queue(hctx, true);
1862 return 0;
1863 }
1864
1865 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1866 {
1867 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1868 &hctx->cpuhp_dead);
1869 }
1870
1871 /* hctx->ctxs will be freed in queue's release handler */
1872 static void blk_mq_exit_hctx(struct request_queue *q,
1873 struct blk_mq_tag_set *set,
1874 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1875 {
1876 unsigned flush_start_tag = set->queue_depth;
1877
1878 blk_mq_tag_idle(hctx);
1879
1880 if (set->ops->exit_request)
1881 set->ops->exit_request(set->driver_data,
1882 hctx->fq->flush_rq, hctx_idx,
1883 flush_start_tag + hctx_idx);
1884
1885 if (set->ops->exit_hctx)
1886 set->ops->exit_hctx(hctx, hctx_idx);
1887
1888 if (hctx->flags & BLK_MQ_F_BLOCKING)
1889 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1890
1891 blk_mq_remove_cpuhp(hctx);
1892 blk_free_flush_queue(hctx->fq);
1893 sbitmap_free(&hctx->ctx_map);
1894 }
1895
1896 static void blk_mq_exit_hw_queues(struct request_queue *q,
1897 struct blk_mq_tag_set *set, int nr_queue)
1898 {
1899 struct blk_mq_hw_ctx *hctx;
1900 unsigned int i;
1901
1902 queue_for_each_hw_ctx(q, hctx, i) {
1903 if (i == nr_queue)
1904 break;
1905 blk_mq_exit_hctx(q, set, hctx, i);
1906 }
1907 }
1908
1909 static void blk_mq_free_hw_queues(struct request_queue *q,
1910 struct blk_mq_tag_set *set)
1911 {
1912 struct blk_mq_hw_ctx *hctx;
1913 unsigned int i;
1914
1915 queue_for_each_hw_ctx(q, hctx, i)
1916 free_cpumask_var(hctx->cpumask);
1917 }
1918
1919 static int blk_mq_init_hctx(struct request_queue *q,
1920 struct blk_mq_tag_set *set,
1921 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1922 {
1923 int node;
1924 unsigned flush_start_tag = set->queue_depth;
1925
1926 node = hctx->numa_node;
1927 if (node == NUMA_NO_NODE)
1928 node = hctx->numa_node = set->numa_node;
1929
1930 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1931 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1932 spin_lock_init(&hctx->lock);
1933 INIT_LIST_HEAD(&hctx->dispatch);
1934 hctx->queue = q;
1935 hctx->queue_num = hctx_idx;
1936 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1937
1938 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1939
1940 hctx->tags = set->tags[hctx_idx];
1941
1942 /*
1943 * Allocate space for all possible cpus to avoid allocation at
1944 * runtime
1945 */
1946 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1947 GFP_KERNEL, node);
1948 if (!hctx->ctxs)
1949 goto unregister_cpu_notifier;
1950
1951 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1952 node))
1953 goto free_ctxs;
1954
1955 hctx->nr_ctx = 0;
1956
1957 if (set->ops->init_hctx &&
1958 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1959 goto free_bitmap;
1960
1961 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1962 if (!hctx->fq)
1963 goto exit_hctx;
1964
1965 if (set->ops->init_request &&
1966 set->ops->init_request(set->driver_data,
1967 hctx->fq->flush_rq, hctx_idx,
1968 flush_start_tag + hctx_idx, node))
1969 goto free_fq;
1970
1971 if (hctx->flags & BLK_MQ_F_BLOCKING)
1972 init_srcu_struct(&hctx->queue_rq_srcu);
1973
1974 return 0;
1975
1976 free_fq:
1977 kfree(hctx->fq);
1978 exit_hctx:
1979 if (set->ops->exit_hctx)
1980 set->ops->exit_hctx(hctx, hctx_idx);
1981 free_bitmap:
1982 sbitmap_free(&hctx->ctx_map);
1983 free_ctxs:
1984 kfree(hctx->ctxs);
1985 unregister_cpu_notifier:
1986 blk_mq_remove_cpuhp(hctx);
1987 return -1;
1988 }
1989
1990 static void blk_mq_init_cpu_queues(struct request_queue *q,
1991 unsigned int nr_hw_queues)
1992 {
1993 unsigned int i;
1994
1995 for_each_possible_cpu(i) {
1996 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1997 struct blk_mq_hw_ctx *hctx;
1998
1999 memset(__ctx, 0, sizeof(*__ctx));
2000 __ctx->cpu = i;
2001 spin_lock_init(&__ctx->lock);
2002 INIT_LIST_HEAD(&__ctx->rq_list);
2003 __ctx->queue = q;
2004 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2005 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2006
2007 /* If the cpu isn't online, the cpu is mapped to first hctx */
2008 if (!cpu_online(i))
2009 continue;
2010
2011 hctx = blk_mq_map_queue(q, i);
2012
2013 /*
2014 * Set local node, IFF we have more than one hw queue. If
2015 * not, we remain on the home node of the device
2016 */
2017 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2018 hctx->numa_node = local_memory_node(cpu_to_node(i));
2019 }
2020 }
2021
2022 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2023 {
2024 int ret = 0;
2025
2026 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2027 set->queue_depth, set->reserved_tags);
2028 if (!set->tags[hctx_idx])
2029 return false;
2030
2031 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2032 set->queue_depth);
2033 if (!ret)
2034 return true;
2035
2036 blk_mq_free_rq_map(set->tags[hctx_idx]);
2037 set->tags[hctx_idx] = NULL;
2038 return false;
2039 }
2040
2041 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2042 unsigned int hctx_idx)
2043 {
2044 if (set->tags[hctx_idx]) {
2045 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2046 blk_mq_free_rq_map(set->tags[hctx_idx]);
2047 set->tags[hctx_idx] = NULL;
2048 }
2049 }
2050
2051 static void blk_mq_map_swqueue(struct request_queue *q,
2052 const struct cpumask *online_mask)
2053 {
2054 unsigned int i, hctx_idx;
2055 struct blk_mq_hw_ctx *hctx;
2056 struct blk_mq_ctx *ctx;
2057 struct blk_mq_tag_set *set = q->tag_set;
2058
2059 /*
2060 * Avoid others reading imcomplete hctx->cpumask through sysfs
2061 */
2062 mutex_lock(&q->sysfs_lock);
2063
2064 queue_for_each_hw_ctx(q, hctx, i) {
2065 cpumask_clear(hctx->cpumask);
2066 hctx->nr_ctx = 0;
2067 }
2068
2069 /*
2070 * Map software to hardware queues
2071 */
2072 for_each_possible_cpu(i) {
2073 /* If the cpu isn't online, the cpu is mapped to first hctx */
2074 if (!cpumask_test_cpu(i, online_mask))
2075 continue;
2076
2077 hctx_idx = q->mq_map[i];
2078 /* unmapped hw queue can be remapped after CPU topo changed */
2079 if (!set->tags[hctx_idx] &&
2080 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2081 /*
2082 * If tags initialization fail for some hctx,
2083 * that hctx won't be brought online. In this
2084 * case, remap the current ctx to hctx[0] which
2085 * is guaranteed to always have tags allocated
2086 */
2087 q->mq_map[i] = 0;
2088 }
2089
2090 ctx = per_cpu_ptr(q->queue_ctx, i);
2091 hctx = blk_mq_map_queue(q, i);
2092
2093 cpumask_set_cpu(i, hctx->cpumask);
2094 ctx->index_hw = hctx->nr_ctx;
2095 hctx->ctxs[hctx->nr_ctx++] = ctx;
2096 }
2097
2098 mutex_unlock(&q->sysfs_lock);
2099
2100 queue_for_each_hw_ctx(q, hctx, i) {
2101 /*
2102 * If no software queues are mapped to this hardware queue,
2103 * disable it and free the request entries.
2104 */
2105 if (!hctx->nr_ctx) {
2106 /* Never unmap queue 0. We need it as a
2107 * fallback in case of a new remap fails
2108 * allocation
2109 */
2110 if (i && set->tags[i])
2111 blk_mq_free_map_and_requests(set, i);
2112
2113 hctx->tags = NULL;
2114 continue;
2115 }
2116
2117 hctx->tags = set->tags[i];
2118 WARN_ON(!hctx->tags);
2119
2120 /*
2121 * Set the map size to the number of mapped software queues.
2122 * This is more accurate and more efficient than looping
2123 * over all possibly mapped software queues.
2124 */
2125 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2126
2127 /*
2128 * Initialize batch roundrobin counts
2129 */
2130 hctx->next_cpu = cpumask_first(hctx->cpumask);
2131 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2132 }
2133 }
2134
2135 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2136 {
2137 struct blk_mq_hw_ctx *hctx;
2138 int i;
2139
2140 queue_for_each_hw_ctx(q, hctx, i) {
2141 if (shared)
2142 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2143 else
2144 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2145 }
2146 }
2147
2148 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2149 {
2150 struct request_queue *q;
2151
2152 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2153 blk_mq_freeze_queue(q);
2154 queue_set_hctx_shared(q, shared);
2155 blk_mq_unfreeze_queue(q);
2156 }
2157 }
2158
2159 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2160 {
2161 struct blk_mq_tag_set *set = q->tag_set;
2162
2163 mutex_lock(&set->tag_list_lock);
2164 list_del_init(&q->tag_set_list);
2165 if (list_is_singular(&set->tag_list)) {
2166 /* just transitioned to unshared */
2167 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2168 /* update existing queue */
2169 blk_mq_update_tag_set_depth(set, false);
2170 }
2171 mutex_unlock(&set->tag_list_lock);
2172 }
2173
2174 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2175 struct request_queue *q)
2176 {
2177 q->tag_set = set;
2178
2179 mutex_lock(&set->tag_list_lock);
2180
2181 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2182 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2183 set->flags |= BLK_MQ_F_TAG_SHARED;
2184 /* update existing queue */
2185 blk_mq_update_tag_set_depth(set, true);
2186 }
2187 if (set->flags & BLK_MQ_F_TAG_SHARED)
2188 queue_set_hctx_shared(q, true);
2189 list_add_tail(&q->tag_set_list, &set->tag_list);
2190
2191 mutex_unlock(&set->tag_list_lock);
2192 }
2193
2194 /*
2195 * It is the actual release handler for mq, but we do it from
2196 * request queue's release handler for avoiding use-after-free
2197 * and headache because q->mq_kobj shouldn't have been introduced,
2198 * but we can't group ctx/kctx kobj without it.
2199 */
2200 void blk_mq_release(struct request_queue *q)
2201 {
2202 struct blk_mq_hw_ctx *hctx;
2203 unsigned int i;
2204
2205 blk_mq_sched_teardown(q);
2206
2207 /* hctx kobj stays in hctx */
2208 queue_for_each_hw_ctx(q, hctx, i) {
2209 if (!hctx)
2210 continue;
2211 kfree(hctx->ctxs);
2212 kfree(hctx);
2213 }
2214
2215 q->mq_map = NULL;
2216
2217 kfree(q->queue_hw_ctx);
2218
2219 /* ctx kobj stays in queue_ctx */
2220 free_percpu(q->queue_ctx);
2221 }
2222
2223 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2224 {
2225 struct request_queue *uninit_q, *q;
2226
2227 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2228 if (!uninit_q)
2229 return ERR_PTR(-ENOMEM);
2230
2231 q = blk_mq_init_allocated_queue(set, uninit_q);
2232 if (IS_ERR(q))
2233 blk_cleanup_queue(uninit_q);
2234
2235 return q;
2236 }
2237 EXPORT_SYMBOL(blk_mq_init_queue);
2238
2239 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2240 struct request_queue *q)
2241 {
2242 int i, j;
2243 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2244
2245 blk_mq_sysfs_unregister(q);
2246 for (i = 0; i < set->nr_hw_queues; i++) {
2247 int node;
2248
2249 if (hctxs[i])
2250 continue;
2251
2252 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2253 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2254 GFP_KERNEL, node);
2255 if (!hctxs[i])
2256 break;
2257
2258 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2259 node)) {
2260 kfree(hctxs[i]);
2261 hctxs[i] = NULL;
2262 break;
2263 }
2264
2265 atomic_set(&hctxs[i]->nr_active, 0);
2266 hctxs[i]->numa_node = node;
2267 hctxs[i]->queue_num = i;
2268
2269 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2270 free_cpumask_var(hctxs[i]->cpumask);
2271 kfree(hctxs[i]);
2272 hctxs[i] = NULL;
2273 break;
2274 }
2275 blk_mq_hctx_kobj_init(hctxs[i]);
2276 }
2277 for (j = i; j < q->nr_hw_queues; j++) {
2278 struct blk_mq_hw_ctx *hctx = hctxs[j];
2279
2280 if (hctx) {
2281 if (hctx->tags)
2282 blk_mq_free_map_and_requests(set, j);
2283 blk_mq_exit_hctx(q, set, hctx, j);
2284 free_cpumask_var(hctx->cpumask);
2285 kobject_put(&hctx->kobj);
2286 kfree(hctx->ctxs);
2287 kfree(hctx);
2288 hctxs[j] = NULL;
2289
2290 }
2291 }
2292 q->nr_hw_queues = i;
2293 blk_mq_sysfs_register(q);
2294 }
2295
2296 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2297 struct request_queue *q)
2298 {
2299 /* mark the queue as mq asap */
2300 q->mq_ops = set->ops;
2301
2302 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2303 if (!q->queue_ctx)
2304 goto err_exit;
2305
2306 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2307 GFP_KERNEL, set->numa_node);
2308 if (!q->queue_hw_ctx)
2309 goto err_percpu;
2310
2311 q->mq_map = set->mq_map;
2312
2313 blk_mq_realloc_hw_ctxs(set, q);
2314 if (!q->nr_hw_queues)
2315 goto err_hctxs;
2316
2317 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2318 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2319
2320 q->nr_queues = nr_cpu_ids;
2321
2322 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2323
2324 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2325 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2326
2327 q->sg_reserved_size = INT_MAX;
2328
2329 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2330 INIT_LIST_HEAD(&q->requeue_list);
2331 spin_lock_init(&q->requeue_lock);
2332
2333 if (q->nr_hw_queues > 1)
2334 blk_queue_make_request(q, blk_mq_make_request);
2335 else
2336 blk_queue_make_request(q, blk_sq_make_request);
2337
2338 /*
2339 * Do this after blk_queue_make_request() overrides it...
2340 */
2341 q->nr_requests = set->queue_depth;
2342
2343 /*
2344 * Default to classic polling
2345 */
2346 q->poll_nsec = -1;
2347
2348 if (set->ops->complete)
2349 blk_queue_softirq_done(q, set->ops->complete);
2350
2351 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2352
2353 get_online_cpus();
2354 mutex_lock(&all_q_mutex);
2355
2356 list_add_tail(&q->all_q_node, &all_q_list);
2357 blk_mq_add_queue_tag_set(set, q);
2358 blk_mq_map_swqueue(q, cpu_online_mask);
2359
2360 mutex_unlock(&all_q_mutex);
2361 put_online_cpus();
2362
2363 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2364 int ret;
2365
2366 ret = blk_mq_sched_init(q);
2367 if (ret)
2368 return ERR_PTR(ret);
2369 }
2370
2371 return q;
2372
2373 err_hctxs:
2374 kfree(q->queue_hw_ctx);
2375 err_percpu:
2376 free_percpu(q->queue_ctx);
2377 err_exit:
2378 q->mq_ops = NULL;
2379 return ERR_PTR(-ENOMEM);
2380 }
2381 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2382
2383 void blk_mq_free_queue(struct request_queue *q)
2384 {
2385 struct blk_mq_tag_set *set = q->tag_set;
2386
2387 mutex_lock(&all_q_mutex);
2388 list_del_init(&q->all_q_node);
2389 mutex_unlock(&all_q_mutex);
2390
2391 wbt_exit(q);
2392
2393 blk_mq_del_queue_tag_set(q);
2394
2395 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2396 blk_mq_free_hw_queues(q, set);
2397 }
2398
2399 /* Basically redo blk_mq_init_queue with queue frozen */
2400 static void blk_mq_queue_reinit(struct request_queue *q,
2401 const struct cpumask *online_mask)
2402 {
2403 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2404
2405 blk_mq_sysfs_unregister(q);
2406
2407 /*
2408 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2409 * we should change hctx numa_node according to new topology (this
2410 * involves free and re-allocate memory, worthy doing?)
2411 */
2412
2413 blk_mq_map_swqueue(q, online_mask);
2414
2415 blk_mq_sysfs_register(q);
2416 }
2417
2418 /*
2419 * New online cpumask which is going to be set in this hotplug event.
2420 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2421 * one-by-one and dynamically allocating this could result in a failure.
2422 */
2423 static struct cpumask cpuhp_online_new;
2424
2425 static void blk_mq_queue_reinit_work(void)
2426 {
2427 struct request_queue *q;
2428
2429 mutex_lock(&all_q_mutex);
2430 /*
2431 * We need to freeze and reinit all existing queues. Freezing
2432 * involves synchronous wait for an RCU grace period and doing it
2433 * one by one may take a long time. Start freezing all queues in
2434 * one swoop and then wait for the completions so that freezing can
2435 * take place in parallel.
2436 */
2437 list_for_each_entry(q, &all_q_list, all_q_node)
2438 blk_mq_freeze_queue_start(q);
2439 list_for_each_entry(q, &all_q_list, all_q_node)
2440 blk_mq_freeze_queue_wait(q);
2441
2442 list_for_each_entry(q, &all_q_list, all_q_node)
2443 blk_mq_queue_reinit(q, &cpuhp_online_new);
2444
2445 list_for_each_entry(q, &all_q_list, all_q_node)
2446 blk_mq_unfreeze_queue(q);
2447
2448 mutex_unlock(&all_q_mutex);
2449 }
2450
2451 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2452 {
2453 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2454 blk_mq_queue_reinit_work();
2455 return 0;
2456 }
2457
2458 /*
2459 * Before hotadded cpu starts handling requests, new mappings must be
2460 * established. Otherwise, these requests in hw queue might never be
2461 * dispatched.
2462 *
2463 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2464 * for CPU0, and ctx1 for CPU1).
2465 *
2466 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2467 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2468 *
2469 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2470 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2471 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2472 * ignored.
2473 */
2474 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2475 {
2476 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2477 cpumask_set_cpu(cpu, &cpuhp_online_new);
2478 blk_mq_queue_reinit_work();
2479 return 0;
2480 }
2481
2482 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2483 {
2484 int i;
2485
2486 for (i = 0; i < set->nr_hw_queues; i++)
2487 if (!__blk_mq_alloc_rq_map(set, i))
2488 goto out_unwind;
2489
2490 return 0;
2491
2492 out_unwind:
2493 while (--i >= 0)
2494 blk_mq_free_rq_map(set->tags[i]);
2495
2496 return -ENOMEM;
2497 }
2498
2499 /*
2500 * Allocate the request maps associated with this tag_set. Note that this
2501 * may reduce the depth asked for, if memory is tight. set->queue_depth
2502 * will be updated to reflect the allocated depth.
2503 */
2504 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2505 {
2506 unsigned int depth;
2507 int err;
2508
2509 depth = set->queue_depth;
2510 do {
2511 err = __blk_mq_alloc_rq_maps(set);
2512 if (!err)
2513 break;
2514
2515 set->queue_depth >>= 1;
2516 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2517 err = -ENOMEM;
2518 break;
2519 }
2520 } while (set->queue_depth);
2521
2522 if (!set->queue_depth || err) {
2523 pr_err("blk-mq: failed to allocate request map\n");
2524 return -ENOMEM;
2525 }
2526
2527 if (depth != set->queue_depth)
2528 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2529 depth, set->queue_depth);
2530
2531 return 0;
2532 }
2533
2534 /*
2535 * Alloc a tag set to be associated with one or more request queues.
2536 * May fail with EINVAL for various error conditions. May adjust the
2537 * requested depth down, if if it too large. In that case, the set
2538 * value will be stored in set->queue_depth.
2539 */
2540 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2541 {
2542 int ret;
2543
2544 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2545
2546 if (!set->nr_hw_queues)
2547 return -EINVAL;
2548 if (!set->queue_depth)
2549 return -EINVAL;
2550 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2551 return -EINVAL;
2552
2553 if (!set->ops->queue_rq)
2554 return -EINVAL;
2555
2556 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2557 pr_info("blk-mq: reduced tag depth to %u\n",
2558 BLK_MQ_MAX_DEPTH);
2559 set->queue_depth = BLK_MQ_MAX_DEPTH;
2560 }
2561
2562 /*
2563 * If a crashdump is active, then we are potentially in a very
2564 * memory constrained environment. Limit us to 1 queue and
2565 * 64 tags to prevent using too much memory.
2566 */
2567 if (is_kdump_kernel()) {
2568 set->nr_hw_queues = 1;
2569 set->queue_depth = min(64U, set->queue_depth);
2570 }
2571 /*
2572 * There is no use for more h/w queues than cpus.
2573 */
2574 if (set->nr_hw_queues > nr_cpu_ids)
2575 set->nr_hw_queues = nr_cpu_ids;
2576
2577 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2578 GFP_KERNEL, set->numa_node);
2579 if (!set->tags)
2580 return -ENOMEM;
2581
2582 ret = -ENOMEM;
2583 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2584 GFP_KERNEL, set->numa_node);
2585 if (!set->mq_map)
2586 goto out_free_tags;
2587
2588 if (set->ops->map_queues)
2589 ret = set->ops->map_queues(set);
2590 else
2591 ret = blk_mq_map_queues(set);
2592 if (ret)
2593 goto out_free_mq_map;
2594
2595 ret = blk_mq_alloc_rq_maps(set);
2596 if (ret)
2597 goto out_free_mq_map;
2598
2599 mutex_init(&set->tag_list_lock);
2600 INIT_LIST_HEAD(&set->tag_list);
2601
2602 return 0;
2603
2604 out_free_mq_map:
2605 kfree(set->mq_map);
2606 set->mq_map = NULL;
2607 out_free_tags:
2608 kfree(set->tags);
2609 set->tags = NULL;
2610 return ret;
2611 }
2612 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2613
2614 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2615 {
2616 int i;
2617
2618 for (i = 0; i < nr_cpu_ids; i++)
2619 blk_mq_free_map_and_requests(set, i);
2620
2621 kfree(set->mq_map);
2622 set->mq_map = NULL;
2623
2624 kfree(set->tags);
2625 set->tags = NULL;
2626 }
2627 EXPORT_SYMBOL(blk_mq_free_tag_set);
2628
2629 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2630 {
2631 struct blk_mq_tag_set *set = q->tag_set;
2632 struct blk_mq_hw_ctx *hctx;
2633 int i, ret;
2634
2635 if (!set)
2636 return -EINVAL;
2637
2638 blk_mq_freeze_queue(q);
2639 blk_mq_quiesce_queue(q);
2640
2641 ret = 0;
2642 queue_for_each_hw_ctx(q, hctx, i) {
2643 if (!hctx->tags)
2644 continue;
2645 /*
2646 * If we're using an MQ scheduler, just update the scheduler
2647 * queue depth. This is similar to what the old code would do.
2648 */
2649 if (!hctx->sched_tags) {
2650 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2651 min(nr, set->queue_depth),
2652 false);
2653 } else {
2654 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2655 nr, true);
2656 }
2657 if (ret)
2658 break;
2659 }
2660
2661 if (!ret)
2662 q->nr_requests = nr;
2663
2664 blk_mq_unfreeze_queue(q);
2665 blk_mq_start_stopped_hw_queues(q, true);
2666
2667 return ret;
2668 }
2669
2670 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2671 {
2672 struct request_queue *q;
2673
2674 if (nr_hw_queues > nr_cpu_ids)
2675 nr_hw_queues = nr_cpu_ids;
2676 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2677 return;
2678
2679 list_for_each_entry(q, &set->tag_list, tag_set_list)
2680 blk_mq_freeze_queue(q);
2681
2682 set->nr_hw_queues = nr_hw_queues;
2683 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2684 blk_mq_realloc_hw_ctxs(set, q);
2685
2686 /*
2687 * Manually set the make_request_fn as blk_queue_make_request
2688 * resets a lot of the queue settings.
2689 */
2690 if (q->nr_hw_queues > 1)
2691 q->make_request_fn = blk_mq_make_request;
2692 else
2693 q->make_request_fn = blk_sq_make_request;
2694
2695 blk_mq_queue_reinit(q, cpu_online_mask);
2696 }
2697
2698 list_for_each_entry(q, &set->tag_list, tag_set_list)
2699 blk_mq_unfreeze_queue(q);
2700 }
2701 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2702
2703 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2704 struct blk_mq_hw_ctx *hctx,
2705 struct request *rq)
2706 {
2707 struct blk_rq_stat stat[2];
2708 unsigned long ret = 0;
2709
2710 /*
2711 * If stats collection isn't on, don't sleep but turn it on for
2712 * future users
2713 */
2714 if (!blk_stat_enable(q))
2715 return 0;
2716
2717 /*
2718 * We don't have to do this once per IO, should optimize this
2719 * to just use the current window of stats until it changes
2720 */
2721 memset(&stat, 0, sizeof(stat));
2722 blk_hctx_stat_get(hctx, stat);
2723
2724 /*
2725 * As an optimistic guess, use half of the mean service time
2726 * for this type of request. We can (and should) make this smarter.
2727 * For instance, if the completion latencies are tight, we can
2728 * get closer than just half the mean. This is especially
2729 * important on devices where the completion latencies are longer
2730 * than ~10 usec.
2731 */
2732 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2733 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2734 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2735 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2736
2737 return ret;
2738 }
2739
2740 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2741 struct blk_mq_hw_ctx *hctx,
2742 struct request *rq)
2743 {
2744 struct hrtimer_sleeper hs;
2745 enum hrtimer_mode mode;
2746 unsigned int nsecs;
2747 ktime_t kt;
2748
2749 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2750 return false;
2751
2752 /*
2753 * poll_nsec can be:
2754 *
2755 * -1: don't ever hybrid sleep
2756 * 0: use half of prev avg
2757 * >0: use this specific value
2758 */
2759 if (q->poll_nsec == -1)
2760 return false;
2761 else if (q->poll_nsec > 0)
2762 nsecs = q->poll_nsec;
2763 else
2764 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2765
2766 if (!nsecs)
2767 return false;
2768
2769 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2770
2771 /*
2772 * This will be replaced with the stats tracking code, using
2773 * 'avg_completion_time / 2' as the pre-sleep target.
2774 */
2775 kt = nsecs;
2776
2777 mode = HRTIMER_MODE_REL;
2778 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2779 hrtimer_set_expires(&hs.timer, kt);
2780
2781 hrtimer_init_sleeper(&hs, current);
2782 do {
2783 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2784 break;
2785 set_current_state(TASK_UNINTERRUPTIBLE);
2786 hrtimer_start_expires(&hs.timer, mode);
2787 if (hs.task)
2788 io_schedule();
2789 hrtimer_cancel(&hs.timer);
2790 mode = HRTIMER_MODE_ABS;
2791 } while (hs.task && !signal_pending(current));
2792
2793 __set_current_state(TASK_RUNNING);
2794 destroy_hrtimer_on_stack(&hs.timer);
2795 return true;
2796 }
2797
2798 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2799 {
2800 struct request_queue *q = hctx->queue;
2801 long state;
2802
2803 /*
2804 * If we sleep, have the caller restart the poll loop to reset
2805 * the state. Like for the other success return cases, the
2806 * caller is responsible for checking if the IO completed. If
2807 * the IO isn't complete, we'll get called again and will go
2808 * straight to the busy poll loop.
2809 */
2810 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2811 return true;
2812
2813 hctx->poll_considered++;
2814
2815 state = current->state;
2816 while (!need_resched()) {
2817 int ret;
2818
2819 hctx->poll_invoked++;
2820
2821 ret = q->mq_ops->poll(hctx, rq->tag);
2822 if (ret > 0) {
2823 hctx->poll_success++;
2824 set_current_state(TASK_RUNNING);
2825 return true;
2826 }
2827
2828 if (signal_pending_state(state, current))
2829 set_current_state(TASK_RUNNING);
2830
2831 if (current->state == TASK_RUNNING)
2832 return true;
2833 if (ret < 0)
2834 break;
2835 cpu_relax();
2836 }
2837
2838 return false;
2839 }
2840
2841 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2842 {
2843 struct blk_mq_hw_ctx *hctx;
2844 struct blk_plug *plug;
2845 struct request *rq;
2846
2847 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2848 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2849 return false;
2850
2851 plug = current->plug;
2852 if (plug)
2853 blk_flush_plug_list(plug, false);
2854
2855 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2856 if (!blk_qc_t_is_internal(cookie))
2857 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2858 else
2859 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2860
2861 return __blk_mq_poll(hctx, rq);
2862 }
2863 EXPORT_SYMBOL_GPL(blk_mq_poll);
2864
2865 void blk_mq_disable_hotplug(void)
2866 {
2867 mutex_lock(&all_q_mutex);
2868 }
2869
2870 void blk_mq_enable_hotplug(void)
2871 {
2872 mutex_unlock(&all_q_mutex);
2873 }
2874
2875 static int __init blk_mq_init(void)
2876 {
2877 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2878 blk_mq_hctx_notify_dead);
2879
2880 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2881 blk_mq_queue_reinit_prepare,
2882 blk_mq_queue_reinit_dead);
2883 return 0;
2884 }
2885 subsys_initcall(blk_mq_init);