]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
block: add a poll_fn callback to struct request_queue
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return sbitmap_any_bit_set(&hctx->ctx_map) ||
67 !list_empty_careful(&hctx->dispatch) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 blk_mq_run_hw_queues(q, false);
130 }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142 {
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
162 blk_freeze_queue_start(q);
163 blk_mq_freeze_queue_wait(q);
164 }
165
166 void blk_mq_freeze_queue(struct request_queue *q)
167 {
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173 }
174 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175
176 void blk_mq_unfreeze_queue(struct request_queue *q)
177 {
178 int freeze_depth;
179
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
183 percpu_ref_reinit(&q->q_usage_counter);
184 wake_up_all(&q->mq_freeze_wq);
185 }
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188
189 /*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194 {
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
203 /**
204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
211 */
212 void blk_mq_quiesce_queue(struct request_queue *q)
213 {
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
218 blk_mq_quiesce_queue_nowait(q);
219
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
222 synchronize_srcu(hctx->queue_rq_srcu);
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
231 /*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238 void blk_mq_unquiesce_queue(struct request_queue *q)
239 {
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
251 void blk_mq_wake_waiters(struct request_queue *q)
252 {
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
259
260 /*
261 * If we are called because the queue has now been marked as
262 * dying, we need to ensure that processes currently waiting on
263 * the queue are notified as well.
264 */
265 wake_up_all(&q->mq_freeze_wq);
266 }
267
268 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
269 {
270 return blk_mq_has_free_tags(hctx->tags);
271 }
272 EXPORT_SYMBOL(blk_mq_can_queue);
273
274 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
275 unsigned int tag, unsigned int op)
276 {
277 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
278 struct request *rq = tags->static_rqs[tag];
279
280 rq->rq_flags = 0;
281
282 if (data->flags & BLK_MQ_REQ_INTERNAL) {
283 rq->tag = -1;
284 rq->internal_tag = tag;
285 } else {
286 if (blk_mq_tag_busy(data->hctx)) {
287 rq->rq_flags = RQF_MQ_INFLIGHT;
288 atomic_inc(&data->hctx->nr_active);
289 }
290 rq->tag = tag;
291 rq->internal_tag = -1;
292 data->hctx->tags->rqs[rq->tag] = rq;
293 }
294
295 INIT_LIST_HEAD(&rq->queuelist);
296 /* csd/requeue_work/fifo_time is initialized before use */
297 rq->q = data->q;
298 rq->mq_ctx = data->ctx;
299 rq->cmd_flags = op;
300 if (blk_queue_io_stat(data->q))
301 rq->rq_flags |= RQF_IO_STAT;
302 /* do not touch atomic flags, it needs atomic ops against the timer */
303 rq->cpu = -1;
304 INIT_HLIST_NODE(&rq->hash);
305 RB_CLEAR_NODE(&rq->rb_node);
306 rq->rq_disk = NULL;
307 rq->part = NULL;
308 rq->start_time = jiffies;
309 #ifdef CONFIG_BLK_CGROUP
310 rq->rl = NULL;
311 set_start_time_ns(rq);
312 rq->io_start_time_ns = 0;
313 #endif
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321
322 INIT_LIST_HEAD(&rq->timeout_list);
323 rq->timeout = 0;
324
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
327 rq->next_rq = NULL;
328
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 return rq;
331 }
332
333 static struct request *blk_mq_get_request(struct request_queue *q,
334 struct bio *bio, unsigned int op,
335 struct blk_mq_alloc_data *data)
336 {
337 struct elevator_queue *e = q->elevator;
338 struct request *rq;
339 unsigned int tag;
340 struct blk_mq_ctx *local_ctx = NULL;
341
342 blk_queue_enter_live(q);
343 data->q = q;
344 if (likely(!data->ctx))
345 data->ctx = local_ctx = blk_mq_get_ctx(q);
346 if (likely(!data->hctx))
347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 if (op & REQ_NOWAIT)
349 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351 if (e) {
352 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354 /*
355 * Flush requests are special and go directly to the
356 * dispatch list.
357 */
358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 e->type->ops.mq.limit_depth(op, data);
360 }
361
362 tag = blk_mq_get_tag(data);
363 if (tag == BLK_MQ_TAG_FAIL) {
364 if (local_ctx) {
365 blk_mq_put_ctx(local_ctx);
366 data->ctx = NULL;
367 }
368 blk_queue_exit(q);
369 return NULL;
370 }
371
372 rq = blk_mq_rq_ctx_init(data, tag, op);
373 if (!op_is_flush(op)) {
374 rq->elv.icq = NULL;
375 if (e && e->type->ops.mq.prepare_request) {
376 if (e->type->icq_cache && rq_ioc(bio))
377 blk_mq_sched_assign_ioc(rq, bio);
378
379 e->type->ops.mq.prepare_request(rq, bio);
380 rq->rq_flags |= RQF_ELVPRIV;
381 }
382 }
383 data->hctx->queued++;
384 return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 unsigned int flags)
389 {
390 struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 struct request *rq;
392 int ret;
393
394 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
395 if (ret)
396 return ERR_PTR(ret);
397
398 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 blk_queue_exit(q);
400
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
403
404 blk_mq_put_ctx(alloc_data.ctx);
405
406 rq->__data_len = 0;
407 rq->__sector = (sector_t) -1;
408 rq->bio = rq->biotail = NULL;
409 return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 unsigned int op, unsigned int flags, unsigned int hctx_idx)
415 {
416 struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 struct request *rq;
418 unsigned int cpu;
419 int ret;
420
421 /*
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
425 * a specific queue.
426 */
427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 return ERR_PTR(-EINVAL);
429
430 if (hctx_idx >= q->nr_hw_queues)
431 return ERR_PTR(-EIO);
432
433 ret = blk_queue_enter(q, true);
434 if (ret)
435 return ERR_PTR(ret);
436
437 /*
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
440 */
441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 blk_queue_exit(q);
444 return ERR_PTR(-EXDEV);
445 }
446 cpu = cpumask_first(alloc_data.hctx->cpumask);
447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 blk_queue_exit(q);
451
452 if (!rq)
453 return ERR_PTR(-EWOULDBLOCK);
454
455 return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461 struct request_queue *q = rq->q;
462 struct elevator_queue *e = q->elevator;
463 struct blk_mq_ctx *ctx = rq->mq_ctx;
464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 const int sched_tag = rq->internal_tag;
466
467 if (rq->rq_flags & RQF_ELVPRIV) {
468 if (e && e->type->ops.mq.finish_request)
469 e->type->ops.mq.finish_request(rq);
470 if (rq->elv.icq) {
471 put_io_context(rq->elv.icq->ioc);
472 rq->elv.icq = NULL;
473 }
474 }
475
476 ctx->rq_completed[rq_is_sync(rq)]++;
477 if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 atomic_dec(&hctx->nr_active);
479
480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 laptop_io_completion(q->backing_dev_info);
482
483 wbt_done(q->rq_wb, &rq->issue_stat);
484
485 if (blk_rq_rl(rq))
486 blk_put_rl(blk_rq_rl(rq));
487
488 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
489 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
490 if (rq->tag != -1)
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 if (sched_tag != -1)
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
495 blk_queue_exit(q);
496 }
497 EXPORT_SYMBOL_GPL(blk_mq_free_request);
498
499 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500 {
501 blk_account_io_done(rq);
502
503 if (rq->end_io) {
504 wbt_done(rq->q->rq_wb, &rq->issue_stat);
505 rq->end_io(rq, error);
506 } else {
507 if (unlikely(blk_bidi_rq(rq)))
508 blk_mq_free_request(rq->next_rq);
509 blk_mq_free_request(rq);
510 }
511 }
512 EXPORT_SYMBOL(__blk_mq_end_request);
513
514 void blk_mq_end_request(struct request *rq, blk_status_t error)
515 {
516 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
517 BUG();
518 __blk_mq_end_request(rq, error);
519 }
520 EXPORT_SYMBOL(blk_mq_end_request);
521
522 static void __blk_mq_complete_request_remote(void *data)
523 {
524 struct request *rq = data;
525
526 rq->q->softirq_done_fn(rq);
527 }
528
529 static void __blk_mq_complete_request(struct request *rq)
530 {
531 struct blk_mq_ctx *ctx = rq->mq_ctx;
532 bool shared = false;
533 int cpu;
534
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
546
547 cpu = get_cpu();
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 rq->csd.func = __blk_mq_complete_request_remote;
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
555 smp_call_function_single_async(ctx->cpu, &rq->csd);
556 } else {
557 rq->q->softirq_done_fn(rq);
558 }
559 put_cpu();
560 }
561
562 /**
563 * blk_mq_complete_request - end I/O on a request
564 * @rq: the request being processed
565 *
566 * Description:
567 * Ends all I/O on a request. It does not handle partial completions.
568 * The actual completion happens out-of-order, through a IPI handler.
569 **/
570 void blk_mq_complete_request(struct request *rq)
571 {
572 struct request_queue *q = rq->q;
573
574 if (unlikely(blk_should_fake_timeout(q)))
575 return;
576 if (!blk_mark_rq_complete(rq))
577 __blk_mq_complete_request(rq);
578 }
579 EXPORT_SYMBOL(blk_mq_complete_request);
580
581 int blk_mq_request_started(struct request *rq)
582 {
583 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
584 }
585 EXPORT_SYMBOL_GPL(blk_mq_request_started);
586
587 void blk_mq_start_request(struct request *rq)
588 {
589 struct request_queue *q = rq->q;
590
591 blk_mq_sched_started_request(rq);
592
593 trace_block_rq_issue(q, rq);
594
595 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
596 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
597 rq->rq_flags |= RQF_STATS;
598 wbt_issue(q->rq_wb, &rq->issue_stat);
599 }
600
601 blk_add_timer(rq);
602
603 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604
605 /*
606 * Mark us as started and clear complete. Complete might have been
607 * set if requeue raced with timeout, which then marked it as
608 * complete. So be sure to clear complete again when we start
609 * the request, otherwise we'll ignore the completion event.
610 *
611 * Ensure that ->deadline is visible before we set STARTED, such that
612 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
613 * it observes STARTED.
614 */
615 smp_wmb();
616 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
617 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
618 /*
619 * Coherence order guarantees these consecutive stores to a
620 * single variable propagate in the specified order. Thus the
621 * clear_bit() is ordered _after_ the set bit. See
622 * blk_mq_check_expired().
623 *
624 * (the bits must be part of the same byte for this to be
625 * true).
626 */
627 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628 }
629
630 if (q->dma_drain_size && blk_rq_bytes(rq)) {
631 /*
632 * Make sure space for the drain appears. We know we can do
633 * this because max_hw_segments has been adjusted to be one
634 * fewer than the device can handle.
635 */
636 rq->nr_phys_segments++;
637 }
638 }
639 EXPORT_SYMBOL(blk_mq_start_request);
640
641 /*
642 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
643 * flag isn't set yet, so there may be race with timeout handler,
644 * but given rq->deadline is just set in .queue_rq() under
645 * this situation, the race won't be possible in reality because
646 * rq->timeout should be set as big enough to cover the window
647 * between blk_mq_start_request() called from .queue_rq() and
648 * clearing REQ_ATOM_STARTED here.
649 */
650 static void __blk_mq_requeue_request(struct request *rq)
651 {
652 struct request_queue *q = rq->q;
653
654 trace_block_rq_requeue(q, rq);
655 wbt_requeue(q->rq_wb, &rq->issue_stat);
656 blk_mq_sched_requeue_request(rq);
657
658 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
659 if (q->dma_drain_size && blk_rq_bytes(rq))
660 rq->nr_phys_segments--;
661 }
662 }
663
664 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
665 {
666 __blk_mq_requeue_request(rq);
667
668 BUG_ON(blk_queued_rq(rq));
669 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
670 }
671 EXPORT_SYMBOL(blk_mq_requeue_request);
672
673 static void blk_mq_requeue_work(struct work_struct *work)
674 {
675 struct request_queue *q =
676 container_of(work, struct request_queue, requeue_work.work);
677 LIST_HEAD(rq_list);
678 struct request *rq, *next;
679
680 spin_lock_irq(&q->requeue_lock);
681 list_splice_init(&q->requeue_list, &rq_list);
682 spin_unlock_irq(&q->requeue_lock);
683
684 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
685 if (!(rq->rq_flags & RQF_SOFTBARRIER))
686 continue;
687
688 rq->rq_flags &= ~RQF_SOFTBARRIER;
689 list_del_init(&rq->queuelist);
690 blk_mq_sched_insert_request(rq, true, false, false, true);
691 }
692
693 while (!list_empty(&rq_list)) {
694 rq = list_entry(rq_list.next, struct request, queuelist);
695 list_del_init(&rq->queuelist);
696 blk_mq_sched_insert_request(rq, false, false, false, true);
697 }
698
699 blk_mq_run_hw_queues(q, false);
700 }
701
702 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
703 bool kick_requeue_list)
704 {
705 struct request_queue *q = rq->q;
706 unsigned long flags;
707
708 /*
709 * We abuse this flag that is otherwise used by the I/O scheduler to
710 * request head insertation from the workqueue.
711 */
712 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
713
714 spin_lock_irqsave(&q->requeue_lock, flags);
715 if (at_head) {
716 rq->rq_flags |= RQF_SOFTBARRIER;
717 list_add(&rq->queuelist, &q->requeue_list);
718 } else {
719 list_add_tail(&rq->queuelist, &q->requeue_list);
720 }
721 spin_unlock_irqrestore(&q->requeue_lock, flags);
722
723 if (kick_requeue_list)
724 blk_mq_kick_requeue_list(q);
725 }
726 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
727
728 void blk_mq_kick_requeue_list(struct request_queue *q)
729 {
730 kblockd_schedule_delayed_work(&q->requeue_work, 0);
731 }
732 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
733
734 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
735 unsigned long msecs)
736 {
737 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
738 msecs_to_jiffies(msecs));
739 }
740 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
741
742 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
743 {
744 if (tag < tags->nr_tags) {
745 prefetch(tags->rqs[tag]);
746 return tags->rqs[tag];
747 }
748
749 return NULL;
750 }
751 EXPORT_SYMBOL(blk_mq_tag_to_rq);
752
753 struct blk_mq_timeout_data {
754 unsigned long next;
755 unsigned int next_set;
756 };
757
758 void blk_mq_rq_timed_out(struct request *req, bool reserved)
759 {
760 const struct blk_mq_ops *ops = req->q->mq_ops;
761 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
762
763 /*
764 * We know that complete is set at this point. If STARTED isn't set
765 * anymore, then the request isn't active and the "timeout" should
766 * just be ignored. This can happen due to the bitflag ordering.
767 * Timeout first checks if STARTED is set, and if it is, assumes
768 * the request is active. But if we race with completion, then
769 * both flags will get cleared. So check here again, and ignore
770 * a timeout event with a request that isn't active.
771 */
772 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
773 return;
774
775 if (ops->timeout)
776 ret = ops->timeout(req, reserved);
777
778 switch (ret) {
779 case BLK_EH_HANDLED:
780 __blk_mq_complete_request(req);
781 break;
782 case BLK_EH_RESET_TIMER:
783 blk_add_timer(req);
784 blk_clear_rq_complete(req);
785 break;
786 case BLK_EH_NOT_HANDLED:
787 break;
788 default:
789 printk(KERN_ERR "block: bad eh return: %d\n", ret);
790 break;
791 }
792 }
793
794 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
795 struct request *rq, void *priv, bool reserved)
796 {
797 struct blk_mq_timeout_data *data = priv;
798 unsigned long deadline;
799
800 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
801 return;
802
803 /*
804 * Ensures that if we see STARTED we must also see our
805 * up-to-date deadline, see blk_mq_start_request().
806 */
807 smp_rmb();
808
809 deadline = READ_ONCE(rq->deadline);
810
811 /*
812 * The rq being checked may have been freed and reallocated
813 * out already here, we avoid this race by checking rq->deadline
814 * and REQ_ATOM_COMPLETE flag together:
815 *
816 * - if rq->deadline is observed as new value because of
817 * reusing, the rq won't be timed out because of timing.
818 * - if rq->deadline is observed as previous value,
819 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
820 * because we put a barrier between setting rq->deadline
821 * and clearing the flag in blk_mq_start_request(), so
822 * this rq won't be timed out too.
823 */
824 if (time_after_eq(jiffies, deadline)) {
825 if (!blk_mark_rq_complete(rq)) {
826 /*
827 * Again coherence order ensures that consecutive reads
828 * from the same variable must be in that order. This
829 * ensures that if we see COMPLETE clear, we must then
830 * see STARTED set and we'll ignore this timeout.
831 *
832 * (There's also the MB implied by the test_and_clear())
833 */
834 blk_mq_rq_timed_out(rq, reserved);
835 }
836 } else if (!data->next_set || time_after(data->next, deadline)) {
837 data->next = deadline;
838 data->next_set = 1;
839 }
840 }
841
842 static void blk_mq_timeout_work(struct work_struct *work)
843 {
844 struct request_queue *q =
845 container_of(work, struct request_queue, timeout_work);
846 struct blk_mq_timeout_data data = {
847 .next = 0,
848 .next_set = 0,
849 };
850 int i;
851
852 /* A deadlock might occur if a request is stuck requiring a
853 * timeout at the same time a queue freeze is waiting
854 * completion, since the timeout code would not be able to
855 * acquire the queue reference here.
856 *
857 * That's why we don't use blk_queue_enter here; instead, we use
858 * percpu_ref_tryget directly, because we need to be able to
859 * obtain a reference even in the short window between the queue
860 * starting to freeze, by dropping the first reference in
861 * blk_freeze_queue_start, and the moment the last request is
862 * consumed, marked by the instant q_usage_counter reaches
863 * zero.
864 */
865 if (!percpu_ref_tryget(&q->q_usage_counter))
866 return;
867
868 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
869
870 if (data.next_set) {
871 data.next = blk_rq_timeout(round_jiffies_up(data.next));
872 mod_timer(&q->timeout, data.next);
873 } else {
874 struct blk_mq_hw_ctx *hctx;
875
876 queue_for_each_hw_ctx(q, hctx, i) {
877 /* the hctx may be unmapped, so check it here */
878 if (blk_mq_hw_queue_mapped(hctx))
879 blk_mq_tag_idle(hctx);
880 }
881 }
882 blk_queue_exit(q);
883 }
884
885 struct flush_busy_ctx_data {
886 struct blk_mq_hw_ctx *hctx;
887 struct list_head *list;
888 };
889
890 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
891 {
892 struct flush_busy_ctx_data *flush_data = data;
893 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
894 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
895
896 sbitmap_clear_bit(sb, bitnr);
897 spin_lock(&ctx->lock);
898 list_splice_tail_init(&ctx->rq_list, flush_data->list);
899 spin_unlock(&ctx->lock);
900 return true;
901 }
902
903 /*
904 * Process software queues that have been marked busy, splicing them
905 * to the for-dispatch
906 */
907 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908 {
909 struct flush_busy_ctx_data data = {
910 .hctx = hctx,
911 .list = list,
912 };
913
914 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
915 }
916 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
917
918 struct dispatch_rq_data {
919 struct blk_mq_hw_ctx *hctx;
920 struct request *rq;
921 };
922
923 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
924 void *data)
925 {
926 struct dispatch_rq_data *dispatch_data = data;
927 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
928 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
929
930 spin_lock(&ctx->lock);
931 if (unlikely(!list_empty(&ctx->rq_list))) {
932 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
933 list_del_init(&dispatch_data->rq->queuelist);
934 if (list_empty(&ctx->rq_list))
935 sbitmap_clear_bit(sb, bitnr);
936 }
937 spin_unlock(&ctx->lock);
938
939 return !dispatch_data->rq;
940 }
941
942 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
943 struct blk_mq_ctx *start)
944 {
945 unsigned off = start ? start->index_hw : 0;
946 struct dispatch_rq_data data = {
947 .hctx = hctx,
948 .rq = NULL,
949 };
950
951 __sbitmap_for_each_set(&hctx->ctx_map, off,
952 dispatch_rq_from_ctx, &data);
953
954 return data.rq;
955 }
956
957 static inline unsigned int queued_to_index(unsigned int queued)
958 {
959 if (!queued)
960 return 0;
961
962 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
963 }
964
965 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
966 bool wait)
967 {
968 struct blk_mq_alloc_data data = {
969 .q = rq->q,
970 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
971 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
972 };
973
974 might_sleep_if(wait);
975
976 if (rq->tag != -1)
977 goto done;
978
979 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 data.flags |= BLK_MQ_REQ_RESERVED;
981
982 rq->tag = blk_mq_get_tag(&data);
983 if (rq->tag >= 0) {
984 if (blk_mq_tag_busy(data.hctx)) {
985 rq->rq_flags |= RQF_MQ_INFLIGHT;
986 atomic_inc(&data.hctx->nr_active);
987 }
988 data.hctx->tags->rqs[rq->tag] = rq;
989 }
990
991 done:
992 if (hctx)
993 *hctx = data.hctx;
994 return rq->tag != -1;
995 }
996
997 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
998 struct request *rq)
999 {
1000 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
1001 rq->tag = -1;
1002
1003 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
1004 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
1005 atomic_dec(&hctx->nr_active);
1006 }
1007 }
1008
1009 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
1010 struct request *rq)
1011 {
1012 if (rq->tag == -1 || rq->internal_tag == -1)
1013 return;
1014
1015 __blk_mq_put_driver_tag(hctx, rq);
1016 }
1017
1018 static void blk_mq_put_driver_tag(struct request *rq)
1019 {
1020 struct blk_mq_hw_ctx *hctx;
1021
1022 if (rq->tag == -1 || rq->internal_tag == -1)
1023 return;
1024
1025 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1026 __blk_mq_put_driver_tag(hctx, rq);
1027 }
1028
1029 /*
1030 * If we fail getting a driver tag because all the driver tags are already
1031 * assigned and on the dispatch list, BUT the first entry does not have a
1032 * tag, then we could deadlock. For that case, move entries with assigned
1033 * driver tags to the front, leaving the set of tagged requests in the
1034 * same order, and the untagged set in the same order.
1035 */
1036 static bool reorder_tags_to_front(struct list_head *list)
1037 {
1038 struct request *rq, *tmp, *first = NULL;
1039
1040 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
1041 if (rq == first)
1042 break;
1043 if (rq->tag != -1) {
1044 list_move(&rq->queuelist, list);
1045 if (!first)
1046 first = rq;
1047 }
1048 }
1049
1050 return first != NULL;
1051 }
1052
1053 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1054 void *key)
1055 {
1056 struct blk_mq_hw_ctx *hctx;
1057
1058 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1059
1060 list_del(&wait->entry);
1061 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1062 blk_mq_run_hw_queue(hctx, true);
1063 return 1;
1064 }
1065
1066 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1067 {
1068 struct sbq_wait_state *ws;
1069
1070 /*
1071 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1072 * The thread which wins the race to grab this bit adds the hardware
1073 * queue to the wait queue.
1074 */
1075 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1076 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1077 return false;
1078
1079 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1080 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1081
1082 /*
1083 * As soon as this returns, it's no longer safe to fiddle with
1084 * hctx->dispatch_wait, since a completion can wake up the wait queue
1085 * and unlock the bit.
1086 */
1087 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1088 return true;
1089 }
1090
1091 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1092 bool got_budget)
1093 {
1094 struct blk_mq_hw_ctx *hctx;
1095 struct request *rq;
1096 int errors, queued;
1097
1098 if (list_empty(list))
1099 return false;
1100
1101 WARN_ON(!list_is_singular(list) && got_budget);
1102
1103 /*
1104 * Now process all the entries, sending them to the driver.
1105 */
1106 errors = queued = 0;
1107 do {
1108 struct blk_mq_queue_data bd;
1109 blk_status_t ret;
1110
1111 rq = list_first_entry(list, struct request, queuelist);
1112 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1113 if (!queued && reorder_tags_to_front(list))
1114 continue;
1115
1116 /*
1117 * The initial allocation attempt failed, so we need to
1118 * rerun the hardware queue when a tag is freed.
1119 */
1120 if (!blk_mq_dispatch_wait_add(hctx)) {
1121 if (got_budget)
1122 blk_mq_put_dispatch_budget(hctx);
1123 break;
1124 }
1125
1126 /*
1127 * It's possible that a tag was freed in the window
1128 * between the allocation failure and adding the
1129 * hardware queue to the wait queue.
1130 */
1131 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1132 if (got_budget)
1133 blk_mq_put_dispatch_budget(hctx);
1134 break;
1135 }
1136 }
1137
1138 if (!got_budget) {
1139 ret = blk_mq_get_dispatch_budget(hctx);
1140 if (ret == BLK_STS_RESOURCE)
1141 break;
1142 if (ret != BLK_STS_OK)
1143 goto fail_rq;
1144 }
1145
1146 list_del_init(&rq->queuelist);
1147
1148 bd.rq = rq;
1149
1150 /*
1151 * Flag last if we have no more requests, or if we have more
1152 * but can't assign a driver tag to it.
1153 */
1154 if (list_empty(list))
1155 bd.last = true;
1156 else {
1157 struct request *nxt;
1158
1159 nxt = list_first_entry(list, struct request, queuelist);
1160 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1161 }
1162
1163 ret = q->mq_ops->queue_rq(hctx, &bd);
1164 if (ret == BLK_STS_RESOURCE) {
1165 blk_mq_put_driver_tag_hctx(hctx, rq);
1166 list_add(&rq->queuelist, list);
1167 __blk_mq_requeue_request(rq);
1168 break;
1169 }
1170
1171 fail_rq:
1172 if (unlikely(ret != BLK_STS_OK)) {
1173 errors++;
1174 blk_mq_end_request(rq, BLK_STS_IOERR);
1175 continue;
1176 }
1177
1178 queued++;
1179 } while (!list_empty(list));
1180
1181 hctx->dispatched[queued_to_index(queued)]++;
1182
1183 /*
1184 * Any items that need requeuing? Stuff them into hctx->dispatch,
1185 * that is where we will continue on next queue run.
1186 */
1187 if (!list_empty(list)) {
1188 /*
1189 * If an I/O scheduler has been configured and we got a driver
1190 * tag for the next request already, free it again.
1191 */
1192 rq = list_first_entry(list, struct request, queuelist);
1193 blk_mq_put_driver_tag(rq);
1194
1195 spin_lock(&hctx->lock);
1196 list_splice_init(list, &hctx->dispatch);
1197 spin_unlock(&hctx->lock);
1198
1199 /*
1200 * If SCHED_RESTART was set by the caller of this function and
1201 * it is no longer set that means that it was cleared by another
1202 * thread and hence that a queue rerun is needed.
1203 *
1204 * If TAG_WAITING is set that means that an I/O scheduler has
1205 * been configured and another thread is waiting for a driver
1206 * tag. To guarantee fairness, do not rerun this hardware queue
1207 * but let the other thread grab the driver tag.
1208 *
1209 * If no I/O scheduler has been configured it is possible that
1210 * the hardware queue got stopped and restarted before requests
1211 * were pushed back onto the dispatch list. Rerun the queue to
1212 * avoid starvation. Notes:
1213 * - blk_mq_run_hw_queue() checks whether or not a queue has
1214 * been stopped before rerunning a queue.
1215 * - Some but not all block drivers stop a queue before
1216 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1217 * and dm-rq.
1218 */
1219 if (!blk_mq_sched_needs_restart(hctx) &&
1220 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1221 blk_mq_run_hw_queue(hctx, true);
1222 }
1223
1224 return (queued + errors) != 0;
1225 }
1226
1227 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1228 {
1229 int srcu_idx;
1230
1231 /*
1232 * We should be running this queue from one of the CPUs that
1233 * are mapped to it.
1234 */
1235 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1236 cpu_online(hctx->next_cpu));
1237
1238 /*
1239 * We can't run the queue inline with ints disabled. Ensure that
1240 * we catch bad users of this early.
1241 */
1242 WARN_ON_ONCE(in_interrupt());
1243
1244 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1245 rcu_read_lock();
1246 blk_mq_sched_dispatch_requests(hctx);
1247 rcu_read_unlock();
1248 } else {
1249 might_sleep();
1250
1251 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1252 blk_mq_sched_dispatch_requests(hctx);
1253 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1254 }
1255 }
1256
1257 /*
1258 * It'd be great if the workqueue API had a way to pass
1259 * in a mask and had some smarts for more clever placement.
1260 * For now we just round-robin here, switching for every
1261 * BLK_MQ_CPU_WORK_BATCH queued items.
1262 */
1263 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1264 {
1265 if (hctx->queue->nr_hw_queues == 1)
1266 return WORK_CPU_UNBOUND;
1267
1268 if (--hctx->next_cpu_batch <= 0) {
1269 int next_cpu;
1270
1271 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1272 if (next_cpu >= nr_cpu_ids)
1273 next_cpu = cpumask_first(hctx->cpumask);
1274
1275 hctx->next_cpu = next_cpu;
1276 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1277 }
1278
1279 return hctx->next_cpu;
1280 }
1281
1282 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1283 unsigned long msecs)
1284 {
1285 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1286 return;
1287
1288 if (unlikely(blk_mq_hctx_stopped(hctx)))
1289 return;
1290
1291 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1292 int cpu = get_cpu();
1293 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1294 __blk_mq_run_hw_queue(hctx);
1295 put_cpu();
1296 return;
1297 }
1298
1299 put_cpu();
1300 }
1301
1302 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1303 &hctx->run_work,
1304 msecs_to_jiffies(msecs));
1305 }
1306
1307 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1308 {
1309 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1310 }
1311 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1312
1313 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1314 {
1315 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1316 }
1317 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1318
1319 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1320 {
1321 struct blk_mq_hw_ctx *hctx;
1322 int i;
1323
1324 queue_for_each_hw_ctx(q, hctx, i) {
1325 if (!blk_mq_hctx_has_pending(hctx) ||
1326 blk_mq_hctx_stopped(hctx))
1327 continue;
1328
1329 blk_mq_run_hw_queue(hctx, async);
1330 }
1331 }
1332 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1333
1334 /**
1335 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1336 * @q: request queue.
1337 *
1338 * The caller is responsible for serializing this function against
1339 * blk_mq_{start,stop}_hw_queue().
1340 */
1341 bool blk_mq_queue_stopped(struct request_queue *q)
1342 {
1343 struct blk_mq_hw_ctx *hctx;
1344 int i;
1345
1346 queue_for_each_hw_ctx(q, hctx, i)
1347 if (blk_mq_hctx_stopped(hctx))
1348 return true;
1349
1350 return false;
1351 }
1352 EXPORT_SYMBOL(blk_mq_queue_stopped);
1353
1354 /*
1355 * This function is often used for pausing .queue_rq() by driver when
1356 * there isn't enough resource or some conditions aren't satisfied, and
1357 * BLK_STS_RESOURCE is usually returned.
1358 *
1359 * We do not guarantee that dispatch can be drained or blocked
1360 * after blk_mq_stop_hw_queue() returns. Please use
1361 * blk_mq_quiesce_queue() for that requirement.
1362 */
1363 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1364 {
1365 cancel_delayed_work(&hctx->run_work);
1366
1367 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1368 }
1369 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1370
1371 /*
1372 * This function is often used for pausing .queue_rq() by driver when
1373 * there isn't enough resource or some conditions aren't satisfied, and
1374 * BLK_STS_RESOURCE is usually returned.
1375 *
1376 * We do not guarantee that dispatch can be drained or blocked
1377 * after blk_mq_stop_hw_queues() returns. Please use
1378 * blk_mq_quiesce_queue() for that requirement.
1379 */
1380 void blk_mq_stop_hw_queues(struct request_queue *q)
1381 {
1382 struct blk_mq_hw_ctx *hctx;
1383 int i;
1384
1385 queue_for_each_hw_ctx(q, hctx, i)
1386 blk_mq_stop_hw_queue(hctx);
1387 }
1388 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1389
1390 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1391 {
1392 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1393
1394 blk_mq_run_hw_queue(hctx, false);
1395 }
1396 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1397
1398 void blk_mq_start_hw_queues(struct request_queue *q)
1399 {
1400 struct blk_mq_hw_ctx *hctx;
1401 int i;
1402
1403 queue_for_each_hw_ctx(q, hctx, i)
1404 blk_mq_start_hw_queue(hctx);
1405 }
1406 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1407
1408 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1409 {
1410 if (!blk_mq_hctx_stopped(hctx))
1411 return;
1412
1413 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1414 blk_mq_run_hw_queue(hctx, async);
1415 }
1416 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1417
1418 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1419 {
1420 struct blk_mq_hw_ctx *hctx;
1421 int i;
1422
1423 queue_for_each_hw_ctx(q, hctx, i)
1424 blk_mq_start_stopped_hw_queue(hctx, async);
1425 }
1426 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1427
1428 static void blk_mq_run_work_fn(struct work_struct *work)
1429 {
1430 struct blk_mq_hw_ctx *hctx;
1431
1432 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1433
1434 /*
1435 * If we are stopped, don't run the queue. The exception is if
1436 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1437 * the STOPPED bit and run it.
1438 */
1439 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1440 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1441 return;
1442
1443 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1444 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1445 }
1446
1447 __blk_mq_run_hw_queue(hctx);
1448 }
1449
1450
1451 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1452 {
1453 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1454 return;
1455
1456 /*
1457 * Stop the hw queue, then modify currently delayed work.
1458 * This should prevent us from running the queue prematurely.
1459 * Mark the queue as auto-clearing STOPPED when it runs.
1460 */
1461 blk_mq_stop_hw_queue(hctx);
1462 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1463 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1464 &hctx->run_work,
1465 msecs_to_jiffies(msecs));
1466 }
1467 EXPORT_SYMBOL(blk_mq_delay_queue);
1468
1469 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1470 struct request *rq,
1471 bool at_head)
1472 {
1473 struct blk_mq_ctx *ctx = rq->mq_ctx;
1474
1475 lockdep_assert_held(&ctx->lock);
1476
1477 trace_block_rq_insert(hctx->queue, rq);
1478
1479 if (at_head)
1480 list_add(&rq->queuelist, &ctx->rq_list);
1481 else
1482 list_add_tail(&rq->queuelist, &ctx->rq_list);
1483 }
1484
1485 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1486 bool at_head)
1487 {
1488 struct blk_mq_ctx *ctx = rq->mq_ctx;
1489
1490 lockdep_assert_held(&ctx->lock);
1491
1492 __blk_mq_insert_req_list(hctx, rq, at_head);
1493 blk_mq_hctx_mark_pending(hctx, ctx);
1494 }
1495
1496 /*
1497 * Should only be used carefully, when the caller knows we want to
1498 * bypass a potential IO scheduler on the target device.
1499 */
1500 void blk_mq_request_bypass_insert(struct request *rq)
1501 {
1502 struct blk_mq_ctx *ctx = rq->mq_ctx;
1503 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1504
1505 spin_lock(&hctx->lock);
1506 list_add_tail(&rq->queuelist, &hctx->dispatch);
1507 spin_unlock(&hctx->lock);
1508
1509 blk_mq_run_hw_queue(hctx, false);
1510 }
1511
1512 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1513 struct list_head *list)
1514
1515 {
1516 /*
1517 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1518 * offline now
1519 */
1520 spin_lock(&ctx->lock);
1521 while (!list_empty(list)) {
1522 struct request *rq;
1523
1524 rq = list_first_entry(list, struct request, queuelist);
1525 BUG_ON(rq->mq_ctx != ctx);
1526 list_del_init(&rq->queuelist);
1527 __blk_mq_insert_req_list(hctx, rq, false);
1528 }
1529 blk_mq_hctx_mark_pending(hctx, ctx);
1530 spin_unlock(&ctx->lock);
1531 }
1532
1533 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1534 {
1535 struct request *rqa = container_of(a, struct request, queuelist);
1536 struct request *rqb = container_of(b, struct request, queuelist);
1537
1538 return !(rqa->mq_ctx < rqb->mq_ctx ||
1539 (rqa->mq_ctx == rqb->mq_ctx &&
1540 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1541 }
1542
1543 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1544 {
1545 struct blk_mq_ctx *this_ctx;
1546 struct request_queue *this_q;
1547 struct request *rq;
1548 LIST_HEAD(list);
1549 LIST_HEAD(ctx_list);
1550 unsigned int depth;
1551
1552 list_splice_init(&plug->mq_list, &list);
1553
1554 list_sort(NULL, &list, plug_ctx_cmp);
1555
1556 this_q = NULL;
1557 this_ctx = NULL;
1558 depth = 0;
1559
1560 while (!list_empty(&list)) {
1561 rq = list_entry_rq(list.next);
1562 list_del_init(&rq->queuelist);
1563 BUG_ON(!rq->q);
1564 if (rq->mq_ctx != this_ctx) {
1565 if (this_ctx) {
1566 trace_block_unplug(this_q, depth, from_schedule);
1567 blk_mq_sched_insert_requests(this_q, this_ctx,
1568 &ctx_list,
1569 from_schedule);
1570 }
1571
1572 this_ctx = rq->mq_ctx;
1573 this_q = rq->q;
1574 depth = 0;
1575 }
1576
1577 depth++;
1578 list_add_tail(&rq->queuelist, &ctx_list);
1579 }
1580
1581 /*
1582 * If 'this_ctx' is set, we know we have entries to complete
1583 * on 'ctx_list'. Do those.
1584 */
1585 if (this_ctx) {
1586 trace_block_unplug(this_q, depth, from_schedule);
1587 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1588 from_schedule);
1589 }
1590 }
1591
1592 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1593 {
1594 blk_init_request_from_bio(rq, bio);
1595
1596 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1597
1598 blk_account_io_start(rq, true);
1599 }
1600
1601 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1602 struct blk_mq_ctx *ctx,
1603 struct request *rq)
1604 {
1605 spin_lock(&ctx->lock);
1606 __blk_mq_insert_request(hctx, rq, false);
1607 spin_unlock(&ctx->lock);
1608 }
1609
1610 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1611 {
1612 if (rq->tag != -1)
1613 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1614
1615 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1616 }
1617
1618 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1619 struct request *rq,
1620 blk_qc_t *cookie, bool may_sleep)
1621 {
1622 struct request_queue *q = rq->q;
1623 struct blk_mq_queue_data bd = {
1624 .rq = rq,
1625 .last = true,
1626 };
1627 blk_qc_t new_cookie;
1628 blk_status_t ret;
1629 bool run_queue = true;
1630
1631 /* RCU or SRCU read lock is needed before checking quiesced flag */
1632 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1633 run_queue = false;
1634 goto insert;
1635 }
1636
1637 if (q->elevator)
1638 goto insert;
1639
1640 if (!blk_mq_get_driver_tag(rq, NULL, false))
1641 goto insert;
1642
1643 ret = blk_mq_get_dispatch_budget(hctx);
1644 if (ret == BLK_STS_RESOURCE) {
1645 blk_mq_put_driver_tag(rq);
1646 goto insert;
1647 } else if (ret != BLK_STS_OK)
1648 goto fail_rq;
1649
1650 new_cookie = request_to_qc_t(hctx, rq);
1651
1652 /*
1653 * For OK queue, we are done. For error, kill it. Any other
1654 * error (busy), just add it to our list as we previously
1655 * would have done
1656 */
1657 ret = q->mq_ops->queue_rq(hctx, &bd);
1658 switch (ret) {
1659 case BLK_STS_OK:
1660 *cookie = new_cookie;
1661 return;
1662 case BLK_STS_RESOURCE:
1663 __blk_mq_requeue_request(rq);
1664 goto insert;
1665 default:
1666 fail_rq:
1667 *cookie = BLK_QC_T_NONE;
1668 blk_mq_end_request(rq, ret);
1669 return;
1670 }
1671
1672 insert:
1673 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1674 }
1675
1676 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1677 struct request *rq, blk_qc_t *cookie)
1678 {
1679 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1680 rcu_read_lock();
1681 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1682 rcu_read_unlock();
1683 } else {
1684 unsigned int srcu_idx;
1685
1686 might_sleep();
1687
1688 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1689 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1690 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1691 }
1692 }
1693
1694 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1695 {
1696 const int is_sync = op_is_sync(bio->bi_opf);
1697 const int is_flush_fua = op_is_flush(bio->bi_opf);
1698 struct blk_mq_alloc_data data = { .flags = 0 };
1699 struct request *rq;
1700 unsigned int request_count = 0;
1701 struct blk_plug *plug;
1702 struct request *same_queue_rq = NULL;
1703 blk_qc_t cookie;
1704 unsigned int wb_acct;
1705
1706 blk_queue_bounce(q, &bio);
1707
1708 blk_queue_split(q, &bio);
1709
1710 if (!bio_integrity_prep(bio))
1711 return BLK_QC_T_NONE;
1712
1713 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1714 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1715 return BLK_QC_T_NONE;
1716
1717 if (blk_mq_sched_bio_merge(q, bio))
1718 return BLK_QC_T_NONE;
1719
1720 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1721
1722 trace_block_getrq(q, bio, bio->bi_opf);
1723
1724 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1725 if (unlikely(!rq)) {
1726 __wbt_done(q->rq_wb, wb_acct);
1727 if (bio->bi_opf & REQ_NOWAIT)
1728 bio_wouldblock_error(bio);
1729 return BLK_QC_T_NONE;
1730 }
1731
1732 wbt_track(&rq->issue_stat, wb_acct);
1733
1734 cookie = request_to_qc_t(data.hctx, rq);
1735
1736 plug = current->plug;
1737 if (unlikely(is_flush_fua)) {
1738 blk_mq_put_ctx(data.ctx);
1739 blk_mq_bio_to_request(rq, bio);
1740 if (q->elevator) {
1741 blk_mq_sched_insert_request(rq, false, true, true,
1742 true);
1743 } else {
1744 blk_insert_flush(rq);
1745 blk_mq_run_hw_queue(data.hctx, true);
1746 }
1747 } else if (plug && q->nr_hw_queues == 1) {
1748 struct request *last = NULL;
1749
1750 blk_mq_put_ctx(data.ctx);
1751 blk_mq_bio_to_request(rq, bio);
1752
1753 /*
1754 * @request_count may become stale because of schedule
1755 * out, so check the list again.
1756 */
1757 if (list_empty(&plug->mq_list))
1758 request_count = 0;
1759 else if (blk_queue_nomerges(q))
1760 request_count = blk_plug_queued_count(q);
1761
1762 if (!request_count)
1763 trace_block_plug(q);
1764 else
1765 last = list_entry_rq(plug->mq_list.prev);
1766
1767 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1768 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1769 blk_flush_plug_list(plug, false);
1770 trace_block_plug(q);
1771 }
1772
1773 list_add_tail(&rq->queuelist, &plug->mq_list);
1774 } else if (plug && !blk_queue_nomerges(q)) {
1775 blk_mq_bio_to_request(rq, bio);
1776
1777 /*
1778 * We do limited plugging. If the bio can be merged, do that.
1779 * Otherwise the existing request in the plug list will be
1780 * issued. So the plug list will have one request at most
1781 * The plug list might get flushed before this. If that happens,
1782 * the plug list is empty, and same_queue_rq is invalid.
1783 */
1784 if (list_empty(&plug->mq_list))
1785 same_queue_rq = NULL;
1786 if (same_queue_rq)
1787 list_del_init(&same_queue_rq->queuelist);
1788 list_add_tail(&rq->queuelist, &plug->mq_list);
1789
1790 blk_mq_put_ctx(data.ctx);
1791
1792 if (same_queue_rq) {
1793 data.hctx = blk_mq_map_queue(q,
1794 same_queue_rq->mq_ctx->cpu);
1795 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1796 &cookie);
1797 }
1798 } else if (q->nr_hw_queues > 1 && is_sync) {
1799 blk_mq_put_ctx(data.ctx);
1800 blk_mq_bio_to_request(rq, bio);
1801 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1802 } else if (q->elevator) {
1803 blk_mq_put_ctx(data.ctx);
1804 blk_mq_bio_to_request(rq, bio);
1805 blk_mq_sched_insert_request(rq, false, true, true, true);
1806 } else {
1807 blk_mq_put_ctx(data.ctx);
1808 blk_mq_bio_to_request(rq, bio);
1809 blk_mq_queue_io(data.hctx, data.ctx, rq);
1810 blk_mq_run_hw_queue(data.hctx, true);
1811 }
1812
1813 return cookie;
1814 }
1815
1816 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1817 unsigned int hctx_idx)
1818 {
1819 struct page *page;
1820
1821 if (tags->rqs && set->ops->exit_request) {
1822 int i;
1823
1824 for (i = 0; i < tags->nr_tags; i++) {
1825 struct request *rq = tags->static_rqs[i];
1826
1827 if (!rq)
1828 continue;
1829 set->ops->exit_request(set, rq, hctx_idx);
1830 tags->static_rqs[i] = NULL;
1831 }
1832 }
1833
1834 while (!list_empty(&tags->page_list)) {
1835 page = list_first_entry(&tags->page_list, struct page, lru);
1836 list_del_init(&page->lru);
1837 /*
1838 * Remove kmemleak object previously allocated in
1839 * blk_mq_init_rq_map().
1840 */
1841 kmemleak_free(page_address(page));
1842 __free_pages(page, page->private);
1843 }
1844 }
1845
1846 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1847 {
1848 kfree(tags->rqs);
1849 tags->rqs = NULL;
1850 kfree(tags->static_rqs);
1851 tags->static_rqs = NULL;
1852
1853 blk_mq_free_tags(tags);
1854 }
1855
1856 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1857 unsigned int hctx_idx,
1858 unsigned int nr_tags,
1859 unsigned int reserved_tags)
1860 {
1861 struct blk_mq_tags *tags;
1862 int node;
1863
1864 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1865 if (node == NUMA_NO_NODE)
1866 node = set->numa_node;
1867
1868 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1869 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1870 if (!tags)
1871 return NULL;
1872
1873 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1874 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1875 node);
1876 if (!tags->rqs) {
1877 blk_mq_free_tags(tags);
1878 return NULL;
1879 }
1880
1881 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1882 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1883 node);
1884 if (!tags->static_rqs) {
1885 kfree(tags->rqs);
1886 blk_mq_free_tags(tags);
1887 return NULL;
1888 }
1889
1890 return tags;
1891 }
1892
1893 static size_t order_to_size(unsigned int order)
1894 {
1895 return (size_t)PAGE_SIZE << order;
1896 }
1897
1898 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1899 unsigned int hctx_idx, unsigned int depth)
1900 {
1901 unsigned int i, j, entries_per_page, max_order = 4;
1902 size_t rq_size, left;
1903 int node;
1904
1905 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1906 if (node == NUMA_NO_NODE)
1907 node = set->numa_node;
1908
1909 INIT_LIST_HEAD(&tags->page_list);
1910
1911 /*
1912 * rq_size is the size of the request plus driver payload, rounded
1913 * to the cacheline size
1914 */
1915 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1916 cache_line_size());
1917 left = rq_size * depth;
1918
1919 for (i = 0; i < depth; ) {
1920 int this_order = max_order;
1921 struct page *page;
1922 int to_do;
1923 void *p;
1924
1925 while (this_order && left < order_to_size(this_order - 1))
1926 this_order--;
1927
1928 do {
1929 page = alloc_pages_node(node,
1930 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1931 this_order);
1932 if (page)
1933 break;
1934 if (!this_order--)
1935 break;
1936 if (order_to_size(this_order) < rq_size)
1937 break;
1938 } while (1);
1939
1940 if (!page)
1941 goto fail;
1942
1943 page->private = this_order;
1944 list_add_tail(&page->lru, &tags->page_list);
1945
1946 p = page_address(page);
1947 /*
1948 * Allow kmemleak to scan these pages as they contain pointers
1949 * to additional allocations like via ops->init_request().
1950 */
1951 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1952 entries_per_page = order_to_size(this_order) / rq_size;
1953 to_do = min(entries_per_page, depth - i);
1954 left -= to_do * rq_size;
1955 for (j = 0; j < to_do; j++) {
1956 struct request *rq = p;
1957
1958 tags->static_rqs[i] = rq;
1959 if (set->ops->init_request) {
1960 if (set->ops->init_request(set, rq, hctx_idx,
1961 node)) {
1962 tags->static_rqs[i] = NULL;
1963 goto fail;
1964 }
1965 }
1966
1967 p += rq_size;
1968 i++;
1969 }
1970 }
1971 return 0;
1972
1973 fail:
1974 blk_mq_free_rqs(set, tags, hctx_idx);
1975 return -ENOMEM;
1976 }
1977
1978 /*
1979 * 'cpu' is going away. splice any existing rq_list entries from this
1980 * software queue to the hw queue dispatch list, and ensure that it
1981 * gets run.
1982 */
1983 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1984 {
1985 struct blk_mq_hw_ctx *hctx;
1986 struct blk_mq_ctx *ctx;
1987 LIST_HEAD(tmp);
1988
1989 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1990 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1991
1992 spin_lock(&ctx->lock);
1993 if (!list_empty(&ctx->rq_list)) {
1994 list_splice_init(&ctx->rq_list, &tmp);
1995 blk_mq_hctx_clear_pending(hctx, ctx);
1996 }
1997 spin_unlock(&ctx->lock);
1998
1999 if (list_empty(&tmp))
2000 return 0;
2001
2002 spin_lock(&hctx->lock);
2003 list_splice_tail_init(&tmp, &hctx->dispatch);
2004 spin_unlock(&hctx->lock);
2005
2006 blk_mq_run_hw_queue(hctx, true);
2007 return 0;
2008 }
2009
2010 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2011 {
2012 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2013 &hctx->cpuhp_dead);
2014 }
2015
2016 /* hctx->ctxs will be freed in queue's release handler */
2017 static void blk_mq_exit_hctx(struct request_queue *q,
2018 struct blk_mq_tag_set *set,
2019 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2020 {
2021 blk_mq_debugfs_unregister_hctx(hctx);
2022
2023 blk_mq_tag_idle(hctx);
2024
2025 if (set->ops->exit_request)
2026 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2027
2028 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2029
2030 if (set->ops->exit_hctx)
2031 set->ops->exit_hctx(hctx, hctx_idx);
2032
2033 if (hctx->flags & BLK_MQ_F_BLOCKING)
2034 cleanup_srcu_struct(hctx->queue_rq_srcu);
2035
2036 blk_mq_remove_cpuhp(hctx);
2037 blk_free_flush_queue(hctx->fq);
2038 sbitmap_free(&hctx->ctx_map);
2039 }
2040
2041 static void blk_mq_exit_hw_queues(struct request_queue *q,
2042 struct blk_mq_tag_set *set, int nr_queue)
2043 {
2044 struct blk_mq_hw_ctx *hctx;
2045 unsigned int i;
2046
2047 queue_for_each_hw_ctx(q, hctx, i) {
2048 if (i == nr_queue)
2049 break;
2050 blk_mq_exit_hctx(q, set, hctx, i);
2051 }
2052 }
2053
2054 static int blk_mq_init_hctx(struct request_queue *q,
2055 struct blk_mq_tag_set *set,
2056 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2057 {
2058 int node;
2059
2060 node = hctx->numa_node;
2061 if (node == NUMA_NO_NODE)
2062 node = hctx->numa_node = set->numa_node;
2063
2064 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2065 spin_lock_init(&hctx->lock);
2066 INIT_LIST_HEAD(&hctx->dispatch);
2067 hctx->queue = q;
2068 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2069
2070 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2071
2072 hctx->tags = set->tags[hctx_idx];
2073
2074 /*
2075 * Allocate space for all possible cpus to avoid allocation at
2076 * runtime
2077 */
2078 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2079 GFP_KERNEL, node);
2080 if (!hctx->ctxs)
2081 goto unregister_cpu_notifier;
2082
2083 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2084 node))
2085 goto free_ctxs;
2086
2087 hctx->nr_ctx = 0;
2088
2089 if (set->ops->init_hctx &&
2090 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2091 goto free_bitmap;
2092
2093 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2094 goto exit_hctx;
2095
2096 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2097 if (!hctx->fq)
2098 goto sched_exit_hctx;
2099
2100 if (set->ops->init_request &&
2101 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2102 node))
2103 goto free_fq;
2104
2105 if (hctx->flags & BLK_MQ_F_BLOCKING)
2106 init_srcu_struct(hctx->queue_rq_srcu);
2107
2108 blk_mq_debugfs_register_hctx(q, hctx);
2109
2110 return 0;
2111
2112 free_fq:
2113 kfree(hctx->fq);
2114 sched_exit_hctx:
2115 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2116 exit_hctx:
2117 if (set->ops->exit_hctx)
2118 set->ops->exit_hctx(hctx, hctx_idx);
2119 free_bitmap:
2120 sbitmap_free(&hctx->ctx_map);
2121 free_ctxs:
2122 kfree(hctx->ctxs);
2123 unregister_cpu_notifier:
2124 blk_mq_remove_cpuhp(hctx);
2125 return -1;
2126 }
2127
2128 static void blk_mq_init_cpu_queues(struct request_queue *q,
2129 unsigned int nr_hw_queues)
2130 {
2131 unsigned int i;
2132
2133 for_each_possible_cpu(i) {
2134 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2135 struct blk_mq_hw_ctx *hctx;
2136
2137 __ctx->cpu = i;
2138 spin_lock_init(&__ctx->lock);
2139 INIT_LIST_HEAD(&__ctx->rq_list);
2140 __ctx->queue = q;
2141
2142 /* If the cpu isn't present, the cpu is mapped to first hctx */
2143 if (!cpu_present(i))
2144 continue;
2145
2146 hctx = blk_mq_map_queue(q, i);
2147
2148 /*
2149 * Set local node, IFF we have more than one hw queue. If
2150 * not, we remain on the home node of the device
2151 */
2152 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2153 hctx->numa_node = local_memory_node(cpu_to_node(i));
2154 }
2155 }
2156
2157 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2158 {
2159 int ret = 0;
2160
2161 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2162 set->queue_depth, set->reserved_tags);
2163 if (!set->tags[hctx_idx])
2164 return false;
2165
2166 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2167 set->queue_depth);
2168 if (!ret)
2169 return true;
2170
2171 blk_mq_free_rq_map(set->tags[hctx_idx]);
2172 set->tags[hctx_idx] = NULL;
2173 return false;
2174 }
2175
2176 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2177 unsigned int hctx_idx)
2178 {
2179 if (set->tags[hctx_idx]) {
2180 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2181 blk_mq_free_rq_map(set->tags[hctx_idx]);
2182 set->tags[hctx_idx] = NULL;
2183 }
2184 }
2185
2186 static void blk_mq_map_swqueue(struct request_queue *q)
2187 {
2188 unsigned int i, hctx_idx;
2189 struct blk_mq_hw_ctx *hctx;
2190 struct blk_mq_ctx *ctx;
2191 struct blk_mq_tag_set *set = q->tag_set;
2192
2193 /*
2194 * Avoid others reading imcomplete hctx->cpumask through sysfs
2195 */
2196 mutex_lock(&q->sysfs_lock);
2197
2198 queue_for_each_hw_ctx(q, hctx, i) {
2199 cpumask_clear(hctx->cpumask);
2200 hctx->nr_ctx = 0;
2201 }
2202
2203 /*
2204 * Map software to hardware queues.
2205 *
2206 * If the cpu isn't present, the cpu is mapped to first hctx.
2207 */
2208 for_each_present_cpu(i) {
2209 hctx_idx = q->mq_map[i];
2210 /* unmapped hw queue can be remapped after CPU topo changed */
2211 if (!set->tags[hctx_idx] &&
2212 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2213 /*
2214 * If tags initialization fail for some hctx,
2215 * that hctx won't be brought online. In this
2216 * case, remap the current ctx to hctx[0] which
2217 * is guaranteed to always have tags allocated
2218 */
2219 q->mq_map[i] = 0;
2220 }
2221
2222 ctx = per_cpu_ptr(q->queue_ctx, i);
2223 hctx = blk_mq_map_queue(q, i);
2224
2225 cpumask_set_cpu(i, hctx->cpumask);
2226 ctx->index_hw = hctx->nr_ctx;
2227 hctx->ctxs[hctx->nr_ctx++] = ctx;
2228 }
2229
2230 mutex_unlock(&q->sysfs_lock);
2231
2232 queue_for_each_hw_ctx(q, hctx, i) {
2233 /*
2234 * If no software queues are mapped to this hardware queue,
2235 * disable it and free the request entries.
2236 */
2237 if (!hctx->nr_ctx) {
2238 /* Never unmap queue 0. We need it as a
2239 * fallback in case of a new remap fails
2240 * allocation
2241 */
2242 if (i && set->tags[i])
2243 blk_mq_free_map_and_requests(set, i);
2244
2245 hctx->tags = NULL;
2246 continue;
2247 }
2248
2249 hctx->tags = set->tags[i];
2250 WARN_ON(!hctx->tags);
2251
2252 /*
2253 * Set the map size to the number of mapped software queues.
2254 * This is more accurate and more efficient than looping
2255 * over all possibly mapped software queues.
2256 */
2257 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2258
2259 /*
2260 * Initialize batch roundrobin counts
2261 */
2262 hctx->next_cpu = cpumask_first(hctx->cpumask);
2263 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2264 }
2265 }
2266
2267 /*
2268 * Caller needs to ensure that we're either frozen/quiesced, or that
2269 * the queue isn't live yet.
2270 */
2271 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2272 {
2273 struct blk_mq_hw_ctx *hctx;
2274 int i;
2275
2276 queue_for_each_hw_ctx(q, hctx, i) {
2277 if (shared) {
2278 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2279 atomic_inc(&q->shared_hctx_restart);
2280 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2281 } else {
2282 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2283 atomic_dec(&q->shared_hctx_restart);
2284 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2285 }
2286 }
2287 }
2288
2289 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2290 bool shared)
2291 {
2292 struct request_queue *q;
2293
2294 lockdep_assert_held(&set->tag_list_lock);
2295
2296 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2297 blk_mq_freeze_queue(q);
2298 queue_set_hctx_shared(q, shared);
2299 blk_mq_unfreeze_queue(q);
2300 }
2301 }
2302
2303 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2304 {
2305 struct blk_mq_tag_set *set = q->tag_set;
2306
2307 mutex_lock(&set->tag_list_lock);
2308 list_del_rcu(&q->tag_set_list);
2309 INIT_LIST_HEAD(&q->tag_set_list);
2310 if (list_is_singular(&set->tag_list)) {
2311 /* just transitioned to unshared */
2312 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2313 /* update existing queue */
2314 blk_mq_update_tag_set_depth(set, false);
2315 }
2316 mutex_unlock(&set->tag_list_lock);
2317
2318 synchronize_rcu();
2319 }
2320
2321 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2322 struct request_queue *q)
2323 {
2324 q->tag_set = set;
2325
2326 mutex_lock(&set->tag_list_lock);
2327
2328 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2329 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2330 set->flags |= BLK_MQ_F_TAG_SHARED;
2331 /* update existing queue */
2332 blk_mq_update_tag_set_depth(set, true);
2333 }
2334 if (set->flags & BLK_MQ_F_TAG_SHARED)
2335 queue_set_hctx_shared(q, true);
2336 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2337
2338 mutex_unlock(&set->tag_list_lock);
2339 }
2340
2341 /*
2342 * It is the actual release handler for mq, but we do it from
2343 * request queue's release handler for avoiding use-after-free
2344 * and headache because q->mq_kobj shouldn't have been introduced,
2345 * but we can't group ctx/kctx kobj without it.
2346 */
2347 void blk_mq_release(struct request_queue *q)
2348 {
2349 struct blk_mq_hw_ctx *hctx;
2350 unsigned int i;
2351
2352 /* hctx kobj stays in hctx */
2353 queue_for_each_hw_ctx(q, hctx, i) {
2354 if (!hctx)
2355 continue;
2356 kobject_put(&hctx->kobj);
2357 }
2358
2359 q->mq_map = NULL;
2360
2361 kfree(q->queue_hw_ctx);
2362
2363 /*
2364 * release .mq_kobj and sw queue's kobject now because
2365 * both share lifetime with request queue.
2366 */
2367 blk_mq_sysfs_deinit(q);
2368
2369 free_percpu(q->queue_ctx);
2370 }
2371
2372 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2373 {
2374 struct request_queue *uninit_q, *q;
2375
2376 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2377 if (!uninit_q)
2378 return ERR_PTR(-ENOMEM);
2379
2380 q = blk_mq_init_allocated_queue(set, uninit_q);
2381 if (IS_ERR(q))
2382 blk_cleanup_queue(uninit_q);
2383
2384 return q;
2385 }
2386 EXPORT_SYMBOL(blk_mq_init_queue);
2387
2388 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2389 {
2390 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2391
2392 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2393 __alignof__(struct blk_mq_hw_ctx)) !=
2394 sizeof(struct blk_mq_hw_ctx));
2395
2396 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2397 hw_ctx_size += sizeof(struct srcu_struct);
2398
2399 return hw_ctx_size;
2400 }
2401
2402 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2403 struct request_queue *q)
2404 {
2405 int i, j;
2406 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2407
2408 blk_mq_sysfs_unregister(q);
2409 for (i = 0; i < set->nr_hw_queues; i++) {
2410 int node;
2411
2412 if (hctxs[i])
2413 continue;
2414
2415 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2416 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2417 GFP_KERNEL, node);
2418 if (!hctxs[i])
2419 break;
2420
2421 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2422 node)) {
2423 kfree(hctxs[i]);
2424 hctxs[i] = NULL;
2425 break;
2426 }
2427
2428 atomic_set(&hctxs[i]->nr_active, 0);
2429 hctxs[i]->numa_node = node;
2430 hctxs[i]->queue_num = i;
2431
2432 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2433 free_cpumask_var(hctxs[i]->cpumask);
2434 kfree(hctxs[i]);
2435 hctxs[i] = NULL;
2436 break;
2437 }
2438 blk_mq_hctx_kobj_init(hctxs[i]);
2439 }
2440 for (j = i; j < q->nr_hw_queues; j++) {
2441 struct blk_mq_hw_ctx *hctx = hctxs[j];
2442
2443 if (hctx) {
2444 if (hctx->tags)
2445 blk_mq_free_map_and_requests(set, j);
2446 blk_mq_exit_hctx(q, set, hctx, j);
2447 kobject_put(&hctx->kobj);
2448 hctxs[j] = NULL;
2449
2450 }
2451 }
2452 q->nr_hw_queues = i;
2453 blk_mq_sysfs_register(q);
2454 }
2455
2456 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2457 struct request_queue *q)
2458 {
2459 /* mark the queue as mq asap */
2460 q->mq_ops = set->ops;
2461
2462 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2463 blk_mq_poll_stats_bkt,
2464 BLK_MQ_POLL_STATS_BKTS, q);
2465 if (!q->poll_cb)
2466 goto err_exit;
2467
2468 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2469 if (!q->queue_ctx)
2470 goto err_exit;
2471
2472 /* init q->mq_kobj and sw queues' kobjects */
2473 blk_mq_sysfs_init(q);
2474
2475 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2476 GFP_KERNEL, set->numa_node);
2477 if (!q->queue_hw_ctx)
2478 goto err_percpu;
2479
2480 q->mq_map = set->mq_map;
2481
2482 blk_mq_realloc_hw_ctxs(set, q);
2483 if (!q->nr_hw_queues)
2484 goto err_hctxs;
2485
2486 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2487 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2488
2489 q->nr_queues = nr_cpu_ids;
2490
2491 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2492
2493 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2494 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2495
2496 q->sg_reserved_size = INT_MAX;
2497
2498 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2499 INIT_LIST_HEAD(&q->requeue_list);
2500 spin_lock_init(&q->requeue_lock);
2501
2502 blk_queue_make_request(q, blk_mq_make_request);
2503 if (q->mq_ops->poll)
2504 q->poll_fn = blk_mq_poll;
2505
2506 /*
2507 * Do this after blk_queue_make_request() overrides it...
2508 */
2509 q->nr_requests = set->queue_depth;
2510
2511 /*
2512 * Default to classic polling
2513 */
2514 q->poll_nsec = -1;
2515
2516 if (set->ops->complete)
2517 blk_queue_softirq_done(q, set->ops->complete);
2518
2519 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2520 blk_mq_add_queue_tag_set(set, q);
2521 blk_mq_map_swqueue(q);
2522
2523 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2524 int ret;
2525
2526 ret = blk_mq_sched_init(q);
2527 if (ret)
2528 return ERR_PTR(ret);
2529 }
2530
2531 return q;
2532
2533 err_hctxs:
2534 kfree(q->queue_hw_ctx);
2535 err_percpu:
2536 free_percpu(q->queue_ctx);
2537 err_exit:
2538 q->mq_ops = NULL;
2539 return ERR_PTR(-ENOMEM);
2540 }
2541 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2542
2543 void blk_mq_free_queue(struct request_queue *q)
2544 {
2545 struct blk_mq_tag_set *set = q->tag_set;
2546
2547 blk_mq_del_queue_tag_set(q);
2548 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2549 }
2550
2551 /* Basically redo blk_mq_init_queue with queue frozen */
2552 static void blk_mq_queue_reinit(struct request_queue *q)
2553 {
2554 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2555
2556 blk_mq_debugfs_unregister_hctxs(q);
2557 blk_mq_sysfs_unregister(q);
2558
2559 /*
2560 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2561 * we should change hctx numa_node according to new topology (this
2562 * involves free and re-allocate memory, worthy doing?)
2563 */
2564
2565 blk_mq_map_swqueue(q);
2566
2567 blk_mq_sysfs_register(q);
2568 blk_mq_debugfs_register_hctxs(q);
2569 }
2570
2571 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2572 {
2573 int i;
2574
2575 for (i = 0; i < set->nr_hw_queues; i++)
2576 if (!__blk_mq_alloc_rq_map(set, i))
2577 goto out_unwind;
2578
2579 return 0;
2580
2581 out_unwind:
2582 while (--i >= 0)
2583 blk_mq_free_rq_map(set->tags[i]);
2584
2585 return -ENOMEM;
2586 }
2587
2588 /*
2589 * Allocate the request maps associated with this tag_set. Note that this
2590 * may reduce the depth asked for, if memory is tight. set->queue_depth
2591 * will be updated to reflect the allocated depth.
2592 */
2593 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2594 {
2595 unsigned int depth;
2596 int err;
2597
2598 depth = set->queue_depth;
2599 do {
2600 err = __blk_mq_alloc_rq_maps(set);
2601 if (!err)
2602 break;
2603
2604 set->queue_depth >>= 1;
2605 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2606 err = -ENOMEM;
2607 break;
2608 }
2609 } while (set->queue_depth);
2610
2611 if (!set->queue_depth || err) {
2612 pr_err("blk-mq: failed to allocate request map\n");
2613 return -ENOMEM;
2614 }
2615
2616 if (depth != set->queue_depth)
2617 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2618 depth, set->queue_depth);
2619
2620 return 0;
2621 }
2622
2623 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2624 {
2625 if (set->ops->map_queues)
2626 return set->ops->map_queues(set);
2627 else
2628 return blk_mq_map_queues(set);
2629 }
2630
2631 /*
2632 * Alloc a tag set to be associated with one or more request queues.
2633 * May fail with EINVAL for various error conditions. May adjust the
2634 * requested depth down, if if it too large. In that case, the set
2635 * value will be stored in set->queue_depth.
2636 */
2637 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2638 {
2639 int ret;
2640
2641 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2642
2643 if (!set->nr_hw_queues)
2644 return -EINVAL;
2645 if (!set->queue_depth)
2646 return -EINVAL;
2647 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2648 return -EINVAL;
2649
2650 if (!set->ops->queue_rq)
2651 return -EINVAL;
2652
2653 if (!set->ops->get_budget ^ !set->ops->put_budget)
2654 return -EINVAL;
2655
2656 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2657 pr_info("blk-mq: reduced tag depth to %u\n",
2658 BLK_MQ_MAX_DEPTH);
2659 set->queue_depth = BLK_MQ_MAX_DEPTH;
2660 }
2661
2662 /*
2663 * If a crashdump is active, then we are potentially in a very
2664 * memory constrained environment. Limit us to 1 queue and
2665 * 64 tags to prevent using too much memory.
2666 */
2667 if (is_kdump_kernel()) {
2668 set->nr_hw_queues = 1;
2669 set->queue_depth = min(64U, set->queue_depth);
2670 }
2671 /*
2672 * There is no use for more h/w queues than cpus.
2673 */
2674 if (set->nr_hw_queues > nr_cpu_ids)
2675 set->nr_hw_queues = nr_cpu_ids;
2676
2677 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2678 GFP_KERNEL, set->numa_node);
2679 if (!set->tags)
2680 return -ENOMEM;
2681
2682 ret = -ENOMEM;
2683 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2684 GFP_KERNEL, set->numa_node);
2685 if (!set->mq_map)
2686 goto out_free_tags;
2687
2688 ret = blk_mq_update_queue_map(set);
2689 if (ret)
2690 goto out_free_mq_map;
2691
2692 ret = blk_mq_alloc_rq_maps(set);
2693 if (ret)
2694 goto out_free_mq_map;
2695
2696 mutex_init(&set->tag_list_lock);
2697 INIT_LIST_HEAD(&set->tag_list);
2698
2699 return 0;
2700
2701 out_free_mq_map:
2702 kfree(set->mq_map);
2703 set->mq_map = NULL;
2704 out_free_tags:
2705 kfree(set->tags);
2706 set->tags = NULL;
2707 return ret;
2708 }
2709 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2710
2711 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2712 {
2713 int i;
2714
2715 for (i = 0; i < nr_cpu_ids; i++)
2716 blk_mq_free_map_and_requests(set, i);
2717
2718 kfree(set->mq_map);
2719 set->mq_map = NULL;
2720
2721 kfree(set->tags);
2722 set->tags = NULL;
2723 }
2724 EXPORT_SYMBOL(blk_mq_free_tag_set);
2725
2726 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2727 {
2728 struct blk_mq_tag_set *set = q->tag_set;
2729 struct blk_mq_hw_ctx *hctx;
2730 int i, ret;
2731
2732 if (!set)
2733 return -EINVAL;
2734
2735 blk_mq_freeze_queue(q);
2736
2737 ret = 0;
2738 queue_for_each_hw_ctx(q, hctx, i) {
2739 if (!hctx->tags)
2740 continue;
2741 /*
2742 * If we're using an MQ scheduler, just update the scheduler
2743 * queue depth. This is similar to what the old code would do.
2744 */
2745 if (!hctx->sched_tags) {
2746 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2747 min(nr, set->queue_depth),
2748 false);
2749 } else {
2750 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2751 nr, true);
2752 }
2753 if (ret)
2754 break;
2755 }
2756
2757 if (!ret)
2758 q->nr_requests = nr;
2759
2760 blk_mq_unfreeze_queue(q);
2761
2762 return ret;
2763 }
2764
2765 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2766 int nr_hw_queues)
2767 {
2768 struct request_queue *q;
2769
2770 lockdep_assert_held(&set->tag_list_lock);
2771
2772 if (nr_hw_queues > nr_cpu_ids)
2773 nr_hw_queues = nr_cpu_ids;
2774 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2775 return;
2776
2777 list_for_each_entry(q, &set->tag_list, tag_set_list)
2778 blk_mq_freeze_queue(q);
2779
2780 set->nr_hw_queues = nr_hw_queues;
2781 blk_mq_update_queue_map(set);
2782 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2783 blk_mq_realloc_hw_ctxs(set, q);
2784 blk_mq_queue_reinit(q);
2785 }
2786
2787 list_for_each_entry(q, &set->tag_list, tag_set_list)
2788 blk_mq_unfreeze_queue(q);
2789 }
2790
2791 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2792 {
2793 mutex_lock(&set->tag_list_lock);
2794 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2795 mutex_unlock(&set->tag_list_lock);
2796 }
2797 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2798
2799 /* Enable polling stats and return whether they were already enabled. */
2800 static bool blk_poll_stats_enable(struct request_queue *q)
2801 {
2802 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2803 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2804 return true;
2805 blk_stat_add_callback(q, q->poll_cb);
2806 return false;
2807 }
2808
2809 static void blk_mq_poll_stats_start(struct request_queue *q)
2810 {
2811 /*
2812 * We don't arm the callback if polling stats are not enabled or the
2813 * callback is already active.
2814 */
2815 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2816 blk_stat_is_active(q->poll_cb))
2817 return;
2818
2819 blk_stat_activate_msecs(q->poll_cb, 100);
2820 }
2821
2822 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2823 {
2824 struct request_queue *q = cb->data;
2825 int bucket;
2826
2827 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2828 if (cb->stat[bucket].nr_samples)
2829 q->poll_stat[bucket] = cb->stat[bucket];
2830 }
2831 }
2832
2833 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2834 struct blk_mq_hw_ctx *hctx,
2835 struct request *rq)
2836 {
2837 unsigned long ret = 0;
2838 int bucket;
2839
2840 /*
2841 * If stats collection isn't on, don't sleep but turn it on for
2842 * future users
2843 */
2844 if (!blk_poll_stats_enable(q))
2845 return 0;
2846
2847 /*
2848 * As an optimistic guess, use half of the mean service time
2849 * for this type of request. We can (and should) make this smarter.
2850 * For instance, if the completion latencies are tight, we can
2851 * get closer than just half the mean. This is especially
2852 * important on devices where the completion latencies are longer
2853 * than ~10 usec. We do use the stats for the relevant IO size
2854 * if available which does lead to better estimates.
2855 */
2856 bucket = blk_mq_poll_stats_bkt(rq);
2857 if (bucket < 0)
2858 return ret;
2859
2860 if (q->poll_stat[bucket].nr_samples)
2861 ret = (q->poll_stat[bucket].mean + 1) / 2;
2862
2863 return ret;
2864 }
2865
2866 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2867 struct blk_mq_hw_ctx *hctx,
2868 struct request *rq)
2869 {
2870 struct hrtimer_sleeper hs;
2871 enum hrtimer_mode mode;
2872 unsigned int nsecs;
2873 ktime_t kt;
2874
2875 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2876 return false;
2877
2878 /*
2879 * poll_nsec can be:
2880 *
2881 * -1: don't ever hybrid sleep
2882 * 0: use half of prev avg
2883 * >0: use this specific value
2884 */
2885 if (q->poll_nsec == -1)
2886 return false;
2887 else if (q->poll_nsec > 0)
2888 nsecs = q->poll_nsec;
2889 else
2890 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2891
2892 if (!nsecs)
2893 return false;
2894
2895 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2896
2897 /*
2898 * This will be replaced with the stats tracking code, using
2899 * 'avg_completion_time / 2' as the pre-sleep target.
2900 */
2901 kt = nsecs;
2902
2903 mode = HRTIMER_MODE_REL;
2904 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2905 hrtimer_set_expires(&hs.timer, kt);
2906
2907 hrtimer_init_sleeper(&hs, current);
2908 do {
2909 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2910 break;
2911 set_current_state(TASK_UNINTERRUPTIBLE);
2912 hrtimer_start_expires(&hs.timer, mode);
2913 if (hs.task)
2914 io_schedule();
2915 hrtimer_cancel(&hs.timer);
2916 mode = HRTIMER_MODE_ABS;
2917 } while (hs.task && !signal_pending(current));
2918
2919 __set_current_state(TASK_RUNNING);
2920 destroy_hrtimer_on_stack(&hs.timer);
2921 return true;
2922 }
2923
2924 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2925 {
2926 struct request_queue *q = hctx->queue;
2927 long state;
2928
2929 /*
2930 * If we sleep, have the caller restart the poll loop to reset
2931 * the state. Like for the other success return cases, the
2932 * caller is responsible for checking if the IO completed. If
2933 * the IO isn't complete, we'll get called again and will go
2934 * straight to the busy poll loop.
2935 */
2936 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2937 return true;
2938
2939 hctx->poll_considered++;
2940
2941 state = current->state;
2942 while (!need_resched()) {
2943 int ret;
2944
2945 hctx->poll_invoked++;
2946
2947 ret = q->mq_ops->poll(hctx, rq->tag);
2948 if (ret > 0) {
2949 hctx->poll_success++;
2950 set_current_state(TASK_RUNNING);
2951 return true;
2952 }
2953
2954 if (signal_pending_state(state, current))
2955 set_current_state(TASK_RUNNING);
2956
2957 if (current->state == TASK_RUNNING)
2958 return true;
2959 if (ret < 0)
2960 break;
2961 cpu_relax();
2962 }
2963
2964 return false;
2965 }
2966
2967 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2968 {
2969 struct blk_mq_hw_ctx *hctx;
2970 struct request *rq;
2971
2972 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2973 return false;
2974
2975 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2976 if (!blk_qc_t_is_internal(cookie))
2977 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2978 else {
2979 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2980 /*
2981 * With scheduling, if the request has completed, we'll
2982 * get a NULL return here, as we clear the sched tag when
2983 * that happens. The request still remains valid, like always,
2984 * so we should be safe with just the NULL check.
2985 */
2986 if (!rq)
2987 return false;
2988 }
2989
2990 return __blk_mq_poll(hctx, rq);
2991 }
2992
2993 static int __init blk_mq_init(void)
2994 {
2995 /*
2996 * See comment in block/blk.h rq_atomic_flags enum
2997 */
2998 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2999 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3000
3001 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3002 blk_mq_hctx_notify_dead);
3003 return 0;
3004 }
3005 subsys_initcall(blk_mq_init);