]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
a522caa005a796c185571ca12b267ef591c83c7b
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130 }
131
132 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134 {
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139 }
140
141 void blk_freeze_queue_start(struct request_queue *q)
142 {
143 int freeze_depth;
144
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
147 percpu_ref_kill(&q->q_usage_counter);
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
150 }
151 }
152 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
153
154 void blk_mq_freeze_queue_wait(struct request_queue *q)
155 {
156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
159
160 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162 {
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166 }
167 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168
169 /*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
173 void blk_freeze_queue(struct request_queue *q)
174 {
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
182 blk_freeze_queue_start(q);
183 if (!q->mq_ops)
184 blk_drain_queue(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_reinit(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222 }
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
225 /**
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
233 */
234 void blk_mq_quiesce_queue(struct request_queue *q)
235 {
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
240 blk_mq_quiesce_queue_nowait(q);
241
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
244 synchronize_srcu(hctx->queue_rq_srcu);
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
253 /*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260 void blk_mq_unquiesce_queue(struct request_queue *q)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284 {
285 return blk_mq_has_free_tags(hctx->tags);
286 }
287 EXPORT_SYMBOL(blk_mq_can_queue);
288
289 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
291 {
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
295 rq->rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->cmd_flags = op;
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
317 if (blk_queue_io_stat(data->q))
318 rq->rq_flags |= RQF_IO_STAT;
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 rq->start_time = jiffies;
326 #ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
328 set_start_time_ns(rq);
329 rq->io_start_time_ns = 0;
330 #endif
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 rq->special = NULL;
336 /* tag was already set */
337 rq->extra_len = 0;
338
339 INIT_LIST_HEAD(&rq->timeout_list);
340 rq->timeout = 0;
341
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
379 } else {
380 blk_mq_tag_busy(data->hctx);
381 }
382
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_TAG_FAIL) {
385 if (put_ctx_on_error) {
386 blk_mq_put_ctx(data->ctx);
387 data->ctx = NULL;
388 }
389 blk_queue_exit(q);
390 return NULL;
391 }
392
393 rq = blk_mq_rq_ctx_init(data, tag, op);
394 if (!op_is_flush(op)) {
395 rq->elv.icq = NULL;
396 if (e && e->type->ops.mq.prepare_request) {
397 if (e->type->icq_cache && rq_ioc(bio))
398 blk_mq_sched_assign_ioc(rq, bio);
399
400 e->type->ops.mq.prepare_request(rq, bio);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404 data->hctx->queued++;
405 return rq;
406 }
407
408 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
409 blk_mq_req_flags_t flags)
410 {
411 struct blk_mq_alloc_data alloc_data = { .flags = flags };
412 struct request *rq;
413 int ret;
414
415 ret = blk_queue_enter(q, flags);
416 if (ret)
417 return ERR_PTR(ret);
418
419 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
420 blk_queue_exit(q);
421
422 if (!rq)
423 return ERR_PTR(-EWOULDBLOCK);
424
425 blk_mq_put_ctx(alloc_data.ctx);
426
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431 }
432 EXPORT_SYMBOL(blk_mq_alloc_request);
433
434 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
435 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
436 {
437 struct blk_mq_alloc_data alloc_data = { .flags = flags };
438 struct request *rq;
439 unsigned int cpu;
440 int ret;
441
442 /*
443 * If the tag allocator sleeps we could get an allocation for a
444 * different hardware context. No need to complicate the low level
445 * allocator for this for the rare use case of a command tied to
446 * a specific queue.
447 */
448 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
449 return ERR_PTR(-EINVAL);
450
451 if (hctx_idx >= q->nr_hw_queues)
452 return ERR_PTR(-EIO);
453
454 ret = blk_queue_enter(q, flags);
455 if (ret)
456 return ERR_PTR(ret);
457
458 /*
459 * Check if the hardware context is actually mapped to anything.
460 * If not tell the caller that it should skip this queue.
461 */
462 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
463 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
464 blk_queue_exit(q);
465 return ERR_PTR(-EXDEV);
466 }
467 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
468 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
469
470 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
471 blk_queue_exit(q);
472
473 if (!rq)
474 return ERR_PTR(-EWOULDBLOCK);
475
476 return rq;
477 }
478 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479
480 void blk_mq_free_request(struct request *rq)
481 {
482 struct request_queue *q = rq->q;
483 struct elevator_queue *e = q->elevator;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 const int sched_tag = rq->internal_tag;
487
488 if (rq->rq_flags & RQF_ELVPRIV) {
489 if (e && e->type->ops.mq.finish_request)
490 e->type->ops.mq.finish_request(rq);
491 if (rq->elv.icq) {
492 put_io_context(rq->elv.icq->ioc);
493 rq->elv.icq = NULL;
494 }
495 }
496
497 ctx->rq_completed[rq_is_sync(rq)]++;
498 if (rq->rq_flags & RQF_MQ_INFLIGHT)
499 atomic_dec(&hctx->nr_active);
500
501 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
502 laptop_io_completion(q->backing_dev_info);
503
504 wbt_done(q->rq_wb, &rq->issue_stat);
505
506 if (blk_rq_rl(rq))
507 blk_put_rl(blk_rq_rl(rq));
508
509 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
510 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
511 if (rq->tag != -1)
512 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
513 if (sched_tag != -1)
514 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
515 blk_mq_sched_restart(hctx);
516 blk_queue_exit(q);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 blk_account_io_done(rq);
523
524 if (rq->end_io) {
525 wbt_done(rq->q->rq_wb, &rq->issue_stat);
526 rq->end_io(rq, error);
527 } else {
528 if (unlikely(blk_bidi_rq(rq)))
529 blk_mq_free_request(rq->next_rq);
530 blk_mq_free_request(rq);
531 }
532 }
533 EXPORT_SYMBOL(__blk_mq_end_request);
534
535 void blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
538 BUG();
539 __blk_mq_end_request(rq, error);
540 }
541 EXPORT_SYMBOL(blk_mq_end_request);
542
543 static void __blk_mq_complete_request_remote(void *data)
544 {
545 struct request *rq = data;
546
547 rq->q->softirq_done_fn(rq);
548 }
549
550 static void __blk_mq_complete_request(struct request *rq)
551 {
552 struct blk_mq_ctx *ctx = rq->mq_ctx;
553 bool shared = false;
554 int cpu;
555
556 if (rq->internal_tag != -1)
557 blk_mq_sched_completed_request(rq);
558 if (rq->rq_flags & RQF_STATS) {
559 blk_mq_poll_stats_start(rq->q);
560 blk_stat_add(rq);
561 }
562
563 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
564 rq->q->softirq_done_fn(rq);
565 return;
566 }
567
568 cpu = get_cpu();
569 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
570 shared = cpus_share_cache(cpu, ctx->cpu);
571
572 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
573 rq->csd.func = __blk_mq_complete_request_remote;
574 rq->csd.info = rq;
575 rq->csd.flags = 0;
576 smp_call_function_single_async(ctx->cpu, &rq->csd);
577 } else {
578 rq->q->softirq_done_fn(rq);
579 }
580 put_cpu();
581 }
582
583 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
584 {
585 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
586 rcu_read_unlock();
587 else
588 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
589 }
590
591 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
592 {
593 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
594 rcu_read_lock();
595 else
596 *srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
597 }
598
599 /**
600 * blk_mq_complete_request - end I/O on a request
601 * @rq: the request being processed
602 *
603 * Description:
604 * Ends all I/O on a request. It does not handle partial completions.
605 * The actual completion happens out-of-order, through a IPI handler.
606 **/
607 void blk_mq_complete_request(struct request *rq)
608 {
609 struct request_queue *q = rq->q;
610
611 if (unlikely(blk_should_fake_timeout(q)))
612 return;
613 if (!blk_mark_rq_complete(rq))
614 __blk_mq_complete_request(rq);
615 }
616 EXPORT_SYMBOL(blk_mq_complete_request);
617
618 int blk_mq_request_started(struct request *rq)
619 {
620 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
621 }
622 EXPORT_SYMBOL_GPL(blk_mq_request_started);
623
624 void blk_mq_start_request(struct request *rq)
625 {
626 struct request_queue *q = rq->q;
627
628 blk_mq_sched_started_request(rq);
629
630 trace_block_rq_issue(q, rq);
631
632 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
633 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
634 rq->rq_flags |= RQF_STATS;
635 wbt_issue(q->rq_wb, &rq->issue_stat);
636 }
637
638 blk_add_timer(rq);
639
640 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
641
642 /*
643 * Mark us as started and clear complete. Complete might have been
644 * set if requeue raced with timeout, which then marked it as
645 * complete. So be sure to clear complete again when we start
646 * the request, otherwise we'll ignore the completion event.
647 *
648 * Ensure that ->deadline is visible before we set STARTED, such that
649 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
650 * it observes STARTED.
651 */
652 smp_wmb();
653 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
654 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
655 /*
656 * Coherence order guarantees these consecutive stores to a
657 * single variable propagate in the specified order. Thus the
658 * clear_bit() is ordered _after_ the set bit. See
659 * blk_mq_check_expired().
660 *
661 * (the bits must be part of the same byte for this to be
662 * true).
663 */
664 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
665 }
666
667 if (q->dma_drain_size && blk_rq_bytes(rq)) {
668 /*
669 * Make sure space for the drain appears. We know we can do
670 * this because max_hw_segments has been adjusted to be one
671 * fewer than the device can handle.
672 */
673 rq->nr_phys_segments++;
674 }
675 }
676 EXPORT_SYMBOL(blk_mq_start_request);
677
678 /*
679 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
680 * flag isn't set yet, so there may be race with timeout handler,
681 * but given rq->deadline is just set in .queue_rq() under
682 * this situation, the race won't be possible in reality because
683 * rq->timeout should be set as big enough to cover the window
684 * between blk_mq_start_request() called from .queue_rq() and
685 * clearing REQ_ATOM_STARTED here.
686 */
687 static void __blk_mq_requeue_request(struct request *rq)
688 {
689 struct request_queue *q = rq->q;
690
691 blk_mq_put_driver_tag(rq);
692
693 trace_block_rq_requeue(q, rq);
694 wbt_requeue(q->rq_wb, &rq->issue_stat);
695
696 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
697 if (q->dma_drain_size && blk_rq_bytes(rq))
698 rq->nr_phys_segments--;
699 }
700 }
701
702 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
703 {
704 __blk_mq_requeue_request(rq);
705
706 /* this request will be re-inserted to io scheduler queue */
707 blk_mq_sched_requeue_request(rq);
708
709 BUG_ON(blk_queued_rq(rq));
710 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
711 }
712 EXPORT_SYMBOL(blk_mq_requeue_request);
713
714 static void blk_mq_requeue_work(struct work_struct *work)
715 {
716 struct request_queue *q =
717 container_of(work, struct request_queue, requeue_work.work);
718 LIST_HEAD(rq_list);
719 struct request *rq, *next;
720
721 spin_lock_irq(&q->requeue_lock);
722 list_splice_init(&q->requeue_list, &rq_list);
723 spin_unlock_irq(&q->requeue_lock);
724
725 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
726 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
727 continue;
728
729 rq->rq_flags &= ~RQF_SOFTBARRIER;
730 list_del_init(&rq->queuelist);
731 /*
732 * If RQF_DONTPREP, rq has contained some driver specific
733 * data, so insert it to hctx dispatch list to avoid any
734 * merge.
735 */
736 if (rq->rq_flags & RQF_DONTPREP)
737 blk_mq_request_bypass_insert(rq, false);
738 else
739 blk_mq_sched_insert_request(rq, true, false, false);
740 }
741
742 while (!list_empty(&rq_list)) {
743 rq = list_entry(rq_list.next, struct request, queuelist);
744 list_del_init(&rq->queuelist);
745 blk_mq_sched_insert_request(rq, false, false, false);
746 }
747
748 blk_mq_run_hw_queues(q, false);
749 }
750
751 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
752 bool kick_requeue_list)
753 {
754 struct request_queue *q = rq->q;
755 unsigned long flags;
756
757 /*
758 * We abuse this flag that is otherwise used by the I/O scheduler to
759 * request head insertion from the workqueue.
760 */
761 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
762
763 spin_lock_irqsave(&q->requeue_lock, flags);
764 if (at_head) {
765 rq->rq_flags |= RQF_SOFTBARRIER;
766 list_add(&rq->queuelist, &q->requeue_list);
767 } else {
768 list_add_tail(&rq->queuelist, &q->requeue_list);
769 }
770 spin_unlock_irqrestore(&q->requeue_lock, flags);
771
772 if (kick_requeue_list)
773 blk_mq_kick_requeue_list(q);
774 }
775 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
776
777 void blk_mq_kick_requeue_list(struct request_queue *q)
778 {
779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
780 }
781 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
782
783 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 unsigned long msecs)
785 {
786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 msecs_to_jiffies(msecs));
788 }
789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
790
791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
792 {
793 if (tag < tags->nr_tags) {
794 prefetch(tags->rqs[tag]);
795 return tags->rqs[tag];
796 }
797
798 return NULL;
799 }
800 EXPORT_SYMBOL(blk_mq_tag_to_rq);
801
802 struct blk_mq_timeout_data {
803 unsigned long next;
804 unsigned int next_set;
805 };
806
807 void blk_mq_rq_timed_out(struct request *req, bool reserved)
808 {
809 const struct blk_mq_ops *ops = req->q->mq_ops;
810 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
811
812 /*
813 * We know that complete is set at this point. If STARTED isn't set
814 * anymore, then the request isn't active and the "timeout" should
815 * just be ignored. This can happen due to the bitflag ordering.
816 * Timeout first checks if STARTED is set, and if it is, assumes
817 * the request is active. But if we race with completion, then
818 * both flags will get cleared. So check here again, and ignore
819 * a timeout event with a request that isn't active.
820 */
821 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
822 return;
823
824 if (ops->timeout)
825 ret = ops->timeout(req, reserved);
826
827 switch (ret) {
828 case BLK_EH_HANDLED:
829 __blk_mq_complete_request(req);
830 break;
831 case BLK_EH_RESET_TIMER:
832 blk_add_timer(req);
833 blk_clear_rq_complete(req);
834 break;
835 case BLK_EH_NOT_HANDLED:
836 break;
837 default:
838 printk(KERN_ERR "block: bad eh return: %d\n", ret);
839 break;
840 }
841 }
842
843 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
844 struct request *rq, void *priv, bool reserved)
845 {
846 struct blk_mq_timeout_data *data = priv;
847 unsigned long deadline;
848
849 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
850 return;
851
852 /*
853 * Ensures that if we see STARTED we must also see our
854 * up-to-date deadline, see blk_mq_start_request().
855 */
856 smp_rmb();
857
858 deadline = READ_ONCE(rq->deadline);
859
860 /*
861 * The rq being checked may have been freed and reallocated
862 * out already here, we avoid this race by checking rq->deadline
863 * and REQ_ATOM_COMPLETE flag together:
864 *
865 * - if rq->deadline is observed as new value because of
866 * reusing, the rq won't be timed out because of timing.
867 * - if rq->deadline is observed as previous value,
868 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
869 * because we put a barrier between setting rq->deadline
870 * and clearing the flag in blk_mq_start_request(), so
871 * this rq won't be timed out too.
872 */
873 if (time_after_eq(jiffies, deadline)) {
874 if (!blk_mark_rq_complete(rq)) {
875 /*
876 * Again coherence order ensures that consecutive reads
877 * from the same variable must be in that order. This
878 * ensures that if we see COMPLETE clear, we must then
879 * see STARTED set and we'll ignore this timeout.
880 *
881 * (There's also the MB implied by the test_and_clear())
882 */
883 blk_mq_rq_timed_out(rq, reserved);
884 }
885 } else if (!data->next_set || time_after(data->next, deadline)) {
886 data->next = deadline;
887 data->next_set = 1;
888 }
889 }
890
891 static void blk_mq_timeout_work(struct work_struct *work)
892 {
893 struct request_queue *q =
894 container_of(work, struct request_queue, timeout_work);
895 struct blk_mq_timeout_data data = {
896 .next = 0,
897 .next_set = 0,
898 };
899 int i;
900
901 /* A deadlock might occur if a request is stuck requiring a
902 * timeout at the same time a queue freeze is waiting
903 * completion, since the timeout code would not be able to
904 * acquire the queue reference here.
905 *
906 * That's why we don't use blk_queue_enter here; instead, we use
907 * percpu_ref_tryget directly, because we need to be able to
908 * obtain a reference even in the short window between the queue
909 * starting to freeze, by dropping the first reference in
910 * blk_freeze_queue_start, and the moment the last request is
911 * consumed, marked by the instant q_usage_counter reaches
912 * zero.
913 */
914 if (!percpu_ref_tryget(&q->q_usage_counter))
915 return;
916
917 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
918
919 if (data.next_set) {
920 data.next = blk_rq_timeout(round_jiffies_up(data.next));
921 mod_timer(&q->timeout, data.next);
922 } else {
923 struct blk_mq_hw_ctx *hctx;
924
925 queue_for_each_hw_ctx(q, hctx, i) {
926 /* the hctx may be unmapped, so check it here */
927 if (blk_mq_hw_queue_mapped(hctx))
928 blk_mq_tag_idle(hctx);
929 }
930 }
931 blk_queue_exit(q);
932 }
933
934 struct flush_busy_ctx_data {
935 struct blk_mq_hw_ctx *hctx;
936 struct list_head *list;
937 };
938
939 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
940 {
941 struct flush_busy_ctx_data *flush_data = data;
942 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
943 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
944
945 sbitmap_clear_bit(sb, bitnr);
946 spin_lock(&ctx->lock);
947 list_splice_tail_init(&ctx->rq_list, flush_data->list);
948 spin_unlock(&ctx->lock);
949 return true;
950 }
951
952 /*
953 * Process software queues that have been marked busy, splicing them
954 * to the for-dispatch
955 */
956 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
957 {
958 struct flush_busy_ctx_data data = {
959 .hctx = hctx,
960 .list = list,
961 };
962
963 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
964 }
965 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
966
967 struct dispatch_rq_data {
968 struct blk_mq_hw_ctx *hctx;
969 struct request *rq;
970 };
971
972 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
973 void *data)
974 {
975 struct dispatch_rq_data *dispatch_data = data;
976 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
977 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
978
979 spin_lock(&ctx->lock);
980 if (unlikely(!list_empty(&ctx->rq_list))) {
981 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
982 list_del_init(&dispatch_data->rq->queuelist);
983 if (list_empty(&ctx->rq_list))
984 sbitmap_clear_bit(sb, bitnr);
985 }
986 spin_unlock(&ctx->lock);
987
988 return !dispatch_data->rq;
989 }
990
991 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
992 struct blk_mq_ctx *start)
993 {
994 unsigned off = start ? start->index_hw : 0;
995 struct dispatch_rq_data data = {
996 .hctx = hctx,
997 .rq = NULL,
998 };
999
1000 __sbitmap_for_each_set(&hctx->ctx_map, off,
1001 dispatch_rq_from_ctx, &data);
1002
1003 return data.rq;
1004 }
1005
1006 static inline unsigned int queued_to_index(unsigned int queued)
1007 {
1008 if (!queued)
1009 return 0;
1010
1011 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1012 }
1013
1014 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1015 bool wait)
1016 {
1017 struct blk_mq_alloc_data data = {
1018 .q = rq->q,
1019 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1020 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1021 };
1022 bool shared;
1023
1024 might_sleep_if(wait);
1025
1026 if (rq->tag != -1)
1027 goto done;
1028
1029 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1030 data.flags |= BLK_MQ_REQ_RESERVED;
1031
1032 shared = blk_mq_tag_busy(data.hctx);
1033 rq->tag = blk_mq_get_tag(&data);
1034 if (rq->tag >= 0) {
1035 if (shared) {
1036 rq->rq_flags |= RQF_MQ_INFLIGHT;
1037 atomic_inc(&data.hctx->nr_active);
1038 }
1039 data.hctx->tags->rqs[rq->tag] = rq;
1040 }
1041
1042 done:
1043 if (hctx)
1044 *hctx = data.hctx;
1045 return rq->tag != -1;
1046 }
1047
1048 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1049 int flags, void *key)
1050 {
1051 struct blk_mq_hw_ctx *hctx;
1052
1053 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1054
1055 list_del_init(&wait->entry);
1056 blk_mq_run_hw_queue(hctx, true);
1057 return 1;
1058 }
1059
1060 /*
1061 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1062 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1063 * restart. For both caes, take care to check the condition again after
1064 * marking us as waiting.
1065 */
1066 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1067 struct request *rq)
1068 {
1069 struct blk_mq_hw_ctx *this_hctx = *hctx;
1070 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1071 struct sbq_wait_state *ws;
1072 wait_queue_entry_t *wait;
1073 bool ret;
1074
1075 if (!shared_tags) {
1076 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1077 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1078 } else {
1079 wait = &this_hctx->dispatch_wait;
1080 if (!list_empty_careful(&wait->entry))
1081 return false;
1082
1083 spin_lock(&this_hctx->lock);
1084 if (!list_empty(&wait->entry)) {
1085 spin_unlock(&this_hctx->lock);
1086 return false;
1087 }
1088
1089 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1090 add_wait_queue(&ws->wait, wait);
1091 }
1092
1093 /*
1094 * It's possible that a tag was freed in the window between the
1095 * allocation failure and adding the hardware queue to the wait
1096 * queue.
1097 */
1098 ret = blk_mq_get_driver_tag(rq, hctx, false);
1099
1100 if (!shared_tags) {
1101 /*
1102 * Don't clear RESTART here, someone else could have set it.
1103 * At most this will cost an extra queue run.
1104 */
1105 return ret;
1106 } else {
1107 if (!ret) {
1108 spin_unlock(&this_hctx->lock);
1109 return false;
1110 }
1111
1112 /*
1113 * We got a tag, remove ourselves from the wait queue to ensure
1114 * someone else gets the wakeup.
1115 */
1116 spin_lock_irq(&ws->wait.lock);
1117 list_del_init(&wait->entry);
1118 spin_unlock_irq(&ws->wait.lock);
1119 spin_unlock(&this_hctx->lock);
1120 return true;
1121 }
1122 }
1123
1124 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1125
1126 /*
1127 * Returns true if we did some work AND can potentially do more.
1128 */
1129 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1130 bool got_budget)
1131 {
1132 struct blk_mq_hw_ctx *hctx;
1133 struct request *rq, *nxt;
1134 bool no_tag = false;
1135 int errors, queued;
1136 blk_status_t ret = BLK_STS_OK;
1137
1138 if (list_empty(list))
1139 return false;
1140
1141 WARN_ON(!list_is_singular(list) && got_budget);
1142
1143 /*
1144 * Now process all the entries, sending them to the driver.
1145 */
1146 errors = queued = 0;
1147 do {
1148 struct blk_mq_queue_data bd;
1149
1150 rq = list_first_entry(list, struct request, queuelist);
1151
1152 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1153 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1154 break;
1155
1156 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1157 /*
1158 * The initial allocation attempt failed, so we need to
1159 * rerun the hardware queue when a tag is freed. The
1160 * waitqueue takes care of that. If the queue is run
1161 * before we add this entry back on the dispatch list,
1162 * we'll re-run it below.
1163 */
1164 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1165 blk_mq_put_dispatch_budget(hctx);
1166 /*
1167 * For non-shared tags, the RESTART check
1168 * will suffice.
1169 */
1170 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1171 no_tag = true;
1172 break;
1173 }
1174 }
1175
1176 list_del_init(&rq->queuelist);
1177
1178 bd.rq = rq;
1179
1180 /*
1181 * Flag last if we have no more requests, or if we have more
1182 * but can't assign a driver tag to it.
1183 */
1184 if (list_empty(list))
1185 bd.last = true;
1186 else {
1187 nxt = list_first_entry(list, struct request, queuelist);
1188 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1189 }
1190
1191 ret = q->mq_ops->queue_rq(hctx, &bd);
1192 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1193 /*
1194 * If an I/O scheduler has been configured and we got a
1195 * driver tag for the next request already, free it
1196 * again.
1197 */
1198 if (!list_empty(list)) {
1199 nxt = list_first_entry(list, struct request, queuelist);
1200 blk_mq_put_driver_tag(nxt);
1201 }
1202 list_add(&rq->queuelist, list);
1203 __blk_mq_requeue_request(rq);
1204 break;
1205 }
1206
1207 if (unlikely(ret != BLK_STS_OK)) {
1208 errors++;
1209 blk_mq_end_request(rq, BLK_STS_IOERR);
1210 continue;
1211 }
1212
1213 queued++;
1214 } while (!list_empty(list));
1215
1216 hctx->dispatched[queued_to_index(queued)]++;
1217
1218 /*
1219 * Any items that need requeuing? Stuff them into hctx->dispatch,
1220 * that is where we will continue on next queue run.
1221 */
1222 if (!list_empty(list)) {
1223 bool needs_restart;
1224
1225 spin_lock(&hctx->lock);
1226 list_splice_init(list, &hctx->dispatch);
1227 spin_unlock(&hctx->lock);
1228
1229 /*
1230 * If SCHED_RESTART was set by the caller of this function and
1231 * it is no longer set that means that it was cleared by another
1232 * thread and hence that a queue rerun is needed.
1233 *
1234 * If 'no_tag' is set, that means that we failed getting
1235 * a driver tag with an I/O scheduler attached. If our dispatch
1236 * waitqueue is no longer active, ensure that we run the queue
1237 * AFTER adding our entries back to the list.
1238 *
1239 * If no I/O scheduler has been configured it is possible that
1240 * the hardware queue got stopped and restarted before requests
1241 * were pushed back onto the dispatch list. Rerun the queue to
1242 * avoid starvation. Notes:
1243 * - blk_mq_run_hw_queue() checks whether or not a queue has
1244 * been stopped before rerunning a queue.
1245 * - Some but not all block drivers stop a queue before
1246 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1247 * and dm-rq.
1248 *
1249 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1250 * bit is set, run queue after a delay to avoid IO stalls
1251 * that could otherwise occur if the queue is idle.
1252 */
1253 needs_restart = blk_mq_sched_needs_restart(hctx);
1254 if (!needs_restart ||
1255 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1256 blk_mq_run_hw_queue(hctx, true);
1257 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1258 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1259
1260 return false;
1261 }
1262
1263 /*
1264 * If the host/device is unable to accept more work, inform the
1265 * caller of that.
1266 */
1267 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1268 return false;
1269
1270 return (queued + errors) != 0;
1271 }
1272
1273 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1274 {
1275 int srcu_idx;
1276
1277 /*
1278 * We should be running this queue from one of the CPUs that
1279 * are mapped to it.
1280 *
1281 * There are at least two related races now between setting
1282 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1283 * __blk_mq_run_hw_queue():
1284 *
1285 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1286 * but later it becomes online, then this warning is harmless
1287 * at all
1288 *
1289 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1290 * but later it becomes offline, then the warning can't be
1291 * triggered, and we depend on blk-mq timeout handler to
1292 * handle dispatched requests to this hctx
1293 */
1294 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1295 cpu_online(hctx->next_cpu)) {
1296 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1297 raw_smp_processor_id(),
1298 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1299 dump_stack();
1300 }
1301
1302 /*
1303 * We can't run the queue inline with ints disabled. Ensure that
1304 * we catch bad users of this early.
1305 */
1306 WARN_ON_ONCE(in_interrupt());
1307
1308 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1309
1310 hctx_lock(hctx, &srcu_idx);
1311 blk_mq_sched_dispatch_requests(hctx);
1312 hctx_unlock(hctx, srcu_idx);
1313 }
1314
1315 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1316 {
1317 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1318
1319 if (cpu >= nr_cpu_ids)
1320 cpu = cpumask_first(hctx->cpumask);
1321 return cpu;
1322 }
1323
1324 /*
1325 * It'd be great if the workqueue API had a way to pass
1326 * in a mask and had some smarts for more clever placement.
1327 * For now we just round-robin here, switching for every
1328 * BLK_MQ_CPU_WORK_BATCH queued items.
1329 */
1330 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1331 {
1332 bool tried = false;
1333 int next_cpu = hctx->next_cpu;
1334
1335 if (hctx->queue->nr_hw_queues == 1)
1336 return WORK_CPU_UNBOUND;
1337
1338 if (--hctx->next_cpu_batch <= 0) {
1339 select_cpu:
1340 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1341 cpu_online_mask);
1342 if (next_cpu >= nr_cpu_ids)
1343 next_cpu = blk_mq_first_mapped_cpu(hctx);
1344 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1345 }
1346
1347 /*
1348 * Do unbound schedule if we can't find a online CPU for this hctx,
1349 * and it should only happen in the path of handling CPU DEAD.
1350 */
1351 if (!cpu_online(next_cpu)) {
1352 if (!tried) {
1353 tried = true;
1354 goto select_cpu;
1355 }
1356
1357 /*
1358 * Make sure to re-select CPU next time once after CPUs
1359 * in hctx->cpumask become online again.
1360 */
1361 hctx->next_cpu = next_cpu;
1362 hctx->next_cpu_batch = 1;
1363 return WORK_CPU_UNBOUND;
1364 }
1365
1366 hctx->next_cpu = next_cpu;
1367 return next_cpu;
1368 }
1369
1370 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1371 unsigned long msecs)
1372 {
1373 if (unlikely(blk_mq_hctx_stopped(hctx)))
1374 return;
1375
1376 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1377 int cpu = get_cpu();
1378 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1379 __blk_mq_run_hw_queue(hctx);
1380 put_cpu();
1381 return;
1382 }
1383
1384 put_cpu();
1385 }
1386
1387 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1388 msecs_to_jiffies(msecs));
1389 }
1390
1391 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1392 {
1393 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1394 }
1395 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1396
1397 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1398 {
1399 int srcu_idx;
1400 bool need_run;
1401
1402 /*
1403 * When queue is quiesced, we may be switching io scheduler, or
1404 * updating nr_hw_queues, or other things, and we can't run queue
1405 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1406 *
1407 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1408 * quiesced.
1409 */
1410 hctx_lock(hctx, &srcu_idx);
1411 need_run = !blk_queue_quiesced(hctx->queue) &&
1412 blk_mq_hctx_has_pending(hctx);
1413 hctx_unlock(hctx, srcu_idx);
1414
1415 if (need_run) {
1416 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1417 return true;
1418 }
1419
1420 return false;
1421 }
1422 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1423
1424 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1425 {
1426 struct blk_mq_hw_ctx *hctx;
1427 int i;
1428
1429 queue_for_each_hw_ctx(q, hctx, i) {
1430 if (blk_mq_hctx_stopped(hctx))
1431 continue;
1432
1433 blk_mq_run_hw_queue(hctx, async);
1434 }
1435 }
1436 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1437
1438 /**
1439 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1440 * @q: request queue.
1441 *
1442 * The caller is responsible for serializing this function against
1443 * blk_mq_{start,stop}_hw_queue().
1444 */
1445 bool blk_mq_queue_stopped(struct request_queue *q)
1446 {
1447 struct blk_mq_hw_ctx *hctx;
1448 int i;
1449
1450 queue_for_each_hw_ctx(q, hctx, i)
1451 if (blk_mq_hctx_stopped(hctx))
1452 return true;
1453
1454 return false;
1455 }
1456 EXPORT_SYMBOL(blk_mq_queue_stopped);
1457
1458 /*
1459 * This function is often used for pausing .queue_rq() by driver when
1460 * there isn't enough resource or some conditions aren't satisfied, and
1461 * BLK_STS_RESOURCE is usually returned.
1462 *
1463 * We do not guarantee that dispatch can be drained or blocked
1464 * after blk_mq_stop_hw_queue() returns. Please use
1465 * blk_mq_quiesce_queue() for that requirement.
1466 */
1467 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1468 {
1469 cancel_delayed_work(&hctx->run_work);
1470
1471 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1472 }
1473 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1474
1475 /*
1476 * This function is often used for pausing .queue_rq() by driver when
1477 * there isn't enough resource or some conditions aren't satisfied, and
1478 * BLK_STS_RESOURCE is usually returned.
1479 *
1480 * We do not guarantee that dispatch can be drained or blocked
1481 * after blk_mq_stop_hw_queues() returns. Please use
1482 * blk_mq_quiesce_queue() for that requirement.
1483 */
1484 void blk_mq_stop_hw_queues(struct request_queue *q)
1485 {
1486 struct blk_mq_hw_ctx *hctx;
1487 int i;
1488
1489 queue_for_each_hw_ctx(q, hctx, i)
1490 blk_mq_stop_hw_queue(hctx);
1491 }
1492 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1493
1494 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1495 {
1496 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1497
1498 blk_mq_run_hw_queue(hctx, false);
1499 }
1500 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1501
1502 void blk_mq_start_hw_queues(struct request_queue *q)
1503 {
1504 struct blk_mq_hw_ctx *hctx;
1505 int i;
1506
1507 queue_for_each_hw_ctx(q, hctx, i)
1508 blk_mq_start_hw_queue(hctx);
1509 }
1510 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1511
1512 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1513 {
1514 if (!blk_mq_hctx_stopped(hctx))
1515 return;
1516
1517 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1518 blk_mq_run_hw_queue(hctx, async);
1519 }
1520 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1521
1522 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1523 {
1524 struct blk_mq_hw_ctx *hctx;
1525 int i;
1526
1527 queue_for_each_hw_ctx(q, hctx, i)
1528 blk_mq_start_stopped_hw_queue(hctx, async);
1529 }
1530 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1531
1532 static void blk_mq_run_work_fn(struct work_struct *work)
1533 {
1534 struct blk_mq_hw_ctx *hctx;
1535
1536 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1537
1538 /*
1539 * If we are stopped, don't run the queue. The exception is if
1540 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1541 * the STOPPED bit and run it.
1542 */
1543 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1544 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1545 return;
1546
1547 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1548 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1549 }
1550
1551 __blk_mq_run_hw_queue(hctx);
1552 }
1553
1554
1555 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1556 {
1557 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1558 return;
1559
1560 /*
1561 * Stop the hw queue, then modify currently delayed work.
1562 * This should prevent us from running the queue prematurely.
1563 * Mark the queue as auto-clearing STOPPED when it runs.
1564 */
1565 blk_mq_stop_hw_queue(hctx);
1566 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1567 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1568 &hctx->run_work,
1569 msecs_to_jiffies(msecs));
1570 }
1571 EXPORT_SYMBOL(blk_mq_delay_queue);
1572
1573 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1574 struct request *rq,
1575 bool at_head)
1576 {
1577 struct blk_mq_ctx *ctx = rq->mq_ctx;
1578
1579 lockdep_assert_held(&ctx->lock);
1580
1581 trace_block_rq_insert(hctx->queue, rq);
1582
1583 if (at_head)
1584 list_add(&rq->queuelist, &ctx->rq_list);
1585 else
1586 list_add_tail(&rq->queuelist, &ctx->rq_list);
1587 }
1588
1589 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1590 bool at_head)
1591 {
1592 struct blk_mq_ctx *ctx = rq->mq_ctx;
1593
1594 lockdep_assert_held(&ctx->lock);
1595
1596 __blk_mq_insert_req_list(hctx, rq, at_head);
1597 blk_mq_hctx_mark_pending(hctx, ctx);
1598 }
1599
1600 /*
1601 * Should only be used carefully, when the caller knows we want to
1602 * bypass a potential IO scheduler on the target device.
1603 */
1604 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1605 {
1606 struct blk_mq_ctx *ctx = rq->mq_ctx;
1607 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1608
1609 spin_lock(&hctx->lock);
1610 list_add_tail(&rq->queuelist, &hctx->dispatch);
1611 spin_unlock(&hctx->lock);
1612
1613 if (run_queue)
1614 blk_mq_run_hw_queue(hctx, false);
1615 }
1616
1617 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1618 struct list_head *list)
1619
1620 {
1621 /*
1622 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1623 * offline now
1624 */
1625 spin_lock(&ctx->lock);
1626 while (!list_empty(list)) {
1627 struct request *rq;
1628
1629 rq = list_first_entry(list, struct request, queuelist);
1630 BUG_ON(rq->mq_ctx != ctx);
1631 list_del_init(&rq->queuelist);
1632 __blk_mq_insert_req_list(hctx, rq, false);
1633 }
1634 blk_mq_hctx_mark_pending(hctx, ctx);
1635 spin_unlock(&ctx->lock);
1636 }
1637
1638 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1639 {
1640 struct request *rqa = container_of(a, struct request, queuelist);
1641 struct request *rqb = container_of(b, struct request, queuelist);
1642
1643 return !(rqa->mq_ctx < rqb->mq_ctx ||
1644 (rqa->mq_ctx == rqb->mq_ctx &&
1645 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1646 }
1647
1648 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1649 {
1650 struct blk_mq_ctx *this_ctx;
1651 struct request_queue *this_q;
1652 struct request *rq;
1653 LIST_HEAD(list);
1654 LIST_HEAD(ctx_list);
1655 unsigned int depth;
1656
1657 list_splice_init(&plug->mq_list, &list);
1658
1659 list_sort(NULL, &list, plug_ctx_cmp);
1660
1661 this_q = NULL;
1662 this_ctx = NULL;
1663 depth = 0;
1664
1665 while (!list_empty(&list)) {
1666 rq = list_entry_rq(list.next);
1667 list_del_init(&rq->queuelist);
1668 BUG_ON(!rq->q);
1669 if (rq->mq_ctx != this_ctx) {
1670 if (this_ctx) {
1671 trace_block_unplug(this_q, depth, !from_schedule);
1672 blk_mq_sched_insert_requests(this_q, this_ctx,
1673 &ctx_list,
1674 from_schedule);
1675 }
1676
1677 this_ctx = rq->mq_ctx;
1678 this_q = rq->q;
1679 depth = 0;
1680 }
1681
1682 depth++;
1683 list_add_tail(&rq->queuelist, &ctx_list);
1684 }
1685
1686 /*
1687 * If 'this_ctx' is set, we know we have entries to complete
1688 * on 'ctx_list'. Do those.
1689 */
1690 if (this_ctx) {
1691 trace_block_unplug(this_q, depth, !from_schedule);
1692 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1693 from_schedule);
1694 }
1695 }
1696
1697 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1698 {
1699 blk_init_request_from_bio(rq, bio);
1700
1701 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1702
1703 blk_account_io_start(rq, true);
1704 }
1705
1706 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1707 struct blk_mq_ctx *ctx,
1708 struct request *rq)
1709 {
1710 spin_lock(&ctx->lock);
1711 __blk_mq_insert_request(hctx, rq, false);
1712 spin_unlock(&ctx->lock);
1713 }
1714
1715 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1716 {
1717 if (rq->tag != -1)
1718 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1719
1720 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1721 }
1722
1723 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1724 struct request *rq,
1725 blk_qc_t *cookie)
1726 {
1727 struct request_queue *q = rq->q;
1728 struct blk_mq_queue_data bd = {
1729 .rq = rq,
1730 .last = true,
1731 };
1732 blk_qc_t new_cookie;
1733 blk_status_t ret;
1734
1735 new_cookie = request_to_qc_t(hctx, rq);
1736
1737 /*
1738 * For OK queue, we are done. For error, caller may kill it.
1739 * Any other error (busy), just add it to our list as we
1740 * previously would have done.
1741 */
1742 ret = q->mq_ops->queue_rq(hctx, &bd);
1743 switch (ret) {
1744 case BLK_STS_OK:
1745 *cookie = new_cookie;
1746 break;
1747 case BLK_STS_RESOURCE:
1748 case BLK_STS_DEV_RESOURCE:
1749 __blk_mq_requeue_request(rq);
1750 break;
1751 default:
1752 *cookie = BLK_QC_T_NONE;
1753 break;
1754 }
1755
1756 return ret;
1757 }
1758
1759 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1760 struct request *rq,
1761 blk_qc_t *cookie,
1762 bool bypass_insert)
1763 {
1764 struct request_queue *q = rq->q;
1765 bool run_queue = true;
1766
1767 /*
1768 * RCU or SRCU read lock is needed before checking quiesced flag.
1769 *
1770 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1771 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1772 * and avoid driver to try to dispatch again.
1773 */
1774 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1775 run_queue = false;
1776 bypass_insert = false;
1777 goto insert;
1778 }
1779
1780 if (q->elevator && !bypass_insert)
1781 goto insert;
1782
1783 if (!blk_mq_get_dispatch_budget(hctx))
1784 goto insert;
1785
1786 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1787 blk_mq_put_dispatch_budget(hctx);
1788 goto insert;
1789 }
1790
1791 return __blk_mq_issue_directly(hctx, rq, cookie);
1792 insert:
1793 if (bypass_insert)
1794 return BLK_STS_RESOURCE;
1795
1796 blk_mq_sched_insert_request(rq, false, run_queue, false);
1797 return BLK_STS_OK;
1798 }
1799
1800 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1801 struct request *rq, blk_qc_t *cookie)
1802 {
1803 blk_status_t ret;
1804 int srcu_idx;
1805
1806 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1807
1808 hctx_lock(hctx, &srcu_idx);
1809
1810 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1811 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1812 blk_mq_sched_insert_request(rq, false, true, false);
1813 else if (ret != BLK_STS_OK)
1814 blk_mq_end_request(rq, ret);
1815
1816 hctx_unlock(hctx, srcu_idx);
1817 }
1818
1819 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1820 {
1821 blk_status_t ret;
1822 int srcu_idx;
1823 blk_qc_t unused_cookie;
1824 struct blk_mq_ctx *ctx = rq->mq_ctx;
1825 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1826
1827 hctx_lock(hctx, &srcu_idx);
1828 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1829 hctx_unlock(hctx, srcu_idx);
1830
1831 return ret;
1832 }
1833
1834 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1835 {
1836 const int is_sync = op_is_sync(bio->bi_opf);
1837 const int is_flush_fua = op_is_flush(bio->bi_opf);
1838 struct blk_mq_alloc_data data = { .flags = 0 };
1839 struct request *rq;
1840 unsigned int request_count = 0;
1841 struct blk_plug *plug;
1842 struct request *same_queue_rq = NULL;
1843 blk_qc_t cookie;
1844 unsigned int wb_acct;
1845
1846 blk_queue_bounce(q, &bio);
1847
1848 blk_queue_split(q, &bio);
1849
1850 if (!bio_integrity_prep(bio))
1851 return BLK_QC_T_NONE;
1852
1853 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1854 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1855 return BLK_QC_T_NONE;
1856
1857 if (blk_mq_sched_bio_merge(q, bio))
1858 return BLK_QC_T_NONE;
1859
1860 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1861
1862 trace_block_getrq(q, bio, bio->bi_opf);
1863
1864 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1865 if (unlikely(!rq)) {
1866 __wbt_done(q->rq_wb, wb_acct);
1867 if (bio->bi_opf & REQ_NOWAIT)
1868 bio_wouldblock_error(bio);
1869 return BLK_QC_T_NONE;
1870 }
1871
1872 wbt_track(&rq->issue_stat, wb_acct);
1873
1874 cookie = request_to_qc_t(data.hctx, rq);
1875
1876 plug = current->plug;
1877 if (unlikely(is_flush_fua)) {
1878 blk_mq_put_ctx(data.ctx);
1879 blk_mq_bio_to_request(rq, bio);
1880
1881 /* bypass scheduler for flush rq */
1882 blk_insert_flush(rq);
1883 blk_mq_run_hw_queue(data.hctx, true);
1884 } else if (plug && q->nr_hw_queues == 1) {
1885 struct request *last = NULL;
1886
1887 blk_mq_put_ctx(data.ctx);
1888 blk_mq_bio_to_request(rq, bio);
1889
1890 /*
1891 * @request_count may become stale because of schedule
1892 * out, so check the list again.
1893 */
1894 if (list_empty(&plug->mq_list))
1895 request_count = 0;
1896 else if (blk_queue_nomerges(q))
1897 request_count = blk_plug_queued_count(q);
1898
1899 if (!request_count)
1900 trace_block_plug(q);
1901 else
1902 last = list_entry_rq(plug->mq_list.prev);
1903
1904 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1905 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1906 blk_flush_plug_list(plug, false);
1907 trace_block_plug(q);
1908 }
1909
1910 list_add_tail(&rq->queuelist, &plug->mq_list);
1911 } else if (plug && !blk_queue_nomerges(q)) {
1912 blk_mq_bio_to_request(rq, bio);
1913
1914 /*
1915 * We do limited plugging. If the bio can be merged, do that.
1916 * Otherwise the existing request in the plug list will be
1917 * issued. So the plug list will have one request at most
1918 * The plug list might get flushed before this. If that happens,
1919 * the plug list is empty, and same_queue_rq is invalid.
1920 */
1921 if (list_empty(&plug->mq_list))
1922 same_queue_rq = NULL;
1923 if (same_queue_rq)
1924 list_del_init(&same_queue_rq->queuelist);
1925 list_add_tail(&rq->queuelist, &plug->mq_list);
1926
1927 blk_mq_put_ctx(data.ctx);
1928
1929 if (same_queue_rq) {
1930 data.hctx = blk_mq_map_queue(q,
1931 same_queue_rq->mq_ctx->cpu);
1932 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1933 &cookie);
1934 }
1935 } else if (q->nr_hw_queues > 1 && is_sync) {
1936 blk_mq_put_ctx(data.ctx);
1937 blk_mq_bio_to_request(rq, bio);
1938 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1939 } else if (q->elevator) {
1940 blk_mq_put_ctx(data.ctx);
1941 blk_mq_bio_to_request(rq, bio);
1942 blk_mq_sched_insert_request(rq, false, true, true);
1943 } else {
1944 blk_mq_put_ctx(data.ctx);
1945 blk_mq_bio_to_request(rq, bio);
1946 blk_mq_queue_io(data.hctx, data.ctx, rq);
1947 blk_mq_run_hw_queue(data.hctx, true);
1948 }
1949
1950 return cookie;
1951 }
1952
1953 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1954 unsigned int hctx_idx)
1955 {
1956 struct page *page;
1957
1958 if (tags->rqs && set->ops->exit_request) {
1959 int i;
1960
1961 for (i = 0; i < tags->nr_tags; i++) {
1962 struct request *rq = tags->static_rqs[i];
1963
1964 if (!rq)
1965 continue;
1966 set->ops->exit_request(set, rq, hctx_idx);
1967 tags->static_rqs[i] = NULL;
1968 }
1969 }
1970
1971 while (!list_empty(&tags->page_list)) {
1972 page = list_first_entry(&tags->page_list, struct page, lru);
1973 list_del_init(&page->lru);
1974 /*
1975 * Remove kmemleak object previously allocated in
1976 * blk_mq_init_rq_map().
1977 */
1978 kmemleak_free(page_address(page));
1979 __free_pages(page, page->private);
1980 }
1981 }
1982
1983 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1984 {
1985 kfree(tags->rqs);
1986 tags->rqs = NULL;
1987 kfree(tags->static_rqs);
1988 tags->static_rqs = NULL;
1989
1990 blk_mq_free_tags(tags);
1991 }
1992
1993 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1994 unsigned int hctx_idx,
1995 unsigned int nr_tags,
1996 unsigned int reserved_tags)
1997 {
1998 struct blk_mq_tags *tags;
1999 int node;
2000
2001 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2002 if (node == NUMA_NO_NODE)
2003 node = set->numa_node;
2004
2005 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2006 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2007 if (!tags)
2008 return NULL;
2009
2010 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2011 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2012 node);
2013 if (!tags->rqs) {
2014 blk_mq_free_tags(tags);
2015 return NULL;
2016 }
2017
2018 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2019 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2020 node);
2021 if (!tags->static_rqs) {
2022 kfree(tags->rqs);
2023 blk_mq_free_tags(tags);
2024 return NULL;
2025 }
2026
2027 return tags;
2028 }
2029
2030 static size_t order_to_size(unsigned int order)
2031 {
2032 return (size_t)PAGE_SIZE << order;
2033 }
2034
2035 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2036 unsigned int hctx_idx, unsigned int depth)
2037 {
2038 unsigned int i, j, entries_per_page, max_order = 4;
2039 size_t rq_size, left;
2040 int node;
2041
2042 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2043 if (node == NUMA_NO_NODE)
2044 node = set->numa_node;
2045
2046 INIT_LIST_HEAD(&tags->page_list);
2047
2048 /*
2049 * rq_size is the size of the request plus driver payload, rounded
2050 * to the cacheline size
2051 */
2052 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2053 cache_line_size());
2054 left = rq_size * depth;
2055
2056 for (i = 0; i < depth; ) {
2057 int this_order = max_order;
2058 struct page *page;
2059 int to_do;
2060 void *p;
2061
2062 while (this_order && left < order_to_size(this_order - 1))
2063 this_order--;
2064
2065 do {
2066 page = alloc_pages_node(node,
2067 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2068 this_order);
2069 if (page)
2070 break;
2071 if (!this_order--)
2072 break;
2073 if (order_to_size(this_order) < rq_size)
2074 break;
2075 } while (1);
2076
2077 if (!page)
2078 goto fail;
2079
2080 page->private = this_order;
2081 list_add_tail(&page->lru, &tags->page_list);
2082
2083 p = page_address(page);
2084 /*
2085 * Allow kmemleak to scan these pages as they contain pointers
2086 * to additional allocations like via ops->init_request().
2087 */
2088 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2089 entries_per_page = order_to_size(this_order) / rq_size;
2090 to_do = min(entries_per_page, depth - i);
2091 left -= to_do * rq_size;
2092 for (j = 0; j < to_do; j++) {
2093 struct request *rq = p;
2094
2095 tags->static_rqs[i] = rq;
2096 if (set->ops->init_request) {
2097 if (set->ops->init_request(set, rq, hctx_idx,
2098 node)) {
2099 tags->static_rqs[i] = NULL;
2100 goto fail;
2101 }
2102 }
2103
2104 p += rq_size;
2105 i++;
2106 }
2107 }
2108 return 0;
2109
2110 fail:
2111 blk_mq_free_rqs(set, tags, hctx_idx);
2112 return -ENOMEM;
2113 }
2114
2115 /*
2116 * 'cpu' is going away. splice any existing rq_list entries from this
2117 * software queue to the hw queue dispatch list, and ensure that it
2118 * gets run.
2119 */
2120 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2121 {
2122 struct blk_mq_hw_ctx *hctx;
2123 struct blk_mq_ctx *ctx;
2124 LIST_HEAD(tmp);
2125
2126 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2127 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2128
2129 spin_lock(&ctx->lock);
2130 if (!list_empty(&ctx->rq_list)) {
2131 list_splice_init(&ctx->rq_list, &tmp);
2132 blk_mq_hctx_clear_pending(hctx, ctx);
2133 }
2134 spin_unlock(&ctx->lock);
2135
2136 if (list_empty(&tmp))
2137 return 0;
2138
2139 spin_lock(&hctx->lock);
2140 list_splice_tail_init(&tmp, &hctx->dispatch);
2141 spin_unlock(&hctx->lock);
2142
2143 blk_mq_run_hw_queue(hctx, true);
2144 return 0;
2145 }
2146
2147 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2148 {
2149 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2150 &hctx->cpuhp_dead);
2151 }
2152
2153 /* hctx->ctxs will be freed in queue's release handler */
2154 static void blk_mq_exit_hctx(struct request_queue *q,
2155 struct blk_mq_tag_set *set,
2156 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2157 {
2158 blk_mq_debugfs_unregister_hctx(hctx);
2159
2160 if (blk_mq_hw_queue_mapped(hctx))
2161 blk_mq_tag_idle(hctx);
2162
2163 if (set->ops->exit_request)
2164 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2165
2166 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2167
2168 if (set->ops->exit_hctx)
2169 set->ops->exit_hctx(hctx, hctx_idx);
2170
2171 blk_mq_remove_cpuhp(hctx);
2172 }
2173
2174 static void blk_mq_exit_hw_queues(struct request_queue *q,
2175 struct blk_mq_tag_set *set, int nr_queue)
2176 {
2177 struct blk_mq_hw_ctx *hctx;
2178 unsigned int i;
2179
2180 queue_for_each_hw_ctx(q, hctx, i) {
2181 if (i == nr_queue)
2182 break;
2183 blk_mq_exit_hctx(q, set, hctx, i);
2184 }
2185 }
2186
2187 static int blk_mq_init_hctx(struct request_queue *q,
2188 struct blk_mq_tag_set *set,
2189 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2190 {
2191 int node;
2192
2193 node = hctx->numa_node;
2194 if (node == NUMA_NO_NODE)
2195 node = hctx->numa_node = set->numa_node;
2196
2197 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2198 spin_lock_init(&hctx->lock);
2199 INIT_LIST_HEAD(&hctx->dispatch);
2200 hctx->queue = q;
2201 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2202
2203 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2204
2205 hctx->tags = set->tags[hctx_idx];
2206
2207 /*
2208 * Allocate space for all possible cpus to avoid allocation at
2209 * runtime
2210 */
2211 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2212 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2213 if (!hctx->ctxs)
2214 goto unregister_cpu_notifier;
2215
2216 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2217 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2218 goto free_ctxs;
2219
2220 hctx->nr_ctx = 0;
2221
2222 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2223 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2224
2225 if (set->ops->init_hctx &&
2226 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2227 goto free_bitmap;
2228
2229 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2230 goto exit_hctx;
2231
2232 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2233 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2234 if (!hctx->fq)
2235 goto sched_exit_hctx;
2236
2237 if (set->ops->init_request &&
2238 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2239 node))
2240 goto free_fq;
2241
2242 if (hctx->flags & BLK_MQ_F_BLOCKING)
2243 init_srcu_struct(hctx->queue_rq_srcu);
2244
2245 blk_mq_debugfs_register_hctx(q, hctx);
2246
2247 return 0;
2248
2249 free_fq:
2250 blk_free_flush_queue(hctx->fq);
2251 sched_exit_hctx:
2252 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2253 exit_hctx:
2254 if (set->ops->exit_hctx)
2255 set->ops->exit_hctx(hctx, hctx_idx);
2256 free_bitmap:
2257 sbitmap_free(&hctx->ctx_map);
2258 free_ctxs:
2259 kfree(hctx->ctxs);
2260 unregister_cpu_notifier:
2261 blk_mq_remove_cpuhp(hctx);
2262 return -1;
2263 }
2264
2265 static void blk_mq_init_cpu_queues(struct request_queue *q,
2266 unsigned int nr_hw_queues)
2267 {
2268 unsigned int i;
2269
2270 for_each_possible_cpu(i) {
2271 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2272 struct blk_mq_hw_ctx *hctx;
2273
2274 __ctx->cpu = i;
2275 spin_lock_init(&__ctx->lock);
2276 INIT_LIST_HEAD(&__ctx->rq_list);
2277 __ctx->queue = q;
2278
2279 /*
2280 * Set local node, IFF we have more than one hw queue. If
2281 * not, we remain on the home node of the device
2282 */
2283 hctx = blk_mq_map_queue(q, i);
2284 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2285 hctx->numa_node = local_memory_node(cpu_to_node(i));
2286 }
2287 }
2288
2289 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2290 {
2291 int ret = 0;
2292
2293 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2294 set->queue_depth, set->reserved_tags);
2295 if (!set->tags[hctx_idx])
2296 return false;
2297
2298 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2299 set->queue_depth);
2300 if (!ret)
2301 return true;
2302
2303 blk_mq_free_rq_map(set->tags[hctx_idx]);
2304 set->tags[hctx_idx] = NULL;
2305 return false;
2306 }
2307
2308 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2309 unsigned int hctx_idx)
2310 {
2311 if (set->tags[hctx_idx]) {
2312 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2313 blk_mq_free_rq_map(set->tags[hctx_idx]);
2314 set->tags[hctx_idx] = NULL;
2315 }
2316 }
2317
2318 static void blk_mq_map_swqueue(struct request_queue *q)
2319 {
2320 unsigned int i, hctx_idx;
2321 struct blk_mq_hw_ctx *hctx;
2322 struct blk_mq_ctx *ctx;
2323 struct blk_mq_tag_set *set = q->tag_set;
2324
2325 /*
2326 * Avoid others reading imcomplete hctx->cpumask through sysfs
2327 */
2328 mutex_lock(&q->sysfs_lock);
2329
2330 queue_for_each_hw_ctx(q, hctx, i) {
2331 cpumask_clear(hctx->cpumask);
2332 hctx->nr_ctx = 0;
2333 }
2334
2335 /*
2336 * Map software to hardware queues.
2337 *
2338 * If the cpu isn't present, the cpu is mapped to first hctx.
2339 */
2340 for_each_possible_cpu(i) {
2341 hctx_idx = q->mq_map[i];
2342 /* unmapped hw queue can be remapped after CPU topo changed */
2343 if (!set->tags[hctx_idx] &&
2344 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2345 /*
2346 * If tags initialization fail for some hctx,
2347 * that hctx won't be brought online. In this
2348 * case, remap the current ctx to hctx[0] which
2349 * is guaranteed to always have tags allocated
2350 */
2351 q->mq_map[i] = 0;
2352 }
2353
2354 ctx = per_cpu_ptr(q->queue_ctx, i);
2355 hctx = blk_mq_map_queue(q, i);
2356
2357 cpumask_set_cpu(i, hctx->cpumask);
2358 ctx->index_hw = hctx->nr_ctx;
2359 hctx->ctxs[hctx->nr_ctx++] = ctx;
2360 }
2361
2362 mutex_unlock(&q->sysfs_lock);
2363
2364 queue_for_each_hw_ctx(q, hctx, i) {
2365 /*
2366 * If no software queues are mapped to this hardware queue,
2367 * disable it and free the request entries.
2368 */
2369 if (!hctx->nr_ctx) {
2370 /* Never unmap queue 0. We need it as a
2371 * fallback in case of a new remap fails
2372 * allocation
2373 */
2374 if (i && set->tags[i])
2375 blk_mq_free_map_and_requests(set, i);
2376
2377 hctx->tags = NULL;
2378 continue;
2379 }
2380
2381 hctx->tags = set->tags[i];
2382 WARN_ON(!hctx->tags);
2383
2384 /*
2385 * Set the map size to the number of mapped software queues.
2386 * This is more accurate and more efficient than looping
2387 * over all possibly mapped software queues.
2388 */
2389 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2390
2391 /*
2392 * Initialize batch roundrobin counts
2393 */
2394 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2395 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2396 }
2397 }
2398
2399 /*
2400 * Caller needs to ensure that we're either frozen/quiesced, or that
2401 * the queue isn't live yet.
2402 */
2403 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2404 {
2405 struct blk_mq_hw_ctx *hctx;
2406 int i;
2407
2408 queue_for_each_hw_ctx(q, hctx, i) {
2409 if (shared) {
2410 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2411 atomic_inc(&q->shared_hctx_restart);
2412 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2413 } else {
2414 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2415 atomic_dec(&q->shared_hctx_restart);
2416 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2417 }
2418 }
2419 }
2420
2421 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2422 bool shared)
2423 {
2424 struct request_queue *q;
2425
2426 lockdep_assert_held(&set->tag_list_lock);
2427
2428 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2429 blk_mq_freeze_queue(q);
2430 queue_set_hctx_shared(q, shared);
2431 blk_mq_unfreeze_queue(q);
2432 }
2433 }
2434
2435 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2436 {
2437 struct blk_mq_tag_set *set = q->tag_set;
2438
2439 mutex_lock(&set->tag_list_lock);
2440 list_del_rcu(&q->tag_set_list);
2441 if (list_is_singular(&set->tag_list)) {
2442 /* just transitioned to unshared */
2443 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2444 /* update existing queue */
2445 blk_mq_update_tag_set_depth(set, false);
2446 }
2447 mutex_unlock(&set->tag_list_lock);
2448 synchronize_rcu();
2449 INIT_LIST_HEAD(&q->tag_set_list);
2450 }
2451
2452 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2453 struct request_queue *q)
2454 {
2455 q->tag_set = set;
2456
2457 mutex_lock(&set->tag_list_lock);
2458
2459 /*
2460 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2461 */
2462 if (!list_empty(&set->tag_list) &&
2463 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2464 set->flags |= BLK_MQ_F_TAG_SHARED;
2465 /* update existing queue */
2466 blk_mq_update_tag_set_depth(set, true);
2467 }
2468 if (set->flags & BLK_MQ_F_TAG_SHARED)
2469 queue_set_hctx_shared(q, true);
2470 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2471
2472 mutex_unlock(&set->tag_list_lock);
2473 }
2474
2475 /*
2476 * It is the actual release handler for mq, but we do it from
2477 * request queue's release handler for avoiding use-after-free
2478 * and headache because q->mq_kobj shouldn't have been introduced,
2479 * but we can't group ctx/kctx kobj without it.
2480 */
2481 void blk_mq_release(struct request_queue *q)
2482 {
2483 struct blk_mq_hw_ctx *hctx;
2484 unsigned int i;
2485
2486 /* hctx kobj stays in hctx */
2487 queue_for_each_hw_ctx(q, hctx, i) {
2488 if (!hctx)
2489 continue;
2490 kobject_put(&hctx->kobj);
2491 }
2492
2493 q->mq_map = NULL;
2494
2495 kfree(q->queue_hw_ctx);
2496
2497 /*
2498 * release .mq_kobj and sw queue's kobject now because
2499 * both share lifetime with request queue.
2500 */
2501 blk_mq_sysfs_deinit(q);
2502
2503 free_percpu(q->queue_ctx);
2504 }
2505
2506 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2507 {
2508 struct request_queue *uninit_q, *q;
2509
2510 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2511 if (!uninit_q)
2512 return ERR_PTR(-ENOMEM);
2513
2514 q = blk_mq_init_allocated_queue(set, uninit_q);
2515 if (IS_ERR(q))
2516 blk_cleanup_queue(uninit_q);
2517
2518 return q;
2519 }
2520 EXPORT_SYMBOL(blk_mq_init_queue);
2521
2522 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2523 {
2524 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2525
2526 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2527 __alignof__(struct blk_mq_hw_ctx)) !=
2528 sizeof(struct blk_mq_hw_ctx));
2529
2530 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2531 hw_ctx_size += sizeof(struct srcu_struct);
2532
2533 return hw_ctx_size;
2534 }
2535
2536 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2537 struct request_queue *q)
2538 {
2539 int i, j;
2540 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2541
2542 blk_mq_sysfs_unregister(q);
2543
2544 /* protect against switching io scheduler */
2545 mutex_lock(&q->sysfs_lock);
2546 for (i = 0; i < set->nr_hw_queues; i++) {
2547 int node;
2548
2549 if (hctxs[i])
2550 continue;
2551
2552 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2553 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2554 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2555 node);
2556 if (!hctxs[i])
2557 break;
2558
2559 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2560 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2561 node)) {
2562 kfree(hctxs[i]);
2563 hctxs[i] = NULL;
2564 break;
2565 }
2566
2567 atomic_set(&hctxs[i]->nr_active, 0);
2568 hctxs[i]->numa_node = node;
2569 hctxs[i]->queue_num = i;
2570
2571 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2572 free_cpumask_var(hctxs[i]->cpumask);
2573 kfree(hctxs[i]);
2574 hctxs[i] = NULL;
2575 break;
2576 }
2577 blk_mq_hctx_kobj_init(hctxs[i]);
2578 }
2579 for (j = i; j < q->nr_hw_queues; j++) {
2580 struct blk_mq_hw_ctx *hctx = hctxs[j];
2581
2582 if (hctx) {
2583 if (hctx->tags)
2584 blk_mq_free_map_and_requests(set, j);
2585 blk_mq_exit_hctx(q, set, hctx, j);
2586 kobject_put(&hctx->kobj);
2587 hctxs[j] = NULL;
2588
2589 }
2590 }
2591 q->nr_hw_queues = i;
2592 mutex_unlock(&q->sysfs_lock);
2593 blk_mq_sysfs_register(q);
2594 }
2595
2596 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2597 struct request_queue *q)
2598 {
2599 /* mark the queue as mq asap */
2600 q->mq_ops = set->ops;
2601
2602 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2603 blk_mq_poll_stats_bkt,
2604 BLK_MQ_POLL_STATS_BKTS, q);
2605 if (!q->poll_cb)
2606 goto err_exit;
2607
2608 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2609 if (!q->queue_ctx)
2610 goto err_exit;
2611
2612 /* init q->mq_kobj and sw queues' kobjects */
2613 blk_mq_sysfs_init(q);
2614
2615 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2616 GFP_KERNEL, set->numa_node);
2617 if (!q->queue_hw_ctx)
2618 goto err_percpu;
2619
2620 q->mq_map = set->mq_map;
2621
2622 blk_mq_realloc_hw_ctxs(set, q);
2623 if (!q->nr_hw_queues)
2624 goto err_hctxs;
2625
2626 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2627 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2628
2629 q->nr_queues = nr_cpu_ids;
2630
2631 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2632
2633 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2634 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2635
2636 q->sg_reserved_size = INT_MAX;
2637
2638 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2639 INIT_LIST_HEAD(&q->requeue_list);
2640 spin_lock_init(&q->requeue_lock);
2641
2642 blk_queue_make_request(q, blk_mq_make_request);
2643 if (q->mq_ops->poll)
2644 q->poll_fn = blk_mq_poll;
2645
2646 /*
2647 * Do this after blk_queue_make_request() overrides it...
2648 */
2649 q->nr_requests = set->queue_depth;
2650
2651 /*
2652 * Default to classic polling
2653 */
2654 q->poll_nsec = -1;
2655
2656 if (set->ops->complete)
2657 blk_queue_softirq_done(q, set->ops->complete);
2658
2659 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2660 blk_mq_add_queue_tag_set(set, q);
2661 blk_mq_map_swqueue(q);
2662
2663 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2664 int ret;
2665
2666 ret = blk_mq_sched_init(q);
2667 if (ret)
2668 return ERR_PTR(ret);
2669 }
2670
2671 return q;
2672
2673 err_hctxs:
2674 kfree(q->queue_hw_ctx);
2675 err_percpu:
2676 free_percpu(q->queue_ctx);
2677 err_exit:
2678 q->mq_ops = NULL;
2679 return ERR_PTR(-ENOMEM);
2680 }
2681 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2682
2683 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2684 void blk_mq_exit_queue(struct request_queue *q)
2685 {
2686 struct blk_mq_tag_set *set = q->tag_set;
2687
2688 blk_mq_del_queue_tag_set(q);
2689 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2690 }
2691
2692 /* Basically redo blk_mq_init_queue with queue frozen */
2693 static void blk_mq_queue_reinit(struct request_queue *q)
2694 {
2695 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2696
2697 blk_mq_debugfs_unregister_hctxs(q);
2698 blk_mq_sysfs_unregister(q);
2699
2700 /*
2701 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2702 * we should change hctx numa_node according to the new topology (this
2703 * involves freeing and re-allocating memory, worth doing?)
2704 */
2705 blk_mq_map_swqueue(q);
2706
2707 blk_mq_sysfs_register(q);
2708 blk_mq_debugfs_register_hctxs(q);
2709 }
2710
2711 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2712 {
2713 int i;
2714
2715 for (i = 0; i < set->nr_hw_queues; i++)
2716 if (!__blk_mq_alloc_rq_map(set, i))
2717 goto out_unwind;
2718
2719 return 0;
2720
2721 out_unwind:
2722 while (--i >= 0)
2723 blk_mq_free_rq_map(set->tags[i]);
2724
2725 return -ENOMEM;
2726 }
2727
2728 /*
2729 * Allocate the request maps associated with this tag_set. Note that this
2730 * may reduce the depth asked for, if memory is tight. set->queue_depth
2731 * will be updated to reflect the allocated depth.
2732 */
2733 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2734 {
2735 unsigned int depth;
2736 int err;
2737
2738 depth = set->queue_depth;
2739 do {
2740 err = __blk_mq_alloc_rq_maps(set);
2741 if (!err)
2742 break;
2743
2744 set->queue_depth >>= 1;
2745 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2746 err = -ENOMEM;
2747 break;
2748 }
2749 } while (set->queue_depth);
2750
2751 if (!set->queue_depth || err) {
2752 pr_err("blk-mq: failed to allocate request map\n");
2753 return -ENOMEM;
2754 }
2755
2756 if (depth != set->queue_depth)
2757 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2758 depth, set->queue_depth);
2759
2760 return 0;
2761 }
2762
2763 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2764 {
2765 if (set->ops->map_queues) {
2766 int cpu;
2767 /*
2768 * transport .map_queues is usually done in the following
2769 * way:
2770 *
2771 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2772 * mask = get_cpu_mask(queue)
2773 * for_each_cpu(cpu, mask)
2774 * set->mq_map[cpu] = queue;
2775 * }
2776 *
2777 * When we need to remap, the table has to be cleared for
2778 * killing stale mapping since one CPU may not be mapped
2779 * to any hw queue.
2780 */
2781 for_each_possible_cpu(cpu)
2782 set->mq_map[cpu] = 0;
2783
2784 return set->ops->map_queues(set);
2785 } else
2786 return blk_mq_map_queues(set);
2787 }
2788
2789 /*
2790 * Alloc a tag set to be associated with one or more request queues.
2791 * May fail with EINVAL for various error conditions. May adjust the
2792 * requested depth down, if if it too large. In that case, the set
2793 * value will be stored in set->queue_depth.
2794 */
2795 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2796 {
2797 int ret;
2798
2799 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2800
2801 if (!set->nr_hw_queues)
2802 return -EINVAL;
2803 if (!set->queue_depth)
2804 return -EINVAL;
2805 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2806 return -EINVAL;
2807
2808 if (!set->ops->queue_rq)
2809 return -EINVAL;
2810
2811 if (!set->ops->get_budget ^ !set->ops->put_budget)
2812 return -EINVAL;
2813
2814 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2815 pr_info("blk-mq: reduced tag depth to %u\n",
2816 BLK_MQ_MAX_DEPTH);
2817 set->queue_depth = BLK_MQ_MAX_DEPTH;
2818 }
2819
2820 /*
2821 * If a crashdump is active, then we are potentially in a very
2822 * memory constrained environment. Limit us to 1 queue and
2823 * 64 tags to prevent using too much memory.
2824 */
2825 if (is_kdump_kernel()) {
2826 set->nr_hw_queues = 1;
2827 set->queue_depth = min(64U, set->queue_depth);
2828 }
2829 /*
2830 * There is no use for more h/w queues than cpus.
2831 */
2832 if (set->nr_hw_queues > nr_cpu_ids)
2833 set->nr_hw_queues = nr_cpu_ids;
2834
2835 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2836 GFP_KERNEL, set->numa_node);
2837 if (!set->tags)
2838 return -ENOMEM;
2839
2840 ret = -ENOMEM;
2841 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2842 GFP_KERNEL, set->numa_node);
2843 if (!set->mq_map)
2844 goto out_free_tags;
2845
2846 ret = blk_mq_update_queue_map(set);
2847 if (ret)
2848 goto out_free_mq_map;
2849
2850 ret = blk_mq_alloc_rq_maps(set);
2851 if (ret)
2852 goto out_free_mq_map;
2853
2854 mutex_init(&set->tag_list_lock);
2855 INIT_LIST_HEAD(&set->tag_list);
2856
2857 return 0;
2858
2859 out_free_mq_map:
2860 kfree(set->mq_map);
2861 set->mq_map = NULL;
2862 out_free_tags:
2863 kfree(set->tags);
2864 set->tags = NULL;
2865 return ret;
2866 }
2867 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2868
2869 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2870 {
2871 int i;
2872
2873 for (i = 0; i < nr_cpu_ids; i++)
2874 blk_mq_free_map_and_requests(set, i);
2875
2876 kfree(set->mq_map);
2877 set->mq_map = NULL;
2878
2879 kfree(set->tags);
2880 set->tags = NULL;
2881 }
2882 EXPORT_SYMBOL(blk_mq_free_tag_set);
2883
2884 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2885 {
2886 struct blk_mq_tag_set *set = q->tag_set;
2887 struct blk_mq_hw_ctx *hctx;
2888 int i, ret;
2889
2890 if (!set)
2891 return -EINVAL;
2892
2893 if (q->nr_requests == nr)
2894 return 0;
2895
2896 blk_mq_freeze_queue(q);
2897 blk_mq_quiesce_queue(q);
2898
2899 ret = 0;
2900 queue_for_each_hw_ctx(q, hctx, i) {
2901 if (!hctx->tags)
2902 continue;
2903 /*
2904 * If we're using an MQ scheduler, just update the scheduler
2905 * queue depth. This is similar to what the old code would do.
2906 */
2907 if (!hctx->sched_tags) {
2908 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2909 false);
2910 } else {
2911 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2912 nr, true);
2913 }
2914 if (ret)
2915 break;
2916 }
2917
2918 if (!ret)
2919 q->nr_requests = nr;
2920
2921 blk_mq_unquiesce_queue(q);
2922 blk_mq_unfreeze_queue(q);
2923
2924 return ret;
2925 }
2926
2927 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2928 int nr_hw_queues)
2929 {
2930 struct request_queue *q;
2931
2932 lockdep_assert_held(&set->tag_list_lock);
2933
2934 if (nr_hw_queues > nr_cpu_ids)
2935 nr_hw_queues = nr_cpu_ids;
2936 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2937 return;
2938
2939 list_for_each_entry(q, &set->tag_list, tag_set_list)
2940 blk_mq_freeze_queue(q);
2941
2942 set->nr_hw_queues = nr_hw_queues;
2943 blk_mq_update_queue_map(set);
2944 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2945 blk_mq_realloc_hw_ctxs(set, q);
2946 blk_mq_queue_reinit(q);
2947 }
2948
2949 list_for_each_entry(q, &set->tag_list, tag_set_list)
2950 blk_mq_unfreeze_queue(q);
2951 }
2952
2953 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2954 {
2955 mutex_lock(&set->tag_list_lock);
2956 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2957 mutex_unlock(&set->tag_list_lock);
2958 }
2959 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2960
2961 /* Enable polling stats and return whether they were already enabled. */
2962 static bool blk_poll_stats_enable(struct request_queue *q)
2963 {
2964 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2965 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2966 return true;
2967 blk_stat_add_callback(q, q->poll_cb);
2968 return false;
2969 }
2970
2971 static void blk_mq_poll_stats_start(struct request_queue *q)
2972 {
2973 /*
2974 * We don't arm the callback if polling stats are not enabled or the
2975 * callback is already active.
2976 */
2977 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2978 blk_stat_is_active(q->poll_cb))
2979 return;
2980
2981 blk_stat_activate_msecs(q->poll_cb, 100);
2982 }
2983
2984 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2985 {
2986 struct request_queue *q = cb->data;
2987 int bucket;
2988
2989 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2990 if (cb->stat[bucket].nr_samples)
2991 q->poll_stat[bucket] = cb->stat[bucket];
2992 }
2993 }
2994
2995 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2996 struct blk_mq_hw_ctx *hctx,
2997 struct request *rq)
2998 {
2999 unsigned long ret = 0;
3000 int bucket;
3001
3002 /*
3003 * If stats collection isn't on, don't sleep but turn it on for
3004 * future users
3005 */
3006 if (!blk_poll_stats_enable(q))
3007 return 0;
3008
3009 /*
3010 * As an optimistic guess, use half of the mean service time
3011 * for this type of request. We can (and should) make this smarter.
3012 * For instance, if the completion latencies are tight, we can
3013 * get closer than just half the mean. This is especially
3014 * important on devices where the completion latencies are longer
3015 * than ~10 usec. We do use the stats for the relevant IO size
3016 * if available which does lead to better estimates.
3017 */
3018 bucket = blk_mq_poll_stats_bkt(rq);
3019 if (bucket < 0)
3020 return ret;
3021
3022 if (q->poll_stat[bucket].nr_samples)
3023 ret = (q->poll_stat[bucket].mean + 1) / 2;
3024
3025 return ret;
3026 }
3027
3028 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3029 struct blk_mq_hw_ctx *hctx,
3030 struct request *rq)
3031 {
3032 struct hrtimer_sleeper hs;
3033 enum hrtimer_mode mode;
3034 unsigned int nsecs;
3035 ktime_t kt;
3036
3037 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
3038 return false;
3039
3040 /*
3041 * poll_nsec can be:
3042 *
3043 * -1: don't ever hybrid sleep
3044 * 0: use half of prev avg
3045 * >0: use this specific value
3046 */
3047 if (q->poll_nsec == -1)
3048 return false;
3049 else if (q->poll_nsec > 0)
3050 nsecs = q->poll_nsec;
3051 else
3052 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3053
3054 if (!nsecs)
3055 return false;
3056
3057 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
3058
3059 /*
3060 * This will be replaced with the stats tracking code, using
3061 * 'avg_completion_time / 2' as the pre-sleep target.
3062 */
3063 kt = nsecs;
3064
3065 mode = HRTIMER_MODE_REL;
3066 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3067 hrtimer_set_expires(&hs.timer, kt);
3068
3069 hrtimer_init_sleeper(&hs, current);
3070 do {
3071 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
3072 break;
3073 set_current_state(TASK_UNINTERRUPTIBLE);
3074 hrtimer_start_expires(&hs.timer, mode);
3075 if (hs.task)
3076 io_schedule();
3077 hrtimer_cancel(&hs.timer);
3078 mode = HRTIMER_MODE_ABS;
3079 } while (hs.task && !signal_pending(current));
3080
3081 __set_current_state(TASK_RUNNING);
3082 destroy_hrtimer_on_stack(&hs.timer);
3083 return true;
3084 }
3085
3086 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3087 {
3088 struct request_queue *q = hctx->queue;
3089 long state;
3090
3091 /*
3092 * If we sleep, have the caller restart the poll loop to reset
3093 * the state. Like for the other success return cases, the
3094 * caller is responsible for checking if the IO completed. If
3095 * the IO isn't complete, we'll get called again and will go
3096 * straight to the busy poll loop.
3097 */
3098 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3099 return true;
3100
3101 hctx->poll_considered++;
3102
3103 state = current->state;
3104 while (!need_resched()) {
3105 int ret;
3106
3107 hctx->poll_invoked++;
3108
3109 ret = q->mq_ops->poll(hctx, rq->tag);
3110 if (ret > 0) {
3111 hctx->poll_success++;
3112 set_current_state(TASK_RUNNING);
3113 return true;
3114 }
3115
3116 if (signal_pending_state(state, current))
3117 set_current_state(TASK_RUNNING);
3118
3119 if (current->state == TASK_RUNNING)
3120 return true;
3121 if (ret < 0)
3122 break;
3123 cpu_relax();
3124 }
3125
3126 return false;
3127 }
3128
3129 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3130 {
3131 struct blk_mq_hw_ctx *hctx;
3132 struct request *rq;
3133
3134 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3135 return false;
3136
3137 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3138 if (!blk_qc_t_is_internal(cookie))
3139 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3140 else {
3141 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3142 /*
3143 * With scheduling, if the request has completed, we'll
3144 * get a NULL return here, as we clear the sched tag when
3145 * that happens. The request still remains valid, like always,
3146 * so we should be safe with just the NULL check.
3147 */
3148 if (!rq)
3149 return false;
3150 }
3151
3152 return __blk_mq_poll(hctx, rq);
3153 }
3154
3155 static int __init blk_mq_init(void)
3156 {
3157 /*
3158 * See comment in block/blk.h rq_atomic_flags enum
3159 */
3160 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3161 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3162
3163 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3164 blk_mq_hctx_notify_dead);
3165 return 0;
3166 }
3167 subsys_initcall(blk_mq_init);