]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-mq.c
netfilter: remove unneeded switch fall-through
[mirror_ubuntu-hirsute-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 const int bit = ctx->index_hw[hctx->type];
78
79 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85 {
86 const int bit = ctx->index_hw[hctx->type];
87
88 sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90
91 struct mq_inflight {
92 struct hd_struct *part;
93 unsigned int *inflight;
94 };
95
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 struct request *rq, void *priv,
98 bool reserved)
99 {
100 struct mq_inflight *mi = priv;
101
102 /*
103 * index[0] counts the specific partition that was asked for.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107
108 return true;
109 }
110
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 unsigned inflight[2];
114 struct mq_inflight mi = { .part = part, .inflight = inflight, };
115
116 inflight[0] = inflight[1] = 0;
117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119 return inflight[0];
120 }
121
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130
131 return true;
132 }
133
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 unsigned int inflight[2])
136 {
137 struct mq_inflight mi = { .part = part, .inflight = inflight, };
138
139 inflight[0] = inflight[1] = 0;
140 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145 int freeze_depth;
146
147 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 if (freeze_depth == 1) {
149 percpu_ref_kill(&q->q_usage_counter);
150 if (queue_is_mq(q))
151 blk_mq_run_hw_queues(q, false);
152 }
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 unsigned long timeout)
164 {
165 return wait_event_timeout(q->mq_freeze_wq,
166 percpu_ref_is_zero(&q->q_usage_counter),
167 timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170
171 /*
172 * Guarantee no request is in use, so we can change any data structure of
173 * the queue afterward.
174 */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177 /*
178 * In the !blk_mq case we are only calling this to kill the
179 * q_usage_counter, otherwise this increases the freeze depth
180 * and waits for it to return to zero. For this reason there is
181 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 * exported to drivers as the only user for unfreeze is blk_mq.
183 */
184 blk_freeze_queue_start(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_resurrect(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223 * @q: request queue.
224 *
225 * Note: this function does not prevent that the struct request end_io()
226 * callback function is invoked. Once this function is returned, we make
227 * sure no dispatch can happen until the queue is unquiesced via
228 * blk_mq_unquiesce_queue().
229 */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 struct blk_mq_hw_ctx *hctx;
233 unsigned int i;
234 bool rcu = false;
235
236 blk_mq_quiesce_queue_nowait(q);
237
238 queue_for_each_hw_ctx(q, hctx, i) {
239 if (hctx->flags & BLK_MQ_F_BLOCKING)
240 synchronize_srcu(hctx->srcu);
241 else
242 rcu = true;
243 }
244 if (rcu)
245 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
252 *
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
255 */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260 /* dispatch requests which are inserted during quiescing */
261 blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 struct blk_mq_hw_ctx *hctx;
268 unsigned int i;
269
270 queue_for_each_hw_ctx(q, hctx, i)
271 if (blk_mq_hw_queue_mapped(hctx))
272 blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277 return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280
281 /*
282 * Only need start/end time stamping if we have stats enabled, or using
283 * an IO scheduler.
284 */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 unsigned int tag, unsigned int op)
292 {
293 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 struct request *rq = tags->static_rqs[tag];
295 req_flags_t rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 /* csd/requeue_work/fifo_time is initialized before use */
311 rq->q = data->q;
312 rq->mq_ctx = data->ctx;
313 rq->mq_hctx = data->hctx;
314 rq->rq_flags = rq_flags;
315 rq->cmd_flags = op;
316 if (data->flags & BLK_MQ_REQ_PREEMPT)
317 rq->rq_flags |= RQF_PREEMPT;
318 if (blk_queue_io_stat(data->q))
319 rq->rq_flags |= RQF_IO_STAT;
320 INIT_LIST_HEAD(&rq->queuelist);
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 if (blk_mq_need_time_stamp(rq))
326 rq->start_time_ns = ktime_get_ns();
327 else
328 rq->start_time_ns = 0;
329 rq->io_start_time_ns = 0;
330 rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333 #endif
334 rq->special = NULL;
335 /* tag was already set */
336 rq->extra_len = 0;
337 WRITE_ONCE(rq->deadline, 0);
338
339 rq->timeout = 0;
340
341 rq->end_io = NULL;
342 rq->end_io_data = NULL;
343 rq->next_rq = NULL;
344
345 data->ctx->rq_dispatched[op_is_sync(op)]++;
346 refcount_set(&rq->ref, 1);
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 data->ctx->cpu);
368 if (data->cmd_flags & REQ_NOWAIT)
369 data->flags |= BLK_MQ_REQ_NOWAIT;
370
371 if (e) {
372 data->flags |= BLK_MQ_REQ_INTERNAL;
373
374 /*
375 * Flush requests are special and go directly to the
376 * dispatch list. Don't include reserved tags in the
377 * limiting, as it isn't useful.
378 */
379 if (!op_is_flush(data->cmd_flags) &&
380 e->type->ops.limit_depth &&
381 !(data->flags & BLK_MQ_REQ_RESERVED))
382 e->type->ops.limit_depth(data->cmd_flags, data);
383 } else {
384 blk_mq_tag_busy(data->hctx);
385 }
386
387 tag = blk_mq_get_tag(data);
388 if (tag == BLK_MQ_TAG_FAIL) {
389 if (put_ctx_on_error) {
390 blk_mq_put_ctx(data->ctx);
391 data->ctx = NULL;
392 }
393 blk_queue_exit(q);
394 return NULL;
395 }
396
397 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 if (!op_is_flush(data->cmd_flags)) {
399 rq->elv.icq = NULL;
400 if (e && e->type->ops.prepare_request) {
401 if (e->type->icq_cache)
402 blk_mq_sched_assign_ioc(rq);
403
404 e->type->ops.prepare_request(rq, bio);
405 rq->rq_flags |= RQF_ELVPRIV;
406 }
407 }
408 data->hctx->queued++;
409 return rq;
410 }
411
412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
413 blk_mq_req_flags_t flags)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
416 struct request *rq;
417 int ret;
418
419 ret = blk_queue_enter(q, flags);
420 if (ret)
421 return ERR_PTR(ret);
422
423 rq = blk_mq_get_request(q, NULL, &alloc_data);
424 blk_queue_exit(q);
425
426 if (!rq)
427 return ERR_PTR(-EWOULDBLOCK);
428
429 blk_mq_put_ctx(alloc_data.ctx);
430
431 rq->__data_len = 0;
432 rq->__sector = (sector_t) -1;
433 rq->bio = rq->biotail = NULL;
434 return rq;
435 }
436 EXPORT_SYMBOL(blk_mq_alloc_request);
437
438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 {
441 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
442 struct request *rq;
443 unsigned int cpu;
444 int ret;
445
446 /*
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
450 * a specific queue.
451 */
452 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 return ERR_PTR(-EINVAL);
454
455 if (hctx_idx >= q->nr_hw_queues)
456 return ERR_PTR(-EIO);
457
458 ret = blk_queue_enter(q, flags);
459 if (ret)
460 return ERR_PTR(ret);
461
462 /*
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
465 */
466 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 blk_queue_exit(q);
469 return ERR_PTR(-EXDEV);
470 }
471 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
472 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
473
474 rq = blk_mq_get_request(q, NULL, &alloc_data);
475 blk_queue_exit(q);
476
477 if (!rq)
478 return ERR_PTR(-EWOULDBLOCK);
479
480 return rq;
481 }
482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483
484 static void __blk_mq_free_request(struct request *rq)
485 {
486 struct request_queue *q = rq->q;
487 struct blk_mq_ctx *ctx = rq->mq_ctx;
488 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
489 const int sched_tag = rq->internal_tag;
490
491 blk_pm_mark_last_busy(rq);
492 rq->mq_hctx = NULL;
493 if (rq->tag != -1)
494 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 if (sched_tag != -1)
496 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 blk_mq_sched_restart(hctx);
498 blk_queue_exit(q);
499 }
500
501 void blk_mq_free_request(struct request *rq)
502 {
503 struct request_queue *q = rq->q;
504 struct elevator_queue *e = q->elevator;
505 struct blk_mq_ctx *ctx = rq->mq_ctx;
506 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
507
508 if (rq->rq_flags & RQF_ELVPRIV) {
509 if (e && e->type->ops.finish_request)
510 e->type->ops.finish_request(rq);
511 if (rq->elv.icq) {
512 put_io_context(rq->elv.icq->ioc);
513 rq->elv.icq = NULL;
514 }
515 }
516
517 ctx->rq_completed[rq_is_sync(rq)]++;
518 if (rq->rq_flags & RQF_MQ_INFLIGHT)
519 atomic_dec(&hctx->nr_active);
520
521 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 laptop_io_completion(q->backing_dev_info);
523
524 rq_qos_done(q, rq);
525
526 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 if (refcount_dec_and_test(&rq->ref))
528 __blk_mq_free_request(rq);
529 }
530 EXPORT_SYMBOL_GPL(blk_mq_free_request);
531
532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 {
534 u64 now = 0;
535
536 if (blk_mq_need_time_stamp(rq))
537 now = ktime_get_ns();
538
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq, now);
542 }
543
544 if (rq->internal_tag != -1)
545 blk_mq_sched_completed_request(rq, now);
546
547 blk_account_io_done(rq, now);
548
549 if (rq->end_io) {
550 rq_qos_done(rq->q, rq);
551 rq->end_io(rq, error);
552 } else {
553 if (unlikely(blk_bidi_rq(rq)))
554 blk_mq_free_request(rq->next_rq);
555 blk_mq_free_request(rq);
556 }
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
564 __blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567
568 static void __blk_mq_complete_request_remote(void *data)
569 {
570 struct request *rq = data;
571 struct request_queue *q = rq->q;
572
573 q->mq_ops->complete(rq);
574 }
575
576 static void __blk_mq_complete_request(struct request *rq)
577 {
578 struct blk_mq_ctx *ctx = rq->mq_ctx;
579 struct request_queue *q = rq->q;
580 bool shared = false;
581 int cpu;
582
583 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
584 /*
585 * Most of single queue controllers, there is only one irq vector
586 * for handling IO completion, and the only irq's affinity is set
587 * as all possible CPUs. On most of ARCHs, this affinity means the
588 * irq is handled on one specific CPU.
589 *
590 * So complete IO reqeust in softirq context in case of single queue
591 * for not degrading IO performance by irqsoff latency.
592 */
593 if (q->nr_hw_queues == 1) {
594 __blk_complete_request(rq);
595 return;
596 }
597
598 /*
599 * For a polled request, always complete locallly, it's pointless
600 * to redirect the completion.
601 */
602 if ((rq->cmd_flags & REQ_HIPRI) ||
603 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
604 q->mq_ops->complete(rq);
605 return;
606 }
607
608 cpu = get_cpu();
609 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
610 shared = cpus_share_cache(cpu, ctx->cpu);
611
612 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
613 rq->csd.func = __blk_mq_complete_request_remote;
614 rq->csd.info = rq;
615 rq->csd.flags = 0;
616 smp_call_function_single_async(ctx->cpu, &rq->csd);
617 } else {
618 q->mq_ops->complete(rq);
619 }
620 put_cpu();
621 }
622
623 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
624 __releases(hctx->srcu)
625 {
626 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
627 rcu_read_unlock();
628 else
629 srcu_read_unlock(hctx->srcu, srcu_idx);
630 }
631
632 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
633 __acquires(hctx->srcu)
634 {
635 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
636 /* shut up gcc false positive */
637 *srcu_idx = 0;
638 rcu_read_lock();
639 } else
640 *srcu_idx = srcu_read_lock(hctx->srcu);
641 }
642
643 /**
644 * blk_mq_complete_request - end I/O on a request
645 * @rq: the request being processed
646 *
647 * Description:
648 * Ends all I/O on a request. It does not handle partial completions.
649 * The actual completion happens out-of-order, through a IPI handler.
650 **/
651 bool blk_mq_complete_request(struct request *rq)
652 {
653 if (unlikely(blk_should_fake_timeout(rq->q)))
654 return false;
655 __blk_mq_complete_request(rq);
656 return true;
657 }
658 EXPORT_SYMBOL(blk_mq_complete_request);
659
660 int blk_mq_request_started(struct request *rq)
661 {
662 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
663 }
664 EXPORT_SYMBOL_GPL(blk_mq_request_started);
665
666 void blk_mq_start_request(struct request *rq)
667 {
668 struct request_queue *q = rq->q;
669
670 blk_mq_sched_started_request(rq);
671
672 trace_block_rq_issue(q, rq);
673
674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 rq->rq_flags |= RQF_STATS;
680 rq_qos_issue(q, rq);
681 }
682
683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684
685 blk_add_timer(rq);
686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 /*
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
693 */
694 rq->nr_phys_segments++;
695 }
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 struct request_queue *q = rq->q;
702
703 blk_mq_put_driver_tag(rq);
704
705 trace_block_rq_requeue(q, rq);
706 rq_qos_requeue(q, rq);
707
708 if (blk_mq_request_started(rq)) {
709 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 rq->rq_flags &= ~RQF_TIMED_OUT;
711 if (q->dma_drain_size && blk_rq_bytes(rq))
712 rq->nr_phys_segments--;
713 }
714 }
715
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718 __blk_mq_requeue_request(rq);
719
720 /* this request will be re-inserted to io scheduler queue */
721 blk_mq_sched_requeue_request(rq);
722
723 BUG_ON(!list_empty(&rq->queuelist));
724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730 struct request_queue *q =
731 container_of(work, struct request_queue, requeue_work.work);
732 LIST_HEAD(rq_list);
733 struct request *rq, *next;
734
735 spin_lock_irq(&q->requeue_lock);
736 list_splice_init(&q->requeue_list, &rq_list);
737 spin_unlock_irq(&q->requeue_lock);
738
739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
741 continue;
742
743 rq->rq_flags &= ~RQF_SOFTBARRIER;
744 list_del_init(&rq->queuelist);
745 /*
746 * If RQF_DONTPREP, rq has contained some driver specific
747 * data, so insert it to hctx dispatch list to avoid any
748 * merge.
749 */
750 if (rq->rq_flags & RQF_DONTPREP)
751 blk_mq_request_bypass_insert(rq, false);
752 else
753 blk_mq_sched_insert_request(rq, true, false, false);
754 }
755
756 while (!list_empty(&rq_list)) {
757 rq = list_entry(rq_list.next, struct request, queuelist);
758 list_del_init(&rq->queuelist);
759 blk_mq_sched_insert_request(rq, false, false, false);
760 }
761
762 blk_mq_run_hw_queues(q, false);
763 }
764
765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
766 bool kick_requeue_list)
767 {
768 struct request_queue *q = rq->q;
769 unsigned long flags;
770
771 /*
772 * We abuse this flag that is otherwise used by the I/O scheduler to
773 * request head insertion from the workqueue.
774 */
775 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
776
777 spin_lock_irqsave(&q->requeue_lock, flags);
778 if (at_head) {
779 rq->rq_flags |= RQF_SOFTBARRIER;
780 list_add(&rq->queuelist, &q->requeue_list);
781 } else {
782 list_add_tail(&rq->queuelist, &q->requeue_list);
783 }
784 spin_unlock_irqrestore(&q->requeue_lock, flags);
785
786 if (kick_requeue_list)
787 blk_mq_kick_requeue_list(q);
788 }
789 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
790
791 void blk_mq_kick_requeue_list(struct request_queue *q)
792 {
793 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
794 }
795 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
796
797 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
798 unsigned long msecs)
799 {
800 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
801 msecs_to_jiffies(msecs));
802 }
803 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
804
805 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
806 {
807 if (tag < tags->nr_tags) {
808 prefetch(tags->rqs[tag]);
809 return tags->rqs[tag];
810 }
811
812 return NULL;
813 }
814 EXPORT_SYMBOL(blk_mq_tag_to_rq);
815
816 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
817 void *priv, bool reserved)
818 {
819 /*
820 * If we find a request that is inflight and the queue matches,
821 * we know the queue is busy. Return false to stop the iteration.
822 */
823 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
824 bool *busy = priv;
825
826 *busy = true;
827 return false;
828 }
829
830 return true;
831 }
832
833 bool blk_mq_queue_inflight(struct request_queue *q)
834 {
835 bool busy = false;
836
837 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
838 return busy;
839 }
840 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
841
842 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
843 {
844 req->rq_flags |= RQF_TIMED_OUT;
845 if (req->q->mq_ops->timeout) {
846 enum blk_eh_timer_return ret;
847
848 ret = req->q->mq_ops->timeout(req, reserved);
849 if (ret == BLK_EH_DONE)
850 return;
851 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
852 }
853
854 blk_add_timer(req);
855 }
856
857 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
858 {
859 unsigned long deadline;
860
861 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
862 return false;
863 if (rq->rq_flags & RQF_TIMED_OUT)
864 return false;
865
866 deadline = READ_ONCE(rq->deadline);
867 if (time_after_eq(jiffies, deadline))
868 return true;
869
870 if (*next == 0)
871 *next = deadline;
872 else if (time_after(*next, deadline))
873 *next = deadline;
874 return false;
875 }
876
877 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
878 struct request *rq, void *priv, bool reserved)
879 {
880 unsigned long *next = priv;
881
882 /*
883 * Just do a quick check if it is expired before locking the request in
884 * so we're not unnecessarilly synchronizing across CPUs.
885 */
886 if (!blk_mq_req_expired(rq, next))
887 return true;
888
889 /*
890 * We have reason to believe the request may be expired. Take a
891 * reference on the request to lock this request lifetime into its
892 * currently allocated context to prevent it from being reallocated in
893 * the event the completion by-passes this timeout handler.
894 *
895 * If the reference was already released, then the driver beat the
896 * timeout handler to posting a natural completion.
897 */
898 if (!refcount_inc_not_zero(&rq->ref))
899 return true;
900
901 /*
902 * The request is now locked and cannot be reallocated underneath the
903 * timeout handler's processing. Re-verify this exact request is truly
904 * expired; if it is not expired, then the request was completed and
905 * reallocated as a new request.
906 */
907 if (blk_mq_req_expired(rq, next))
908 blk_mq_rq_timed_out(rq, reserved);
909 if (refcount_dec_and_test(&rq->ref))
910 __blk_mq_free_request(rq);
911
912 return true;
913 }
914
915 static void blk_mq_timeout_work(struct work_struct *work)
916 {
917 struct request_queue *q =
918 container_of(work, struct request_queue, timeout_work);
919 unsigned long next = 0;
920 struct blk_mq_hw_ctx *hctx;
921 int i;
922
923 /* A deadlock might occur if a request is stuck requiring a
924 * timeout at the same time a queue freeze is waiting
925 * completion, since the timeout code would not be able to
926 * acquire the queue reference here.
927 *
928 * That's why we don't use blk_queue_enter here; instead, we use
929 * percpu_ref_tryget directly, because we need to be able to
930 * obtain a reference even in the short window between the queue
931 * starting to freeze, by dropping the first reference in
932 * blk_freeze_queue_start, and the moment the last request is
933 * consumed, marked by the instant q_usage_counter reaches
934 * zero.
935 */
936 if (!percpu_ref_tryget(&q->q_usage_counter))
937 return;
938
939 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
940
941 if (next != 0) {
942 mod_timer(&q->timeout, next);
943 } else {
944 /*
945 * Request timeouts are handled as a forward rolling timer. If
946 * we end up here it means that no requests are pending and
947 * also that no request has been pending for a while. Mark
948 * each hctx as idle.
949 */
950 queue_for_each_hw_ctx(q, hctx, i) {
951 /* the hctx may be unmapped, so check it here */
952 if (blk_mq_hw_queue_mapped(hctx))
953 blk_mq_tag_idle(hctx);
954 }
955 }
956 blk_queue_exit(q);
957 }
958
959 struct flush_busy_ctx_data {
960 struct blk_mq_hw_ctx *hctx;
961 struct list_head *list;
962 };
963
964 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
965 {
966 struct flush_busy_ctx_data *flush_data = data;
967 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
968 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
969 enum hctx_type type = hctx->type;
970
971 spin_lock(&ctx->lock);
972 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
973 sbitmap_clear_bit(sb, bitnr);
974 spin_unlock(&ctx->lock);
975 return true;
976 }
977
978 /*
979 * Process software queues that have been marked busy, splicing them
980 * to the for-dispatch
981 */
982 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
983 {
984 struct flush_busy_ctx_data data = {
985 .hctx = hctx,
986 .list = list,
987 };
988
989 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
990 }
991 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
992
993 struct dispatch_rq_data {
994 struct blk_mq_hw_ctx *hctx;
995 struct request *rq;
996 };
997
998 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
999 void *data)
1000 {
1001 struct dispatch_rq_data *dispatch_data = data;
1002 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1003 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1004 enum hctx_type type = hctx->type;
1005
1006 spin_lock(&ctx->lock);
1007 if (!list_empty(&ctx->rq_lists[type])) {
1008 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1009 list_del_init(&dispatch_data->rq->queuelist);
1010 if (list_empty(&ctx->rq_lists[type]))
1011 sbitmap_clear_bit(sb, bitnr);
1012 }
1013 spin_unlock(&ctx->lock);
1014
1015 return !dispatch_data->rq;
1016 }
1017
1018 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1019 struct blk_mq_ctx *start)
1020 {
1021 unsigned off = start ? start->index_hw[hctx->type] : 0;
1022 struct dispatch_rq_data data = {
1023 .hctx = hctx,
1024 .rq = NULL,
1025 };
1026
1027 __sbitmap_for_each_set(&hctx->ctx_map, off,
1028 dispatch_rq_from_ctx, &data);
1029
1030 return data.rq;
1031 }
1032
1033 static inline unsigned int queued_to_index(unsigned int queued)
1034 {
1035 if (!queued)
1036 return 0;
1037
1038 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1039 }
1040
1041 bool blk_mq_get_driver_tag(struct request *rq)
1042 {
1043 struct blk_mq_alloc_data data = {
1044 .q = rq->q,
1045 .hctx = rq->mq_hctx,
1046 .flags = BLK_MQ_REQ_NOWAIT,
1047 .cmd_flags = rq->cmd_flags,
1048 };
1049 bool shared;
1050
1051 if (rq->tag != -1)
1052 goto done;
1053
1054 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1055 data.flags |= BLK_MQ_REQ_RESERVED;
1056
1057 shared = blk_mq_tag_busy(data.hctx);
1058 rq->tag = blk_mq_get_tag(&data);
1059 if (rq->tag >= 0) {
1060 if (shared) {
1061 rq->rq_flags |= RQF_MQ_INFLIGHT;
1062 atomic_inc(&data.hctx->nr_active);
1063 }
1064 data.hctx->tags->rqs[rq->tag] = rq;
1065 }
1066
1067 done:
1068 return rq->tag != -1;
1069 }
1070
1071 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1072 int flags, void *key)
1073 {
1074 struct blk_mq_hw_ctx *hctx;
1075
1076 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1077
1078 spin_lock(&hctx->dispatch_wait_lock);
1079 list_del_init(&wait->entry);
1080 spin_unlock(&hctx->dispatch_wait_lock);
1081
1082 blk_mq_run_hw_queue(hctx, true);
1083 return 1;
1084 }
1085
1086 /*
1087 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1088 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1089 * restart. For both cases, take care to check the condition again after
1090 * marking us as waiting.
1091 */
1092 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1093 struct request *rq)
1094 {
1095 struct wait_queue_head *wq;
1096 wait_queue_entry_t *wait;
1097 bool ret;
1098
1099 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1100 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1101 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1102
1103 /*
1104 * It's possible that a tag was freed in the window between the
1105 * allocation failure and adding the hardware queue to the wait
1106 * queue.
1107 *
1108 * Don't clear RESTART here, someone else could have set it.
1109 * At most this will cost an extra queue run.
1110 */
1111 return blk_mq_get_driver_tag(rq);
1112 }
1113
1114 wait = &hctx->dispatch_wait;
1115 if (!list_empty_careful(&wait->entry))
1116 return false;
1117
1118 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1119
1120 spin_lock_irq(&wq->lock);
1121 spin_lock(&hctx->dispatch_wait_lock);
1122 if (!list_empty(&wait->entry)) {
1123 spin_unlock(&hctx->dispatch_wait_lock);
1124 spin_unlock_irq(&wq->lock);
1125 return false;
1126 }
1127
1128 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1129 __add_wait_queue(wq, wait);
1130
1131 /*
1132 * It's possible that a tag was freed in the window between the
1133 * allocation failure and adding the hardware queue to the wait
1134 * queue.
1135 */
1136 ret = blk_mq_get_driver_tag(rq);
1137 if (!ret) {
1138 spin_unlock(&hctx->dispatch_wait_lock);
1139 spin_unlock_irq(&wq->lock);
1140 return false;
1141 }
1142
1143 /*
1144 * We got a tag, remove ourselves from the wait queue to ensure
1145 * someone else gets the wakeup.
1146 */
1147 list_del_init(&wait->entry);
1148 spin_unlock(&hctx->dispatch_wait_lock);
1149 spin_unlock_irq(&wq->lock);
1150
1151 return true;
1152 }
1153
1154 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1155 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1156 /*
1157 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1158 * - EWMA is one simple way to compute running average value
1159 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1160 * - take 4 as factor for avoiding to get too small(0) result, and this
1161 * factor doesn't matter because EWMA decreases exponentially
1162 */
1163 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1164 {
1165 unsigned int ewma;
1166
1167 if (hctx->queue->elevator)
1168 return;
1169
1170 ewma = hctx->dispatch_busy;
1171
1172 if (!ewma && !busy)
1173 return;
1174
1175 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1176 if (busy)
1177 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1178 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1179
1180 hctx->dispatch_busy = ewma;
1181 }
1182
1183 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1184
1185 /*
1186 * Returns true if we did some work AND can potentially do more.
1187 */
1188 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1189 bool got_budget)
1190 {
1191 struct blk_mq_hw_ctx *hctx;
1192 struct request *rq, *nxt;
1193 bool no_tag = false;
1194 int errors, queued;
1195 blk_status_t ret = BLK_STS_OK;
1196
1197 if (list_empty(list))
1198 return false;
1199
1200 WARN_ON(!list_is_singular(list) && got_budget);
1201
1202 /*
1203 * Now process all the entries, sending them to the driver.
1204 */
1205 errors = queued = 0;
1206 do {
1207 struct blk_mq_queue_data bd;
1208
1209 rq = list_first_entry(list, struct request, queuelist);
1210
1211 hctx = rq->mq_hctx;
1212 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1213 break;
1214
1215 if (!blk_mq_get_driver_tag(rq)) {
1216 /*
1217 * The initial allocation attempt failed, so we need to
1218 * rerun the hardware queue when a tag is freed. The
1219 * waitqueue takes care of that. If the queue is run
1220 * before we add this entry back on the dispatch list,
1221 * we'll re-run it below.
1222 */
1223 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1224 blk_mq_put_dispatch_budget(hctx);
1225 /*
1226 * For non-shared tags, the RESTART check
1227 * will suffice.
1228 */
1229 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1230 no_tag = true;
1231 break;
1232 }
1233 }
1234
1235 list_del_init(&rq->queuelist);
1236
1237 bd.rq = rq;
1238
1239 /*
1240 * Flag last if we have no more requests, or if we have more
1241 * but can't assign a driver tag to it.
1242 */
1243 if (list_empty(list))
1244 bd.last = true;
1245 else {
1246 nxt = list_first_entry(list, struct request, queuelist);
1247 bd.last = !blk_mq_get_driver_tag(nxt);
1248 }
1249
1250 ret = q->mq_ops->queue_rq(hctx, &bd);
1251 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1252 /*
1253 * If an I/O scheduler has been configured and we got a
1254 * driver tag for the next request already, free it
1255 * again.
1256 */
1257 if (!list_empty(list)) {
1258 nxt = list_first_entry(list, struct request, queuelist);
1259 blk_mq_put_driver_tag(nxt);
1260 }
1261 list_add(&rq->queuelist, list);
1262 __blk_mq_requeue_request(rq);
1263 break;
1264 }
1265
1266 if (unlikely(ret != BLK_STS_OK)) {
1267 errors++;
1268 blk_mq_end_request(rq, BLK_STS_IOERR);
1269 continue;
1270 }
1271
1272 queued++;
1273 } while (!list_empty(list));
1274
1275 hctx->dispatched[queued_to_index(queued)]++;
1276
1277 /*
1278 * Any items that need requeuing? Stuff them into hctx->dispatch,
1279 * that is where we will continue on next queue run.
1280 */
1281 if (!list_empty(list)) {
1282 bool needs_restart;
1283
1284 /*
1285 * If we didn't flush the entire list, we could have told
1286 * the driver there was more coming, but that turned out to
1287 * be a lie.
1288 */
1289 if (q->mq_ops->commit_rqs)
1290 q->mq_ops->commit_rqs(hctx);
1291
1292 spin_lock(&hctx->lock);
1293 list_splice_init(list, &hctx->dispatch);
1294 spin_unlock(&hctx->lock);
1295
1296 /*
1297 * If SCHED_RESTART was set by the caller of this function and
1298 * it is no longer set that means that it was cleared by another
1299 * thread and hence that a queue rerun is needed.
1300 *
1301 * If 'no_tag' is set, that means that we failed getting
1302 * a driver tag with an I/O scheduler attached. If our dispatch
1303 * waitqueue is no longer active, ensure that we run the queue
1304 * AFTER adding our entries back to the list.
1305 *
1306 * If no I/O scheduler has been configured it is possible that
1307 * the hardware queue got stopped and restarted before requests
1308 * were pushed back onto the dispatch list. Rerun the queue to
1309 * avoid starvation. Notes:
1310 * - blk_mq_run_hw_queue() checks whether or not a queue has
1311 * been stopped before rerunning a queue.
1312 * - Some but not all block drivers stop a queue before
1313 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1314 * and dm-rq.
1315 *
1316 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1317 * bit is set, run queue after a delay to avoid IO stalls
1318 * that could otherwise occur if the queue is idle.
1319 */
1320 needs_restart = blk_mq_sched_needs_restart(hctx);
1321 if (!needs_restart ||
1322 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1323 blk_mq_run_hw_queue(hctx, true);
1324 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1325 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1326
1327 blk_mq_update_dispatch_busy(hctx, true);
1328 return false;
1329 } else
1330 blk_mq_update_dispatch_busy(hctx, false);
1331
1332 /*
1333 * If the host/device is unable to accept more work, inform the
1334 * caller of that.
1335 */
1336 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1337 return false;
1338
1339 return (queued + errors) != 0;
1340 }
1341
1342 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1343 {
1344 int srcu_idx;
1345
1346 /*
1347 * We should be running this queue from one of the CPUs that
1348 * are mapped to it.
1349 *
1350 * There are at least two related races now between setting
1351 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1352 * __blk_mq_run_hw_queue():
1353 *
1354 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1355 * but later it becomes online, then this warning is harmless
1356 * at all
1357 *
1358 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1359 * but later it becomes offline, then the warning can't be
1360 * triggered, and we depend on blk-mq timeout handler to
1361 * handle dispatched requests to this hctx
1362 */
1363 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1364 cpu_online(hctx->next_cpu)) {
1365 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1366 raw_smp_processor_id(),
1367 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1368 dump_stack();
1369 }
1370
1371 /*
1372 * We can't run the queue inline with ints disabled. Ensure that
1373 * we catch bad users of this early.
1374 */
1375 WARN_ON_ONCE(in_interrupt());
1376
1377 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1378
1379 hctx_lock(hctx, &srcu_idx);
1380 blk_mq_sched_dispatch_requests(hctx);
1381 hctx_unlock(hctx, srcu_idx);
1382 }
1383
1384 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1385 {
1386 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1387
1388 if (cpu >= nr_cpu_ids)
1389 cpu = cpumask_first(hctx->cpumask);
1390 return cpu;
1391 }
1392
1393 /*
1394 * It'd be great if the workqueue API had a way to pass
1395 * in a mask and had some smarts for more clever placement.
1396 * For now we just round-robin here, switching for every
1397 * BLK_MQ_CPU_WORK_BATCH queued items.
1398 */
1399 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1400 {
1401 bool tried = false;
1402 int next_cpu = hctx->next_cpu;
1403
1404 if (hctx->queue->nr_hw_queues == 1)
1405 return WORK_CPU_UNBOUND;
1406
1407 if (--hctx->next_cpu_batch <= 0) {
1408 select_cpu:
1409 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1410 cpu_online_mask);
1411 if (next_cpu >= nr_cpu_ids)
1412 next_cpu = blk_mq_first_mapped_cpu(hctx);
1413 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1414 }
1415
1416 /*
1417 * Do unbound schedule if we can't find a online CPU for this hctx,
1418 * and it should only happen in the path of handling CPU DEAD.
1419 */
1420 if (!cpu_online(next_cpu)) {
1421 if (!tried) {
1422 tried = true;
1423 goto select_cpu;
1424 }
1425
1426 /*
1427 * Make sure to re-select CPU next time once after CPUs
1428 * in hctx->cpumask become online again.
1429 */
1430 hctx->next_cpu = next_cpu;
1431 hctx->next_cpu_batch = 1;
1432 return WORK_CPU_UNBOUND;
1433 }
1434
1435 hctx->next_cpu = next_cpu;
1436 return next_cpu;
1437 }
1438
1439 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1440 unsigned long msecs)
1441 {
1442 if (unlikely(blk_mq_hctx_stopped(hctx)))
1443 return;
1444
1445 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1446 int cpu = get_cpu();
1447 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1448 __blk_mq_run_hw_queue(hctx);
1449 put_cpu();
1450 return;
1451 }
1452
1453 put_cpu();
1454 }
1455
1456 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1457 msecs_to_jiffies(msecs));
1458 }
1459
1460 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1461 {
1462 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1463 }
1464 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1465
1466 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1467 {
1468 int srcu_idx;
1469 bool need_run;
1470
1471 /*
1472 * When queue is quiesced, we may be switching io scheduler, or
1473 * updating nr_hw_queues, or other things, and we can't run queue
1474 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1475 *
1476 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1477 * quiesced.
1478 */
1479 hctx_lock(hctx, &srcu_idx);
1480 need_run = !blk_queue_quiesced(hctx->queue) &&
1481 blk_mq_hctx_has_pending(hctx);
1482 hctx_unlock(hctx, srcu_idx);
1483
1484 if (need_run) {
1485 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1486 return true;
1487 }
1488
1489 return false;
1490 }
1491 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1492
1493 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1494 {
1495 struct blk_mq_hw_ctx *hctx;
1496 int i;
1497
1498 queue_for_each_hw_ctx(q, hctx, i) {
1499 if (blk_mq_hctx_stopped(hctx))
1500 continue;
1501
1502 blk_mq_run_hw_queue(hctx, async);
1503 }
1504 }
1505 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1506
1507 /**
1508 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1509 * @q: request queue.
1510 *
1511 * The caller is responsible for serializing this function against
1512 * blk_mq_{start,stop}_hw_queue().
1513 */
1514 bool blk_mq_queue_stopped(struct request_queue *q)
1515 {
1516 struct blk_mq_hw_ctx *hctx;
1517 int i;
1518
1519 queue_for_each_hw_ctx(q, hctx, i)
1520 if (blk_mq_hctx_stopped(hctx))
1521 return true;
1522
1523 return false;
1524 }
1525 EXPORT_SYMBOL(blk_mq_queue_stopped);
1526
1527 /*
1528 * This function is often used for pausing .queue_rq() by driver when
1529 * there isn't enough resource or some conditions aren't satisfied, and
1530 * BLK_STS_RESOURCE is usually returned.
1531 *
1532 * We do not guarantee that dispatch can be drained or blocked
1533 * after blk_mq_stop_hw_queue() returns. Please use
1534 * blk_mq_quiesce_queue() for that requirement.
1535 */
1536 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1537 {
1538 cancel_delayed_work(&hctx->run_work);
1539
1540 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1541 }
1542 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1543
1544 /*
1545 * This function is often used for pausing .queue_rq() by driver when
1546 * there isn't enough resource or some conditions aren't satisfied, and
1547 * BLK_STS_RESOURCE is usually returned.
1548 *
1549 * We do not guarantee that dispatch can be drained or blocked
1550 * after blk_mq_stop_hw_queues() returns. Please use
1551 * blk_mq_quiesce_queue() for that requirement.
1552 */
1553 void blk_mq_stop_hw_queues(struct request_queue *q)
1554 {
1555 struct blk_mq_hw_ctx *hctx;
1556 int i;
1557
1558 queue_for_each_hw_ctx(q, hctx, i)
1559 blk_mq_stop_hw_queue(hctx);
1560 }
1561 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1562
1563 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1564 {
1565 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1566
1567 blk_mq_run_hw_queue(hctx, false);
1568 }
1569 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1570
1571 void blk_mq_start_hw_queues(struct request_queue *q)
1572 {
1573 struct blk_mq_hw_ctx *hctx;
1574 int i;
1575
1576 queue_for_each_hw_ctx(q, hctx, i)
1577 blk_mq_start_hw_queue(hctx);
1578 }
1579 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1580
1581 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1582 {
1583 if (!blk_mq_hctx_stopped(hctx))
1584 return;
1585
1586 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1587 blk_mq_run_hw_queue(hctx, async);
1588 }
1589 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1590
1591 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1592 {
1593 struct blk_mq_hw_ctx *hctx;
1594 int i;
1595
1596 queue_for_each_hw_ctx(q, hctx, i)
1597 blk_mq_start_stopped_hw_queue(hctx, async);
1598 }
1599 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1600
1601 static void blk_mq_run_work_fn(struct work_struct *work)
1602 {
1603 struct blk_mq_hw_ctx *hctx;
1604
1605 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1606
1607 /*
1608 * If we are stopped, don't run the queue.
1609 */
1610 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1611 return;
1612
1613 __blk_mq_run_hw_queue(hctx);
1614 }
1615
1616 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1617 struct request *rq,
1618 bool at_head)
1619 {
1620 struct blk_mq_ctx *ctx = rq->mq_ctx;
1621 enum hctx_type type = hctx->type;
1622
1623 lockdep_assert_held(&ctx->lock);
1624
1625 trace_block_rq_insert(hctx->queue, rq);
1626
1627 if (at_head)
1628 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1629 else
1630 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1631 }
1632
1633 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1634 bool at_head)
1635 {
1636 struct blk_mq_ctx *ctx = rq->mq_ctx;
1637
1638 lockdep_assert_held(&ctx->lock);
1639
1640 __blk_mq_insert_req_list(hctx, rq, at_head);
1641 blk_mq_hctx_mark_pending(hctx, ctx);
1642 }
1643
1644 /*
1645 * Should only be used carefully, when the caller knows we want to
1646 * bypass a potential IO scheduler on the target device.
1647 */
1648 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1649 {
1650 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1651
1652 spin_lock(&hctx->lock);
1653 list_add_tail(&rq->queuelist, &hctx->dispatch);
1654 spin_unlock(&hctx->lock);
1655
1656 if (run_queue)
1657 blk_mq_run_hw_queue(hctx, false);
1658 }
1659
1660 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1661 struct list_head *list)
1662
1663 {
1664 struct request *rq;
1665 enum hctx_type type = hctx->type;
1666
1667 /*
1668 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1669 * offline now
1670 */
1671 list_for_each_entry(rq, list, queuelist) {
1672 BUG_ON(rq->mq_ctx != ctx);
1673 trace_block_rq_insert(hctx->queue, rq);
1674 }
1675
1676 spin_lock(&ctx->lock);
1677 list_splice_tail_init(list, &ctx->rq_lists[type]);
1678 blk_mq_hctx_mark_pending(hctx, ctx);
1679 spin_unlock(&ctx->lock);
1680 }
1681
1682 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1683 {
1684 struct request *rqa = container_of(a, struct request, queuelist);
1685 struct request *rqb = container_of(b, struct request, queuelist);
1686
1687 if (rqa->mq_ctx < rqb->mq_ctx)
1688 return -1;
1689 else if (rqa->mq_ctx > rqb->mq_ctx)
1690 return 1;
1691 else if (rqa->mq_hctx < rqb->mq_hctx)
1692 return -1;
1693 else if (rqa->mq_hctx > rqb->mq_hctx)
1694 return 1;
1695
1696 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1697 }
1698
1699 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1700 {
1701 struct blk_mq_hw_ctx *this_hctx;
1702 struct blk_mq_ctx *this_ctx;
1703 struct request_queue *this_q;
1704 struct request *rq;
1705 LIST_HEAD(list);
1706 LIST_HEAD(rq_list);
1707 unsigned int depth;
1708
1709 list_splice_init(&plug->mq_list, &list);
1710 plug->rq_count = 0;
1711
1712 if (plug->rq_count > 2 && plug->multiple_queues)
1713 list_sort(NULL, &list, plug_rq_cmp);
1714
1715 this_q = NULL;
1716 this_hctx = NULL;
1717 this_ctx = NULL;
1718 depth = 0;
1719
1720 while (!list_empty(&list)) {
1721 rq = list_entry_rq(list.next);
1722 list_del_init(&rq->queuelist);
1723 BUG_ON(!rq->q);
1724 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1725 if (this_hctx) {
1726 trace_block_unplug(this_q, depth, !from_schedule);
1727 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1728 &rq_list,
1729 from_schedule);
1730 }
1731
1732 this_q = rq->q;
1733 this_ctx = rq->mq_ctx;
1734 this_hctx = rq->mq_hctx;
1735 depth = 0;
1736 }
1737
1738 depth++;
1739 list_add_tail(&rq->queuelist, &rq_list);
1740 }
1741
1742 /*
1743 * If 'this_hctx' is set, we know we have entries to complete
1744 * on 'rq_list'. Do those.
1745 */
1746 if (this_hctx) {
1747 trace_block_unplug(this_q, depth, !from_schedule);
1748 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1749 from_schedule);
1750 }
1751 }
1752
1753 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1754 {
1755 blk_init_request_from_bio(rq, bio);
1756
1757 blk_account_io_start(rq, true);
1758 }
1759
1760 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1761 struct request *rq,
1762 blk_qc_t *cookie, bool last)
1763 {
1764 struct request_queue *q = rq->q;
1765 struct blk_mq_queue_data bd = {
1766 .rq = rq,
1767 .last = last,
1768 };
1769 blk_qc_t new_cookie;
1770 blk_status_t ret;
1771
1772 new_cookie = request_to_qc_t(hctx, rq);
1773
1774 /*
1775 * For OK queue, we are done. For error, caller may kill it.
1776 * Any other error (busy), just add it to our list as we
1777 * previously would have done.
1778 */
1779 ret = q->mq_ops->queue_rq(hctx, &bd);
1780 switch (ret) {
1781 case BLK_STS_OK:
1782 blk_mq_update_dispatch_busy(hctx, false);
1783 *cookie = new_cookie;
1784 break;
1785 case BLK_STS_RESOURCE:
1786 case BLK_STS_DEV_RESOURCE:
1787 blk_mq_update_dispatch_busy(hctx, true);
1788 __blk_mq_requeue_request(rq);
1789 break;
1790 default:
1791 blk_mq_update_dispatch_busy(hctx, false);
1792 *cookie = BLK_QC_T_NONE;
1793 break;
1794 }
1795
1796 return ret;
1797 }
1798
1799 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1800 struct request *rq,
1801 blk_qc_t *cookie,
1802 bool bypass, bool last)
1803 {
1804 struct request_queue *q = rq->q;
1805 bool run_queue = true;
1806 blk_status_t ret = BLK_STS_RESOURCE;
1807 int srcu_idx;
1808 bool force = false;
1809
1810 hctx_lock(hctx, &srcu_idx);
1811 /*
1812 * hctx_lock is needed before checking quiesced flag.
1813 *
1814 * When queue is stopped or quiesced, ignore 'bypass', insert
1815 * and return BLK_STS_OK to caller, and avoid driver to try to
1816 * dispatch again.
1817 */
1818 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1819 run_queue = false;
1820 bypass = false;
1821 goto out_unlock;
1822 }
1823
1824 if (unlikely(q->elevator && !bypass))
1825 goto out_unlock;
1826
1827 if (!blk_mq_get_dispatch_budget(hctx))
1828 goto out_unlock;
1829
1830 if (!blk_mq_get_driver_tag(rq)) {
1831 blk_mq_put_dispatch_budget(hctx);
1832 goto out_unlock;
1833 }
1834
1835 /*
1836 * Always add a request that has been through
1837 *.queue_rq() to the hardware dispatch list.
1838 */
1839 force = true;
1840 ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1841 out_unlock:
1842 hctx_unlock(hctx, srcu_idx);
1843 switch (ret) {
1844 case BLK_STS_OK:
1845 break;
1846 case BLK_STS_DEV_RESOURCE:
1847 case BLK_STS_RESOURCE:
1848 if (force) {
1849 blk_mq_request_bypass_insert(rq, run_queue);
1850 /*
1851 * We have to return BLK_STS_OK for the DM
1852 * to avoid livelock. Otherwise, we return
1853 * the real result to indicate whether the
1854 * request is direct-issued successfully.
1855 */
1856 ret = bypass ? BLK_STS_OK : ret;
1857 } else if (!bypass) {
1858 blk_mq_sched_insert_request(rq, false,
1859 run_queue, false);
1860 }
1861 break;
1862 default:
1863 if (!bypass)
1864 blk_mq_end_request(rq, ret);
1865 break;
1866 }
1867
1868 return ret;
1869 }
1870
1871 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1872 struct list_head *list)
1873 {
1874 blk_qc_t unused;
1875 blk_status_t ret = BLK_STS_OK;
1876
1877 while (!list_empty(list)) {
1878 struct request *rq = list_first_entry(list, struct request,
1879 queuelist);
1880
1881 list_del_init(&rq->queuelist);
1882 if (ret == BLK_STS_OK)
1883 ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1884 false,
1885 list_empty(list));
1886 else
1887 blk_mq_sched_insert_request(rq, false, true, false);
1888 }
1889
1890 /*
1891 * If we didn't flush the entire list, we could have told
1892 * the driver there was more coming, but that turned out to
1893 * be a lie.
1894 */
1895 if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1896 hctx->queue->mq_ops->commit_rqs(hctx);
1897 }
1898
1899 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1900 {
1901 list_add_tail(&rq->queuelist, &plug->mq_list);
1902 plug->rq_count++;
1903 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1904 struct request *tmp;
1905
1906 tmp = list_first_entry(&plug->mq_list, struct request,
1907 queuelist);
1908 if (tmp->q != rq->q)
1909 plug->multiple_queues = true;
1910 }
1911 }
1912
1913 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1914 {
1915 const int is_sync = op_is_sync(bio->bi_opf);
1916 const int is_flush_fua = op_is_flush(bio->bi_opf);
1917 struct blk_mq_alloc_data data = { .flags = 0};
1918 struct request *rq;
1919 struct blk_plug *plug;
1920 struct request *same_queue_rq = NULL;
1921 blk_qc_t cookie;
1922
1923 blk_queue_bounce(q, &bio);
1924
1925 blk_queue_split(q, &bio);
1926
1927 if (!bio_integrity_prep(bio))
1928 return BLK_QC_T_NONE;
1929
1930 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1931 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1932 return BLK_QC_T_NONE;
1933
1934 if (blk_mq_sched_bio_merge(q, bio))
1935 return BLK_QC_T_NONE;
1936
1937 rq_qos_throttle(q, bio);
1938
1939 data.cmd_flags = bio->bi_opf;
1940 rq = blk_mq_get_request(q, bio, &data);
1941 if (unlikely(!rq)) {
1942 rq_qos_cleanup(q, bio);
1943 if (bio->bi_opf & REQ_NOWAIT)
1944 bio_wouldblock_error(bio);
1945 return BLK_QC_T_NONE;
1946 }
1947
1948 trace_block_getrq(q, bio, bio->bi_opf);
1949
1950 rq_qos_track(q, rq, bio);
1951
1952 cookie = request_to_qc_t(data.hctx, rq);
1953
1954 plug = current->plug;
1955 if (unlikely(is_flush_fua)) {
1956 blk_mq_put_ctx(data.ctx);
1957 blk_mq_bio_to_request(rq, bio);
1958
1959 /* bypass scheduler for flush rq */
1960 blk_insert_flush(rq);
1961 blk_mq_run_hw_queue(data.hctx, true);
1962 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1963 /*
1964 * Use plugging if we have a ->commit_rqs() hook as well, as
1965 * we know the driver uses bd->last in a smart fashion.
1966 */
1967 unsigned int request_count = plug->rq_count;
1968 struct request *last = NULL;
1969
1970 blk_mq_put_ctx(data.ctx);
1971 blk_mq_bio_to_request(rq, bio);
1972
1973 if (!request_count)
1974 trace_block_plug(q);
1975 else
1976 last = list_entry_rq(plug->mq_list.prev);
1977
1978 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1979 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1980 blk_flush_plug_list(plug, false);
1981 trace_block_plug(q);
1982 }
1983
1984 blk_add_rq_to_plug(plug, rq);
1985 } else if (plug && !blk_queue_nomerges(q)) {
1986 blk_mq_bio_to_request(rq, bio);
1987
1988 /*
1989 * We do limited plugging. If the bio can be merged, do that.
1990 * Otherwise the existing request in the plug list will be
1991 * issued. So the plug list will have one request at most
1992 * The plug list might get flushed before this. If that happens,
1993 * the plug list is empty, and same_queue_rq is invalid.
1994 */
1995 if (list_empty(&plug->mq_list))
1996 same_queue_rq = NULL;
1997 if (same_queue_rq) {
1998 list_del_init(&same_queue_rq->queuelist);
1999 plug->rq_count--;
2000 }
2001 blk_add_rq_to_plug(plug, rq);
2002
2003 blk_mq_put_ctx(data.ctx);
2004
2005 if (same_queue_rq) {
2006 data.hctx = same_queue_rq->mq_hctx;
2007 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2008 &cookie, false, true);
2009 }
2010 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2011 !data.hctx->dispatch_busy)) {
2012 blk_mq_put_ctx(data.ctx);
2013 blk_mq_bio_to_request(rq, bio);
2014 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2015 } else {
2016 blk_mq_put_ctx(data.ctx);
2017 blk_mq_bio_to_request(rq, bio);
2018 blk_mq_sched_insert_request(rq, false, true, true);
2019 }
2020
2021 return cookie;
2022 }
2023
2024 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2025 unsigned int hctx_idx)
2026 {
2027 struct page *page;
2028
2029 if (tags->rqs && set->ops->exit_request) {
2030 int i;
2031
2032 for (i = 0; i < tags->nr_tags; i++) {
2033 struct request *rq = tags->static_rqs[i];
2034
2035 if (!rq)
2036 continue;
2037 set->ops->exit_request(set, rq, hctx_idx);
2038 tags->static_rqs[i] = NULL;
2039 }
2040 }
2041
2042 while (!list_empty(&tags->page_list)) {
2043 page = list_first_entry(&tags->page_list, struct page, lru);
2044 list_del_init(&page->lru);
2045 /*
2046 * Remove kmemleak object previously allocated in
2047 * blk_mq_init_rq_map().
2048 */
2049 kmemleak_free(page_address(page));
2050 __free_pages(page, page->private);
2051 }
2052 }
2053
2054 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2055 {
2056 kfree(tags->rqs);
2057 tags->rqs = NULL;
2058 kfree(tags->static_rqs);
2059 tags->static_rqs = NULL;
2060
2061 blk_mq_free_tags(tags);
2062 }
2063
2064 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2065 unsigned int hctx_idx,
2066 unsigned int nr_tags,
2067 unsigned int reserved_tags)
2068 {
2069 struct blk_mq_tags *tags;
2070 int node;
2071
2072 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2073 if (node == NUMA_NO_NODE)
2074 node = set->numa_node;
2075
2076 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2077 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2078 if (!tags)
2079 return NULL;
2080
2081 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2082 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2083 node);
2084 if (!tags->rqs) {
2085 blk_mq_free_tags(tags);
2086 return NULL;
2087 }
2088
2089 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2090 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2091 node);
2092 if (!tags->static_rqs) {
2093 kfree(tags->rqs);
2094 blk_mq_free_tags(tags);
2095 return NULL;
2096 }
2097
2098 return tags;
2099 }
2100
2101 static size_t order_to_size(unsigned int order)
2102 {
2103 return (size_t)PAGE_SIZE << order;
2104 }
2105
2106 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2107 unsigned int hctx_idx, int node)
2108 {
2109 int ret;
2110
2111 if (set->ops->init_request) {
2112 ret = set->ops->init_request(set, rq, hctx_idx, node);
2113 if (ret)
2114 return ret;
2115 }
2116
2117 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2118 return 0;
2119 }
2120
2121 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2122 unsigned int hctx_idx, unsigned int depth)
2123 {
2124 unsigned int i, j, entries_per_page, max_order = 4;
2125 size_t rq_size, left;
2126 int node;
2127
2128 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2129 if (node == NUMA_NO_NODE)
2130 node = set->numa_node;
2131
2132 INIT_LIST_HEAD(&tags->page_list);
2133
2134 /*
2135 * rq_size is the size of the request plus driver payload, rounded
2136 * to the cacheline size
2137 */
2138 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2139 cache_line_size());
2140 left = rq_size * depth;
2141
2142 for (i = 0; i < depth; ) {
2143 int this_order = max_order;
2144 struct page *page;
2145 int to_do;
2146 void *p;
2147
2148 while (this_order && left < order_to_size(this_order - 1))
2149 this_order--;
2150
2151 do {
2152 page = alloc_pages_node(node,
2153 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2154 this_order);
2155 if (page)
2156 break;
2157 if (!this_order--)
2158 break;
2159 if (order_to_size(this_order) < rq_size)
2160 break;
2161 } while (1);
2162
2163 if (!page)
2164 goto fail;
2165
2166 page->private = this_order;
2167 list_add_tail(&page->lru, &tags->page_list);
2168
2169 p = page_address(page);
2170 /*
2171 * Allow kmemleak to scan these pages as they contain pointers
2172 * to additional allocations like via ops->init_request().
2173 */
2174 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2175 entries_per_page = order_to_size(this_order) / rq_size;
2176 to_do = min(entries_per_page, depth - i);
2177 left -= to_do * rq_size;
2178 for (j = 0; j < to_do; j++) {
2179 struct request *rq = p;
2180
2181 tags->static_rqs[i] = rq;
2182 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2183 tags->static_rqs[i] = NULL;
2184 goto fail;
2185 }
2186
2187 p += rq_size;
2188 i++;
2189 }
2190 }
2191 return 0;
2192
2193 fail:
2194 blk_mq_free_rqs(set, tags, hctx_idx);
2195 return -ENOMEM;
2196 }
2197
2198 /*
2199 * 'cpu' is going away. splice any existing rq_list entries from this
2200 * software queue to the hw queue dispatch list, and ensure that it
2201 * gets run.
2202 */
2203 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2204 {
2205 struct blk_mq_hw_ctx *hctx;
2206 struct blk_mq_ctx *ctx;
2207 LIST_HEAD(tmp);
2208 enum hctx_type type;
2209
2210 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2211 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2212 type = hctx->type;
2213
2214 spin_lock(&ctx->lock);
2215 if (!list_empty(&ctx->rq_lists[type])) {
2216 list_splice_init(&ctx->rq_lists[type], &tmp);
2217 blk_mq_hctx_clear_pending(hctx, ctx);
2218 }
2219 spin_unlock(&ctx->lock);
2220
2221 if (list_empty(&tmp))
2222 return 0;
2223
2224 spin_lock(&hctx->lock);
2225 list_splice_tail_init(&tmp, &hctx->dispatch);
2226 spin_unlock(&hctx->lock);
2227
2228 blk_mq_run_hw_queue(hctx, true);
2229 return 0;
2230 }
2231
2232 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2233 {
2234 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2235 &hctx->cpuhp_dead);
2236 }
2237
2238 /* hctx->ctxs will be freed in queue's release handler */
2239 static void blk_mq_exit_hctx(struct request_queue *q,
2240 struct blk_mq_tag_set *set,
2241 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2242 {
2243 if (blk_mq_hw_queue_mapped(hctx))
2244 blk_mq_tag_idle(hctx);
2245
2246 if (set->ops->exit_request)
2247 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2248
2249 if (set->ops->exit_hctx)
2250 set->ops->exit_hctx(hctx, hctx_idx);
2251
2252 if (hctx->flags & BLK_MQ_F_BLOCKING)
2253 cleanup_srcu_struct(hctx->srcu);
2254
2255 blk_mq_remove_cpuhp(hctx);
2256 blk_free_flush_queue(hctx->fq);
2257 sbitmap_free(&hctx->ctx_map);
2258 }
2259
2260 static void blk_mq_exit_hw_queues(struct request_queue *q,
2261 struct blk_mq_tag_set *set, int nr_queue)
2262 {
2263 struct blk_mq_hw_ctx *hctx;
2264 unsigned int i;
2265
2266 queue_for_each_hw_ctx(q, hctx, i) {
2267 if (i == nr_queue)
2268 break;
2269 blk_mq_debugfs_unregister_hctx(hctx);
2270 blk_mq_exit_hctx(q, set, hctx, i);
2271 }
2272 }
2273
2274 static int blk_mq_init_hctx(struct request_queue *q,
2275 struct blk_mq_tag_set *set,
2276 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2277 {
2278 int node;
2279
2280 node = hctx->numa_node;
2281 if (node == NUMA_NO_NODE)
2282 node = hctx->numa_node = set->numa_node;
2283
2284 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2285 spin_lock_init(&hctx->lock);
2286 INIT_LIST_HEAD(&hctx->dispatch);
2287 hctx->queue = q;
2288 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2289
2290 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2291
2292 hctx->tags = set->tags[hctx_idx];
2293
2294 /*
2295 * Allocate space for all possible cpus to avoid allocation at
2296 * runtime
2297 */
2298 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2299 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2300 if (!hctx->ctxs)
2301 goto unregister_cpu_notifier;
2302
2303 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2304 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2305 goto free_ctxs;
2306
2307 hctx->nr_ctx = 0;
2308
2309 spin_lock_init(&hctx->dispatch_wait_lock);
2310 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2311 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2312
2313 if (set->ops->init_hctx &&
2314 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2315 goto free_bitmap;
2316
2317 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2318 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2319 if (!hctx->fq)
2320 goto exit_hctx;
2321
2322 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2323 goto free_fq;
2324
2325 if (hctx->flags & BLK_MQ_F_BLOCKING)
2326 init_srcu_struct(hctx->srcu);
2327
2328 return 0;
2329
2330 free_fq:
2331 kfree(hctx->fq);
2332 exit_hctx:
2333 if (set->ops->exit_hctx)
2334 set->ops->exit_hctx(hctx, hctx_idx);
2335 free_bitmap:
2336 sbitmap_free(&hctx->ctx_map);
2337 free_ctxs:
2338 kfree(hctx->ctxs);
2339 unregister_cpu_notifier:
2340 blk_mq_remove_cpuhp(hctx);
2341 return -1;
2342 }
2343
2344 static void blk_mq_init_cpu_queues(struct request_queue *q,
2345 unsigned int nr_hw_queues)
2346 {
2347 struct blk_mq_tag_set *set = q->tag_set;
2348 unsigned int i, j;
2349
2350 for_each_possible_cpu(i) {
2351 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2352 struct blk_mq_hw_ctx *hctx;
2353 int k;
2354
2355 __ctx->cpu = i;
2356 spin_lock_init(&__ctx->lock);
2357 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2358 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2359
2360 __ctx->queue = q;
2361
2362 /*
2363 * Set local node, IFF we have more than one hw queue. If
2364 * not, we remain on the home node of the device
2365 */
2366 for (j = 0; j < set->nr_maps; j++) {
2367 hctx = blk_mq_map_queue_type(q, j, i);
2368 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2369 hctx->numa_node = local_memory_node(cpu_to_node(i));
2370 }
2371 }
2372 }
2373
2374 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2375 {
2376 int ret = 0;
2377
2378 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2379 set->queue_depth, set->reserved_tags);
2380 if (!set->tags[hctx_idx])
2381 return false;
2382
2383 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2384 set->queue_depth);
2385 if (!ret)
2386 return true;
2387
2388 blk_mq_free_rq_map(set->tags[hctx_idx]);
2389 set->tags[hctx_idx] = NULL;
2390 return false;
2391 }
2392
2393 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2394 unsigned int hctx_idx)
2395 {
2396 if (set->tags && set->tags[hctx_idx]) {
2397 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2398 blk_mq_free_rq_map(set->tags[hctx_idx]);
2399 set->tags[hctx_idx] = NULL;
2400 }
2401 }
2402
2403 static void blk_mq_map_swqueue(struct request_queue *q)
2404 {
2405 unsigned int i, j, hctx_idx;
2406 struct blk_mq_hw_ctx *hctx;
2407 struct blk_mq_ctx *ctx;
2408 struct blk_mq_tag_set *set = q->tag_set;
2409
2410 /*
2411 * Avoid others reading imcomplete hctx->cpumask through sysfs
2412 */
2413 mutex_lock(&q->sysfs_lock);
2414
2415 queue_for_each_hw_ctx(q, hctx, i) {
2416 cpumask_clear(hctx->cpumask);
2417 hctx->nr_ctx = 0;
2418 hctx->dispatch_from = NULL;
2419 }
2420
2421 /*
2422 * Map software to hardware queues.
2423 *
2424 * If the cpu isn't present, the cpu is mapped to first hctx.
2425 */
2426 for_each_possible_cpu(i) {
2427 hctx_idx = set->map[0].mq_map[i];
2428 /* unmapped hw queue can be remapped after CPU topo changed */
2429 if (!set->tags[hctx_idx] &&
2430 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2431 /*
2432 * If tags initialization fail for some hctx,
2433 * that hctx won't be brought online. In this
2434 * case, remap the current ctx to hctx[0] which
2435 * is guaranteed to always have tags allocated
2436 */
2437 set->map[0].mq_map[i] = 0;
2438 }
2439
2440 ctx = per_cpu_ptr(q->queue_ctx, i);
2441 for (j = 0; j < set->nr_maps; j++) {
2442 if (!set->map[j].nr_queues)
2443 continue;
2444
2445 hctx = blk_mq_map_queue_type(q, j, i);
2446
2447 /*
2448 * If the CPU is already set in the mask, then we've
2449 * mapped this one already. This can happen if
2450 * devices share queues across queue maps.
2451 */
2452 if (cpumask_test_cpu(i, hctx->cpumask))
2453 continue;
2454
2455 cpumask_set_cpu(i, hctx->cpumask);
2456 hctx->type = j;
2457 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2458 hctx->ctxs[hctx->nr_ctx++] = ctx;
2459
2460 /*
2461 * If the nr_ctx type overflows, we have exceeded the
2462 * amount of sw queues we can support.
2463 */
2464 BUG_ON(!hctx->nr_ctx);
2465 }
2466 }
2467
2468 mutex_unlock(&q->sysfs_lock);
2469
2470 queue_for_each_hw_ctx(q, hctx, i) {
2471 /*
2472 * If no software queues are mapped to this hardware queue,
2473 * disable it and free the request entries.
2474 */
2475 if (!hctx->nr_ctx) {
2476 /* Never unmap queue 0. We need it as a
2477 * fallback in case of a new remap fails
2478 * allocation
2479 */
2480 if (i && set->tags[i])
2481 blk_mq_free_map_and_requests(set, i);
2482
2483 hctx->tags = NULL;
2484 continue;
2485 }
2486
2487 hctx->tags = set->tags[i];
2488 WARN_ON(!hctx->tags);
2489
2490 /*
2491 * Set the map size to the number of mapped software queues.
2492 * This is more accurate and more efficient than looping
2493 * over all possibly mapped software queues.
2494 */
2495 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2496
2497 /*
2498 * Initialize batch roundrobin counts
2499 */
2500 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2501 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2502 }
2503 }
2504
2505 /*
2506 * Caller needs to ensure that we're either frozen/quiesced, or that
2507 * the queue isn't live yet.
2508 */
2509 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2510 {
2511 struct blk_mq_hw_ctx *hctx;
2512 int i;
2513
2514 queue_for_each_hw_ctx(q, hctx, i) {
2515 if (shared)
2516 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2517 else
2518 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2519 }
2520 }
2521
2522 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2523 bool shared)
2524 {
2525 struct request_queue *q;
2526
2527 lockdep_assert_held(&set->tag_list_lock);
2528
2529 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2530 blk_mq_freeze_queue(q);
2531 queue_set_hctx_shared(q, shared);
2532 blk_mq_unfreeze_queue(q);
2533 }
2534 }
2535
2536 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2537 {
2538 struct blk_mq_tag_set *set = q->tag_set;
2539
2540 mutex_lock(&set->tag_list_lock);
2541 list_del_rcu(&q->tag_set_list);
2542 if (list_is_singular(&set->tag_list)) {
2543 /* just transitioned to unshared */
2544 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2545 /* update existing queue */
2546 blk_mq_update_tag_set_depth(set, false);
2547 }
2548 mutex_unlock(&set->tag_list_lock);
2549 INIT_LIST_HEAD(&q->tag_set_list);
2550 }
2551
2552 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2553 struct request_queue *q)
2554 {
2555 mutex_lock(&set->tag_list_lock);
2556
2557 /*
2558 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2559 */
2560 if (!list_empty(&set->tag_list) &&
2561 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2562 set->flags |= BLK_MQ_F_TAG_SHARED;
2563 /* update existing queue */
2564 blk_mq_update_tag_set_depth(set, true);
2565 }
2566 if (set->flags & BLK_MQ_F_TAG_SHARED)
2567 queue_set_hctx_shared(q, true);
2568 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2569
2570 mutex_unlock(&set->tag_list_lock);
2571 }
2572
2573 /* All allocations will be freed in release handler of q->mq_kobj */
2574 static int blk_mq_alloc_ctxs(struct request_queue *q)
2575 {
2576 struct blk_mq_ctxs *ctxs;
2577 int cpu;
2578
2579 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2580 if (!ctxs)
2581 return -ENOMEM;
2582
2583 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2584 if (!ctxs->queue_ctx)
2585 goto fail;
2586
2587 for_each_possible_cpu(cpu) {
2588 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2589 ctx->ctxs = ctxs;
2590 }
2591
2592 q->mq_kobj = &ctxs->kobj;
2593 q->queue_ctx = ctxs->queue_ctx;
2594
2595 return 0;
2596 fail:
2597 kfree(ctxs);
2598 return -ENOMEM;
2599 }
2600
2601 /*
2602 * It is the actual release handler for mq, but we do it from
2603 * request queue's release handler for avoiding use-after-free
2604 * and headache because q->mq_kobj shouldn't have been introduced,
2605 * but we can't group ctx/kctx kobj without it.
2606 */
2607 void blk_mq_release(struct request_queue *q)
2608 {
2609 struct blk_mq_hw_ctx *hctx;
2610 unsigned int i;
2611
2612 /* hctx kobj stays in hctx */
2613 queue_for_each_hw_ctx(q, hctx, i) {
2614 if (!hctx)
2615 continue;
2616 kobject_put(&hctx->kobj);
2617 }
2618
2619 kfree(q->queue_hw_ctx);
2620
2621 /*
2622 * release .mq_kobj and sw queue's kobject now because
2623 * both share lifetime with request queue.
2624 */
2625 blk_mq_sysfs_deinit(q);
2626 }
2627
2628 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2629 {
2630 struct request_queue *uninit_q, *q;
2631
2632 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2633 if (!uninit_q)
2634 return ERR_PTR(-ENOMEM);
2635
2636 q = blk_mq_init_allocated_queue(set, uninit_q);
2637 if (IS_ERR(q))
2638 blk_cleanup_queue(uninit_q);
2639
2640 return q;
2641 }
2642 EXPORT_SYMBOL(blk_mq_init_queue);
2643
2644 /*
2645 * Helper for setting up a queue with mq ops, given queue depth, and
2646 * the passed in mq ops flags.
2647 */
2648 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2649 const struct blk_mq_ops *ops,
2650 unsigned int queue_depth,
2651 unsigned int set_flags)
2652 {
2653 struct request_queue *q;
2654 int ret;
2655
2656 memset(set, 0, sizeof(*set));
2657 set->ops = ops;
2658 set->nr_hw_queues = 1;
2659 set->nr_maps = 1;
2660 set->queue_depth = queue_depth;
2661 set->numa_node = NUMA_NO_NODE;
2662 set->flags = set_flags;
2663
2664 ret = blk_mq_alloc_tag_set(set);
2665 if (ret)
2666 return ERR_PTR(ret);
2667
2668 q = blk_mq_init_queue(set);
2669 if (IS_ERR(q)) {
2670 blk_mq_free_tag_set(set);
2671 return q;
2672 }
2673
2674 return q;
2675 }
2676 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2677
2678 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2679 {
2680 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2681
2682 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2683 __alignof__(struct blk_mq_hw_ctx)) !=
2684 sizeof(struct blk_mq_hw_ctx));
2685
2686 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2687 hw_ctx_size += sizeof(struct srcu_struct);
2688
2689 return hw_ctx_size;
2690 }
2691
2692 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2693 struct blk_mq_tag_set *set, struct request_queue *q,
2694 int hctx_idx, int node)
2695 {
2696 struct blk_mq_hw_ctx *hctx;
2697
2698 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2699 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2700 node);
2701 if (!hctx)
2702 return NULL;
2703
2704 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2705 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2706 node)) {
2707 kfree(hctx);
2708 return NULL;
2709 }
2710
2711 atomic_set(&hctx->nr_active, 0);
2712 hctx->numa_node = node;
2713 hctx->queue_num = hctx_idx;
2714
2715 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2716 free_cpumask_var(hctx->cpumask);
2717 kfree(hctx);
2718 return NULL;
2719 }
2720 blk_mq_hctx_kobj_init(hctx);
2721
2722 return hctx;
2723 }
2724
2725 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2726 struct request_queue *q)
2727 {
2728 int i, j, end;
2729 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2730
2731 /* protect against switching io scheduler */
2732 mutex_lock(&q->sysfs_lock);
2733 for (i = 0; i < set->nr_hw_queues; i++) {
2734 int node;
2735 struct blk_mq_hw_ctx *hctx;
2736
2737 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2738 /*
2739 * If the hw queue has been mapped to another numa node,
2740 * we need to realloc the hctx. If allocation fails, fallback
2741 * to use the previous one.
2742 */
2743 if (hctxs[i] && (hctxs[i]->numa_node == node))
2744 continue;
2745
2746 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2747 if (hctx) {
2748 if (hctxs[i]) {
2749 blk_mq_exit_hctx(q, set, hctxs[i], i);
2750 kobject_put(&hctxs[i]->kobj);
2751 }
2752 hctxs[i] = hctx;
2753 } else {
2754 if (hctxs[i])
2755 pr_warn("Allocate new hctx on node %d fails,\
2756 fallback to previous one on node %d\n",
2757 node, hctxs[i]->numa_node);
2758 else
2759 break;
2760 }
2761 }
2762 /*
2763 * Increasing nr_hw_queues fails. Free the newly allocated
2764 * hctxs and keep the previous q->nr_hw_queues.
2765 */
2766 if (i != set->nr_hw_queues) {
2767 j = q->nr_hw_queues;
2768 end = i;
2769 } else {
2770 j = i;
2771 end = q->nr_hw_queues;
2772 q->nr_hw_queues = set->nr_hw_queues;
2773 }
2774
2775 for (; j < end; j++) {
2776 struct blk_mq_hw_ctx *hctx = hctxs[j];
2777
2778 if (hctx) {
2779 if (hctx->tags)
2780 blk_mq_free_map_and_requests(set, j);
2781 blk_mq_exit_hctx(q, set, hctx, j);
2782 kobject_put(&hctx->kobj);
2783 hctxs[j] = NULL;
2784
2785 }
2786 }
2787 mutex_unlock(&q->sysfs_lock);
2788 }
2789
2790 /*
2791 * Maximum number of hardware queues we support. For single sets, we'll never
2792 * have more than the CPUs (software queues). For multiple sets, the tag_set
2793 * user may have set ->nr_hw_queues larger.
2794 */
2795 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2796 {
2797 if (set->nr_maps == 1)
2798 return nr_cpu_ids;
2799
2800 return max(set->nr_hw_queues, nr_cpu_ids);
2801 }
2802
2803 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2804 struct request_queue *q)
2805 {
2806 /* mark the queue as mq asap */
2807 q->mq_ops = set->ops;
2808
2809 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2810 blk_mq_poll_stats_bkt,
2811 BLK_MQ_POLL_STATS_BKTS, q);
2812 if (!q->poll_cb)
2813 goto err_exit;
2814
2815 if (blk_mq_alloc_ctxs(q))
2816 goto err_exit;
2817
2818 /* init q->mq_kobj and sw queues' kobjects */
2819 blk_mq_sysfs_init(q);
2820
2821 q->nr_queues = nr_hw_queues(set);
2822 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2823 GFP_KERNEL, set->numa_node);
2824 if (!q->queue_hw_ctx)
2825 goto err_sys_init;
2826
2827 blk_mq_realloc_hw_ctxs(set, q);
2828 if (!q->nr_hw_queues)
2829 goto err_hctxs;
2830
2831 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2832 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2833
2834 q->tag_set = set;
2835
2836 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2837 if (set->nr_maps > HCTX_TYPE_POLL &&
2838 set->map[HCTX_TYPE_POLL].nr_queues)
2839 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2840
2841 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2842 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2843
2844 q->sg_reserved_size = INT_MAX;
2845
2846 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2847 INIT_LIST_HEAD(&q->requeue_list);
2848 spin_lock_init(&q->requeue_lock);
2849
2850 blk_queue_make_request(q, blk_mq_make_request);
2851
2852 /*
2853 * Do this after blk_queue_make_request() overrides it...
2854 */
2855 q->nr_requests = set->queue_depth;
2856
2857 /*
2858 * Default to classic polling
2859 */
2860 q->poll_nsec = -1;
2861
2862 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2863 blk_mq_add_queue_tag_set(set, q);
2864 blk_mq_map_swqueue(q);
2865
2866 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2867 int ret;
2868
2869 ret = elevator_init_mq(q);
2870 if (ret)
2871 return ERR_PTR(ret);
2872 }
2873
2874 return q;
2875
2876 err_hctxs:
2877 kfree(q->queue_hw_ctx);
2878 err_sys_init:
2879 blk_mq_sysfs_deinit(q);
2880 err_exit:
2881 q->mq_ops = NULL;
2882 return ERR_PTR(-ENOMEM);
2883 }
2884 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2885
2886 void blk_mq_free_queue(struct request_queue *q)
2887 {
2888 struct blk_mq_tag_set *set = q->tag_set;
2889
2890 blk_mq_del_queue_tag_set(q);
2891 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2892 }
2893
2894 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2895 {
2896 int i;
2897
2898 for (i = 0; i < set->nr_hw_queues; i++)
2899 if (!__blk_mq_alloc_rq_map(set, i))
2900 goto out_unwind;
2901
2902 return 0;
2903
2904 out_unwind:
2905 while (--i >= 0)
2906 blk_mq_free_rq_map(set->tags[i]);
2907
2908 return -ENOMEM;
2909 }
2910
2911 /*
2912 * Allocate the request maps associated with this tag_set. Note that this
2913 * may reduce the depth asked for, if memory is tight. set->queue_depth
2914 * will be updated to reflect the allocated depth.
2915 */
2916 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2917 {
2918 unsigned int depth;
2919 int err;
2920
2921 depth = set->queue_depth;
2922 do {
2923 err = __blk_mq_alloc_rq_maps(set);
2924 if (!err)
2925 break;
2926
2927 set->queue_depth >>= 1;
2928 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2929 err = -ENOMEM;
2930 break;
2931 }
2932 } while (set->queue_depth);
2933
2934 if (!set->queue_depth || err) {
2935 pr_err("blk-mq: failed to allocate request map\n");
2936 return -ENOMEM;
2937 }
2938
2939 if (depth != set->queue_depth)
2940 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2941 depth, set->queue_depth);
2942
2943 return 0;
2944 }
2945
2946 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2947 {
2948 if (set->ops->map_queues && !is_kdump_kernel()) {
2949 int i;
2950
2951 /*
2952 * transport .map_queues is usually done in the following
2953 * way:
2954 *
2955 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2956 * mask = get_cpu_mask(queue)
2957 * for_each_cpu(cpu, mask)
2958 * set->map[x].mq_map[cpu] = queue;
2959 * }
2960 *
2961 * When we need to remap, the table has to be cleared for
2962 * killing stale mapping since one CPU may not be mapped
2963 * to any hw queue.
2964 */
2965 for (i = 0; i < set->nr_maps; i++)
2966 blk_mq_clear_mq_map(&set->map[i]);
2967
2968 return set->ops->map_queues(set);
2969 } else {
2970 BUG_ON(set->nr_maps > 1);
2971 return blk_mq_map_queues(&set->map[0]);
2972 }
2973 }
2974
2975 /*
2976 * Alloc a tag set to be associated with one or more request queues.
2977 * May fail with EINVAL for various error conditions. May adjust the
2978 * requested depth down, if it's too large. In that case, the set
2979 * value will be stored in set->queue_depth.
2980 */
2981 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2982 {
2983 int i, ret;
2984
2985 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2986
2987 if (!set->nr_hw_queues)
2988 return -EINVAL;
2989 if (!set->queue_depth)
2990 return -EINVAL;
2991 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2992 return -EINVAL;
2993
2994 if (!set->ops->queue_rq)
2995 return -EINVAL;
2996
2997 if (!set->ops->get_budget ^ !set->ops->put_budget)
2998 return -EINVAL;
2999
3000 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3001 pr_info("blk-mq: reduced tag depth to %u\n",
3002 BLK_MQ_MAX_DEPTH);
3003 set->queue_depth = BLK_MQ_MAX_DEPTH;
3004 }
3005
3006 if (!set->nr_maps)
3007 set->nr_maps = 1;
3008 else if (set->nr_maps > HCTX_MAX_TYPES)
3009 return -EINVAL;
3010
3011 /*
3012 * If a crashdump is active, then we are potentially in a very
3013 * memory constrained environment. Limit us to 1 queue and
3014 * 64 tags to prevent using too much memory.
3015 */
3016 if (is_kdump_kernel()) {
3017 set->nr_hw_queues = 1;
3018 set->nr_maps = 1;
3019 set->queue_depth = min(64U, set->queue_depth);
3020 }
3021 /*
3022 * There is no use for more h/w queues than cpus if we just have
3023 * a single map
3024 */
3025 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3026 set->nr_hw_queues = nr_cpu_ids;
3027
3028 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3029 GFP_KERNEL, set->numa_node);
3030 if (!set->tags)
3031 return -ENOMEM;
3032
3033 ret = -ENOMEM;
3034 for (i = 0; i < set->nr_maps; i++) {
3035 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3036 sizeof(set->map[i].mq_map[0]),
3037 GFP_KERNEL, set->numa_node);
3038 if (!set->map[i].mq_map)
3039 goto out_free_mq_map;
3040 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3041 }
3042
3043 ret = blk_mq_update_queue_map(set);
3044 if (ret)
3045 goto out_free_mq_map;
3046
3047 ret = blk_mq_alloc_rq_maps(set);
3048 if (ret)
3049 goto out_free_mq_map;
3050
3051 mutex_init(&set->tag_list_lock);
3052 INIT_LIST_HEAD(&set->tag_list);
3053
3054 return 0;
3055
3056 out_free_mq_map:
3057 for (i = 0; i < set->nr_maps; i++) {
3058 kfree(set->map[i].mq_map);
3059 set->map[i].mq_map = NULL;
3060 }
3061 kfree(set->tags);
3062 set->tags = NULL;
3063 return ret;
3064 }
3065 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3066
3067 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3068 {
3069 int i, j;
3070
3071 for (i = 0; i < nr_hw_queues(set); i++)
3072 blk_mq_free_map_and_requests(set, i);
3073
3074 for (j = 0; j < set->nr_maps; j++) {
3075 kfree(set->map[j].mq_map);
3076 set->map[j].mq_map = NULL;
3077 }
3078
3079 kfree(set->tags);
3080 set->tags = NULL;
3081 }
3082 EXPORT_SYMBOL(blk_mq_free_tag_set);
3083
3084 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3085 {
3086 struct blk_mq_tag_set *set = q->tag_set;
3087 struct blk_mq_hw_ctx *hctx;
3088 int i, ret;
3089
3090 if (!set)
3091 return -EINVAL;
3092
3093 blk_mq_freeze_queue(q);
3094 blk_mq_quiesce_queue(q);
3095
3096 ret = 0;
3097 queue_for_each_hw_ctx(q, hctx, i) {
3098 if (!hctx->tags)
3099 continue;
3100 /*
3101 * If we're using an MQ scheduler, just update the scheduler
3102 * queue depth. This is similar to what the old code would do.
3103 */
3104 if (!hctx->sched_tags) {
3105 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3106 false);
3107 } else {
3108 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3109 nr, true);
3110 }
3111 if (ret)
3112 break;
3113 }
3114
3115 if (!ret)
3116 q->nr_requests = nr;
3117
3118 blk_mq_unquiesce_queue(q);
3119 blk_mq_unfreeze_queue(q);
3120
3121 return ret;
3122 }
3123
3124 /*
3125 * request_queue and elevator_type pair.
3126 * It is just used by __blk_mq_update_nr_hw_queues to cache
3127 * the elevator_type associated with a request_queue.
3128 */
3129 struct blk_mq_qe_pair {
3130 struct list_head node;
3131 struct request_queue *q;
3132 struct elevator_type *type;
3133 };
3134
3135 /*
3136 * Cache the elevator_type in qe pair list and switch the
3137 * io scheduler to 'none'
3138 */
3139 static bool blk_mq_elv_switch_none(struct list_head *head,
3140 struct request_queue *q)
3141 {
3142 struct blk_mq_qe_pair *qe;
3143
3144 if (!q->elevator)
3145 return true;
3146
3147 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3148 if (!qe)
3149 return false;
3150
3151 INIT_LIST_HEAD(&qe->node);
3152 qe->q = q;
3153 qe->type = q->elevator->type;
3154 list_add(&qe->node, head);
3155
3156 mutex_lock(&q->sysfs_lock);
3157 /*
3158 * After elevator_switch_mq, the previous elevator_queue will be
3159 * released by elevator_release. The reference of the io scheduler
3160 * module get by elevator_get will also be put. So we need to get
3161 * a reference of the io scheduler module here to prevent it to be
3162 * removed.
3163 */
3164 __module_get(qe->type->elevator_owner);
3165 elevator_switch_mq(q, NULL);
3166 mutex_unlock(&q->sysfs_lock);
3167
3168 return true;
3169 }
3170
3171 static void blk_mq_elv_switch_back(struct list_head *head,
3172 struct request_queue *q)
3173 {
3174 struct blk_mq_qe_pair *qe;
3175 struct elevator_type *t = NULL;
3176
3177 list_for_each_entry(qe, head, node)
3178 if (qe->q == q) {
3179 t = qe->type;
3180 break;
3181 }
3182
3183 if (!t)
3184 return;
3185
3186 list_del(&qe->node);
3187 kfree(qe);
3188
3189 mutex_lock(&q->sysfs_lock);
3190 elevator_switch_mq(q, t);
3191 mutex_unlock(&q->sysfs_lock);
3192 }
3193
3194 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3195 int nr_hw_queues)
3196 {
3197 struct request_queue *q;
3198 LIST_HEAD(head);
3199 int prev_nr_hw_queues;
3200
3201 lockdep_assert_held(&set->tag_list_lock);
3202
3203 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3204 nr_hw_queues = nr_cpu_ids;
3205 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3206 return;
3207
3208 list_for_each_entry(q, &set->tag_list, tag_set_list)
3209 blk_mq_freeze_queue(q);
3210 /*
3211 * Sync with blk_mq_queue_tag_busy_iter.
3212 */
3213 synchronize_rcu();
3214 /*
3215 * Switch IO scheduler to 'none', cleaning up the data associated
3216 * with the previous scheduler. We will switch back once we are done
3217 * updating the new sw to hw queue mappings.
3218 */
3219 list_for_each_entry(q, &set->tag_list, tag_set_list)
3220 if (!blk_mq_elv_switch_none(&head, q))
3221 goto switch_back;
3222
3223 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3224 blk_mq_debugfs_unregister_hctxs(q);
3225 blk_mq_sysfs_unregister(q);
3226 }
3227
3228 prev_nr_hw_queues = set->nr_hw_queues;
3229 set->nr_hw_queues = nr_hw_queues;
3230 blk_mq_update_queue_map(set);
3231 fallback:
3232 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3233 blk_mq_realloc_hw_ctxs(set, q);
3234 if (q->nr_hw_queues != set->nr_hw_queues) {
3235 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3236 nr_hw_queues, prev_nr_hw_queues);
3237 set->nr_hw_queues = prev_nr_hw_queues;
3238 blk_mq_map_queues(&set->map[0]);
3239 goto fallback;
3240 }
3241 blk_mq_map_swqueue(q);
3242 }
3243
3244 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3245 blk_mq_sysfs_register(q);
3246 blk_mq_debugfs_register_hctxs(q);
3247 }
3248
3249 switch_back:
3250 list_for_each_entry(q, &set->tag_list, tag_set_list)
3251 blk_mq_elv_switch_back(&head, q);
3252
3253 list_for_each_entry(q, &set->tag_list, tag_set_list)
3254 blk_mq_unfreeze_queue(q);
3255 }
3256
3257 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3258 {
3259 mutex_lock(&set->tag_list_lock);
3260 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3261 mutex_unlock(&set->tag_list_lock);
3262 }
3263 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3264
3265 /* Enable polling stats and return whether they were already enabled. */
3266 static bool blk_poll_stats_enable(struct request_queue *q)
3267 {
3268 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3269 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3270 return true;
3271 blk_stat_add_callback(q, q->poll_cb);
3272 return false;
3273 }
3274
3275 static void blk_mq_poll_stats_start(struct request_queue *q)
3276 {
3277 /*
3278 * We don't arm the callback if polling stats are not enabled or the
3279 * callback is already active.
3280 */
3281 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3282 blk_stat_is_active(q->poll_cb))
3283 return;
3284
3285 blk_stat_activate_msecs(q->poll_cb, 100);
3286 }
3287
3288 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3289 {
3290 struct request_queue *q = cb->data;
3291 int bucket;
3292
3293 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3294 if (cb->stat[bucket].nr_samples)
3295 q->poll_stat[bucket] = cb->stat[bucket];
3296 }
3297 }
3298
3299 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3300 struct blk_mq_hw_ctx *hctx,
3301 struct request *rq)
3302 {
3303 unsigned long ret = 0;
3304 int bucket;
3305
3306 /*
3307 * If stats collection isn't on, don't sleep but turn it on for
3308 * future users
3309 */
3310 if (!blk_poll_stats_enable(q))
3311 return 0;
3312
3313 /*
3314 * As an optimistic guess, use half of the mean service time
3315 * for this type of request. We can (and should) make this smarter.
3316 * For instance, if the completion latencies are tight, we can
3317 * get closer than just half the mean. This is especially
3318 * important on devices where the completion latencies are longer
3319 * than ~10 usec. We do use the stats for the relevant IO size
3320 * if available which does lead to better estimates.
3321 */
3322 bucket = blk_mq_poll_stats_bkt(rq);
3323 if (bucket < 0)
3324 return ret;
3325
3326 if (q->poll_stat[bucket].nr_samples)
3327 ret = (q->poll_stat[bucket].mean + 1) / 2;
3328
3329 return ret;
3330 }
3331
3332 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3333 struct blk_mq_hw_ctx *hctx,
3334 struct request *rq)
3335 {
3336 struct hrtimer_sleeper hs;
3337 enum hrtimer_mode mode;
3338 unsigned int nsecs;
3339 ktime_t kt;
3340
3341 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3342 return false;
3343
3344 /*
3345 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3346 *
3347 * 0: use half of prev avg
3348 * >0: use this specific value
3349 */
3350 if (q->poll_nsec > 0)
3351 nsecs = q->poll_nsec;
3352 else
3353 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3354
3355 if (!nsecs)
3356 return false;
3357
3358 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3359
3360 /*
3361 * This will be replaced with the stats tracking code, using
3362 * 'avg_completion_time / 2' as the pre-sleep target.
3363 */
3364 kt = nsecs;
3365
3366 mode = HRTIMER_MODE_REL;
3367 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3368 hrtimer_set_expires(&hs.timer, kt);
3369
3370 hrtimer_init_sleeper(&hs, current);
3371 do {
3372 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3373 break;
3374 set_current_state(TASK_UNINTERRUPTIBLE);
3375 hrtimer_start_expires(&hs.timer, mode);
3376 if (hs.task)
3377 io_schedule();
3378 hrtimer_cancel(&hs.timer);
3379 mode = HRTIMER_MODE_ABS;
3380 } while (hs.task && !signal_pending(current));
3381
3382 __set_current_state(TASK_RUNNING);
3383 destroy_hrtimer_on_stack(&hs.timer);
3384 return true;
3385 }
3386
3387 static bool blk_mq_poll_hybrid(struct request_queue *q,
3388 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3389 {
3390 struct request *rq;
3391
3392 if (q->poll_nsec == -1)
3393 return false;
3394
3395 if (!blk_qc_t_is_internal(cookie))
3396 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3397 else {
3398 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3399 /*
3400 * With scheduling, if the request has completed, we'll
3401 * get a NULL return here, as we clear the sched tag when
3402 * that happens. The request still remains valid, like always,
3403 * so we should be safe with just the NULL check.
3404 */
3405 if (!rq)
3406 return false;
3407 }
3408
3409 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3410 }
3411
3412 /**
3413 * blk_poll - poll for IO completions
3414 * @q: the queue
3415 * @cookie: cookie passed back at IO submission time
3416 * @spin: whether to spin for completions
3417 *
3418 * Description:
3419 * Poll for completions on the passed in queue. Returns number of
3420 * completed entries found. If @spin is true, then blk_poll will continue
3421 * looping until at least one completion is found, unless the task is
3422 * otherwise marked running (or we need to reschedule).
3423 */
3424 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3425 {
3426 struct blk_mq_hw_ctx *hctx;
3427 long state;
3428
3429 if (!blk_qc_t_valid(cookie) ||
3430 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3431 return 0;
3432
3433 if (current->plug)
3434 blk_flush_plug_list(current->plug, false);
3435
3436 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3437
3438 /*
3439 * If we sleep, have the caller restart the poll loop to reset
3440 * the state. Like for the other success return cases, the
3441 * caller is responsible for checking if the IO completed. If
3442 * the IO isn't complete, we'll get called again and will go
3443 * straight to the busy poll loop.
3444 */
3445 if (blk_mq_poll_hybrid(q, hctx, cookie))
3446 return 1;
3447
3448 hctx->poll_considered++;
3449
3450 state = current->state;
3451 do {
3452 int ret;
3453
3454 hctx->poll_invoked++;
3455
3456 ret = q->mq_ops->poll(hctx);
3457 if (ret > 0) {
3458 hctx->poll_success++;
3459 __set_current_state(TASK_RUNNING);
3460 return ret;
3461 }
3462
3463 if (signal_pending_state(state, current))
3464 __set_current_state(TASK_RUNNING);
3465
3466 if (current->state == TASK_RUNNING)
3467 return 1;
3468 if (ret < 0 || !spin)
3469 break;
3470 cpu_relax();
3471 } while (!need_resched());
3472
3473 __set_current_state(TASK_RUNNING);
3474 return 0;
3475 }
3476 EXPORT_SYMBOL_GPL(blk_poll);
3477
3478 unsigned int blk_mq_rq_cpu(struct request *rq)
3479 {
3480 return rq->mq_ctx->cpu;
3481 }
3482 EXPORT_SYMBOL(blk_mq_rq_cpu);
3483
3484 static int __init blk_mq_init(void)
3485 {
3486 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3487 blk_mq_hctx_notify_dead);
3488 return 0;
3489 }
3490 subsys_initcall(blk_mq_init);