]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: export some helpers we need to the scheduling framework
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
38
39 /*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44 return sbitmap_any_bit_set(&hctx->ctx_map);
45 }
46
47 /*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 }
56
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59 {
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 }
62
63 void blk_mq_freeze_queue_start(struct request_queue *q)
64 {
65 int freeze_depth;
66
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
71 }
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
76 {
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 }
79
80 /*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
84 void blk_freeze_queue(struct request_queue *q)
85 {
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95 }
96
97 void blk_mq_freeze_queue(struct request_queue *q)
98 {
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106
107 void blk_mq_unfreeze_queue(struct request_queue *q)
108 {
109 int freeze_depth;
110
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
116 }
117 }
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119
120 /**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128 void blk_mq_quiesce_queue(struct request_queue *q)
129 {
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144 }
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
147 void blk_mq_wake_waiters(struct request_queue *q)
148 {
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
162 }
163
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165 {
166 return blk_mq_has_free_tags(hctx->tags);
167 }
168 EXPORT_SYMBOL(blk_mq_can_queue);
169
170 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
172 {
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
176 rq->mq_ctx = ctx;
177 rq->cmd_flags = op;
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
184 rq->rq_disk = NULL;
185 rq->part = NULL;
186 rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
189 set_start_time_ns(rq);
190 rq->io_start_time_ns = 0;
191 #endif
192 rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195 #endif
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
199
200 rq->cmd = rq->__cmd;
201
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
209
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
214 ctx->rq_dispatched[op_is_sync(op)]++;
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
217
218 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
219 unsigned int op)
220 {
221 struct request *rq;
222 unsigned int tag;
223
224 tag = blk_mq_get_tag(data);
225 if (tag != BLK_MQ_TAG_FAIL) {
226 rq = data->hctx->tags->rqs[tag];
227
228 if (blk_mq_tag_busy(data->hctx)) {
229 rq->rq_flags = RQF_MQ_INFLIGHT;
230 atomic_inc(&data->hctx->nr_active);
231 }
232
233 rq->tag = tag;
234 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
235 return rq;
236 }
237
238 return NULL;
239 }
240 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
241
242 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
243 unsigned int flags)
244 {
245 struct blk_mq_ctx *ctx;
246 struct blk_mq_hw_ctx *hctx;
247 struct request *rq;
248 struct blk_mq_alloc_data alloc_data;
249 int ret;
250
251 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
252 if (ret)
253 return ERR_PTR(ret);
254
255 ctx = blk_mq_get_ctx(q);
256 hctx = blk_mq_map_queue(q, ctx->cpu);
257 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258 rq = __blk_mq_alloc_request(&alloc_data, rw);
259 blk_mq_put_ctx(ctx);
260
261 if (!rq) {
262 blk_queue_exit(q);
263 return ERR_PTR(-EWOULDBLOCK);
264 }
265
266 rq->__data_len = 0;
267 rq->__sector = (sector_t) -1;
268 rq->bio = rq->biotail = NULL;
269 return rq;
270 }
271 EXPORT_SYMBOL(blk_mq_alloc_request);
272
273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
274 unsigned int flags, unsigned int hctx_idx)
275 {
276 struct blk_mq_hw_ctx *hctx;
277 struct blk_mq_ctx *ctx;
278 struct request *rq;
279 struct blk_mq_alloc_data alloc_data;
280 int ret;
281
282 /*
283 * If the tag allocator sleeps we could get an allocation for a
284 * different hardware context. No need to complicate the low level
285 * allocator for this for the rare use case of a command tied to
286 * a specific queue.
287 */
288 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
289 return ERR_PTR(-EINVAL);
290
291 if (hctx_idx >= q->nr_hw_queues)
292 return ERR_PTR(-EIO);
293
294 ret = blk_queue_enter(q, true);
295 if (ret)
296 return ERR_PTR(ret);
297
298 /*
299 * Check if the hardware context is actually mapped to anything.
300 * If not tell the caller that it should skip this queue.
301 */
302 hctx = q->queue_hw_ctx[hctx_idx];
303 if (!blk_mq_hw_queue_mapped(hctx)) {
304 ret = -EXDEV;
305 goto out_queue_exit;
306 }
307 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
308
309 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310 rq = __blk_mq_alloc_request(&alloc_data, rw);
311 if (!rq) {
312 ret = -EWOULDBLOCK;
313 goto out_queue_exit;
314 }
315
316 return rq;
317
318 out_queue_exit:
319 blk_queue_exit(q);
320 return ERR_PTR(ret);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
323
324 void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
325 struct request *rq)
326 {
327 const int tag = rq->tag;
328 struct request_queue *q = rq->q;
329
330 if (rq->rq_flags & RQF_MQ_INFLIGHT)
331 atomic_dec(&hctx->nr_active);
332
333 wbt_done(q->rq_wb, &rq->issue_stat);
334 rq->rq_flags = 0;
335
336 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 blk_mq_put_tag(hctx, ctx, tag);
339 blk_queue_exit(q);
340 }
341
342 static void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx,
343 struct request *rq)
344 {
345 struct blk_mq_ctx *ctx = rq->mq_ctx;
346
347 ctx->rq_completed[rq_is_sync(rq)]++;
348 __blk_mq_free_request(hctx, ctx, rq);
349 }
350
351 void blk_mq_free_request(struct request *rq)
352 {
353 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
354 }
355 EXPORT_SYMBOL_GPL(blk_mq_free_request);
356
357 inline void __blk_mq_end_request(struct request *rq, int error)
358 {
359 blk_account_io_done(rq);
360
361 if (rq->end_io) {
362 wbt_done(rq->q->rq_wb, &rq->issue_stat);
363 rq->end_io(rq, error);
364 } else {
365 if (unlikely(blk_bidi_rq(rq)))
366 blk_mq_free_request(rq->next_rq);
367 blk_mq_free_request(rq);
368 }
369 }
370 EXPORT_SYMBOL(__blk_mq_end_request);
371
372 void blk_mq_end_request(struct request *rq, int error)
373 {
374 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
375 BUG();
376 __blk_mq_end_request(rq, error);
377 }
378 EXPORT_SYMBOL(blk_mq_end_request);
379
380 static void __blk_mq_complete_request_remote(void *data)
381 {
382 struct request *rq = data;
383
384 rq->q->softirq_done_fn(rq);
385 }
386
387 static void blk_mq_ipi_complete_request(struct request *rq)
388 {
389 struct blk_mq_ctx *ctx = rq->mq_ctx;
390 bool shared = false;
391 int cpu;
392
393 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
394 rq->q->softirq_done_fn(rq);
395 return;
396 }
397
398 cpu = get_cpu();
399 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
400 shared = cpus_share_cache(cpu, ctx->cpu);
401
402 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
403 rq->csd.func = __blk_mq_complete_request_remote;
404 rq->csd.info = rq;
405 rq->csd.flags = 0;
406 smp_call_function_single_async(ctx->cpu, &rq->csd);
407 } else {
408 rq->q->softirq_done_fn(rq);
409 }
410 put_cpu();
411 }
412
413 static void blk_mq_stat_add(struct request *rq)
414 {
415 if (rq->rq_flags & RQF_STATS) {
416 /*
417 * We could rq->mq_ctx here, but there's less of a risk
418 * of races if we have the completion event add the stats
419 * to the local software queue.
420 */
421 struct blk_mq_ctx *ctx;
422
423 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
424 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
425 }
426 }
427
428 static void __blk_mq_complete_request(struct request *rq)
429 {
430 struct request_queue *q = rq->q;
431
432 blk_mq_stat_add(rq);
433
434 if (!q->softirq_done_fn)
435 blk_mq_end_request(rq, rq->errors);
436 else
437 blk_mq_ipi_complete_request(rq);
438 }
439
440 /**
441 * blk_mq_complete_request - end I/O on a request
442 * @rq: the request being processed
443 *
444 * Description:
445 * Ends all I/O on a request. It does not handle partial completions.
446 * The actual completion happens out-of-order, through a IPI handler.
447 **/
448 void blk_mq_complete_request(struct request *rq, int error)
449 {
450 struct request_queue *q = rq->q;
451
452 if (unlikely(blk_should_fake_timeout(q)))
453 return;
454 if (!blk_mark_rq_complete(rq)) {
455 rq->errors = error;
456 __blk_mq_complete_request(rq);
457 }
458 }
459 EXPORT_SYMBOL(blk_mq_complete_request);
460
461 int blk_mq_request_started(struct request *rq)
462 {
463 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
464 }
465 EXPORT_SYMBOL_GPL(blk_mq_request_started);
466
467 void blk_mq_start_request(struct request *rq)
468 {
469 struct request_queue *q = rq->q;
470
471 trace_block_rq_issue(q, rq);
472
473 rq->resid_len = blk_rq_bytes(rq);
474 if (unlikely(blk_bidi_rq(rq)))
475 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
476
477 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
478 blk_stat_set_issue_time(&rq->issue_stat);
479 rq->rq_flags |= RQF_STATS;
480 wbt_issue(q->rq_wb, &rq->issue_stat);
481 }
482
483 blk_add_timer(rq);
484
485 /*
486 * Ensure that ->deadline is visible before set the started
487 * flag and clear the completed flag.
488 */
489 smp_mb__before_atomic();
490
491 /*
492 * Mark us as started and clear complete. Complete might have been
493 * set if requeue raced with timeout, which then marked it as
494 * complete. So be sure to clear complete again when we start
495 * the request, otherwise we'll ignore the completion event.
496 */
497 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
498 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
499 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
500 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
501
502 if (q->dma_drain_size && blk_rq_bytes(rq)) {
503 /*
504 * Make sure space for the drain appears. We know we can do
505 * this because max_hw_segments has been adjusted to be one
506 * fewer than the device can handle.
507 */
508 rq->nr_phys_segments++;
509 }
510 }
511 EXPORT_SYMBOL(blk_mq_start_request);
512
513 static void __blk_mq_requeue_request(struct request *rq)
514 {
515 struct request_queue *q = rq->q;
516
517 trace_block_rq_requeue(q, rq);
518 wbt_requeue(q->rq_wb, &rq->issue_stat);
519
520 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
521 if (q->dma_drain_size && blk_rq_bytes(rq))
522 rq->nr_phys_segments--;
523 }
524 }
525
526 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
527 {
528 __blk_mq_requeue_request(rq);
529
530 BUG_ON(blk_queued_rq(rq));
531 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
532 }
533 EXPORT_SYMBOL(blk_mq_requeue_request);
534
535 static void blk_mq_requeue_work(struct work_struct *work)
536 {
537 struct request_queue *q =
538 container_of(work, struct request_queue, requeue_work.work);
539 LIST_HEAD(rq_list);
540 struct request *rq, *next;
541 unsigned long flags;
542
543 spin_lock_irqsave(&q->requeue_lock, flags);
544 list_splice_init(&q->requeue_list, &rq_list);
545 spin_unlock_irqrestore(&q->requeue_lock, flags);
546
547 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
548 if (!(rq->rq_flags & RQF_SOFTBARRIER))
549 continue;
550
551 rq->rq_flags &= ~RQF_SOFTBARRIER;
552 list_del_init(&rq->queuelist);
553 blk_mq_insert_request(rq, true, false, false);
554 }
555
556 while (!list_empty(&rq_list)) {
557 rq = list_entry(rq_list.next, struct request, queuelist);
558 list_del_init(&rq->queuelist);
559 blk_mq_insert_request(rq, false, false, false);
560 }
561
562 blk_mq_run_hw_queues(q, false);
563 }
564
565 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
566 bool kick_requeue_list)
567 {
568 struct request_queue *q = rq->q;
569 unsigned long flags;
570
571 /*
572 * We abuse this flag that is otherwise used by the I/O scheduler to
573 * request head insertation from the workqueue.
574 */
575 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
576
577 spin_lock_irqsave(&q->requeue_lock, flags);
578 if (at_head) {
579 rq->rq_flags |= RQF_SOFTBARRIER;
580 list_add(&rq->queuelist, &q->requeue_list);
581 } else {
582 list_add_tail(&rq->queuelist, &q->requeue_list);
583 }
584 spin_unlock_irqrestore(&q->requeue_lock, flags);
585
586 if (kick_requeue_list)
587 blk_mq_kick_requeue_list(q);
588 }
589 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
590
591 void blk_mq_kick_requeue_list(struct request_queue *q)
592 {
593 kblockd_schedule_delayed_work(&q->requeue_work, 0);
594 }
595 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
596
597 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
598 unsigned long msecs)
599 {
600 kblockd_schedule_delayed_work(&q->requeue_work,
601 msecs_to_jiffies(msecs));
602 }
603 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
604
605 void blk_mq_abort_requeue_list(struct request_queue *q)
606 {
607 unsigned long flags;
608 LIST_HEAD(rq_list);
609
610 spin_lock_irqsave(&q->requeue_lock, flags);
611 list_splice_init(&q->requeue_list, &rq_list);
612 spin_unlock_irqrestore(&q->requeue_lock, flags);
613
614 while (!list_empty(&rq_list)) {
615 struct request *rq;
616
617 rq = list_first_entry(&rq_list, struct request, queuelist);
618 list_del_init(&rq->queuelist);
619 rq->errors = -EIO;
620 blk_mq_end_request(rq, rq->errors);
621 }
622 }
623 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
624
625 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
626 {
627 if (tag < tags->nr_tags) {
628 prefetch(tags->rqs[tag]);
629 return tags->rqs[tag];
630 }
631
632 return NULL;
633 }
634 EXPORT_SYMBOL(blk_mq_tag_to_rq);
635
636 struct blk_mq_timeout_data {
637 unsigned long next;
638 unsigned int next_set;
639 };
640
641 void blk_mq_rq_timed_out(struct request *req, bool reserved)
642 {
643 const struct blk_mq_ops *ops = req->q->mq_ops;
644 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
645
646 /*
647 * We know that complete is set at this point. If STARTED isn't set
648 * anymore, then the request isn't active and the "timeout" should
649 * just be ignored. This can happen due to the bitflag ordering.
650 * Timeout first checks if STARTED is set, and if it is, assumes
651 * the request is active. But if we race with completion, then
652 * we both flags will get cleared. So check here again, and ignore
653 * a timeout event with a request that isn't active.
654 */
655 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
656 return;
657
658 if (ops->timeout)
659 ret = ops->timeout(req, reserved);
660
661 switch (ret) {
662 case BLK_EH_HANDLED:
663 __blk_mq_complete_request(req);
664 break;
665 case BLK_EH_RESET_TIMER:
666 blk_add_timer(req);
667 blk_clear_rq_complete(req);
668 break;
669 case BLK_EH_NOT_HANDLED:
670 break;
671 default:
672 printk(KERN_ERR "block: bad eh return: %d\n", ret);
673 break;
674 }
675 }
676
677 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
678 struct request *rq, void *priv, bool reserved)
679 {
680 struct blk_mq_timeout_data *data = priv;
681
682 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
683 /*
684 * If a request wasn't started before the queue was
685 * marked dying, kill it here or it'll go unnoticed.
686 */
687 if (unlikely(blk_queue_dying(rq->q))) {
688 rq->errors = -EIO;
689 blk_mq_end_request(rq, rq->errors);
690 }
691 return;
692 }
693
694 if (time_after_eq(jiffies, rq->deadline)) {
695 if (!blk_mark_rq_complete(rq))
696 blk_mq_rq_timed_out(rq, reserved);
697 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
698 data->next = rq->deadline;
699 data->next_set = 1;
700 }
701 }
702
703 static void blk_mq_timeout_work(struct work_struct *work)
704 {
705 struct request_queue *q =
706 container_of(work, struct request_queue, timeout_work);
707 struct blk_mq_timeout_data data = {
708 .next = 0,
709 .next_set = 0,
710 };
711 int i;
712
713 /* A deadlock might occur if a request is stuck requiring a
714 * timeout at the same time a queue freeze is waiting
715 * completion, since the timeout code would not be able to
716 * acquire the queue reference here.
717 *
718 * That's why we don't use blk_queue_enter here; instead, we use
719 * percpu_ref_tryget directly, because we need to be able to
720 * obtain a reference even in the short window between the queue
721 * starting to freeze, by dropping the first reference in
722 * blk_mq_freeze_queue_start, and the moment the last request is
723 * consumed, marked by the instant q_usage_counter reaches
724 * zero.
725 */
726 if (!percpu_ref_tryget(&q->q_usage_counter))
727 return;
728
729 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
730
731 if (data.next_set) {
732 data.next = blk_rq_timeout(round_jiffies_up(data.next));
733 mod_timer(&q->timeout, data.next);
734 } else {
735 struct blk_mq_hw_ctx *hctx;
736
737 queue_for_each_hw_ctx(q, hctx, i) {
738 /* the hctx may be unmapped, so check it here */
739 if (blk_mq_hw_queue_mapped(hctx))
740 blk_mq_tag_idle(hctx);
741 }
742 }
743 blk_queue_exit(q);
744 }
745
746 /*
747 * Reverse check our software queue for entries that we could potentially
748 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
749 * too much time checking for merges.
750 */
751 static bool blk_mq_attempt_merge(struct request_queue *q,
752 struct blk_mq_ctx *ctx, struct bio *bio)
753 {
754 struct request *rq;
755 int checked = 8;
756
757 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
758 int el_ret;
759
760 if (!checked--)
761 break;
762
763 if (!blk_rq_merge_ok(rq, bio))
764 continue;
765
766 el_ret = blk_try_merge(rq, bio);
767 if (el_ret == ELEVATOR_BACK_MERGE) {
768 if (bio_attempt_back_merge(q, rq, bio)) {
769 ctx->rq_merged++;
770 return true;
771 }
772 break;
773 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
774 if (bio_attempt_front_merge(q, rq, bio)) {
775 ctx->rq_merged++;
776 return true;
777 }
778 break;
779 }
780 }
781
782 return false;
783 }
784
785 struct flush_busy_ctx_data {
786 struct blk_mq_hw_ctx *hctx;
787 struct list_head *list;
788 };
789
790 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
791 {
792 struct flush_busy_ctx_data *flush_data = data;
793 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
794 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
795
796 sbitmap_clear_bit(sb, bitnr);
797 spin_lock(&ctx->lock);
798 list_splice_tail_init(&ctx->rq_list, flush_data->list);
799 spin_unlock(&ctx->lock);
800 return true;
801 }
802
803 /*
804 * Process software queues that have been marked busy, splicing them
805 * to the for-dispatch
806 */
807 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
808 {
809 struct flush_busy_ctx_data data = {
810 .hctx = hctx,
811 .list = list,
812 };
813
814 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
815 }
816 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
817
818 static inline unsigned int queued_to_index(unsigned int queued)
819 {
820 if (!queued)
821 return 0;
822
823 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
824 }
825
826 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
827 {
828 struct request_queue *q = hctx->queue;
829 struct request *rq;
830 LIST_HEAD(driver_list);
831 struct list_head *dptr;
832 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
833
834 /*
835 * Start off with dptr being NULL, so we start the first request
836 * immediately, even if we have more pending.
837 */
838 dptr = NULL;
839
840 /*
841 * Now process all the entries, sending them to the driver.
842 */
843 queued = 0;
844 while (!list_empty(list)) {
845 struct blk_mq_queue_data bd;
846
847 rq = list_first_entry(list, struct request, queuelist);
848 list_del_init(&rq->queuelist);
849
850 bd.rq = rq;
851 bd.list = dptr;
852 bd.last = list_empty(list);
853
854 ret = q->mq_ops->queue_rq(hctx, &bd);
855 switch (ret) {
856 case BLK_MQ_RQ_QUEUE_OK:
857 queued++;
858 break;
859 case BLK_MQ_RQ_QUEUE_BUSY:
860 list_add(&rq->queuelist, list);
861 __blk_mq_requeue_request(rq);
862 break;
863 default:
864 pr_err("blk-mq: bad return on queue: %d\n", ret);
865 case BLK_MQ_RQ_QUEUE_ERROR:
866 rq->errors = -EIO;
867 blk_mq_end_request(rq, rq->errors);
868 break;
869 }
870
871 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
872 break;
873
874 /*
875 * We've done the first request. If we have more than 1
876 * left in the list, set dptr to defer issue.
877 */
878 if (!dptr && list->next != list->prev)
879 dptr = &driver_list;
880 }
881
882 hctx->dispatched[queued_to_index(queued)]++;
883
884 /*
885 * Any items that need requeuing? Stuff them into hctx->dispatch,
886 * that is where we will continue on next queue run.
887 */
888 if (!list_empty(list)) {
889 spin_lock(&hctx->lock);
890 list_splice(list, &hctx->dispatch);
891 spin_unlock(&hctx->lock);
892
893 /*
894 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
895 * it's possible the queue is stopped and restarted again
896 * before this. Queue restart will dispatch requests. And since
897 * requests in rq_list aren't added into hctx->dispatch yet,
898 * the requests in rq_list might get lost.
899 *
900 * blk_mq_run_hw_queue() already checks the STOPPED bit
901 **/
902 blk_mq_run_hw_queue(hctx, true);
903 }
904
905 return ret != BLK_MQ_RQ_QUEUE_BUSY;
906 }
907
908 /*
909 * Run this hardware queue, pulling any software queues mapped to it in.
910 * Note that this function currently has various problems around ordering
911 * of IO. In particular, we'd like FIFO behaviour on handling existing
912 * items on the hctx->dispatch list. Ignore that for now.
913 */
914 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
915 {
916 LIST_HEAD(rq_list);
917 LIST_HEAD(driver_list);
918
919 if (unlikely(blk_mq_hctx_stopped(hctx)))
920 return;
921
922 hctx->run++;
923
924 /*
925 * Touch any software queue that has pending entries.
926 */
927 blk_mq_flush_busy_ctxs(hctx, &rq_list);
928
929 /*
930 * If we have previous entries on our dispatch list, grab them
931 * and stuff them at the front for more fair dispatch.
932 */
933 if (!list_empty_careful(&hctx->dispatch)) {
934 spin_lock(&hctx->lock);
935 if (!list_empty(&hctx->dispatch))
936 list_splice_init(&hctx->dispatch, &rq_list);
937 spin_unlock(&hctx->lock);
938 }
939
940 blk_mq_dispatch_rq_list(hctx, &rq_list);
941 }
942
943 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
944 {
945 int srcu_idx;
946
947 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
948 cpu_online(hctx->next_cpu));
949
950 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
951 rcu_read_lock();
952 blk_mq_process_rq_list(hctx);
953 rcu_read_unlock();
954 } else {
955 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
956 blk_mq_process_rq_list(hctx);
957 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
958 }
959 }
960
961 /*
962 * It'd be great if the workqueue API had a way to pass
963 * in a mask and had some smarts for more clever placement.
964 * For now we just round-robin here, switching for every
965 * BLK_MQ_CPU_WORK_BATCH queued items.
966 */
967 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
968 {
969 if (hctx->queue->nr_hw_queues == 1)
970 return WORK_CPU_UNBOUND;
971
972 if (--hctx->next_cpu_batch <= 0) {
973 int next_cpu;
974
975 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
976 if (next_cpu >= nr_cpu_ids)
977 next_cpu = cpumask_first(hctx->cpumask);
978
979 hctx->next_cpu = next_cpu;
980 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
981 }
982
983 return hctx->next_cpu;
984 }
985
986 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
987 {
988 if (unlikely(blk_mq_hctx_stopped(hctx) ||
989 !blk_mq_hw_queue_mapped(hctx)))
990 return;
991
992 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
993 int cpu = get_cpu();
994 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
995 __blk_mq_run_hw_queue(hctx);
996 put_cpu();
997 return;
998 }
999
1000 put_cpu();
1001 }
1002
1003 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1004 }
1005
1006 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1007 {
1008 struct blk_mq_hw_ctx *hctx;
1009 int i;
1010
1011 queue_for_each_hw_ctx(q, hctx, i) {
1012 if ((!blk_mq_hctx_has_pending(hctx) &&
1013 list_empty_careful(&hctx->dispatch)) ||
1014 blk_mq_hctx_stopped(hctx))
1015 continue;
1016
1017 blk_mq_run_hw_queue(hctx, async);
1018 }
1019 }
1020 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1021
1022 /**
1023 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1024 * @q: request queue.
1025 *
1026 * The caller is responsible for serializing this function against
1027 * blk_mq_{start,stop}_hw_queue().
1028 */
1029 bool blk_mq_queue_stopped(struct request_queue *q)
1030 {
1031 struct blk_mq_hw_ctx *hctx;
1032 int i;
1033
1034 queue_for_each_hw_ctx(q, hctx, i)
1035 if (blk_mq_hctx_stopped(hctx))
1036 return true;
1037
1038 return false;
1039 }
1040 EXPORT_SYMBOL(blk_mq_queue_stopped);
1041
1042 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1043 {
1044 cancel_work(&hctx->run_work);
1045 cancel_delayed_work(&hctx->delay_work);
1046 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1047 }
1048 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1049
1050 void blk_mq_stop_hw_queues(struct request_queue *q)
1051 {
1052 struct blk_mq_hw_ctx *hctx;
1053 int i;
1054
1055 queue_for_each_hw_ctx(q, hctx, i)
1056 blk_mq_stop_hw_queue(hctx);
1057 }
1058 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1059
1060 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1061 {
1062 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1063
1064 blk_mq_run_hw_queue(hctx, false);
1065 }
1066 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1067
1068 void blk_mq_start_hw_queues(struct request_queue *q)
1069 {
1070 struct blk_mq_hw_ctx *hctx;
1071 int i;
1072
1073 queue_for_each_hw_ctx(q, hctx, i)
1074 blk_mq_start_hw_queue(hctx);
1075 }
1076 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1077
1078 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1079 {
1080 if (!blk_mq_hctx_stopped(hctx))
1081 return;
1082
1083 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1084 blk_mq_run_hw_queue(hctx, async);
1085 }
1086 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1087
1088 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1089 {
1090 struct blk_mq_hw_ctx *hctx;
1091 int i;
1092
1093 queue_for_each_hw_ctx(q, hctx, i)
1094 blk_mq_start_stopped_hw_queue(hctx, async);
1095 }
1096 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1097
1098 static void blk_mq_run_work_fn(struct work_struct *work)
1099 {
1100 struct blk_mq_hw_ctx *hctx;
1101
1102 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1103
1104 __blk_mq_run_hw_queue(hctx);
1105 }
1106
1107 static void blk_mq_delay_work_fn(struct work_struct *work)
1108 {
1109 struct blk_mq_hw_ctx *hctx;
1110
1111 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1112
1113 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1114 __blk_mq_run_hw_queue(hctx);
1115 }
1116
1117 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1118 {
1119 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1120 return;
1121
1122 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1123 &hctx->delay_work, msecs_to_jiffies(msecs));
1124 }
1125 EXPORT_SYMBOL(blk_mq_delay_queue);
1126
1127 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1128 struct request *rq,
1129 bool at_head)
1130 {
1131 struct blk_mq_ctx *ctx = rq->mq_ctx;
1132
1133 trace_block_rq_insert(hctx->queue, rq);
1134
1135 if (at_head)
1136 list_add(&rq->queuelist, &ctx->rq_list);
1137 else
1138 list_add_tail(&rq->queuelist, &ctx->rq_list);
1139 }
1140
1141 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1142 bool at_head)
1143 {
1144 struct blk_mq_ctx *ctx = rq->mq_ctx;
1145
1146 __blk_mq_insert_req_list(hctx, rq, at_head);
1147 blk_mq_hctx_mark_pending(hctx, ctx);
1148 }
1149
1150 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1151 bool async)
1152 {
1153 struct blk_mq_ctx *ctx = rq->mq_ctx;
1154 struct request_queue *q = rq->q;
1155 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1156
1157 spin_lock(&ctx->lock);
1158 __blk_mq_insert_request(hctx, rq, at_head);
1159 spin_unlock(&ctx->lock);
1160
1161 if (run_queue)
1162 blk_mq_run_hw_queue(hctx, async);
1163 }
1164
1165 static void blk_mq_insert_requests(struct request_queue *q,
1166 struct blk_mq_ctx *ctx,
1167 struct list_head *list,
1168 int depth,
1169 bool from_schedule)
1170
1171 {
1172 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1173
1174 trace_block_unplug(q, depth, !from_schedule);
1175
1176 /*
1177 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1178 * offline now
1179 */
1180 spin_lock(&ctx->lock);
1181 while (!list_empty(list)) {
1182 struct request *rq;
1183
1184 rq = list_first_entry(list, struct request, queuelist);
1185 BUG_ON(rq->mq_ctx != ctx);
1186 list_del_init(&rq->queuelist);
1187 __blk_mq_insert_req_list(hctx, rq, false);
1188 }
1189 blk_mq_hctx_mark_pending(hctx, ctx);
1190 spin_unlock(&ctx->lock);
1191
1192 blk_mq_run_hw_queue(hctx, from_schedule);
1193 }
1194
1195 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1196 {
1197 struct request *rqa = container_of(a, struct request, queuelist);
1198 struct request *rqb = container_of(b, struct request, queuelist);
1199
1200 return !(rqa->mq_ctx < rqb->mq_ctx ||
1201 (rqa->mq_ctx == rqb->mq_ctx &&
1202 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1203 }
1204
1205 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1206 {
1207 struct blk_mq_ctx *this_ctx;
1208 struct request_queue *this_q;
1209 struct request *rq;
1210 LIST_HEAD(list);
1211 LIST_HEAD(ctx_list);
1212 unsigned int depth;
1213
1214 list_splice_init(&plug->mq_list, &list);
1215
1216 list_sort(NULL, &list, plug_ctx_cmp);
1217
1218 this_q = NULL;
1219 this_ctx = NULL;
1220 depth = 0;
1221
1222 while (!list_empty(&list)) {
1223 rq = list_entry_rq(list.next);
1224 list_del_init(&rq->queuelist);
1225 BUG_ON(!rq->q);
1226 if (rq->mq_ctx != this_ctx) {
1227 if (this_ctx) {
1228 blk_mq_insert_requests(this_q, this_ctx,
1229 &ctx_list, depth,
1230 from_schedule);
1231 }
1232
1233 this_ctx = rq->mq_ctx;
1234 this_q = rq->q;
1235 depth = 0;
1236 }
1237
1238 depth++;
1239 list_add_tail(&rq->queuelist, &ctx_list);
1240 }
1241
1242 /*
1243 * If 'this_ctx' is set, we know we have entries to complete
1244 * on 'ctx_list'. Do those.
1245 */
1246 if (this_ctx) {
1247 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1248 from_schedule);
1249 }
1250 }
1251
1252 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1253 {
1254 init_request_from_bio(rq, bio);
1255
1256 blk_account_io_start(rq, true);
1257 }
1258
1259 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1260 {
1261 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1262 !blk_queue_nomerges(hctx->queue);
1263 }
1264
1265 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1266 struct blk_mq_ctx *ctx,
1267 struct request *rq, struct bio *bio)
1268 {
1269 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1270 blk_mq_bio_to_request(rq, bio);
1271 spin_lock(&ctx->lock);
1272 insert_rq:
1273 __blk_mq_insert_request(hctx, rq, false);
1274 spin_unlock(&ctx->lock);
1275 return false;
1276 } else {
1277 struct request_queue *q = hctx->queue;
1278
1279 spin_lock(&ctx->lock);
1280 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1281 blk_mq_bio_to_request(rq, bio);
1282 goto insert_rq;
1283 }
1284
1285 spin_unlock(&ctx->lock);
1286 __blk_mq_free_request(hctx, ctx, rq);
1287 return true;
1288 }
1289 }
1290
1291 static struct request *blk_mq_map_request(struct request_queue *q,
1292 struct bio *bio,
1293 struct blk_mq_alloc_data *data)
1294 {
1295 struct blk_mq_hw_ctx *hctx;
1296 struct blk_mq_ctx *ctx;
1297 struct request *rq;
1298
1299 blk_queue_enter_live(q);
1300 ctx = blk_mq_get_ctx(q);
1301 hctx = blk_mq_map_queue(q, ctx->cpu);
1302
1303 trace_block_getrq(q, bio, bio->bi_opf);
1304 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1305 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1306
1307 data->hctx->queued++;
1308 return rq;
1309 }
1310
1311 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1312 {
1313 int ret;
1314 struct request_queue *q = rq->q;
1315 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1316 struct blk_mq_queue_data bd = {
1317 .rq = rq,
1318 .list = NULL,
1319 .last = 1
1320 };
1321 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1322
1323 if (blk_mq_hctx_stopped(hctx))
1324 goto insert;
1325
1326 /*
1327 * For OK queue, we are done. For error, kill it. Any other
1328 * error (busy), just add it to our list as we previously
1329 * would have done
1330 */
1331 ret = q->mq_ops->queue_rq(hctx, &bd);
1332 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1333 *cookie = new_cookie;
1334 return;
1335 }
1336
1337 __blk_mq_requeue_request(rq);
1338
1339 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1340 *cookie = BLK_QC_T_NONE;
1341 rq->errors = -EIO;
1342 blk_mq_end_request(rq, rq->errors);
1343 return;
1344 }
1345
1346 insert:
1347 blk_mq_insert_request(rq, false, true, true);
1348 }
1349
1350 /*
1351 * Multiple hardware queue variant. This will not use per-process plugs,
1352 * but will attempt to bypass the hctx queueing if we can go straight to
1353 * hardware for SYNC IO.
1354 */
1355 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1356 {
1357 const int is_sync = op_is_sync(bio->bi_opf);
1358 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1359 struct blk_mq_alloc_data data;
1360 struct request *rq;
1361 unsigned int request_count = 0, srcu_idx;
1362 struct blk_plug *plug;
1363 struct request *same_queue_rq = NULL;
1364 blk_qc_t cookie;
1365 unsigned int wb_acct;
1366
1367 blk_queue_bounce(q, &bio);
1368
1369 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1370 bio_io_error(bio);
1371 return BLK_QC_T_NONE;
1372 }
1373
1374 blk_queue_split(q, &bio, q->bio_split);
1375
1376 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1377 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1378 return BLK_QC_T_NONE;
1379
1380 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1381
1382 rq = blk_mq_map_request(q, bio, &data);
1383 if (unlikely(!rq)) {
1384 __wbt_done(q->rq_wb, wb_acct);
1385 return BLK_QC_T_NONE;
1386 }
1387
1388 wbt_track(&rq->issue_stat, wb_acct);
1389
1390 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1391
1392 if (unlikely(is_flush_fua)) {
1393 blk_mq_bio_to_request(rq, bio);
1394 blk_insert_flush(rq);
1395 goto run_queue;
1396 }
1397
1398 plug = current->plug;
1399 /*
1400 * If the driver supports defer issued based on 'last', then
1401 * queue it up like normal since we can potentially save some
1402 * CPU this way.
1403 */
1404 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1405 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1406 struct request *old_rq = NULL;
1407
1408 blk_mq_bio_to_request(rq, bio);
1409
1410 /*
1411 * We do limited plugging. If the bio can be merged, do that.
1412 * Otherwise the existing request in the plug list will be
1413 * issued. So the plug list will have one request at most
1414 */
1415 if (plug) {
1416 /*
1417 * The plug list might get flushed before this. If that
1418 * happens, same_queue_rq is invalid and plug list is
1419 * empty
1420 */
1421 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1422 old_rq = same_queue_rq;
1423 list_del_init(&old_rq->queuelist);
1424 }
1425 list_add_tail(&rq->queuelist, &plug->mq_list);
1426 } else /* is_sync */
1427 old_rq = rq;
1428 blk_mq_put_ctx(data.ctx);
1429 if (!old_rq)
1430 goto done;
1431
1432 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1433 rcu_read_lock();
1434 blk_mq_try_issue_directly(old_rq, &cookie);
1435 rcu_read_unlock();
1436 } else {
1437 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1438 blk_mq_try_issue_directly(old_rq, &cookie);
1439 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1440 }
1441 goto done;
1442 }
1443
1444 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1445 /*
1446 * For a SYNC request, send it to the hardware immediately. For
1447 * an ASYNC request, just ensure that we run it later on. The
1448 * latter allows for merging opportunities and more efficient
1449 * dispatching.
1450 */
1451 run_queue:
1452 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1453 }
1454 blk_mq_put_ctx(data.ctx);
1455 done:
1456 return cookie;
1457 }
1458
1459 /*
1460 * Single hardware queue variant. This will attempt to use any per-process
1461 * plug for merging and IO deferral.
1462 */
1463 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1464 {
1465 const int is_sync = op_is_sync(bio->bi_opf);
1466 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1467 struct blk_plug *plug;
1468 unsigned int request_count = 0;
1469 struct blk_mq_alloc_data data;
1470 struct request *rq;
1471 blk_qc_t cookie;
1472 unsigned int wb_acct;
1473
1474 blk_queue_bounce(q, &bio);
1475
1476 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1477 bio_io_error(bio);
1478 return BLK_QC_T_NONE;
1479 }
1480
1481 blk_queue_split(q, &bio, q->bio_split);
1482
1483 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1484 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1485 return BLK_QC_T_NONE;
1486 } else
1487 request_count = blk_plug_queued_count(q);
1488
1489 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1490
1491 rq = blk_mq_map_request(q, bio, &data);
1492 if (unlikely(!rq)) {
1493 __wbt_done(q->rq_wb, wb_acct);
1494 return BLK_QC_T_NONE;
1495 }
1496
1497 wbt_track(&rq->issue_stat, wb_acct);
1498
1499 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1500
1501 if (unlikely(is_flush_fua)) {
1502 blk_mq_bio_to_request(rq, bio);
1503 blk_insert_flush(rq);
1504 goto run_queue;
1505 }
1506
1507 /*
1508 * A task plug currently exists. Since this is completely lockless,
1509 * utilize that to temporarily store requests until the task is
1510 * either done or scheduled away.
1511 */
1512 plug = current->plug;
1513 if (plug) {
1514 struct request *last = NULL;
1515
1516 blk_mq_bio_to_request(rq, bio);
1517
1518 /*
1519 * @request_count may become stale because of schedule
1520 * out, so check the list again.
1521 */
1522 if (list_empty(&plug->mq_list))
1523 request_count = 0;
1524 if (!request_count)
1525 trace_block_plug(q);
1526 else
1527 last = list_entry_rq(plug->mq_list.prev);
1528
1529 blk_mq_put_ctx(data.ctx);
1530
1531 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1532 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1533 blk_flush_plug_list(plug, false);
1534 trace_block_plug(q);
1535 }
1536
1537 list_add_tail(&rq->queuelist, &plug->mq_list);
1538 return cookie;
1539 }
1540
1541 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1542 /*
1543 * For a SYNC request, send it to the hardware immediately. For
1544 * an ASYNC request, just ensure that we run it later on. The
1545 * latter allows for merging opportunities and more efficient
1546 * dispatching.
1547 */
1548 run_queue:
1549 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1550 }
1551
1552 blk_mq_put_ctx(data.ctx);
1553 return cookie;
1554 }
1555
1556 void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1557 unsigned int hctx_idx)
1558 {
1559 struct page *page;
1560
1561 if (tags->rqs && set->ops->exit_request) {
1562 int i;
1563
1564 for (i = 0; i < tags->nr_tags; i++) {
1565 if (!tags->rqs[i])
1566 continue;
1567 set->ops->exit_request(set->driver_data, tags->rqs[i],
1568 hctx_idx, i);
1569 tags->rqs[i] = NULL;
1570 }
1571 }
1572
1573 while (!list_empty(&tags->page_list)) {
1574 page = list_first_entry(&tags->page_list, struct page, lru);
1575 list_del_init(&page->lru);
1576 /*
1577 * Remove kmemleak object previously allocated in
1578 * blk_mq_init_rq_map().
1579 */
1580 kmemleak_free(page_address(page));
1581 __free_pages(page, page->private);
1582 }
1583
1584 kfree(tags->rqs);
1585
1586 blk_mq_free_tags(tags);
1587 }
1588
1589 static size_t order_to_size(unsigned int order)
1590 {
1591 return (size_t)PAGE_SIZE << order;
1592 }
1593
1594 struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1595 unsigned int hctx_idx)
1596 {
1597 struct blk_mq_tags *tags;
1598 unsigned int i, j, entries_per_page, max_order = 4;
1599 size_t rq_size, left;
1600
1601 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1602 set->numa_node,
1603 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1604 if (!tags)
1605 return NULL;
1606
1607 INIT_LIST_HEAD(&tags->page_list);
1608
1609 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1610 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1611 set->numa_node);
1612 if (!tags->rqs) {
1613 blk_mq_free_tags(tags);
1614 return NULL;
1615 }
1616
1617 /*
1618 * rq_size is the size of the request plus driver payload, rounded
1619 * to the cacheline size
1620 */
1621 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1622 cache_line_size());
1623 left = rq_size * set->queue_depth;
1624
1625 for (i = 0; i < set->queue_depth; ) {
1626 int this_order = max_order;
1627 struct page *page;
1628 int to_do;
1629 void *p;
1630
1631 while (this_order && left < order_to_size(this_order - 1))
1632 this_order--;
1633
1634 do {
1635 page = alloc_pages_node(set->numa_node,
1636 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1637 this_order);
1638 if (page)
1639 break;
1640 if (!this_order--)
1641 break;
1642 if (order_to_size(this_order) < rq_size)
1643 break;
1644 } while (1);
1645
1646 if (!page)
1647 goto fail;
1648
1649 page->private = this_order;
1650 list_add_tail(&page->lru, &tags->page_list);
1651
1652 p = page_address(page);
1653 /*
1654 * Allow kmemleak to scan these pages as they contain pointers
1655 * to additional allocations like via ops->init_request().
1656 */
1657 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1658 entries_per_page = order_to_size(this_order) / rq_size;
1659 to_do = min(entries_per_page, set->queue_depth - i);
1660 left -= to_do * rq_size;
1661 for (j = 0; j < to_do; j++) {
1662 tags->rqs[i] = p;
1663 if (set->ops->init_request) {
1664 if (set->ops->init_request(set->driver_data,
1665 tags->rqs[i], hctx_idx, i,
1666 set->numa_node)) {
1667 tags->rqs[i] = NULL;
1668 goto fail;
1669 }
1670 }
1671
1672 p += rq_size;
1673 i++;
1674 }
1675 }
1676 return tags;
1677
1678 fail:
1679 blk_mq_free_rq_map(set, tags, hctx_idx);
1680 return NULL;
1681 }
1682
1683 /*
1684 * 'cpu' is going away. splice any existing rq_list entries from this
1685 * software queue to the hw queue dispatch list, and ensure that it
1686 * gets run.
1687 */
1688 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1689 {
1690 struct blk_mq_hw_ctx *hctx;
1691 struct blk_mq_ctx *ctx;
1692 LIST_HEAD(tmp);
1693
1694 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1695 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1696
1697 spin_lock(&ctx->lock);
1698 if (!list_empty(&ctx->rq_list)) {
1699 list_splice_init(&ctx->rq_list, &tmp);
1700 blk_mq_hctx_clear_pending(hctx, ctx);
1701 }
1702 spin_unlock(&ctx->lock);
1703
1704 if (list_empty(&tmp))
1705 return 0;
1706
1707 spin_lock(&hctx->lock);
1708 list_splice_tail_init(&tmp, &hctx->dispatch);
1709 spin_unlock(&hctx->lock);
1710
1711 blk_mq_run_hw_queue(hctx, true);
1712 return 0;
1713 }
1714
1715 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1716 {
1717 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1718 &hctx->cpuhp_dead);
1719 }
1720
1721 /* hctx->ctxs will be freed in queue's release handler */
1722 static void blk_mq_exit_hctx(struct request_queue *q,
1723 struct blk_mq_tag_set *set,
1724 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1725 {
1726 unsigned flush_start_tag = set->queue_depth;
1727
1728 blk_mq_tag_idle(hctx);
1729
1730 if (set->ops->exit_request)
1731 set->ops->exit_request(set->driver_data,
1732 hctx->fq->flush_rq, hctx_idx,
1733 flush_start_tag + hctx_idx);
1734
1735 if (set->ops->exit_hctx)
1736 set->ops->exit_hctx(hctx, hctx_idx);
1737
1738 if (hctx->flags & BLK_MQ_F_BLOCKING)
1739 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1740
1741 blk_mq_remove_cpuhp(hctx);
1742 blk_free_flush_queue(hctx->fq);
1743 sbitmap_free(&hctx->ctx_map);
1744 }
1745
1746 static void blk_mq_exit_hw_queues(struct request_queue *q,
1747 struct blk_mq_tag_set *set, int nr_queue)
1748 {
1749 struct blk_mq_hw_ctx *hctx;
1750 unsigned int i;
1751
1752 queue_for_each_hw_ctx(q, hctx, i) {
1753 if (i == nr_queue)
1754 break;
1755 blk_mq_exit_hctx(q, set, hctx, i);
1756 }
1757 }
1758
1759 static void blk_mq_free_hw_queues(struct request_queue *q,
1760 struct blk_mq_tag_set *set)
1761 {
1762 struct blk_mq_hw_ctx *hctx;
1763 unsigned int i;
1764
1765 queue_for_each_hw_ctx(q, hctx, i)
1766 free_cpumask_var(hctx->cpumask);
1767 }
1768
1769 static int blk_mq_init_hctx(struct request_queue *q,
1770 struct blk_mq_tag_set *set,
1771 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1772 {
1773 int node;
1774 unsigned flush_start_tag = set->queue_depth;
1775
1776 node = hctx->numa_node;
1777 if (node == NUMA_NO_NODE)
1778 node = hctx->numa_node = set->numa_node;
1779
1780 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1781 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1782 spin_lock_init(&hctx->lock);
1783 INIT_LIST_HEAD(&hctx->dispatch);
1784 hctx->queue = q;
1785 hctx->queue_num = hctx_idx;
1786 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1787
1788 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1789
1790 hctx->tags = set->tags[hctx_idx];
1791
1792 /*
1793 * Allocate space for all possible cpus to avoid allocation at
1794 * runtime
1795 */
1796 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1797 GFP_KERNEL, node);
1798 if (!hctx->ctxs)
1799 goto unregister_cpu_notifier;
1800
1801 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1802 node))
1803 goto free_ctxs;
1804
1805 hctx->nr_ctx = 0;
1806
1807 if (set->ops->init_hctx &&
1808 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1809 goto free_bitmap;
1810
1811 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1812 if (!hctx->fq)
1813 goto exit_hctx;
1814
1815 if (set->ops->init_request &&
1816 set->ops->init_request(set->driver_data,
1817 hctx->fq->flush_rq, hctx_idx,
1818 flush_start_tag + hctx_idx, node))
1819 goto free_fq;
1820
1821 if (hctx->flags & BLK_MQ_F_BLOCKING)
1822 init_srcu_struct(&hctx->queue_rq_srcu);
1823
1824 return 0;
1825
1826 free_fq:
1827 kfree(hctx->fq);
1828 exit_hctx:
1829 if (set->ops->exit_hctx)
1830 set->ops->exit_hctx(hctx, hctx_idx);
1831 free_bitmap:
1832 sbitmap_free(&hctx->ctx_map);
1833 free_ctxs:
1834 kfree(hctx->ctxs);
1835 unregister_cpu_notifier:
1836 blk_mq_remove_cpuhp(hctx);
1837 return -1;
1838 }
1839
1840 static void blk_mq_init_cpu_queues(struct request_queue *q,
1841 unsigned int nr_hw_queues)
1842 {
1843 unsigned int i;
1844
1845 for_each_possible_cpu(i) {
1846 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1847 struct blk_mq_hw_ctx *hctx;
1848
1849 memset(__ctx, 0, sizeof(*__ctx));
1850 __ctx->cpu = i;
1851 spin_lock_init(&__ctx->lock);
1852 INIT_LIST_HEAD(&__ctx->rq_list);
1853 __ctx->queue = q;
1854 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1855 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1856
1857 /* If the cpu isn't online, the cpu is mapped to first hctx */
1858 if (!cpu_online(i))
1859 continue;
1860
1861 hctx = blk_mq_map_queue(q, i);
1862
1863 /*
1864 * Set local node, IFF we have more than one hw queue. If
1865 * not, we remain on the home node of the device
1866 */
1867 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1868 hctx->numa_node = local_memory_node(cpu_to_node(i));
1869 }
1870 }
1871
1872 static void blk_mq_map_swqueue(struct request_queue *q,
1873 const struct cpumask *online_mask)
1874 {
1875 unsigned int i, hctx_idx;
1876 struct blk_mq_hw_ctx *hctx;
1877 struct blk_mq_ctx *ctx;
1878 struct blk_mq_tag_set *set = q->tag_set;
1879
1880 /*
1881 * Avoid others reading imcomplete hctx->cpumask through sysfs
1882 */
1883 mutex_lock(&q->sysfs_lock);
1884
1885 queue_for_each_hw_ctx(q, hctx, i) {
1886 cpumask_clear(hctx->cpumask);
1887 hctx->nr_ctx = 0;
1888 }
1889
1890 /*
1891 * Map software to hardware queues
1892 */
1893 for_each_possible_cpu(i) {
1894 /* If the cpu isn't online, the cpu is mapped to first hctx */
1895 if (!cpumask_test_cpu(i, online_mask))
1896 continue;
1897
1898 hctx_idx = q->mq_map[i];
1899 /* unmapped hw queue can be remapped after CPU topo changed */
1900 if (!set->tags[hctx_idx]) {
1901 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);
1902
1903 /*
1904 * If tags initialization fail for some hctx,
1905 * that hctx won't be brought online. In this
1906 * case, remap the current ctx to hctx[0] which
1907 * is guaranteed to always have tags allocated
1908 */
1909 if (!set->tags[hctx_idx])
1910 q->mq_map[i] = 0;
1911 }
1912
1913 ctx = per_cpu_ptr(q->queue_ctx, i);
1914 hctx = blk_mq_map_queue(q, i);
1915
1916 cpumask_set_cpu(i, hctx->cpumask);
1917 ctx->index_hw = hctx->nr_ctx;
1918 hctx->ctxs[hctx->nr_ctx++] = ctx;
1919 }
1920
1921 mutex_unlock(&q->sysfs_lock);
1922
1923 queue_for_each_hw_ctx(q, hctx, i) {
1924 /*
1925 * If no software queues are mapped to this hardware queue,
1926 * disable it and free the request entries.
1927 */
1928 if (!hctx->nr_ctx) {
1929 /* Never unmap queue 0. We need it as a
1930 * fallback in case of a new remap fails
1931 * allocation
1932 */
1933 if (i && set->tags[i]) {
1934 blk_mq_free_rq_map(set, set->tags[i], i);
1935 set->tags[i] = NULL;
1936 }
1937 hctx->tags = NULL;
1938 continue;
1939 }
1940
1941 hctx->tags = set->tags[i];
1942 WARN_ON(!hctx->tags);
1943
1944 /*
1945 * Set the map size to the number of mapped software queues.
1946 * This is more accurate and more efficient than looping
1947 * over all possibly mapped software queues.
1948 */
1949 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1950
1951 /*
1952 * Initialize batch roundrobin counts
1953 */
1954 hctx->next_cpu = cpumask_first(hctx->cpumask);
1955 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1956 }
1957 }
1958
1959 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1960 {
1961 struct blk_mq_hw_ctx *hctx;
1962 int i;
1963
1964 queue_for_each_hw_ctx(q, hctx, i) {
1965 if (shared)
1966 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1967 else
1968 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1969 }
1970 }
1971
1972 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1973 {
1974 struct request_queue *q;
1975
1976 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1977 blk_mq_freeze_queue(q);
1978 queue_set_hctx_shared(q, shared);
1979 blk_mq_unfreeze_queue(q);
1980 }
1981 }
1982
1983 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1984 {
1985 struct blk_mq_tag_set *set = q->tag_set;
1986
1987 mutex_lock(&set->tag_list_lock);
1988 list_del_init(&q->tag_set_list);
1989 if (list_is_singular(&set->tag_list)) {
1990 /* just transitioned to unshared */
1991 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1992 /* update existing queue */
1993 blk_mq_update_tag_set_depth(set, false);
1994 }
1995 mutex_unlock(&set->tag_list_lock);
1996 }
1997
1998 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1999 struct request_queue *q)
2000 {
2001 q->tag_set = set;
2002
2003 mutex_lock(&set->tag_list_lock);
2004
2005 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2006 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2007 set->flags |= BLK_MQ_F_TAG_SHARED;
2008 /* update existing queue */
2009 blk_mq_update_tag_set_depth(set, true);
2010 }
2011 if (set->flags & BLK_MQ_F_TAG_SHARED)
2012 queue_set_hctx_shared(q, true);
2013 list_add_tail(&q->tag_set_list, &set->tag_list);
2014
2015 mutex_unlock(&set->tag_list_lock);
2016 }
2017
2018 /*
2019 * It is the actual release handler for mq, but we do it from
2020 * request queue's release handler for avoiding use-after-free
2021 * and headache because q->mq_kobj shouldn't have been introduced,
2022 * but we can't group ctx/kctx kobj without it.
2023 */
2024 void blk_mq_release(struct request_queue *q)
2025 {
2026 struct blk_mq_hw_ctx *hctx;
2027 unsigned int i;
2028
2029 /* hctx kobj stays in hctx */
2030 queue_for_each_hw_ctx(q, hctx, i) {
2031 if (!hctx)
2032 continue;
2033 kfree(hctx->ctxs);
2034 kfree(hctx);
2035 }
2036
2037 q->mq_map = NULL;
2038
2039 kfree(q->queue_hw_ctx);
2040
2041 /* ctx kobj stays in queue_ctx */
2042 free_percpu(q->queue_ctx);
2043 }
2044
2045 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2046 {
2047 struct request_queue *uninit_q, *q;
2048
2049 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2050 if (!uninit_q)
2051 return ERR_PTR(-ENOMEM);
2052
2053 q = blk_mq_init_allocated_queue(set, uninit_q);
2054 if (IS_ERR(q))
2055 blk_cleanup_queue(uninit_q);
2056
2057 return q;
2058 }
2059 EXPORT_SYMBOL(blk_mq_init_queue);
2060
2061 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2062 struct request_queue *q)
2063 {
2064 int i, j;
2065 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2066
2067 blk_mq_sysfs_unregister(q);
2068 for (i = 0; i < set->nr_hw_queues; i++) {
2069 int node;
2070
2071 if (hctxs[i])
2072 continue;
2073
2074 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2075 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2076 GFP_KERNEL, node);
2077 if (!hctxs[i])
2078 break;
2079
2080 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2081 node)) {
2082 kfree(hctxs[i]);
2083 hctxs[i] = NULL;
2084 break;
2085 }
2086
2087 atomic_set(&hctxs[i]->nr_active, 0);
2088 hctxs[i]->numa_node = node;
2089 hctxs[i]->queue_num = i;
2090
2091 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2092 free_cpumask_var(hctxs[i]->cpumask);
2093 kfree(hctxs[i]);
2094 hctxs[i] = NULL;
2095 break;
2096 }
2097 blk_mq_hctx_kobj_init(hctxs[i]);
2098 }
2099 for (j = i; j < q->nr_hw_queues; j++) {
2100 struct blk_mq_hw_ctx *hctx = hctxs[j];
2101
2102 if (hctx) {
2103 if (hctx->tags) {
2104 blk_mq_free_rq_map(set, hctx->tags, j);
2105 set->tags[j] = NULL;
2106 }
2107 blk_mq_exit_hctx(q, set, hctx, j);
2108 free_cpumask_var(hctx->cpumask);
2109 kobject_put(&hctx->kobj);
2110 kfree(hctx->ctxs);
2111 kfree(hctx);
2112 hctxs[j] = NULL;
2113
2114 }
2115 }
2116 q->nr_hw_queues = i;
2117 blk_mq_sysfs_register(q);
2118 }
2119
2120 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2121 struct request_queue *q)
2122 {
2123 /* mark the queue as mq asap */
2124 q->mq_ops = set->ops;
2125
2126 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2127 if (!q->queue_ctx)
2128 goto err_exit;
2129
2130 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2131 GFP_KERNEL, set->numa_node);
2132 if (!q->queue_hw_ctx)
2133 goto err_percpu;
2134
2135 q->mq_map = set->mq_map;
2136
2137 blk_mq_realloc_hw_ctxs(set, q);
2138 if (!q->nr_hw_queues)
2139 goto err_hctxs;
2140
2141 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2142 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2143
2144 q->nr_queues = nr_cpu_ids;
2145
2146 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2147
2148 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2149 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2150
2151 q->sg_reserved_size = INT_MAX;
2152
2153 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2154 INIT_LIST_HEAD(&q->requeue_list);
2155 spin_lock_init(&q->requeue_lock);
2156
2157 if (q->nr_hw_queues > 1)
2158 blk_queue_make_request(q, blk_mq_make_request);
2159 else
2160 blk_queue_make_request(q, blk_sq_make_request);
2161
2162 /*
2163 * Do this after blk_queue_make_request() overrides it...
2164 */
2165 q->nr_requests = set->queue_depth;
2166
2167 /*
2168 * Default to classic polling
2169 */
2170 q->poll_nsec = -1;
2171
2172 if (set->ops->complete)
2173 blk_queue_softirq_done(q, set->ops->complete);
2174
2175 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2176
2177 get_online_cpus();
2178 mutex_lock(&all_q_mutex);
2179
2180 list_add_tail(&q->all_q_node, &all_q_list);
2181 blk_mq_add_queue_tag_set(set, q);
2182 blk_mq_map_swqueue(q, cpu_online_mask);
2183
2184 mutex_unlock(&all_q_mutex);
2185 put_online_cpus();
2186
2187 return q;
2188
2189 err_hctxs:
2190 kfree(q->queue_hw_ctx);
2191 err_percpu:
2192 free_percpu(q->queue_ctx);
2193 err_exit:
2194 q->mq_ops = NULL;
2195 return ERR_PTR(-ENOMEM);
2196 }
2197 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2198
2199 void blk_mq_free_queue(struct request_queue *q)
2200 {
2201 struct blk_mq_tag_set *set = q->tag_set;
2202
2203 mutex_lock(&all_q_mutex);
2204 list_del_init(&q->all_q_node);
2205 mutex_unlock(&all_q_mutex);
2206
2207 wbt_exit(q);
2208
2209 blk_mq_del_queue_tag_set(q);
2210
2211 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2212 blk_mq_free_hw_queues(q, set);
2213 }
2214
2215 /* Basically redo blk_mq_init_queue with queue frozen */
2216 static void blk_mq_queue_reinit(struct request_queue *q,
2217 const struct cpumask *online_mask)
2218 {
2219 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2220
2221 blk_mq_sysfs_unregister(q);
2222
2223 /*
2224 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2225 * we should change hctx numa_node according to new topology (this
2226 * involves free and re-allocate memory, worthy doing?)
2227 */
2228
2229 blk_mq_map_swqueue(q, online_mask);
2230
2231 blk_mq_sysfs_register(q);
2232 }
2233
2234 /*
2235 * New online cpumask which is going to be set in this hotplug event.
2236 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2237 * one-by-one and dynamically allocating this could result in a failure.
2238 */
2239 static struct cpumask cpuhp_online_new;
2240
2241 static void blk_mq_queue_reinit_work(void)
2242 {
2243 struct request_queue *q;
2244
2245 mutex_lock(&all_q_mutex);
2246 /*
2247 * We need to freeze and reinit all existing queues. Freezing
2248 * involves synchronous wait for an RCU grace period and doing it
2249 * one by one may take a long time. Start freezing all queues in
2250 * one swoop and then wait for the completions so that freezing can
2251 * take place in parallel.
2252 */
2253 list_for_each_entry(q, &all_q_list, all_q_node)
2254 blk_mq_freeze_queue_start(q);
2255 list_for_each_entry(q, &all_q_list, all_q_node)
2256 blk_mq_freeze_queue_wait(q);
2257
2258 list_for_each_entry(q, &all_q_list, all_q_node)
2259 blk_mq_queue_reinit(q, &cpuhp_online_new);
2260
2261 list_for_each_entry(q, &all_q_list, all_q_node)
2262 blk_mq_unfreeze_queue(q);
2263
2264 mutex_unlock(&all_q_mutex);
2265 }
2266
2267 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2268 {
2269 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2270 blk_mq_queue_reinit_work();
2271 return 0;
2272 }
2273
2274 /*
2275 * Before hotadded cpu starts handling requests, new mappings must be
2276 * established. Otherwise, these requests in hw queue might never be
2277 * dispatched.
2278 *
2279 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2280 * for CPU0, and ctx1 for CPU1).
2281 *
2282 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2283 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2284 *
2285 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2286 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2287 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2288 * ignored.
2289 */
2290 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2291 {
2292 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2293 cpumask_set_cpu(cpu, &cpuhp_online_new);
2294 blk_mq_queue_reinit_work();
2295 return 0;
2296 }
2297
2298 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2299 {
2300 int i;
2301
2302 for (i = 0; i < set->nr_hw_queues; i++) {
2303 set->tags[i] = blk_mq_init_rq_map(set, i);
2304 if (!set->tags[i])
2305 goto out_unwind;
2306 }
2307
2308 return 0;
2309
2310 out_unwind:
2311 while (--i >= 0)
2312 blk_mq_free_rq_map(set, set->tags[i], i);
2313
2314 return -ENOMEM;
2315 }
2316
2317 /*
2318 * Allocate the request maps associated with this tag_set. Note that this
2319 * may reduce the depth asked for, if memory is tight. set->queue_depth
2320 * will be updated to reflect the allocated depth.
2321 */
2322 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2323 {
2324 unsigned int depth;
2325 int err;
2326
2327 depth = set->queue_depth;
2328 do {
2329 err = __blk_mq_alloc_rq_maps(set);
2330 if (!err)
2331 break;
2332
2333 set->queue_depth >>= 1;
2334 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2335 err = -ENOMEM;
2336 break;
2337 }
2338 } while (set->queue_depth);
2339
2340 if (!set->queue_depth || err) {
2341 pr_err("blk-mq: failed to allocate request map\n");
2342 return -ENOMEM;
2343 }
2344
2345 if (depth != set->queue_depth)
2346 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2347 depth, set->queue_depth);
2348
2349 return 0;
2350 }
2351
2352 /*
2353 * Alloc a tag set to be associated with one or more request queues.
2354 * May fail with EINVAL for various error conditions. May adjust the
2355 * requested depth down, if if it too large. In that case, the set
2356 * value will be stored in set->queue_depth.
2357 */
2358 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2359 {
2360 int ret;
2361
2362 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2363
2364 if (!set->nr_hw_queues)
2365 return -EINVAL;
2366 if (!set->queue_depth)
2367 return -EINVAL;
2368 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2369 return -EINVAL;
2370
2371 if (!set->ops->queue_rq)
2372 return -EINVAL;
2373
2374 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2375 pr_info("blk-mq: reduced tag depth to %u\n",
2376 BLK_MQ_MAX_DEPTH);
2377 set->queue_depth = BLK_MQ_MAX_DEPTH;
2378 }
2379
2380 /*
2381 * If a crashdump is active, then we are potentially in a very
2382 * memory constrained environment. Limit us to 1 queue and
2383 * 64 tags to prevent using too much memory.
2384 */
2385 if (is_kdump_kernel()) {
2386 set->nr_hw_queues = 1;
2387 set->queue_depth = min(64U, set->queue_depth);
2388 }
2389 /*
2390 * There is no use for more h/w queues than cpus.
2391 */
2392 if (set->nr_hw_queues > nr_cpu_ids)
2393 set->nr_hw_queues = nr_cpu_ids;
2394
2395 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2396 GFP_KERNEL, set->numa_node);
2397 if (!set->tags)
2398 return -ENOMEM;
2399
2400 ret = -ENOMEM;
2401 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2402 GFP_KERNEL, set->numa_node);
2403 if (!set->mq_map)
2404 goto out_free_tags;
2405
2406 if (set->ops->map_queues)
2407 ret = set->ops->map_queues(set);
2408 else
2409 ret = blk_mq_map_queues(set);
2410 if (ret)
2411 goto out_free_mq_map;
2412
2413 ret = blk_mq_alloc_rq_maps(set);
2414 if (ret)
2415 goto out_free_mq_map;
2416
2417 mutex_init(&set->tag_list_lock);
2418 INIT_LIST_HEAD(&set->tag_list);
2419
2420 return 0;
2421
2422 out_free_mq_map:
2423 kfree(set->mq_map);
2424 set->mq_map = NULL;
2425 out_free_tags:
2426 kfree(set->tags);
2427 set->tags = NULL;
2428 return ret;
2429 }
2430 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2431
2432 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2433 {
2434 int i;
2435
2436 for (i = 0; i < nr_cpu_ids; i++) {
2437 if (set->tags[i])
2438 blk_mq_free_rq_map(set, set->tags[i], i);
2439 }
2440
2441 kfree(set->mq_map);
2442 set->mq_map = NULL;
2443
2444 kfree(set->tags);
2445 set->tags = NULL;
2446 }
2447 EXPORT_SYMBOL(blk_mq_free_tag_set);
2448
2449 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2450 {
2451 struct blk_mq_tag_set *set = q->tag_set;
2452 struct blk_mq_hw_ctx *hctx;
2453 int i, ret;
2454
2455 if (!set || nr > set->queue_depth)
2456 return -EINVAL;
2457
2458 ret = 0;
2459 queue_for_each_hw_ctx(q, hctx, i) {
2460 if (!hctx->tags)
2461 continue;
2462 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2463 if (ret)
2464 break;
2465 }
2466
2467 if (!ret)
2468 q->nr_requests = nr;
2469
2470 return ret;
2471 }
2472
2473 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2474 {
2475 struct request_queue *q;
2476
2477 if (nr_hw_queues > nr_cpu_ids)
2478 nr_hw_queues = nr_cpu_ids;
2479 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2480 return;
2481
2482 list_for_each_entry(q, &set->tag_list, tag_set_list)
2483 blk_mq_freeze_queue(q);
2484
2485 set->nr_hw_queues = nr_hw_queues;
2486 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2487 blk_mq_realloc_hw_ctxs(set, q);
2488
2489 if (q->nr_hw_queues > 1)
2490 blk_queue_make_request(q, blk_mq_make_request);
2491 else
2492 blk_queue_make_request(q, blk_sq_make_request);
2493
2494 blk_mq_queue_reinit(q, cpu_online_mask);
2495 }
2496
2497 list_for_each_entry(q, &set->tag_list, tag_set_list)
2498 blk_mq_unfreeze_queue(q);
2499 }
2500 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2501
2502 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2503 struct blk_mq_hw_ctx *hctx,
2504 struct request *rq)
2505 {
2506 struct blk_rq_stat stat[2];
2507 unsigned long ret = 0;
2508
2509 /*
2510 * If stats collection isn't on, don't sleep but turn it on for
2511 * future users
2512 */
2513 if (!blk_stat_enable(q))
2514 return 0;
2515
2516 /*
2517 * We don't have to do this once per IO, should optimize this
2518 * to just use the current window of stats until it changes
2519 */
2520 memset(&stat, 0, sizeof(stat));
2521 blk_hctx_stat_get(hctx, stat);
2522
2523 /*
2524 * As an optimistic guess, use half of the mean service time
2525 * for this type of request. We can (and should) make this smarter.
2526 * For instance, if the completion latencies are tight, we can
2527 * get closer than just half the mean. This is especially
2528 * important on devices where the completion latencies are longer
2529 * than ~10 usec.
2530 */
2531 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2532 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2533 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2534 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2535
2536 return ret;
2537 }
2538
2539 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2540 struct blk_mq_hw_ctx *hctx,
2541 struct request *rq)
2542 {
2543 struct hrtimer_sleeper hs;
2544 enum hrtimer_mode mode;
2545 unsigned int nsecs;
2546 ktime_t kt;
2547
2548 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2549 return false;
2550
2551 /*
2552 * poll_nsec can be:
2553 *
2554 * -1: don't ever hybrid sleep
2555 * 0: use half of prev avg
2556 * >0: use this specific value
2557 */
2558 if (q->poll_nsec == -1)
2559 return false;
2560 else if (q->poll_nsec > 0)
2561 nsecs = q->poll_nsec;
2562 else
2563 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2564
2565 if (!nsecs)
2566 return false;
2567
2568 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2569
2570 /*
2571 * This will be replaced with the stats tracking code, using
2572 * 'avg_completion_time / 2' as the pre-sleep target.
2573 */
2574 kt = nsecs;
2575
2576 mode = HRTIMER_MODE_REL;
2577 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2578 hrtimer_set_expires(&hs.timer, kt);
2579
2580 hrtimer_init_sleeper(&hs, current);
2581 do {
2582 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2583 break;
2584 set_current_state(TASK_UNINTERRUPTIBLE);
2585 hrtimer_start_expires(&hs.timer, mode);
2586 if (hs.task)
2587 io_schedule();
2588 hrtimer_cancel(&hs.timer);
2589 mode = HRTIMER_MODE_ABS;
2590 } while (hs.task && !signal_pending(current));
2591
2592 __set_current_state(TASK_RUNNING);
2593 destroy_hrtimer_on_stack(&hs.timer);
2594 return true;
2595 }
2596
2597 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2598 {
2599 struct request_queue *q = hctx->queue;
2600 long state;
2601
2602 /*
2603 * If we sleep, have the caller restart the poll loop to reset
2604 * the state. Like for the other success return cases, the
2605 * caller is responsible for checking if the IO completed. If
2606 * the IO isn't complete, we'll get called again and will go
2607 * straight to the busy poll loop.
2608 */
2609 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2610 return true;
2611
2612 hctx->poll_considered++;
2613
2614 state = current->state;
2615 while (!need_resched()) {
2616 int ret;
2617
2618 hctx->poll_invoked++;
2619
2620 ret = q->mq_ops->poll(hctx, rq->tag);
2621 if (ret > 0) {
2622 hctx->poll_success++;
2623 set_current_state(TASK_RUNNING);
2624 return true;
2625 }
2626
2627 if (signal_pending_state(state, current))
2628 set_current_state(TASK_RUNNING);
2629
2630 if (current->state == TASK_RUNNING)
2631 return true;
2632 if (ret < 0)
2633 break;
2634 cpu_relax();
2635 }
2636
2637 return false;
2638 }
2639
2640 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2641 {
2642 struct blk_mq_hw_ctx *hctx;
2643 struct blk_plug *plug;
2644 struct request *rq;
2645
2646 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2647 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2648 return false;
2649
2650 plug = current->plug;
2651 if (plug)
2652 blk_flush_plug_list(plug, false);
2653
2654 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2655 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2656
2657 return __blk_mq_poll(hctx, rq);
2658 }
2659 EXPORT_SYMBOL_GPL(blk_mq_poll);
2660
2661 void blk_mq_disable_hotplug(void)
2662 {
2663 mutex_lock(&all_q_mutex);
2664 }
2665
2666 void blk_mq_enable_hotplug(void)
2667 {
2668 mutex_unlock(&all_q_mutex);
2669 }
2670
2671 static int __init blk_mq_init(void)
2672 {
2673 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2674 blk_mq_hctx_notify_dead);
2675
2676 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2677 blk_mq_queue_reinit_prepare,
2678 blk_mq_queue_reinit_dead);
2679 return 0;
2680 }
2681 subsys_initcall(blk_mq_init);