]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-mq.c
Merge tag 'rcu_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static void blk_mq_poll_stats_start(struct request_queue *q);
45 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 int ddir, sectors, bucket;
50
51 ddir = rq_data_dir(rq);
52 sectors = blk_rq_stats_sectors(rq);
53
54 bucket = ddir + 2 * ilog2(sectors);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62 }
63
64 /*
65 * Check if any of the ctx, dispatch list or elevator
66 * have pending work in this hardware queue.
67 */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70 return !list_empty_careful(&hctx->dispatch) ||
71 sbitmap_any_bit_set(&hctx->ctx_map) ||
72 blk_mq_sched_has_work(hctx);
73 }
74
75 /*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80 {
81 const int bit = ctx->index_hw[hctx->type];
82
83 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84 sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89 {
90 const int bit = ctx->index_hw[hctx->type];
91
92 sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94
95 struct mq_inflight {
96 struct hd_struct *part;
97 unsigned int inflight[2];
98 };
99
100 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
101 struct request *rq, void *priv,
102 bool reserved)
103 {
104 struct mq_inflight *mi = priv;
105
106 if (rq->part == mi->part)
107 mi->inflight[rq_data_dir(rq)]++;
108
109 return true;
110 }
111
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114 struct mq_inflight mi = { .part = part };
115
116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117
118 return mi.inflight[0] + mi.inflight[1];
119 }
120
121 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
122 unsigned int inflight[2])
123 {
124 struct mq_inflight mi = { .part = part };
125
126 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
127 inflight[0] = mi.inflight[0];
128 inflight[1] = mi.inflight[1];
129 }
130
131 void blk_freeze_queue_start(struct request_queue *q)
132 {
133 mutex_lock(&q->mq_freeze_lock);
134 if (++q->mq_freeze_depth == 1) {
135 percpu_ref_kill(&q->q_usage_counter);
136 mutex_unlock(&q->mq_freeze_lock);
137 if (queue_is_mq(q))
138 blk_mq_run_hw_queues(q, false);
139 } else {
140 mutex_unlock(&q->mq_freeze_lock);
141 }
142 }
143 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144
145 void blk_mq_freeze_queue_wait(struct request_queue *q)
146 {
147 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150
151 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
152 unsigned long timeout)
153 {
154 return wait_event_timeout(q->mq_freeze_wq,
155 percpu_ref_is_zero(&q->q_usage_counter),
156 timeout);
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
159
160 /*
161 * Guarantee no request is in use, so we can change any data structure of
162 * the queue afterward.
163 */
164 void blk_freeze_queue(struct request_queue *q)
165 {
166 /*
167 * In the !blk_mq case we are only calling this to kill the
168 * q_usage_counter, otherwise this increases the freeze depth
169 * and waits for it to return to zero. For this reason there is
170 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
171 * exported to drivers as the only user for unfreeze is blk_mq.
172 */
173 blk_freeze_queue_start(q);
174 blk_mq_freeze_queue_wait(q);
175 }
176
177 void blk_mq_freeze_queue(struct request_queue *q)
178 {
179 /*
180 * ...just an alias to keep freeze and unfreeze actions balanced
181 * in the blk_mq_* namespace
182 */
183 blk_freeze_queue(q);
184 }
185 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186
187 void blk_mq_unfreeze_queue(struct request_queue *q)
188 {
189 mutex_lock(&q->mq_freeze_lock);
190 q->mq_freeze_depth--;
191 WARN_ON_ONCE(q->mq_freeze_depth < 0);
192 if (!q->mq_freeze_depth) {
193 percpu_ref_resurrect(&q->q_usage_counter);
194 wake_up_all(&q->mq_freeze_wq);
195 }
196 mutex_unlock(&q->mq_freeze_lock);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202 * mpt3sas driver such that this function can be removed.
203 */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
209
210 /**
211 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
212 * @q: request queue.
213 *
214 * Note: this function does not prevent that the struct request end_io()
215 * callback function is invoked. Once this function is returned, we make
216 * sure no dispatch can happen until the queue is unquiesced via
217 * blk_mq_unquiesce_queue().
218 */
219 void blk_mq_quiesce_queue(struct request_queue *q)
220 {
221 struct blk_mq_hw_ctx *hctx;
222 unsigned int i;
223 bool rcu = false;
224
225 blk_mq_quiesce_queue_nowait(q);
226
227 queue_for_each_hw_ctx(q, hctx, i) {
228 if (hctx->flags & BLK_MQ_F_BLOCKING)
229 synchronize_srcu(hctx->srcu);
230 else
231 rcu = true;
232 }
233 if (rcu)
234 synchronize_rcu();
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
237
238 /*
239 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
240 * @q: request queue.
241 *
242 * This function recovers queue into the state before quiescing
243 * which is done by blk_mq_quiesce_queue.
244 */
245 void blk_mq_unquiesce_queue(struct request_queue *q)
246 {
247 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248
249 /* dispatch requests which are inserted during quiescing */
250 blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 struct blk_mq_hw_ctx *hctx;
257 unsigned int i;
258
259 queue_for_each_hw_ctx(q, hctx, i)
260 if (blk_mq_hw_queue_mapped(hctx))
261 blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263
264 /*
265 * Only need start/end time stamping if we have iostat or
266 * blk stats enabled, or using an IO scheduler.
267 */
268 static inline bool blk_mq_need_time_stamp(struct request *rq)
269 {
270 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
271 }
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 unsigned int tag, u64 alloc_time_ns)
275 {
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
278 req_flags_t rq_flags = 0;
279
280 if (data->flags & BLK_MQ_REQ_INTERNAL) {
281 rq->tag = BLK_MQ_NO_TAG;
282 rq->internal_tag = tag;
283 } else {
284 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
285 rq_flags = RQF_MQ_INFLIGHT;
286 atomic_inc(&data->hctx->nr_active);
287 }
288 rq->tag = tag;
289 rq->internal_tag = BLK_MQ_NO_TAG;
290 data->hctx->tags->rqs[rq->tag] = rq;
291 }
292
293 /* csd/requeue_work/fifo_time is initialized before use */
294 rq->q = data->q;
295 rq->mq_ctx = data->ctx;
296 rq->mq_hctx = data->hctx;
297 rq->rq_flags = rq_flags;
298 rq->cmd_flags = data->cmd_flags;
299 if (data->flags & BLK_MQ_REQ_PREEMPT)
300 rq->rq_flags |= RQF_PREEMPT;
301 if (blk_queue_io_stat(data->q))
302 rq->rq_flags |= RQF_IO_STAT;
303 INIT_LIST_HEAD(&rq->queuelist);
304 INIT_HLIST_NODE(&rq->hash);
305 RB_CLEAR_NODE(&rq->rb_node);
306 rq->rq_disk = NULL;
307 rq->part = NULL;
308 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
309 rq->alloc_time_ns = alloc_time_ns;
310 #endif
311 if (blk_mq_need_time_stamp(rq))
312 rq->start_time_ns = ktime_get_ns();
313 else
314 rq->start_time_ns = 0;
315 rq->io_start_time_ns = 0;
316 rq->stats_sectors = 0;
317 rq->nr_phys_segments = 0;
318 #if defined(CONFIG_BLK_DEV_INTEGRITY)
319 rq->nr_integrity_segments = 0;
320 #endif
321 blk_crypto_rq_set_defaults(rq);
322 /* tag was already set */
323 WRITE_ONCE(rq->deadline, 0);
324
325 rq->timeout = 0;
326
327 rq->end_io = NULL;
328 rq->end_io_data = NULL;
329
330 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
331 refcount_set(&rq->ref, 1);
332
333 if (!op_is_flush(data->cmd_flags)) {
334 struct elevator_queue *e = data->q->elevator;
335
336 rq->elv.icq = NULL;
337 if (e && e->type->ops.prepare_request) {
338 if (e->type->icq_cache)
339 blk_mq_sched_assign_ioc(rq);
340
341 e->type->ops.prepare_request(rq);
342 rq->rq_flags |= RQF_ELVPRIV;
343 }
344 }
345
346 data->hctx->queued++;
347 return rq;
348 }
349
350 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
351 {
352 struct request_queue *q = data->q;
353 struct elevator_queue *e = q->elevator;
354 u64 alloc_time_ns = 0;
355 unsigned int tag;
356
357 /* alloc_time includes depth and tag waits */
358 if (blk_queue_rq_alloc_time(q))
359 alloc_time_ns = ktime_get_ns();
360
361 if (data->cmd_flags & REQ_NOWAIT)
362 data->flags |= BLK_MQ_REQ_NOWAIT;
363
364 if (e) {
365 data->flags |= BLK_MQ_REQ_INTERNAL;
366
367 /*
368 * Flush requests are special and go directly to the
369 * dispatch list. Don't include reserved tags in the
370 * limiting, as it isn't useful.
371 */
372 if (!op_is_flush(data->cmd_flags) &&
373 e->type->ops.limit_depth &&
374 !(data->flags & BLK_MQ_REQ_RESERVED))
375 e->type->ops.limit_depth(data->cmd_flags, data);
376 }
377
378 retry:
379 data->ctx = blk_mq_get_ctx(q);
380 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
381 if (!(data->flags & BLK_MQ_REQ_INTERNAL))
382 blk_mq_tag_busy(data->hctx);
383
384 /*
385 * Waiting allocations only fail because of an inactive hctx. In that
386 * case just retry the hctx assignment and tag allocation as CPU hotplug
387 * should have migrated us to an online CPU by now.
388 */
389 tag = blk_mq_get_tag(data);
390 if (tag == BLK_MQ_NO_TAG) {
391 if (data->flags & BLK_MQ_REQ_NOWAIT)
392 return NULL;
393
394 /*
395 * Give up the CPU and sleep for a random short time to ensure
396 * that thread using a realtime scheduling class are migrated
397 * off the the CPU, and thus off the hctx that is going away.
398 */
399 msleep(3);
400 goto retry;
401 }
402 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
403 }
404
405 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
406 blk_mq_req_flags_t flags)
407 {
408 struct blk_mq_alloc_data data = {
409 .q = q,
410 .flags = flags,
411 .cmd_flags = op,
412 };
413 struct request *rq;
414 int ret;
415
416 ret = blk_queue_enter(q, flags);
417 if (ret)
418 return ERR_PTR(ret);
419
420 rq = __blk_mq_alloc_request(&data);
421 if (!rq)
422 goto out_queue_exit;
423 rq->__data_len = 0;
424 rq->__sector = (sector_t) -1;
425 rq->bio = rq->biotail = NULL;
426 return rq;
427 out_queue_exit:
428 blk_queue_exit(q);
429 return ERR_PTR(-EWOULDBLOCK);
430 }
431 EXPORT_SYMBOL(blk_mq_alloc_request);
432
433 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
434 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
435 {
436 struct blk_mq_alloc_data data = {
437 .q = q,
438 .flags = flags,
439 .cmd_flags = op,
440 };
441 u64 alloc_time_ns = 0;
442 unsigned int cpu;
443 unsigned int tag;
444 int ret;
445
446 /* alloc_time includes depth and tag waits */
447 if (blk_queue_rq_alloc_time(q))
448 alloc_time_ns = ktime_get_ns();
449
450 /*
451 * If the tag allocator sleeps we could get an allocation for a
452 * different hardware context. No need to complicate the low level
453 * allocator for this for the rare use case of a command tied to
454 * a specific queue.
455 */
456 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
457 return ERR_PTR(-EINVAL);
458
459 if (hctx_idx >= q->nr_hw_queues)
460 return ERR_PTR(-EIO);
461
462 ret = blk_queue_enter(q, flags);
463 if (ret)
464 return ERR_PTR(ret);
465
466 /*
467 * Check if the hardware context is actually mapped to anything.
468 * If not tell the caller that it should skip this queue.
469 */
470 ret = -EXDEV;
471 data.hctx = q->queue_hw_ctx[hctx_idx];
472 if (!blk_mq_hw_queue_mapped(data.hctx))
473 goto out_queue_exit;
474 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
475 data.ctx = __blk_mq_get_ctx(q, cpu);
476
477 if (q->elevator)
478 data.flags |= BLK_MQ_REQ_INTERNAL;
479 else
480 blk_mq_tag_busy(data.hctx);
481
482 ret = -EWOULDBLOCK;
483 tag = blk_mq_get_tag(&data);
484 if (tag == BLK_MQ_NO_TAG)
485 goto out_queue_exit;
486 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
487
488 out_queue_exit:
489 blk_queue_exit(q);
490 return ERR_PTR(ret);
491 }
492 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
493
494 static void __blk_mq_free_request(struct request *rq)
495 {
496 struct request_queue *q = rq->q;
497 struct blk_mq_ctx *ctx = rq->mq_ctx;
498 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
499 const int sched_tag = rq->internal_tag;
500
501 blk_crypto_free_request(rq);
502 blk_pm_mark_last_busy(rq);
503 rq->mq_hctx = NULL;
504 if (rq->tag != BLK_MQ_NO_TAG)
505 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
506 if (sched_tag != BLK_MQ_NO_TAG)
507 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
508 blk_mq_sched_restart(hctx);
509 blk_queue_exit(q);
510 }
511
512 void blk_mq_free_request(struct request *rq)
513 {
514 struct request_queue *q = rq->q;
515 struct elevator_queue *e = q->elevator;
516 struct blk_mq_ctx *ctx = rq->mq_ctx;
517 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
518
519 if (rq->rq_flags & RQF_ELVPRIV) {
520 if (e && e->type->ops.finish_request)
521 e->type->ops.finish_request(rq);
522 if (rq->elv.icq) {
523 put_io_context(rq->elv.icq->ioc);
524 rq->elv.icq = NULL;
525 }
526 }
527
528 ctx->rq_completed[rq_is_sync(rq)]++;
529 if (rq->rq_flags & RQF_MQ_INFLIGHT)
530 atomic_dec(&hctx->nr_active);
531
532 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
533 laptop_io_completion(q->backing_dev_info);
534
535 rq_qos_done(q, rq);
536
537 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
538 if (refcount_dec_and_test(&rq->ref))
539 __blk_mq_free_request(rq);
540 }
541 EXPORT_SYMBOL_GPL(blk_mq_free_request);
542
543 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
544 {
545 u64 now = 0;
546
547 if (blk_mq_need_time_stamp(rq))
548 now = ktime_get_ns();
549
550 if (rq->rq_flags & RQF_STATS) {
551 blk_mq_poll_stats_start(rq->q);
552 blk_stat_add(rq, now);
553 }
554
555 if (rq->internal_tag != BLK_MQ_NO_TAG)
556 blk_mq_sched_completed_request(rq, now);
557
558 blk_account_io_done(rq, now);
559
560 if (rq->end_io) {
561 rq_qos_done(rq->q, rq);
562 rq->end_io(rq, error);
563 } else {
564 blk_mq_free_request(rq);
565 }
566 }
567 EXPORT_SYMBOL(__blk_mq_end_request);
568
569 void blk_mq_end_request(struct request *rq, blk_status_t error)
570 {
571 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
572 BUG();
573 __blk_mq_end_request(rq, error);
574 }
575 EXPORT_SYMBOL(blk_mq_end_request);
576
577 static void __blk_mq_complete_request_remote(void *data)
578 {
579 struct request *rq = data;
580 struct request_queue *q = rq->q;
581
582 q->mq_ops->complete(rq);
583 }
584
585 /**
586 * blk_mq_force_complete_rq() - Force complete the request, bypassing any error
587 * injection that could drop the completion.
588 * @rq: Request to be force completed
589 *
590 * Drivers should use blk_mq_complete_request() to complete requests in their
591 * normal IO path. For timeout error recovery, drivers may call this forced
592 * completion routine after they've reclaimed timed out requests to bypass
593 * potentially subsequent fake timeouts.
594 */
595 void blk_mq_force_complete_rq(struct request *rq)
596 {
597 struct blk_mq_ctx *ctx = rq->mq_ctx;
598 struct request_queue *q = rq->q;
599 bool shared = false;
600 int cpu;
601
602 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
603 /*
604 * Most of single queue controllers, there is only one irq vector
605 * for handling IO completion, and the only irq's affinity is set
606 * as all possible CPUs. On most of ARCHs, this affinity means the
607 * irq is handled on one specific CPU.
608 *
609 * So complete IO reqeust in softirq context in case of single queue
610 * for not degrading IO performance by irqsoff latency.
611 */
612 if (q->nr_hw_queues == 1) {
613 __blk_complete_request(rq);
614 return;
615 }
616
617 /*
618 * For a polled request, always complete locallly, it's pointless
619 * to redirect the completion.
620 */
621 if ((rq->cmd_flags & REQ_HIPRI) ||
622 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
623 q->mq_ops->complete(rq);
624 return;
625 }
626
627 cpu = get_cpu();
628 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
629 shared = cpus_share_cache(cpu, ctx->cpu);
630
631 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
632 rq->csd.func = __blk_mq_complete_request_remote;
633 rq->csd.info = rq;
634 rq->csd.flags = 0;
635 smp_call_function_single_async(ctx->cpu, &rq->csd);
636 } else {
637 q->mq_ops->complete(rq);
638 }
639 put_cpu();
640 }
641 EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq);
642
643 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
644 __releases(hctx->srcu)
645 {
646 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
647 rcu_read_unlock();
648 else
649 srcu_read_unlock(hctx->srcu, srcu_idx);
650 }
651
652 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
653 __acquires(hctx->srcu)
654 {
655 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
656 /* shut up gcc false positive */
657 *srcu_idx = 0;
658 rcu_read_lock();
659 } else
660 *srcu_idx = srcu_read_lock(hctx->srcu);
661 }
662
663 /**
664 * blk_mq_complete_request - end I/O on a request
665 * @rq: the request being processed
666 *
667 * Description:
668 * Ends all I/O on a request. It does not handle partial completions.
669 * The actual completion happens out-of-order, through a IPI handler.
670 **/
671 bool blk_mq_complete_request(struct request *rq)
672 {
673 if (unlikely(blk_should_fake_timeout(rq->q)))
674 return false;
675 blk_mq_force_complete_rq(rq);
676 return true;
677 }
678 EXPORT_SYMBOL(blk_mq_complete_request);
679
680 /**
681 * blk_mq_start_request - Start processing a request
682 * @rq: Pointer to request to be started
683 *
684 * Function used by device drivers to notify the block layer that a request
685 * is going to be processed now, so blk layer can do proper initializations
686 * such as starting the timeout timer.
687 */
688 void blk_mq_start_request(struct request *rq)
689 {
690 struct request_queue *q = rq->q;
691
692 trace_block_rq_issue(q, rq);
693
694 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
695 rq->io_start_time_ns = ktime_get_ns();
696 rq->stats_sectors = blk_rq_sectors(rq);
697 rq->rq_flags |= RQF_STATS;
698 rq_qos_issue(q, rq);
699 }
700
701 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
702
703 blk_add_timer(rq);
704 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
705
706 #ifdef CONFIG_BLK_DEV_INTEGRITY
707 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
708 q->integrity.profile->prepare_fn(rq);
709 #endif
710 }
711 EXPORT_SYMBOL(blk_mq_start_request);
712
713 static void __blk_mq_requeue_request(struct request *rq)
714 {
715 struct request_queue *q = rq->q;
716
717 blk_mq_put_driver_tag(rq);
718
719 trace_block_rq_requeue(q, rq);
720 rq_qos_requeue(q, rq);
721
722 if (blk_mq_request_started(rq)) {
723 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
724 rq->rq_flags &= ~RQF_TIMED_OUT;
725 }
726 }
727
728 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
729 {
730 __blk_mq_requeue_request(rq);
731
732 /* this request will be re-inserted to io scheduler queue */
733 blk_mq_sched_requeue_request(rq);
734
735 BUG_ON(!list_empty(&rq->queuelist));
736 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
737 }
738 EXPORT_SYMBOL(blk_mq_requeue_request);
739
740 static void blk_mq_requeue_work(struct work_struct *work)
741 {
742 struct request_queue *q =
743 container_of(work, struct request_queue, requeue_work.work);
744 LIST_HEAD(rq_list);
745 struct request *rq, *next;
746
747 spin_lock_irq(&q->requeue_lock);
748 list_splice_init(&q->requeue_list, &rq_list);
749 spin_unlock_irq(&q->requeue_lock);
750
751 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
752 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
753 continue;
754
755 rq->rq_flags &= ~RQF_SOFTBARRIER;
756 list_del_init(&rq->queuelist);
757 /*
758 * If RQF_DONTPREP, rq has contained some driver specific
759 * data, so insert it to hctx dispatch list to avoid any
760 * merge.
761 */
762 if (rq->rq_flags & RQF_DONTPREP)
763 blk_mq_request_bypass_insert(rq, false, false);
764 else
765 blk_mq_sched_insert_request(rq, true, false, false);
766 }
767
768 while (!list_empty(&rq_list)) {
769 rq = list_entry(rq_list.next, struct request, queuelist);
770 list_del_init(&rq->queuelist);
771 blk_mq_sched_insert_request(rq, false, false, false);
772 }
773
774 blk_mq_run_hw_queues(q, false);
775 }
776
777 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
778 bool kick_requeue_list)
779 {
780 struct request_queue *q = rq->q;
781 unsigned long flags;
782
783 /*
784 * We abuse this flag that is otherwise used by the I/O scheduler to
785 * request head insertion from the workqueue.
786 */
787 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
788
789 spin_lock_irqsave(&q->requeue_lock, flags);
790 if (at_head) {
791 rq->rq_flags |= RQF_SOFTBARRIER;
792 list_add(&rq->queuelist, &q->requeue_list);
793 } else {
794 list_add_tail(&rq->queuelist, &q->requeue_list);
795 }
796 spin_unlock_irqrestore(&q->requeue_lock, flags);
797
798 if (kick_requeue_list)
799 blk_mq_kick_requeue_list(q);
800 }
801
802 void blk_mq_kick_requeue_list(struct request_queue *q)
803 {
804 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
805 }
806 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
807
808 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
809 unsigned long msecs)
810 {
811 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
812 msecs_to_jiffies(msecs));
813 }
814 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
815
816 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
817 {
818 if (tag < tags->nr_tags) {
819 prefetch(tags->rqs[tag]);
820 return tags->rqs[tag];
821 }
822
823 return NULL;
824 }
825 EXPORT_SYMBOL(blk_mq_tag_to_rq);
826
827 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
828 void *priv, bool reserved)
829 {
830 /*
831 * If we find a request that is inflight and the queue matches,
832 * we know the queue is busy. Return false to stop the iteration.
833 */
834 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
835 bool *busy = priv;
836
837 *busy = true;
838 return false;
839 }
840
841 return true;
842 }
843
844 bool blk_mq_queue_inflight(struct request_queue *q)
845 {
846 bool busy = false;
847
848 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
849 return busy;
850 }
851 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
852
853 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
854 {
855 req->rq_flags |= RQF_TIMED_OUT;
856 if (req->q->mq_ops->timeout) {
857 enum blk_eh_timer_return ret;
858
859 ret = req->q->mq_ops->timeout(req, reserved);
860 if (ret == BLK_EH_DONE)
861 return;
862 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
863 }
864
865 blk_add_timer(req);
866 }
867
868 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
869 {
870 unsigned long deadline;
871
872 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
873 return false;
874 if (rq->rq_flags & RQF_TIMED_OUT)
875 return false;
876
877 deadline = READ_ONCE(rq->deadline);
878 if (time_after_eq(jiffies, deadline))
879 return true;
880
881 if (*next == 0)
882 *next = deadline;
883 else if (time_after(*next, deadline))
884 *next = deadline;
885 return false;
886 }
887
888 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
889 struct request *rq, void *priv, bool reserved)
890 {
891 unsigned long *next = priv;
892
893 /*
894 * Just do a quick check if it is expired before locking the request in
895 * so we're not unnecessarilly synchronizing across CPUs.
896 */
897 if (!blk_mq_req_expired(rq, next))
898 return true;
899
900 /*
901 * We have reason to believe the request may be expired. Take a
902 * reference on the request to lock this request lifetime into its
903 * currently allocated context to prevent it from being reallocated in
904 * the event the completion by-passes this timeout handler.
905 *
906 * If the reference was already released, then the driver beat the
907 * timeout handler to posting a natural completion.
908 */
909 if (!refcount_inc_not_zero(&rq->ref))
910 return true;
911
912 /*
913 * The request is now locked and cannot be reallocated underneath the
914 * timeout handler's processing. Re-verify this exact request is truly
915 * expired; if it is not expired, then the request was completed and
916 * reallocated as a new request.
917 */
918 if (blk_mq_req_expired(rq, next))
919 blk_mq_rq_timed_out(rq, reserved);
920
921 if (is_flush_rq(rq, hctx))
922 rq->end_io(rq, 0);
923 else if (refcount_dec_and_test(&rq->ref))
924 __blk_mq_free_request(rq);
925
926 return true;
927 }
928
929 static void blk_mq_timeout_work(struct work_struct *work)
930 {
931 struct request_queue *q =
932 container_of(work, struct request_queue, timeout_work);
933 unsigned long next = 0;
934 struct blk_mq_hw_ctx *hctx;
935 int i;
936
937 /* A deadlock might occur if a request is stuck requiring a
938 * timeout at the same time a queue freeze is waiting
939 * completion, since the timeout code would not be able to
940 * acquire the queue reference here.
941 *
942 * That's why we don't use blk_queue_enter here; instead, we use
943 * percpu_ref_tryget directly, because we need to be able to
944 * obtain a reference even in the short window between the queue
945 * starting to freeze, by dropping the first reference in
946 * blk_freeze_queue_start, and the moment the last request is
947 * consumed, marked by the instant q_usage_counter reaches
948 * zero.
949 */
950 if (!percpu_ref_tryget(&q->q_usage_counter))
951 return;
952
953 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
954
955 if (next != 0) {
956 mod_timer(&q->timeout, next);
957 } else {
958 /*
959 * Request timeouts are handled as a forward rolling timer. If
960 * we end up here it means that no requests are pending and
961 * also that no request has been pending for a while. Mark
962 * each hctx as idle.
963 */
964 queue_for_each_hw_ctx(q, hctx, i) {
965 /* the hctx may be unmapped, so check it here */
966 if (blk_mq_hw_queue_mapped(hctx))
967 blk_mq_tag_idle(hctx);
968 }
969 }
970 blk_queue_exit(q);
971 }
972
973 struct flush_busy_ctx_data {
974 struct blk_mq_hw_ctx *hctx;
975 struct list_head *list;
976 };
977
978 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
979 {
980 struct flush_busy_ctx_data *flush_data = data;
981 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
982 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
983 enum hctx_type type = hctx->type;
984
985 spin_lock(&ctx->lock);
986 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
987 sbitmap_clear_bit(sb, bitnr);
988 spin_unlock(&ctx->lock);
989 return true;
990 }
991
992 /*
993 * Process software queues that have been marked busy, splicing them
994 * to the for-dispatch
995 */
996 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
997 {
998 struct flush_busy_ctx_data data = {
999 .hctx = hctx,
1000 .list = list,
1001 };
1002
1003 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1004 }
1005 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1006
1007 struct dispatch_rq_data {
1008 struct blk_mq_hw_ctx *hctx;
1009 struct request *rq;
1010 };
1011
1012 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1013 void *data)
1014 {
1015 struct dispatch_rq_data *dispatch_data = data;
1016 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1017 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1018 enum hctx_type type = hctx->type;
1019
1020 spin_lock(&ctx->lock);
1021 if (!list_empty(&ctx->rq_lists[type])) {
1022 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1023 list_del_init(&dispatch_data->rq->queuelist);
1024 if (list_empty(&ctx->rq_lists[type]))
1025 sbitmap_clear_bit(sb, bitnr);
1026 }
1027 spin_unlock(&ctx->lock);
1028
1029 return !dispatch_data->rq;
1030 }
1031
1032 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1033 struct blk_mq_ctx *start)
1034 {
1035 unsigned off = start ? start->index_hw[hctx->type] : 0;
1036 struct dispatch_rq_data data = {
1037 .hctx = hctx,
1038 .rq = NULL,
1039 };
1040
1041 __sbitmap_for_each_set(&hctx->ctx_map, off,
1042 dispatch_rq_from_ctx, &data);
1043
1044 return data.rq;
1045 }
1046
1047 static inline unsigned int queued_to_index(unsigned int queued)
1048 {
1049 if (!queued)
1050 return 0;
1051
1052 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1053 }
1054
1055 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1056 int flags, void *key)
1057 {
1058 struct blk_mq_hw_ctx *hctx;
1059
1060 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1061
1062 spin_lock(&hctx->dispatch_wait_lock);
1063 if (!list_empty(&wait->entry)) {
1064 struct sbitmap_queue *sbq;
1065
1066 list_del_init(&wait->entry);
1067 sbq = &hctx->tags->bitmap_tags;
1068 atomic_dec(&sbq->ws_active);
1069 }
1070 spin_unlock(&hctx->dispatch_wait_lock);
1071
1072 blk_mq_run_hw_queue(hctx, true);
1073 return 1;
1074 }
1075
1076 /*
1077 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1078 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1079 * restart. For both cases, take care to check the condition again after
1080 * marking us as waiting.
1081 */
1082 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1083 struct request *rq)
1084 {
1085 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1086 struct wait_queue_head *wq;
1087 wait_queue_entry_t *wait;
1088 bool ret;
1089
1090 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1091 blk_mq_sched_mark_restart_hctx(hctx);
1092
1093 /*
1094 * It's possible that a tag was freed in the window between the
1095 * allocation failure and adding the hardware queue to the wait
1096 * queue.
1097 *
1098 * Don't clear RESTART here, someone else could have set it.
1099 * At most this will cost an extra queue run.
1100 */
1101 return blk_mq_get_driver_tag(rq);
1102 }
1103
1104 wait = &hctx->dispatch_wait;
1105 if (!list_empty_careful(&wait->entry))
1106 return false;
1107
1108 wq = &bt_wait_ptr(sbq, hctx)->wait;
1109
1110 spin_lock_irq(&wq->lock);
1111 spin_lock(&hctx->dispatch_wait_lock);
1112 if (!list_empty(&wait->entry)) {
1113 spin_unlock(&hctx->dispatch_wait_lock);
1114 spin_unlock_irq(&wq->lock);
1115 return false;
1116 }
1117
1118 atomic_inc(&sbq->ws_active);
1119 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1120 __add_wait_queue(wq, wait);
1121
1122 /*
1123 * It's possible that a tag was freed in the window between the
1124 * allocation failure and adding the hardware queue to the wait
1125 * queue.
1126 */
1127 ret = blk_mq_get_driver_tag(rq);
1128 if (!ret) {
1129 spin_unlock(&hctx->dispatch_wait_lock);
1130 spin_unlock_irq(&wq->lock);
1131 return false;
1132 }
1133
1134 /*
1135 * We got a tag, remove ourselves from the wait queue to ensure
1136 * someone else gets the wakeup.
1137 */
1138 list_del_init(&wait->entry);
1139 atomic_dec(&sbq->ws_active);
1140 spin_unlock(&hctx->dispatch_wait_lock);
1141 spin_unlock_irq(&wq->lock);
1142
1143 return true;
1144 }
1145
1146 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1147 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1148 /*
1149 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1150 * - EWMA is one simple way to compute running average value
1151 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1152 * - take 4 as factor for avoiding to get too small(0) result, and this
1153 * factor doesn't matter because EWMA decreases exponentially
1154 */
1155 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1156 {
1157 unsigned int ewma;
1158
1159 if (hctx->queue->elevator)
1160 return;
1161
1162 ewma = hctx->dispatch_busy;
1163
1164 if (!ewma && !busy)
1165 return;
1166
1167 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1168 if (busy)
1169 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1170 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1171
1172 hctx->dispatch_busy = ewma;
1173 }
1174
1175 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1176
1177 static void blk_mq_handle_dev_resource(struct request *rq,
1178 struct list_head *list)
1179 {
1180 struct request *next =
1181 list_first_entry_or_null(list, struct request, queuelist);
1182
1183 /*
1184 * If an I/O scheduler has been configured and we got a driver tag for
1185 * the next request already, free it.
1186 */
1187 if (next)
1188 blk_mq_put_driver_tag(next);
1189
1190 list_add(&rq->queuelist, list);
1191 __blk_mq_requeue_request(rq);
1192 }
1193
1194 static void blk_mq_handle_zone_resource(struct request *rq,
1195 struct list_head *zone_list)
1196 {
1197 /*
1198 * If we end up here it is because we cannot dispatch a request to a
1199 * specific zone due to LLD level zone-write locking or other zone
1200 * related resource not being available. In this case, set the request
1201 * aside in zone_list for retrying it later.
1202 */
1203 list_add(&rq->queuelist, zone_list);
1204 __blk_mq_requeue_request(rq);
1205 }
1206
1207 /*
1208 * Returns true if we did some work AND can potentially do more.
1209 */
1210 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1211 bool got_budget)
1212 {
1213 struct blk_mq_hw_ctx *hctx;
1214 struct request *rq, *nxt;
1215 bool no_tag = false;
1216 int errors, queued;
1217 blk_status_t ret = BLK_STS_OK;
1218 bool no_budget_avail = false;
1219 LIST_HEAD(zone_list);
1220
1221 if (list_empty(list))
1222 return false;
1223
1224 WARN_ON(!list_is_singular(list) && got_budget);
1225
1226 /*
1227 * Now process all the entries, sending them to the driver.
1228 */
1229 errors = queued = 0;
1230 do {
1231 struct blk_mq_queue_data bd;
1232
1233 rq = list_first_entry(list, struct request, queuelist);
1234
1235 hctx = rq->mq_hctx;
1236 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1237 blk_mq_put_driver_tag(rq);
1238 no_budget_avail = true;
1239 break;
1240 }
1241
1242 if (!blk_mq_get_driver_tag(rq)) {
1243 /*
1244 * The initial allocation attempt failed, so we need to
1245 * rerun the hardware queue when a tag is freed. The
1246 * waitqueue takes care of that. If the queue is run
1247 * before we add this entry back on the dispatch list,
1248 * we'll re-run it below.
1249 */
1250 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1251 blk_mq_put_dispatch_budget(hctx);
1252 /*
1253 * For non-shared tags, the RESTART check
1254 * will suffice.
1255 */
1256 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1257 no_tag = true;
1258 break;
1259 }
1260 }
1261
1262 list_del_init(&rq->queuelist);
1263
1264 bd.rq = rq;
1265
1266 /*
1267 * Flag last if we have no more requests, or if we have more
1268 * but can't assign a driver tag to it.
1269 */
1270 if (list_empty(list))
1271 bd.last = true;
1272 else {
1273 nxt = list_first_entry(list, struct request, queuelist);
1274 bd.last = !blk_mq_get_driver_tag(nxt);
1275 }
1276
1277 ret = q->mq_ops->queue_rq(hctx, &bd);
1278 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1279 blk_mq_handle_dev_resource(rq, list);
1280 break;
1281 } else if (ret == BLK_STS_ZONE_RESOURCE) {
1282 /*
1283 * Move the request to zone_list and keep going through
1284 * the dispatch list to find more requests the drive can
1285 * accept.
1286 */
1287 blk_mq_handle_zone_resource(rq, &zone_list);
1288 if (list_empty(list))
1289 break;
1290 continue;
1291 }
1292
1293 if (unlikely(ret != BLK_STS_OK)) {
1294 errors++;
1295 blk_mq_end_request(rq, BLK_STS_IOERR);
1296 continue;
1297 }
1298
1299 queued++;
1300 } while (!list_empty(list));
1301
1302 if (!list_empty(&zone_list))
1303 list_splice_tail_init(&zone_list, list);
1304
1305 hctx->dispatched[queued_to_index(queued)]++;
1306
1307 /*
1308 * Any items that need requeuing? Stuff them into hctx->dispatch,
1309 * that is where we will continue on next queue run.
1310 */
1311 if (!list_empty(list)) {
1312 bool needs_restart;
1313
1314 /*
1315 * If we didn't flush the entire list, we could have told
1316 * the driver there was more coming, but that turned out to
1317 * be a lie.
1318 */
1319 if (q->mq_ops->commit_rqs && queued)
1320 q->mq_ops->commit_rqs(hctx);
1321
1322 spin_lock(&hctx->lock);
1323 list_splice_tail_init(list, &hctx->dispatch);
1324 spin_unlock(&hctx->lock);
1325
1326 /*
1327 * If SCHED_RESTART was set by the caller of this function and
1328 * it is no longer set that means that it was cleared by another
1329 * thread and hence that a queue rerun is needed.
1330 *
1331 * If 'no_tag' is set, that means that we failed getting
1332 * a driver tag with an I/O scheduler attached. If our dispatch
1333 * waitqueue is no longer active, ensure that we run the queue
1334 * AFTER adding our entries back to the list.
1335 *
1336 * If no I/O scheduler has been configured it is possible that
1337 * the hardware queue got stopped and restarted before requests
1338 * were pushed back onto the dispatch list. Rerun the queue to
1339 * avoid starvation. Notes:
1340 * - blk_mq_run_hw_queue() checks whether or not a queue has
1341 * been stopped before rerunning a queue.
1342 * - Some but not all block drivers stop a queue before
1343 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1344 * and dm-rq.
1345 *
1346 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1347 * bit is set, run queue after a delay to avoid IO stalls
1348 * that could otherwise occur if the queue is idle. We'll do
1349 * similar if we couldn't get budget and SCHED_RESTART is set.
1350 */
1351 needs_restart = blk_mq_sched_needs_restart(hctx);
1352 if (!needs_restart ||
1353 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1354 blk_mq_run_hw_queue(hctx, true);
1355 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1356 no_budget_avail))
1357 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1358
1359 blk_mq_update_dispatch_busy(hctx, true);
1360 return false;
1361 } else
1362 blk_mq_update_dispatch_busy(hctx, false);
1363
1364 /*
1365 * If the host/device is unable to accept more work, inform the
1366 * caller of that.
1367 */
1368 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1369 return false;
1370
1371 return (queued + errors) != 0;
1372 }
1373
1374 /**
1375 * __blk_mq_run_hw_queue - Run a hardware queue.
1376 * @hctx: Pointer to the hardware queue to run.
1377 *
1378 * Send pending requests to the hardware.
1379 */
1380 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1381 {
1382 int srcu_idx;
1383
1384 /*
1385 * We should be running this queue from one of the CPUs that
1386 * are mapped to it.
1387 *
1388 * There are at least two related races now between setting
1389 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1390 * __blk_mq_run_hw_queue():
1391 *
1392 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1393 * but later it becomes online, then this warning is harmless
1394 * at all
1395 *
1396 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1397 * but later it becomes offline, then the warning can't be
1398 * triggered, and we depend on blk-mq timeout handler to
1399 * handle dispatched requests to this hctx
1400 */
1401 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1402 cpu_online(hctx->next_cpu)) {
1403 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1404 raw_smp_processor_id(),
1405 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1406 dump_stack();
1407 }
1408
1409 /*
1410 * We can't run the queue inline with ints disabled. Ensure that
1411 * we catch bad users of this early.
1412 */
1413 WARN_ON_ONCE(in_interrupt());
1414
1415 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1416
1417 hctx_lock(hctx, &srcu_idx);
1418 blk_mq_sched_dispatch_requests(hctx);
1419 hctx_unlock(hctx, srcu_idx);
1420 }
1421
1422 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1423 {
1424 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1425
1426 if (cpu >= nr_cpu_ids)
1427 cpu = cpumask_first(hctx->cpumask);
1428 return cpu;
1429 }
1430
1431 /*
1432 * It'd be great if the workqueue API had a way to pass
1433 * in a mask and had some smarts for more clever placement.
1434 * For now we just round-robin here, switching for every
1435 * BLK_MQ_CPU_WORK_BATCH queued items.
1436 */
1437 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1438 {
1439 bool tried = false;
1440 int next_cpu = hctx->next_cpu;
1441
1442 if (hctx->queue->nr_hw_queues == 1)
1443 return WORK_CPU_UNBOUND;
1444
1445 if (--hctx->next_cpu_batch <= 0) {
1446 select_cpu:
1447 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1448 cpu_online_mask);
1449 if (next_cpu >= nr_cpu_ids)
1450 next_cpu = blk_mq_first_mapped_cpu(hctx);
1451 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1452 }
1453
1454 /*
1455 * Do unbound schedule if we can't find a online CPU for this hctx,
1456 * and it should only happen in the path of handling CPU DEAD.
1457 */
1458 if (!cpu_online(next_cpu)) {
1459 if (!tried) {
1460 tried = true;
1461 goto select_cpu;
1462 }
1463
1464 /*
1465 * Make sure to re-select CPU next time once after CPUs
1466 * in hctx->cpumask become online again.
1467 */
1468 hctx->next_cpu = next_cpu;
1469 hctx->next_cpu_batch = 1;
1470 return WORK_CPU_UNBOUND;
1471 }
1472
1473 hctx->next_cpu = next_cpu;
1474 return next_cpu;
1475 }
1476
1477 /**
1478 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1479 * @hctx: Pointer to the hardware queue to run.
1480 * @async: If we want to run the queue asynchronously.
1481 * @msecs: Microseconds of delay to wait before running the queue.
1482 *
1483 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1484 * with a delay of @msecs.
1485 */
1486 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1487 unsigned long msecs)
1488 {
1489 if (unlikely(blk_mq_hctx_stopped(hctx)))
1490 return;
1491
1492 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1493 int cpu = get_cpu();
1494 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1495 __blk_mq_run_hw_queue(hctx);
1496 put_cpu();
1497 return;
1498 }
1499
1500 put_cpu();
1501 }
1502
1503 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1504 msecs_to_jiffies(msecs));
1505 }
1506
1507 /**
1508 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1509 * @hctx: Pointer to the hardware queue to run.
1510 * @msecs: Microseconds of delay to wait before running the queue.
1511 *
1512 * Run a hardware queue asynchronously with a delay of @msecs.
1513 */
1514 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1515 {
1516 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1517 }
1518 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1519
1520 /**
1521 * blk_mq_run_hw_queue - Start to run a hardware queue.
1522 * @hctx: Pointer to the hardware queue to run.
1523 * @async: If we want to run the queue asynchronously.
1524 *
1525 * Check if the request queue is not in a quiesced state and if there are
1526 * pending requests to be sent. If this is true, run the queue to send requests
1527 * to hardware.
1528 */
1529 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1530 {
1531 int srcu_idx;
1532 bool need_run;
1533
1534 /*
1535 * When queue is quiesced, we may be switching io scheduler, or
1536 * updating nr_hw_queues, or other things, and we can't run queue
1537 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1538 *
1539 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1540 * quiesced.
1541 */
1542 hctx_lock(hctx, &srcu_idx);
1543 need_run = !blk_queue_quiesced(hctx->queue) &&
1544 blk_mq_hctx_has_pending(hctx);
1545 hctx_unlock(hctx, srcu_idx);
1546
1547 if (need_run)
1548 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1549 }
1550 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1551
1552 /**
1553 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1554 * @q: Pointer to the request queue to run.
1555 * @async: If we want to run the queue asynchronously.
1556 */
1557 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1558 {
1559 struct blk_mq_hw_ctx *hctx;
1560 int i;
1561
1562 queue_for_each_hw_ctx(q, hctx, i) {
1563 if (blk_mq_hctx_stopped(hctx))
1564 continue;
1565
1566 blk_mq_run_hw_queue(hctx, async);
1567 }
1568 }
1569 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1570
1571 /**
1572 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1573 * @q: Pointer to the request queue to run.
1574 * @msecs: Microseconds of delay to wait before running the queues.
1575 */
1576 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1577 {
1578 struct blk_mq_hw_ctx *hctx;
1579 int i;
1580
1581 queue_for_each_hw_ctx(q, hctx, i) {
1582 if (blk_mq_hctx_stopped(hctx))
1583 continue;
1584
1585 blk_mq_delay_run_hw_queue(hctx, msecs);
1586 }
1587 }
1588 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1589
1590 /**
1591 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1592 * @q: request queue.
1593 *
1594 * The caller is responsible for serializing this function against
1595 * blk_mq_{start,stop}_hw_queue().
1596 */
1597 bool blk_mq_queue_stopped(struct request_queue *q)
1598 {
1599 struct blk_mq_hw_ctx *hctx;
1600 int i;
1601
1602 queue_for_each_hw_ctx(q, hctx, i)
1603 if (blk_mq_hctx_stopped(hctx))
1604 return true;
1605
1606 return false;
1607 }
1608 EXPORT_SYMBOL(blk_mq_queue_stopped);
1609
1610 /*
1611 * This function is often used for pausing .queue_rq() by driver when
1612 * there isn't enough resource or some conditions aren't satisfied, and
1613 * BLK_STS_RESOURCE is usually returned.
1614 *
1615 * We do not guarantee that dispatch can be drained or blocked
1616 * after blk_mq_stop_hw_queue() returns. Please use
1617 * blk_mq_quiesce_queue() for that requirement.
1618 */
1619 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1620 {
1621 cancel_delayed_work(&hctx->run_work);
1622
1623 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1624 }
1625 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1626
1627 /*
1628 * This function is often used for pausing .queue_rq() by driver when
1629 * there isn't enough resource or some conditions aren't satisfied, and
1630 * BLK_STS_RESOURCE is usually returned.
1631 *
1632 * We do not guarantee that dispatch can be drained or blocked
1633 * after blk_mq_stop_hw_queues() returns. Please use
1634 * blk_mq_quiesce_queue() for that requirement.
1635 */
1636 void blk_mq_stop_hw_queues(struct request_queue *q)
1637 {
1638 struct blk_mq_hw_ctx *hctx;
1639 int i;
1640
1641 queue_for_each_hw_ctx(q, hctx, i)
1642 blk_mq_stop_hw_queue(hctx);
1643 }
1644 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1645
1646 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1647 {
1648 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1649
1650 blk_mq_run_hw_queue(hctx, false);
1651 }
1652 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1653
1654 void blk_mq_start_hw_queues(struct request_queue *q)
1655 {
1656 struct blk_mq_hw_ctx *hctx;
1657 int i;
1658
1659 queue_for_each_hw_ctx(q, hctx, i)
1660 blk_mq_start_hw_queue(hctx);
1661 }
1662 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1663
1664 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1665 {
1666 if (!blk_mq_hctx_stopped(hctx))
1667 return;
1668
1669 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1670 blk_mq_run_hw_queue(hctx, async);
1671 }
1672 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1673
1674 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1675 {
1676 struct blk_mq_hw_ctx *hctx;
1677 int i;
1678
1679 queue_for_each_hw_ctx(q, hctx, i)
1680 blk_mq_start_stopped_hw_queue(hctx, async);
1681 }
1682 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1683
1684 static void blk_mq_run_work_fn(struct work_struct *work)
1685 {
1686 struct blk_mq_hw_ctx *hctx;
1687
1688 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1689
1690 /*
1691 * If we are stopped, don't run the queue.
1692 */
1693 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1694 return;
1695
1696 __blk_mq_run_hw_queue(hctx);
1697 }
1698
1699 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1700 struct request *rq,
1701 bool at_head)
1702 {
1703 struct blk_mq_ctx *ctx = rq->mq_ctx;
1704 enum hctx_type type = hctx->type;
1705
1706 lockdep_assert_held(&ctx->lock);
1707
1708 trace_block_rq_insert(hctx->queue, rq);
1709
1710 if (at_head)
1711 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1712 else
1713 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1714 }
1715
1716 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1717 bool at_head)
1718 {
1719 struct blk_mq_ctx *ctx = rq->mq_ctx;
1720
1721 lockdep_assert_held(&ctx->lock);
1722
1723 __blk_mq_insert_req_list(hctx, rq, at_head);
1724 blk_mq_hctx_mark_pending(hctx, ctx);
1725 }
1726
1727 /**
1728 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1729 * @rq: Pointer to request to be inserted.
1730 * @run_queue: If we should run the hardware queue after inserting the request.
1731 *
1732 * Should only be used carefully, when the caller knows we want to
1733 * bypass a potential IO scheduler on the target device.
1734 */
1735 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1736 bool run_queue)
1737 {
1738 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1739
1740 spin_lock(&hctx->lock);
1741 if (at_head)
1742 list_add(&rq->queuelist, &hctx->dispatch);
1743 else
1744 list_add_tail(&rq->queuelist, &hctx->dispatch);
1745 spin_unlock(&hctx->lock);
1746
1747 if (run_queue)
1748 blk_mq_run_hw_queue(hctx, false);
1749 }
1750
1751 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1752 struct list_head *list)
1753
1754 {
1755 struct request *rq;
1756 enum hctx_type type = hctx->type;
1757
1758 /*
1759 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1760 * offline now
1761 */
1762 list_for_each_entry(rq, list, queuelist) {
1763 BUG_ON(rq->mq_ctx != ctx);
1764 trace_block_rq_insert(hctx->queue, rq);
1765 }
1766
1767 spin_lock(&ctx->lock);
1768 list_splice_tail_init(list, &ctx->rq_lists[type]);
1769 blk_mq_hctx_mark_pending(hctx, ctx);
1770 spin_unlock(&ctx->lock);
1771 }
1772
1773 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1774 {
1775 struct request *rqa = container_of(a, struct request, queuelist);
1776 struct request *rqb = container_of(b, struct request, queuelist);
1777
1778 if (rqa->mq_ctx != rqb->mq_ctx)
1779 return rqa->mq_ctx > rqb->mq_ctx;
1780 if (rqa->mq_hctx != rqb->mq_hctx)
1781 return rqa->mq_hctx > rqb->mq_hctx;
1782
1783 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1784 }
1785
1786 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1787 {
1788 LIST_HEAD(list);
1789
1790 if (list_empty(&plug->mq_list))
1791 return;
1792 list_splice_init(&plug->mq_list, &list);
1793
1794 if (plug->rq_count > 2 && plug->multiple_queues)
1795 list_sort(NULL, &list, plug_rq_cmp);
1796
1797 plug->rq_count = 0;
1798
1799 do {
1800 struct list_head rq_list;
1801 struct request *rq, *head_rq = list_entry_rq(list.next);
1802 struct list_head *pos = &head_rq->queuelist; /* skip first */
1803 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1804 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1805 unsigned int depth = 1;
1806
1807 list_for_each_continue(pos, &list) {
1808 rq = list_entry_rq(pos);
1809 BUG_ON(!rq->q);
1810 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1811 break;
1812 depth++;
1813 }
1814
1815 list_cut_before(&rq_list, &list, pos);
1816 trace_block_unplug(head_rq->q, depth, !from_schedule);
1817 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1818 from_schedule);
1819 } while(!list_empty(&list));
1820 }
1821
1822 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1823 unsigned int nr_segs)
1824 {
1825 if (bio->bi_opf & REQ_RAHEAD)
1826 rq->cmd_flags |= REQ_FAILFAST_MASK;
1827
1828 rq->__sector = bio->bi_iter.bi_sector;
1829 rq->write_hint = bio->bi_write_hint;
1830 blk_rq_bio_prep(rq, bio, nr_segs);
1831 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1832
1833 blk_account_io_start(rq);
1834 }
1835
1836 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1837 struct request *rq,
1838 blk_qc_t *cookie, bool last)
1839 {
1840 struct request_queue *q = rq->q;
1841 struct blk_mq_queue_data bd = {
1842 .rq = rq,
1843 .last = last,
1844 };
1845 blk_qc_t new_cookie;
1846 blk_status_t ret;
1847
1848 new_cookie = request_to_qc_t(hctx, rq);
1849
1850 /*
1851 * For OK queue, we are done. For error, caller may kill it.
1852 * Any other error (busy), just add it to our list as we
1853 * previously would have done.
1854 */
1855 ret = q->mq_ops->queue_rq(hctx, &bd);
1856 switch (ret) {
1857 case BLK_STS_OK:
1858 blk_mq_update_dispatch_busy(hctx, false);
1859 *cookie = new_cookie;
1860 break;
1861 case BLK_STS_RESOURCE:
1862 case BLK_STS_DEV_RESOURCE:
1863 blk_mq_update_dispatch_busy(hctx, true);
1864 __blk_mq_requeue_request(rq);
1865 break;
1866 default:
1867 blk_mq_update_dispatch_busy(hctx, false);
1868 *cookie = BLK_QC_T_NONE;
1869 break;
1870 }
1871
1872 return ret;
1873 }
1874
1875 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1876 struct request *rq,
1877 blk_qc_t *cookie,
1878 bool bypass_insert, bool last)
1879 {
1880 struct request_queue *q = rq->q;
1881 bool run_queue = true;
1882
1883 /*
1884 * RCU or SRCU read lock is needed before checking quiesced flag.
1885 *
1886 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1887 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1888 * and avoid driver to try to dispatch again.
1889 */
1890 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1891 run_queue = false;
1892 bypass_insert = false;
1893 goto insert;
1894 }
1895
1896 if (q->elevator && !bypass_insert)
1897 goto insert;
1898
1899 if (!blk_mq_get_dispatch_budget(hctx))
1900 goto insert;
1901
1902 if (!blk_mq_get_driver_tag(rq)) {
1903 blk_mq_put_dispatch_budget(hctx);
1904 goto insert;
1905 }
1906
1907 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1908 insert:
1909 if (bypass_insert)
1910 return BLK_STS_RESOURCE;
1911
1912 blk_mq_request_bypass_insert(rq, false, run_queue);
1913 return BLK_STS_OK;
1914 }
1915
1916 /**
1917 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1918 * @hctx: Pointer of the associated hardware queue.
1919 * @rq: Pointer to request to be sent.
1920 * @cookie: Request queue cookie.
1921 *
1922 * If the device has enough resources to accept a new request now, send the
1923 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1924 * we can try send it another time in the future. Requests inserted at this
1925 * queue have higher priority.
1926 */
1927 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1928 struct request *rq, blk_qc_t *cookie)
1929 {
1930 blk_status_t ret;
1931 int srcu_idx;
1932
1933 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1934
1935 hctx_lock(hctx, &srcu_idx);
1936
1937 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1938 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1939 blk_mq_request_bypass_insert(rq, false, true);
1940 else if (ret != BLK_STS_OK)
1941 blk_mq_end_request(rq, ret);
1942
1943 hctx_unlock(hctx, srcu_idx);
1944 }
1945
1946 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1947 {
1948 blk_status_t ret;
1949 int srcu_idx;
1950 blk_qc_t unused_cookie;
1951 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1952
1953 hctx_lock(hctx, &srcu_idx);
1954 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1955 hctx_unlock(hctx, srcu_idx);
1956
1957 return ret;
1958 }
1959
1960 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1961 struct list_head *list)
1962 {
1963 int queued = 0;
1964
1965 while (!list_empty(list)) {
1966 blk_status_t ret;
1967 struct request *rq = list_first_entry(list, struct request,
1968 queuelist);
1969
1970 list_del_init(&rq->queuelist);
1971 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1972 if (ret != BLK_STS_OK) {
1973 if (ret == BLK_STS_RESOURCE ||
1974 ret == BLK_STS_DEV_RESOURCE) {
1975 blk_mq_request_bypass_insert(rq, false,
1976 list_empty(list));
1977 break;
1978 }
1979 blk_mq_end_request(rq, ret);
1980 } else
1981 queued++;
1982 }
1983
1984 /*
1985 * If we didn't flush the entire list, we could have told
1986 * the driver there was more coming, but that turned out to
1987 * be a lie.
1988 */
1989 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
1990 hctx->queue->mq_ops->commit_rqs(hctx);
1991 }
1992
1993 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1994 {
1995 list_add_tail(&rq->queuelist, &plug->mq_list);
1996 plug->rq_count++;
1997 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1998 struct request *tmp;
1999
2000 tmp = list_first_entry(&plug->mq_list, struct request,
2001 queuelist);
2002 if (tmp->q != rq->q)
2003 plug->multiple_queues = true;
2004 }
2005 }
2006
2007 /**
2008 * blk_mq_make_request - Create and send a request to block device.
2009 * @q: Request queue pointer.
2010 * @bio: Bio pointer.
2011 *
2012 * Builds up a request structure from @q and @bio and send to the device. The
2013 * request may not be queued directly to hardware if:
2014 * * This request can be merged with another one
2015 * * We want to place request at plug queue for possible future merging
2016 * * There is an IO scheduler active at this queue
2017 *
2018 * It will not queue the request if there is an error with the bio, or at the
2019 * request creation.
2020 *
2021 * Returns: Request queue cookie.
2022 */
2023 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2024 {
2025 const int is_sync = op_is_sync(bio->bi_opf);
2026 const int is_flush_fua = op_is_flush(bio->bi_opf);
2027 struct blk_mq_alloc_data data = {
2028 .q = q,
2029 };
2030 struct request *rq;
2031 struct blk_plug *plug;
2032 struct request *same_queue_rq = NULL;
2033 unsigned int nr_segs;
2034 blk_qc_t cookie;
2035 blk_status_t ret;
2036
2037 blk_queue_bounce(q, &bio);
2038 __blk_queue_split(q, &bio, &nr_segs);
2039
2040 if (!bio_integrity_prep(bio))
2041 goto queue_exit;
2042
2043 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2044 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2045 goto queue_exit;
2046
2047 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2048 goto queue_exit;
2049
2050 rq_qos_throttle(q, bio);
2051
2052 data.cmd_flags = bio->bi_opf;
2053 rq = __blk_mq_alloc_request(&data);
2054 if (unlikely(!rq)) {
2055 rq_qos_cleanup(q, bio);
2056 if (bio->bi_opf & REQ_NOWAIT)
2057 bio_wouldblock_error(bio);
2058 goto queue_exit;
2059 }
2060
2061 trace_block_getrq(q, bio, bio->bi_opf);
2062
2063 rq_qos_track(q, rq, bio);
2064
2065 cookie = request_to_qc_t(data.hctx, rq);
2066
2067 blk_mq_bio_to_request(rq, bio, nr_segs);
2068
2069 ret = blk_crypto_init_request(rq);
2070 if (ret != BLK_STS_OK) {
2071 bio->bi_status = ret;
2072 bio_endio(bio);
2073 blk_mq_free_request(rq);
2074 return BLK_QC_T_NONE;
2075 }
2076
2077 plug = blk_mq_plug(q, bio);
2078 if (unlikely(is_flush_fua)) {
2079 /* Bypass scheduler for flush requests */
2080 blk_insert_flush(rq);
2081 blk_mq_run_hw_queue(data.hctx, true);
2082 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2083 !blk_queue_nonrot(q))) {
2084 /*
2085 * Use plugging if we have a ->commit_rqs() hook as well, as
2086 * we know the driver uses bd->last in a smart fashion.
2087 *
2088 * Use normal plugging if this disk is slow HDD, as sequential
2089 * IO may benefit a lot from plug merging.
2090 */
2091 unsigned int request_count = plug->rq_count;
2092 struct request *last = NULL;
2093
2094 if (!request_count)
2095 trace_block_plug(q);
2096 else
2097 last = list_entry_rq(plug->mq_list.prev);
2098
2099 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2100 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2101 blk_flush_plug_list(plug, false);
2102 trace_block_plug(q);
2103 }
2104
2105 blk_add_rq_to_plug(plug, rq);
2106 } else if (q->elevator) {
2107 /* Insert the request at the IO scheduler queue */
2108 blk_mq_sched_insert_request(rq, false, true, true);
2109 } else if (plug && !blk_queue_nomerges(q)) {
2110 /*
2111 * We do limited plugging. If the bio can be merged, do that.
2112 * Otherwise the existing request in the plug list will be
2113 * issued. So the plug list will have one request at most
2114 * The plug list might get flushed before this. If that happens,
2115 * the plug list is empty, and same_queue_rq is invalid.
2116 */
2117 if (list_empty(&plug->mq_list))
2118 same_queue_rq = NULL;
2119 if (same_queue_rq) {
2120 list_del_init(&same_queue_rq->queuelist);
2121 plug->rq_count--;
2122 }
2123 blk_add_rq_to_plug(plug, rq);
2124 trace_block_plug(q);
2125
2126 if (same_queue_rq) {
2127 data.hctx = same_queue_rq->mq_hctx;
2128 trace_block_unplug(q, 1, true);
2129 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2130 &cookie);
2131 }
2132 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2133 !data.hctx->dispatch_busy) {
2134 /*
2135 * There is no scheduler and we can try to send directly
2136 * to the hardware.
2137 */
2138 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2139 } else {
2140 /* Default case. */
2141 blk_mq_sched_insert_request(rq, false, true, true);
2142 }
2143
2144 return cookie;
2145 queue_exit:
2146 blk_queue_exit(q);
2147 return BLK_QC_T_NONE;
2148 }
2149 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2150
2151 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2152 unsigned int hctx_idx)
2153 {
2154 struct page *page;
2155
2156 if (tags->rqs && set->ops->exit_request) {
2157 int i;
2158
2159 for (i = 0; i < tags->nr_tags; i++) {
2160 struct request *rq = tags->static_rqs[i];
2161
2162 if (!rq)
2163 continue;
2164 set->ops->exit_request(set, rq, hctx_idx);
2165 tags->static_rqs[i] = NULL;
2166 }
2167 }
2168
2169 while (!list_empty(&tags->page_list)) {
2170 page = list_first_entry(&tags->page_list, struct page, lru);
2171 list_del_init(&page->lru);
2172 /*
2173 * Remove kmemleak object previously allocated in
2174 * blk_mq_alloc_rqs().
2175 */
2176 kmemleak_free(page_address(page));
2177 __free_pages(page, page->private);
2178 }
2179 }
2180
2181 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2182 {
2183 kfree(tags->rqs);
2184 tags->rqs = NULL;
2185 kfree(tags->static_rqs);
2186 tags->static_rqs = NULL;
2187
2188 blk_mq_free_tags(tags);
2189 }
2190
2191 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2192 unsigned int hctx_idx,
2193 unsigned int nr_tags,
2194 unsigned int reserved_tags)
2195 {
2196 struct blk_mq_tags *tags;
2197 int node;
2198
2199 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2200 if (node == NUMA_NO_NODE)
2201 node = set->numa_node;
2202
2203 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2204 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2205 if (!tags)
2206 return NULL;
2207
2208 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2209 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2210 node);
2211 if (!tags->rqs) {
2212 blk_mq_free_tags(tags);
2213 return NULL;
2214 }
2215
2216 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2217 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2218 node);
2219 if (!tags->static_rqs) {
2220 kfree(tags->rqs);
2221 blk_mq_free_tags(tags);
2222 return NULL;
2223 }
2224
2225 return tags;
2226 }
2227
2228 static size_t order_to_size(unsigned int order)
2229 {
2230 return (size_t)PAGE_SIZE << order;
2231 }
2232
2233 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2234 unsigned int hctx_idx, int node)
2235 {
2236 int ret;
2237
2238 if (set->ops->init_request) {
2239 ret = set->ops->init_request(set, rq, hctx_idx, node);
2240 if (ret)
2241 return ret;
2242 }
2243
2244 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2245 return 0;
2246 }
2247
2248 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2249 unsigned int hctx_idx, unsigned int depth)
2250 {
2251 unsigned int i, j, entries_per_page, max_order = 4;
2252 size_t rq_size, left;
2253 int node;
2254
2255 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2256 if (node == NUMA_NO_NODE)
2257 node = set->numa_node;
2258
2259 INIT_LIST_HEAD(&tags->page_list);
2260
2261 /*
2262 * rq_size is the size of the request plus driver payload, rounded
2263 * to the cacheline size
2264 */
2265 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2266 cache_line_size());
2267 left = rq_size * depth;
2268
2269 for (i = 0; i < depth; ) {
2270 int this_order = max_order;
2271 struct page *page;
2272 int to_do;
2273 void *p;
2274
2275 while (this_order && left < order_to_size(this_order - 1))
2276 this_order--;
2277
2278 do {
2279 page = alloc_pages_node(node,
2280 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2281 this_order);
2282 if (page)
2283 break;
2284 if (!this_order--)
2285 break;
2286 if (order_to_size(this_order) < rq_size)
2287 break;
2288 } while (1);
2289
2290 if (!page)
2291 goto fail;
2292
2293 page->private = this_order;
2294 list_add_tail(&page->lru, &tags->page_list);
2295
2296 p = page_address(page);
2297 /*
2298 * Allow kmemleak to scan these pages as they contain pointers
2299 * to additional allocations like via ops->init_request().
2300 */
2301 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2302 entries_per_page = order_to_size(this_order) / rq_size;
2303 to_do = min(entries_per_page, depth - i);
2304 left -= to_do * rq_size;
2305 for (j = 0; j < to_do; j++) {
2306 struct request *rq = p;
2307
2308 tags->static_rqs[i] = rq;
2309 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2310 tags->static_rqs[i] = NULL;
2311 goto fail;
2312 }
2313
2314 p += rq_size;
2315 i++;
2316 }
2317 }
2318 return 0;
2319
2320 fail:
2321 blk_mq_free_rqs(set, tags, hctx_idx);
2322 return -ENOMEM;
2323 }
2324
2325 struct rq_iter_data {
2326 struct blk_mq_hw_ctx *hctx;
2327 bool has_rq;
2328 };
2329
2330 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2331 {
2332 struct rq_iter_data *iter_data = data;
2333
2334 if (rq->mq_hctx != iter_data->hctx)
2335 return true;
2336 iter_data->has_rq = true;
2337 return false;
2338 }
2339
2340 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2341 {
2342 struct blk_mq_tags *tags = hctx->sched_tags ?
2343 hctx->sched_tags : hctx->tags;
2344 struct rq_iter_data data = {
2345 .hctx = hctx,
2346 };
2347
2348 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2349 return data.has_rq;
2350 }
2351
2352 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2353 struct blk_mq_hw_ctx *hctx)
2354 {
2355 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2356 return false;
2357 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2358 return false;
2359 return true;
2360 }
2361
2362 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2363 {
2364 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2365 struct blk_mq_hw_ctx, cpuhp_online);
2366
2367 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2368 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2369 return 0;
2370
2371 /*
2372 * Prevent new request from being allocated on the current hctx.
2373 *
2374 * The smp_mb__after_atomic() Pairs with the implied barrier in
2375 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2376 * seen once we return from the tag allocator.
2377 */
2378 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2379 smp_mb__after_atomic();
2380
2381 /*
2382 * Try to grab a reference to the queue and wait for any outstanding
2383 * requests. If we could not grab a reference the queue has been
2384 * frozen and there are no requests.
2385 */
2386 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2387 while (blk_mq_hctx_has_requests(hctx))
2388 msleep(5);
2389 percpu_ref_put(&hctx->queue->q_usage_counter);
2390 }
2391
2392 return 0;
2393 }
2394
2395 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2396 {
2397 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2398 struct blk_mq_hw_ctx, cpuhp_online);
2399
2400 if (cpumask_test_cpu(cpu, hctx->cpumask))
2401 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2402 return 0;
2403 }
2404
2405 /*
2406 * 'cpu' is going away. splice any existing rq_list entries from this
2407 * software queue to the hw queue dispatch list, and ensure that it
2408 * gets run.
2409 */
2410 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2411 {
2412 struct blk_mq_hw_ctx *hctx;
2413 struct blk_mq_ctx *ctx;
2414 LIST_HEAD(tmp);
2415 enum hctx_type type;
2416
2417 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2418 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2419 return 0;
2420
2421 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2422 type = hctx->type;
2423
2424 spin_lock(&ctx->lock);
2425 if (!list_empty(&ctx->rq_lists[type])) {
2426 list_splice_init(&ctx->rq_lists[type], &tmp);
2427 blk_mq_hctx_clear_pending(hctx, ctx);
2428 }
2429 spin_unlock(&ctx->lock);
2430
2431 if (list_empty(&tmp))
2432 return 0;
2433
2434 spin_lock(&hctx->lock);
2435 list_splice_tail_init(&tmp, &hctx->dispatch);
2436 spin_unlock(&hctx->lock);
2437
2438 blk_mq_run_hw_queue(hctx, true);
2439 return 0;
2440 }
2441
2442 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2443 {
2444 if (!(hctx->flags & BLK_MQ_F_STACKING))
2445 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2446 &hctx->cpuhp_online);
2447 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2448 &hctx->cpuhp_dead);
2449 }
2450
2451 /* hctx->ctxs will be freed in queue's release handler */
2452 static void blk_mq_exit_hctx(struct request_queue *q,
2453 struct blk_mq_tag_set *set,
2454 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2455 {
2456 if (blk_mq_hw_queue_mapped(hctx))
2457 blk_mq_tag_idle(hctx);
2458
2459 if (set->ops->exit_request)
2460 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2461
2462 if (set->ops->exit_hctx)
2463 set->ops->exit_hctx(hctx, hctx_idx);
2464
2465 blk_mq_remove_cpuhp(hctx);
2466
2467 spin_lock(&q->unused_hctx_lock);
2468 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2469 spin_unlock(&q->unused_hctx_lock);
2470 }
2471
2472 static void blk_mq_exit_hw_queues(struct request_queue *q,
2473 struct blk_mq_tag_set *set, int nr_queue)
2474 {
2475 struct blk_mq_hw_ctx *hctx;
2476 unsigned int i;
2477
2478 queue_for_each_hw_ctx(q, hctx, i) {
2479 if (i == nr_queue)
2480 break;
2481 blk_mq_debugfs_unregister_hctx(hctx);
2482 blk_mq_exit_hctx(q, set, hctx, i);
2483 }
2484 }
2485
2486 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2487 {
2488 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2489
2490 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2491 __alignof__(struct blk_mq_hw_ctx)) !=
2492 sizeof(struct blk_mq_hw_ctx));
2493
2494 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2495 hw_ctx_size += sizeof(struct srcu_struct);
2496
2497 return hw_ctx_size;
2498 }
2499
2500 static int blk_mq_init_hctx(struct request_queue *q,
2501 struct blk_mq_tag_set *set,
2502 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2503 {
2504 hctx->queue_num = hctx_idx;
2505
2506 if (!(hctx->flags & BLK_MQ_F_STACKING))
2507 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2508 &hctx->cpuhp_online);
2509 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2510
2511 hctx->tags = set->tags[hctx_idx];
2512
2513 if (set->ops->init_hctx &&
2514 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2515 goto unregister_cpu_notifier;
2516
2517 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2518 hctx->numa_node))
2519 goto exit_hctx;
2520 return 0;
2521
2522 exit_hctx:
2523 if (set->ops->exit_hctx)
2524 set->ops->exit_hctx(hctx, hctx_idx);
2525 unregister_cpu_notifier:
2526 blk_mq_remove_cpuhp(hctx);
2527 return -1;
2528 }
2529
2530 static struct blk_mq_hw_ctx *
2531 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2532 int node)
2533 {
2534 struct blk_mq_hw_ctx *hctx;
2535 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2536
2537 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2538 if (!hctx)
2539 goto fail_alloc_hctx;
2540
2541 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2542 goto free_hctx;
2543
2544 atomic_set(&hctx->nr_active, 0);
2545 if (node == NUMA_NO_NODE)
2546 node = set->numa_node;
2547 hctx->numa_node = node;
2548
2549 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2550 spin_lock_init(&hctx->lock);
2551 INIT_LIST_HEAD(&hctx->dispatch);
2552 hctx->queue = q;
2553 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2554
2555 INIT_LIST_HEAD(&hctx->hctx_list);
2556
2557 /*
2558 * Allocate space for all possible cpus to avoid allocation at
2559 * runtime
2560 */
2561 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2562 gfp, node);
2563 if (!hctx->ctxs)
2564 goto free_cpumask;
2565
2566 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2567 gfp, node))
2568 goto free_ctxs;
2569 hctx->nr_ctx = 0;
2570
2571 spin_lock_init(&hctx->dispatch_wait_lock);
2572 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2573 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2574
2575 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2576 if (!hctx->fq)
2577 goto free_bitmap;
2578
2579 if (hctx->flags & BLK_MQ_F_BLOCKING)
2580 init_srcu_struct(hctx->srcu);
2581 blk_mq_hctx_kobj_init(hctx);
2582
2583 return hctx;
2584
2585 free_bitmap:
2586 sbitmap_free(&hctx->ctx_map);
2587 free_ctxs:
2588 kfree(hctx->ctxs);
2589 free_cpumask:
2590 free_cpumask_var(hctx->cpumask);
2591 free_hctx:
2592 kfree(hctx);
2593 fail_alloc_hctx:
2594 return NULL;
2595 }
2596
2597 static void blk_mq_init_cpu_queues(struct request_queue *q,
2598 unsigned int nr_hw_queues)
2599 {
2600 struct blk_mq_tag_set *set = q->tag_set;
2601 unsigned int i, j;
2602
2603 for_each_possible_cpu(i) {
2604 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2605 struct blk_mq_hw_ctx *hctx;
2606 int k;
2607
2608 __ctx->cpu = i;
2609 spin_lock_init(&__ctx->lock);
2610 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2611 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2612
2613 __ctx->queue = q;
2614
2615 /*
2616 * Set local node, IFF we have more than one hw queue. If
2617 * not, we remain on the home node of the device
2618 */
2619 for (j = 0; j < set->nr_maps; j++) {
2620 hctx = blk_mq_map_queue_type(q, j, i);
2621 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2622 hctx->numa_node = local_memory_node(cpu_to_node(i));
2623 }
2624 }
2625 }
2626
2627 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2628 int hctx_idx)
2629 {
2630 int ret = 0;
2631
2632 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2633 set->queue_depth, set->reserved_tags);
2634 if (!set->tags[hctx_idx])
2635 return false;
2636
2637 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2638 set->queue_depth);
2639 if (!ret)
2640 return true;
2641
2642 blk_mq_free_rq_map(set->tags[hctx_idx]);
2643 set->tags[hctx_idx] = NULL;
2644 return false;
2645 }
2646
2647 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2648 unsigned int hctx_idx)
2649 {
2650 if (set->tags && set->tags[hctx_idx]) {
2651 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2652 blk_mq_free_rq_map(set->tags[hctx_idx]);
2653 set->tags[hctx_idx] = NULL;
2654 }
2655 }
2656
2657 static void blk_mq_map_swqueue(struct request_queue *q)
2658 {
2659 unsigned int i, j, hctx_idx;
2660 struct blk_mq_hw_ctx *hctx;
2661 struct blk_mq_ctx *ctx;
2662 struct blk_mq_tag_set *set = q->tag_set;
2663
2664 queue_for_each_hw_ctx(q, hctx, i) {
2665 cpumask_clear(hctx->cpumask);
2666 hctx->nr_ctx = 0;
2667 hctx->dispatch_from = NULL;
2668 }
2669
2670 /*
2671 * Map software to hardware queues.
2672 *
2673 * If the cpu isn't present, the cpu is mapped to first hctx.
2674 */
2675 for_each_possible_cpu(i) {
2676
2677 ctx = per_cpu_ptr(q->queue_ctx, i);
2678 for (j = 0; j < set->nr_maps; j++) {
2679 if (!set->map[j].nr_queues) {
2680 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2681 HCTX_TYPE_DEFAULT, i);
2682 continue;
2683 }
2684 hctx_idx = set->map[j].mq_map[i];
2685 /* unmapped hw queue can be remapped after CPU topo changed */
2686 if (!set->tags[hctx_idx] &&
2687 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2688 /*
2689 * If tags initialization fail for some hctx,
2690 * that hctx won't be brought online. In this
2691 * case, remap the current ctx to hctx[0] which
2692 * is guaranteed to always have tags allocated
2693 */
2694 set->map[j].mq_map[i] = 0;
2695 }
2696
2697 hctx = blk_mq_map_queue_type(q, j, i);
2698 ctx->hctxs[j] = hctx;
2699 /*
2700 * If the CPU is already set in the mask, then we've
2701 * mapped this one already. This can happen if
2702 * devices share queues across queue maps.
2703 */
2704 if (cpumask_test_cpu(i, hctx->cpumask))
2705 continue;
2706
2707 cpumask_set_cpu(i, hctx->cpumask);
2708 hctx->type = j;
2709 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2710 hctx->ctxs[hctx->nr_ctx++] = ctx;
2711
2712 /*
2713 * If the nr_ctx type overflows, we have exceeded the
2714 * amount of sw queues we can support.
2715 */
2716 BUG_ON(!hctx->nr_ctx);
2717 }
2718
2719 for (; j < HCTX_MAX_TYPES; j++)
2720 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2721 HCTX_TYPE_DEFAULT, i);
2722 }
2723
2724 queue_for_each_hw_ctx(q, hctx, i) {
2725 /*
2726 * If no software queues are mapped to this hardware queue,
2727 * disable it and free the request entries.
2728 */
2729 if (!hctx->nr_ctx) {
2730 /* Never unmap queue 0. We need it as a
2731 * fallback in case of a new remap fails
2732 * allocation
2733 */
2734 if (i && set->tags[i])
2735 blk_mq_free_map_and_requests(set, i);
2736
2737 hctx->tags = NULL;
2738 continue;
2739 }
2740
2741 hctx->tags = set->tags[i];
2742 WARN_ON(!hctx->tags);
2743
2744 /*
2745 * Set the map size to the number of mapped software queues.
2746 * This is more accurate and more efficient than looping
2747 * over all possibly mapped software queues.
2748 */
2749 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2750
2751 /*
2752 * Initialize batch roundrobin counts
2753 */
2754 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2755 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2756 }
2757 }
2758
2759 /*
2760 * Caller needs to ensure that we're either frozen/quiesced, or that
2761 * the queue isn't live yet.
2762 */
2763 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2764 {
2765 struct blk_mq_hw_ctx *hctx;
2766 int i;
2767
2768 queue_for_each_hw_ctx(q, hctx, i) {
2769 if (shared)
2770 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2771 else
2772 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2773 }
2774 }
2775
2776 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2777 bool shared)
2778 {
2779 struct request_queue *q;
2780
2781 lockdep_assert_held(&set->tag_list_lock);
2782
2783 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2784 blk_mq_freeze_queue(q);
2785 queue_set_hctx_shared(q, shared);
2786 blk_mq_unfreeze_queue(q);
2787 }
2788 }
2789
2790 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2791 {
2792 struct blk_mq_tag_set *set = q->tag_set;
2793
2794 mutex_lock(&set->tag_list_lock);
2795 list_del_rcu(&q->tag_set_list);
2796 if (list_is_singular(&set->tag_list)) {
2797 /* just transitioned to unshared */
2798 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2799 /* update existing queue */
2800 blk_mq_update_tag_set_depth(set, false);
2801 }
2802 mutex_unlock(&set->tag_list_lock);
2803 INIT_LIST_HEAD(&q->tag_set_list);
2804 }
2805
2806 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2807 struct request_queue *q)
2808 {
2809 mutex_lock(&set->tag_list_lock);
2810
2811 /*
2812 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2813 */
2814 if (!list_empty(&set->tag_list) &&
2815 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2816 set->flags |= BLK_MQ_F_TAG_SHARED;
2817 /* update existing queue */
2818 blk_mq_update_tag_set_depth(set, true);
2819 }
2820 if (set->flags & BLK_MQ_F_TAG_SHARED)
2821 queue_set_hctx_shared(q, true);
2822 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2823
2824 mutex_unlock(&set->tag_list_lock);
2825 }
2826
2827 /* All allocations will be freed in release handler of q->mq_kobj */
2828 static int blk_mq_alloc_ctxs(struct request_queue *q)
2829 {
2830 struct blk_mq_ctxs *ctxs;
2831 int cpu;
2832
2833 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2834 if (!ctxs)
2835 return -ENOMEM;
2836
2837 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2838 if (!ctxs->queue_ctx)
2839 goto fail;
2840
2841 for_each_possible_cpu(cpu) {
2842 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2843 ctx->ctxs = ctxs;
2844 }
2845
2846 q->mq_kobj = &ctxs->kobj;
2847 q->queue_ctx = ctxs->queue_ctx;
2848
2849 return 0;
2850 fail:
2851 kfree(ctxs);
2852 return -ENOMEM;
2853 }
2854
2855 /*
2856 * It is the actual release handler for mq, but we do it from
2857 * request queue's release handler for avoiding use-after-free
2858 * and headache because q->mq_kobj shouldn't have been introduced,
2859 * but we can't group ctx/kctx kobj without it.
2860 */
2861 void blk_mq_release(struct request_queue *q)
2862 {
2863 struct blk_mq_hw_ctx *hctx, *next;
2864 int i;
2865
2866 queue_for_each_hw_ctx(q, hctx, i)
2867 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2868
2869 /* all hctx are in .unused_hctx_list now */
2870 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2871 list_del_init(&hctx->hctx_list);
2872 kobject_put(&hctx->kobj);
2873 }
2874
2875 kfree(q->queue_hw_ctx);
2876
2877 /*
2878 * release .mq_kobj and sw queue's kobject now because
2879 * both share lifetime with request queue.
2880 */
2881 blk_mq_sysfs_deinit(q);
2882 }
2883
2884 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2885 void *queuedata)
2886 {
2887 struct request_queue *uninit_q, *q;
2888
2889 uninit_q = __blk_alloc_queue(set->numa_node);
2890 if (!uninit_q)
2891 return ERR_PTR(-ENOMEM);
2892 uninit_q->queuedata = queuedata;
2893
2894 /*
2895 * Initialize the queue without an elevator. device_add_disk() will do
2896 * the initialization.
2897 */
2898 q = blk_mq_init_allocated_queue(set, uninit_q, false);
2899 if (IS_ERR(q))
2900 blk_cleanup_queue(uninit_q);
2901
2902 return q;
2903 }
2904 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2905
2906 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2907 {
2908 return blk_mq_init_queue_data(set, NULL);
2909 }
2910 EXPORT_SYMBOL(blk_mq_init_queue);
2911
2912 /*
2913 * Helper for setting up a queue with mq ops, given queue depth, and
2914 * the passed in mq ops flags.
2915 */
2916 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2917 const struct blk_mq_ops *ops,
2918 unsigned int queue_depth,
2919 unsigned int set_flags)
2920 {
2921 struct request_queue *q;
2922 int ret;
2923
2924 memset(set, 0, sizeof(*set));
2925 set->ops = ops;
2926 set->nr_hw_queues = 1;
2927 set->nr_maps = 1;
2928 set->queue_depth = queue_depth;
2929 set->numa_node = NUMA_NO_NODE;
2930 set->flags = set_flags;
2931
2932 ret = blk_mq_alloc_tag_set(set);
2933 if (ret)
2934 return ERR_PTR(ret);
2935
2936 q = blk_mq_init_queue(set);
2937 if (IS_ERR(q)) {
2938 blk_mq_free_tag_set(set);
2939 return q;
2940 }
2941
2942 return q;
2943 }
2944 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2945
2946 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2947 struct blk_mq_tag_set *set, struct request_queue *q,
2948 int hctx_idx, int node)
2949 {
2950 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2951
2952 /* reuse dead hctx first */
2953 spin_lock(&q->unused_hctx_lock);
2954 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2955 if (tmp->numa_node == node) {
2956 hctx = tmp;
2957 break;
2958 }
2959 }
2960 if (hctx)
2961 list_del_init(&hctx->hctx_list);
2962 spin_unlock(&q->unused_hctx_lock);
2963
2964 if (!hctx)
2965 hctx = blk_mq_alloc_hctx(q, set, node);
2966 if (!hctx)
2967 goto fail;
2968
2969 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2970 goto free_hctx;
2971
2972 return hctx;
2973
2974 free_hctx:
2975 kobject_put(&hctx->kobj);
2976 fail:
2977 return NULL;
2978 }
2979
2980 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2981 struct request_queue *q)
2982 {
2983 int i, j, end;
2984 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2985
2986 if (q->nr_hw_queues < set->nr_hw_queues) {
2987 struct blk_mq_hw_ctx **new_hctxs;
2988
2989 new_hctxs = kcalloc_node(set->nr_hw_queues,
2990 sizeof(*new_hctxs), GFP_KERNEL,
2991 set->numa_node);
2992 if (!new_hctxs)
2993 return;
2994 if (hctxs)
2995 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2996 sizeof(*hctxs));
2997 q->queue_hw_ctx = new_hctxs;
2998 kfree(hctxs);
2999 hctxs = new_hctxs;
3000 }
3001
3002 /* protect against switching io scheduler */
3003 mutex_lock(&q->sysfs_lock);
3004 for (i = 0; i < set->nr_hw_queues; i++) {
3005 int node;
3006 struct blk_mq_hw_ctx *hctx;
3007
3008 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3009 /*
3010 * If the hw queue has been mapped to another numa node,
3011 * we need to realloc the hctx. If allocation fails, fallback
3012 * to use the previous one.
3013 */
3014 if (hctxs[i] && (hctxs[i]->numa_node == node))
3015 continue;
3016
3017 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3018 if (hctx) {
3019 if (hctxs[i])
3020 blk_mq_exit_hctx(q, set, hctxs[i], i);
3021 hctxs[i] = hctx;
3022 } else {
3023 if (hctxs[i])
3024 pr_warn("Allocate new hctx on node %d fails,\
3025 fallback to previous one on node %d\n",
3026 node, hctxs[i]->numa_node);
3027 else
3028 break;
3029 }
3030 }
3031 /*
3032 * Increasing nr_hw_queues fails. Free the newly allocated
3033 * hctxs and keep the previous q->nr_hw_queues.
3034 */
3035 if (i != set->nr_hw_queues) {
3036 j = q->nr_hw_queues;
3037 end = i;
3038 } else {
3039 j = i;
3040 end = q->nr_hw_queues;
3041 q->nr_hw_queues = set->nr_hw_queues;
3042 }
3043
3044 for (; j < end; j++) {
3045 struct blk_mq_hw_ctx *hctx = hctxs[j];
3046
3047 if (hctx) {
3048 if (hctx->tags)
3049 blk_mq_free_map_and_requests(set, j);
3050 blk_mq_exit_hctx(q, set, hctx, j);
3051 hctxs[j] = NULL;
3052 }
3053 }
3054 mutex_unlock(&q->sysfs_lock);
3055 }
3056
3057 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3058 struct request_queue *q,
3059 bool elevator_init)
3060 {
3061 /* mark the queue as mq asap */
3062 q->mq_ops = set->ops;
3063
3064 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3065 blk_mq_poll_stats_bkt,
3066 BLK_MQ_POLL_STATS_BKTS, q);
3067 if (!q->poll_cb)
3068 goto err_exit;
3069
3070 if (blk_mq_alloc_ctxs(q))
3071 goto err_poll;
3072
3073 /* init q->mq_kobj and sw queues' kobjects */
3074 blk_mq_sysfs_init(q);
3075
3076 INIT_LIST_HEAD(&q->unused_hctx_list);
3077 spin_lock_init(&q->unused_hctx_lock);
3078
3079 blk_mq_realloc_hw_ctxs(set, q);
3080 if (!q->nr_hw_queues)
3081 goto err_hctxs;
3082
3083 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3084 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3085
3086 q->tag_set = set;
3087
3088 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3089 if (set->nr_maps > HCTX_TYPE_POLL &&
3090 set->map[HCTX_TYPE_POLL].nr_queues)
3091 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3092
3093 q->sg_reserved_size = INT_MAX;
3094
3095 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3096 INIT_LIST_HEAD(&q->requeue_list);
3097 spin_lock_init(&q->requeue_lock);
3098
3099 q->nr_requests = set->queue_depth;
3100
3101 /*
3102 * Default to classic polling
3103 */
3104 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3105
3106 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3107 blk_mq_add_queue_tag_set(set, q);
3108 blk_mq_map_swqueue(q);
3109
3110 if (elevator_init)
3111 elevator_init_mq(q);
3112
3113 return q;
3114
3115 err_hctxs:
3116 kfree(q->queue_hw_ctx);
3117 q->nr_hw_queues = 0;
3118 blk_mq_sysfs_deinit(q);
3119 err_poll:
3120 blk_stat_free_callback(q->poll_cb);
3121 q->poll_cb = NULL;
3122 err_exit:
3123 q->mq_ops = NULL;
3124 return ERR_PTR(-ENOMEM);
3125 }
3126 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3127
3128 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3129 void blk_mq_exit_queue(struct request_queue *q)
3130 {
3131 struct blk_mq_tag_set *set = q->tag_set;
3132
3133 blk_mq_del_queue_tag_set(q);
3134 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3135 }
3136
3137 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3138 {
3139 int i;
3140
3141 for (i = 0; i < set->nr_hw_queues; i++)
3142 if (!__blk_mq_alloc_map_and_request(set, i))
3143 goto out_unwind;
3144
3145 return 0;
3146
3147 out_unwind:
3148 while (--i >= 0)
3149 blk_mq_free_map_and_requests(set, i);
3150
3151 return -ENOMEM;
3152 }
3153
3154 /*
3155 * Allocate the request maps associated with this tag_set. Note that this
3156 * may reduce the depth asked for, if memory is tight. set->queue_depth
3157 * will be updated to reflect the allocated depth.
3158 */
3159 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3160 {
3161 unsigned int depth;
3162 int err;
3163
3164 depth = set->queue_depth;
3165 do {
3166 err = __blk_mq_alloc_rq_maps(set);
3167 if (!err)
3168 break;
3169
3170 set->queue_depth >>= 1;
3171 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3172 err = -ENOMEM;
3173 break;
3174 }
3175 } while (set->queue_depth);
3176
3177 if (!set->queue_depth || err) {
3178 pr_err("blk-mq: failed to allocate request map\n");
3179 return -ENOMEM;
3180 }
3181
3182 if (depth != set->queue_depth)
3183 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3184 depth, set->queue_depth);
3185
3186 return 0;
3187 }
3188
3189 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3190 {
3191 /*
3192 * blk_mq_map_queues() and multiple .map_queues() implementations
3193 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3194 * number of hardware queues.
3195 */
3196 if (set->nr_maps == 1)
3197 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3198
3199 if (set->ops->map_queues && !is_kdump_kernel()) {
3200 int i;
3201
3202 /*
3203 * transport .map_queues is usually done in the following
3204 * way:
3205 *
3206 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3207 * mask = get_cpu_mask(queue)
3208 * for_each_cpu(cpu, mask)
3209 * set->map[x].mq_map[cpu] = queue;
3210 * }
3211 *
3212 * When we need to remap, the table has to be cleared for
3213 * killing stale mapping since one CPU may not be mapped
3214 * to any hw queue.
3215 */
3216 for (i = 0; i < set->nr_maps; i++)
3217 blk_mq_clear_mq_map(&set->map[i]);
3218
3219 return set->ops->map_queues(set);
3220 } else {
3221 BUG_ON(set->nr_maps > 1);
3222 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3223 }
3224 }
3225
3226 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3227 int cur_nr_hw_queues, int new_nr_hw_queues)
3228 {
3229 struct blk_mq_tags **new_tags;
3230
3231 if (cur_nr_hw_queues >= new_nr_hw_queues)
3232 return 0;
3233
3234 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3235 GFP_KERNEL, set->numa_node);
3236 if (!new_tags)
3237 return -ENOMEM;
3238
3239 if (set->tags)
3240 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3241 sizeof(*set->tags));
3242 kfree(set->tags);
3243 set->tags = new_tags;
3244 set->nr_hw_queues = new_nr_hw_queues;
3245
3246 return 0;
3247 }
3248
3249 /*
3250 * Alloc a tag set to be associated with one or more request queues.
3251 * May fail with EINVAL for various error conditions. May adjust the
3252 * requested depth down, if it's too large. In that case, the set
3253 * value will be stored in set->queue_depth.
3254 */
3255 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3256 {
3257 int i, ret;
3258
3259 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3260
3261 if (!set->nr_hw_queues)
3262 return -EINVAL;
3263 if (!set->queue_depth)
3264 return -EINVAL;
3265 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3266 return -EINVAL;
3267
3268 if (!set->ops->queue_rq)
3269 return -EINVAL;
3270
3271 if (!set->ops->get_budget ^ !set->ops->put_budget)
3272 return -EINVAL;
3273
3274 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3275 pr_info("blk-mq: reduced tag depth to %u\n",
3276 BLK_MQ_MAX_DEPTH);
3277 set->queue_depth = BLK_MQ_MAX_DEPTH;
3278 }
3279
3280 if (!set->nr_maps)
3281 set->nr_maps = 1;
3282 else if (set->nr_maps > HCTX_MAX_TYPES)
3283 return -EINVAL;
3284
3285 /*
3286 * If a crashdump is active, then we are potentially in a very
3287 * memory constrained environment. Limit us to 1 queue and
3288 * 64 tags to prevent using too much memory.
3289 */
3290 if (is_kdump_kernel()) {
3291 set->nr_hw_queues = 1;
3292 set->nr_maps = 1;
3293 set->queue_depth = min(64U, set->queue_depth);
3294 }
3295 /*
3296 * There is no use for more h/w queues than cpus if we just have
3297 * a single map
3298 */
3299 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3300 set->nr_hw_queues = nr_cpu_ids;
3301
3302 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3303 return -ENOMEM;
3304
3305 ret = -ENOMEM;
3306 for (i = 0; i < set->nr_maps; i++) {
3307 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3308 sizeof(set->map[i].mq_map[0]),
3309 GFP_KERNEL, set->numa_node);
3310 if (!set->map[i].mq_map)
3311 goto out_free_mq_map;
3312 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3313 }
3314
3315 ret = blk_mq_update_queue_map(set);
3316 if (ret)
3317 goto out_free_mq_map;
3318
3319 ret = blk_mq_alloc_map_and_requests(set);
3320 if (ret)
3321 goto out_free_mq_map;
3322
3323 mutex_init(&set->tag_list_lock);
3324 INIT_LIST_HEAD(&set->tag_list);
3325
3326 return 0;
3327
3328 out_free_mq_map:
3329 for (i = 0; i < set->nr_maps; i++) {
3330 kfree(set->map[i].mq_map);
3331 set->map[i].mq_map = NULL;
3332 }
3333 kfree(set->tags);
3334 set->tags = NULL;
3335 return ret;
3336 }
3337 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3338
3339 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3340 {
3341 int i, j;
3342
3343 for (i = 0; i < set->nr_hw_queues; i++)
3344 blk_mq_free_map_and_requests(set, i);
3345
3346 for (j = 0; j < set->nr_maps; j++) {
3347 kfree(set->map[j].mq_map);
3348 set->map[j].mq_map = NULL;
3349 }
3350
3351 kfree(set->tags);
3352 set->tags = NULL;
3353 }
3354 EXPORT_SYMBOL(blk_mq_free_tag_set);
3355
3356 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3357 {
3358 struct blk_mq_tag_set *set = q->tag_set;
3359 struct blk_mq_hw_ctx *hctx;
3360 int i, ret;
3361
3362 if (!set)
3363 return -EINVAL;
3364
3365 if (q->nr_requests == nr)
3366 return 0;
3367
3368 blk_mq_freeze_queue(q);
3369 blk_mq_quiesce_queue(q);
3370
3371 ret = 0;
3372 queue_for_each_hw_ctx(q, hctx, i) {
3373 if (!hctx->tags)
3374 continue;
3375 /*
3376 * If we're using an MQ scheduler, just update the scheduler
3377 * queue depth. This is similar to what the old code would do.
3378 */
3379 if (!hctx->sched_tags) {
3380 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3381 false);
3382 } else {
3383 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3384 nr, true);
3385 }
3386 if (ret)
3387 break;
3388 if (q->elevator && q->elevator->type->ops.depth_updated)
3389 q->elevator->type->ops.depth_updated(hctx);
3390 }
3391
3392 if (!ret)
3393 q->nr_requests = nr;
3394
3395 blk_mq_unquiesce_queue(q);
3396 blk_mq_unfreeze_queue(q);
3397
3398 return ret;
3399 }
3400
3401 /*
3402 * request_queue and elevator_type pair.
3403 * It is just used by __blk_mq_update_nr_hw_queues to cache
3404 * the elevator_type associated with a request_queue.
3405 */
3406 struct blk_mq_qe_pair {
3407 struct list_head node;
3408 struct request_queue *q;
3409 struct elevator_type *type;
3410 };
3411
3412 /*
3413 * Cache the elevator_type in qe pair list and switch the
3414 * io scheduler to 'none'
3415 */
3416 static bool blk_mq_elv_switch_none(struct list_head *head,
3417 struct request_queue *q)
3418 {
3419 struct blk_mq_qe_pair *qe;
3420
3421 if (!q->elevator)
3422 return true;
3423
3424 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3425 if (!qe)
3426 return false;
3427
3428 INIT_LIST_HEAD(&qe->node);
3429 qe->q = q;
3430 qe->type = q->elevator->type;
3431 list_add(&qe->node, head);
3432
3433 mutex_lock(&q->sysfs_lock);
3434 /*
3435 * After elevator_switch_mq, the previous elevator_queue will be
3436 * released by elevator_release. The reference of the io scheduler
3437 * module get by elevator_get will also be put. So we need to get
3438 * a reference of the io scheduler module here to prevent it to be
3439 * removed.
3440 */
3441 __module_get(qe->type->elevator_owner);
3442 elevator_switch_mq(q, NULL);
3443 mutex_unlock(&q->sysfs_lock);
3444
3445 return true;
3446 }
3447
3448 static void blk_mq_elv_switch_back(struct list_head *head,
3449 struct request_queue *q)
3450 {
3451 struct blk_mq_qe_pair *qe;
3452 struct elevator_type *t = NULL;
3453
3454 list_for_each_entry(qe, head, node)
3455 if (qe->q == q) {
3456 t = qe->type;
3457 break;
3458 }
3459
3460 if (!t)
3461 return;
3462
3463 list_del(&qe->node);
3464 kfree(qe);
3465
3466 mutex_lock(&q->sysfs_lock);
3467 elevator_switch_mq(q, t);
3468 mutex_unlock(&q->sysfs_lock);
3469 }
3470
3471 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3472 int nr_hw_queues)
3473 {
3474 struct request_queue *q;
3475 LIST_HEAD(head);
3476 int prev_nr_hw_queues;
3477
3478 lockdep_assert_held(&set->tag_list_lock);
3479
3480 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3481 nr_hw_queues = nr_cpu_ids;
3482 if (nr_hw_queues < 1)
3483 return;
3484 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3485 return;
3486
3487 list_for_each_entry(q, &set->tag_list, tag_set_list)
3488 blk_mq_freeze_queue(q);
3489 /*
3490 * Switch IO scheduler to 'none', cleaning up the data associated
3491 * with the previous scheduler. We will switch back once we are done
3492 * updating the new sw to hw queue mappings.
3493 */
3494 list_for_each_entry(q, &set->tag_list, tag_set_list)
3495 if (!blk_mq_elv_switch_none(&head, q))
3496 goto switch_back;
3497
3498 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3499 blk_mq_debugfs_unregister_hctxs(q);
3500 blk_mq_sysfs_unregister(q);
3501 }
3502
3503 prev_nr_hw_queues = set->nr_hw_queues;
3504 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3505 0)
3506 goto reregister;
3507
3508 set->nr_hw_queues = nr_hw_queues;
3509 fallback:
3510 blk_mq_update_queue_map(set);
3511 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3512 blk_mq_realloc_hw_ctxs(set, q);
3513 if (q->nr_hw_queues != set->nr_hw_queues) {
3514 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3515 nr_hw_queues, prev_nr_hw_queues);
3516 set->nr_hw_queues = prev_nr_hw_queues;
3517 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3518 goto fallback;
3519 }
3520 blk_mq_map_swqueue(q);
3521 }
3522
3523 reregister:
3524 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3525 blk_mq_sysfs_register(q);
3526 blk_mq_debugfs_register_hctxs(q);
3527 }
3528
3529 switch_back:
3530 list_for_each_entry(q, &set->tag_list, tag_set_list)
3531 blk_mq_elv_switch_back(&head, q);
3532
3533 list_for_each_entry(q, &set->tag_list, tag_set_list)
3534 blk_mq_unfreeze_queue(q);
3535 }
3536
3537 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3538 {
3539 mutex_lock(&set->tag_list_lock);
3540 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3541 mutex_unlock(&set->tag_list_lock);
3542 }
3543 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3544
3545 /* Enable polling stats and return whether they were already enabled. */
3546 static bool blk_poll_stats_enable(struct request_queue *q)
3547 {
3548 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3549 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3550 return true;
3551 blk_stat_add_callback(q, q->poll_cb);
3552 return false;
3553 }
3554
3555 static void blk_mq_poll_stats_start(struct request_queue *q)
3556 {
3557 /*
3558 * We don't arm the callback if polling stats are not enabled or the
3559 * callback is already active.
3560 */
3561 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3562 blk_stat_is_active(q->poll_cb))
3563 return;
3564
3565 blk_stat_activate_msecs(q->poll_cb, 100);
3566 }
3567
3568 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3569 {
3570 struct request_queue *q = cb->data;
3571 int bucket;
3572
3573 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3574 if (cb->stat[bucket].nr_samples)
3575 q->poll_stat[bucket] = cb->stat[bucket];
3576 }
3577 }
3578
3579 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3580 struct request *rq)
3581 {
3582 unsigned long ret = 0;
3583 int bucket;
3584
3585 /*
3586 * If stats collection isn't on, don't sleep but turn it on for
3587 * future users
3588 */
3589 if (!blk_poll_stats_enable(q))
3590 return 0;
3591
3592 /*
3593 * As an optimistic guess, use half of the mean service time
3594 * for this type of request. We can (and should) make this smarter.
3595 * For instance, if the completion latencies are tight, we can
3596 * get closer than just half the mean. This is especially
3597 * important on devices where the completion latencies are longer
3598 * than ~10 usec. We do use the stats for the relevant IO size
3599 * if available which does lead to better estimates.
3600 */
3601 bucket = blk_mq_poll_stats_bkt(rq);
3602 if (bucket < 0)
3603 return ret;
3604
3605 if (q->poll_stat[bucket].nr_samples)
3606 ret = (q->poll_stat[bucket].mean + 1) / 2;
3607
3608 return ret;
3609 }
3610
3611 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3612 struct request *rq)
3613 {
3614 struct hrtimer_sleeper hs;
3615 enum hrtimer_mode mode;
3616 unsigned int nsecs;
3617 ktime_t kt;
3618
3619 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3620 return false;
3621
3622 /*
3623 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3624 *
3625 * 0: use half of prev avg
3626 * >0: use this specific value
3627 */
3628 if (q->poll_nsec > 0)
3629 nsecs = q->poll_nsec;
3630 else
3631 nsecs = blk_mq_poll_nsecs(q, rq);
3632
3633 if (!nsecs)
3634 return false;
3635
3636 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3637
3638 /*
3639 * This will be replaced with the stats tracking code, using
3640 * 'avg_completion_time / 2' as the pre-sleep target.
3641 */
3642 kt = nsecs;
3643
3644 mode = HRTIMER_MODE_REL;
3645 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3646 hrtimer_set_expires(&hs.timer, kt);
3647
3648 do {
3649 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3650 break;
3651 set_current_state(TASK_UNINTERRUPTIBLE);
3652 hrtimer_sleeper_start_expires(&hs, mode);
3653 if (hs.task)
3654 io_schedule();
3655 hrtimer_cancel(&hs.timer);
3656 mode = HRTIMER_MODE_ABS;
3657 } while (hs.task && !signal_pending(current));
3658
3659 __set_current_state(TASK_RUNNING);
3660 destroy_hrtimer_on_stack(&hs.timer);
3661 return true;
3662 }
3663
3664 static bool blk_mq_poll_hybrid(struct request_queue *q,
3665 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3666 {
3667 struct request *rq;
3668
3669 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3670 return false;
3671
3672 if (!blk_qc_t_is_internal(cookie))
3673 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3674 else {
3675 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3676 /*
3677 * With scheduling, if the request has completed, we'll
3678 * get a NULL return here, as we clear the sched tag when
3679 * that happens. The request still remains valid, like always,
3680 * so we should be safe with just the NULL check.
3681 */
3682 if (!rq)
3683 return false;
3684 }
3685
3686 return blk_mq_poll_hybrid_sleep(q, rq);
3687 }
3688
3689 /**
3690 * blk_poll - poll for IO completions
3691 * @q: the queue
3692 * @cookie: cookie passed back at IO submission time
3693 * @spin: whether to spin for completions
3694 *
3695 * Description:
3696 * Poll for completions on the passed in queue. Returns number of
3697 * completed entries found. If @spin is true, then blk_poll will continue
3698 * looping until at least one completion is found, unless the task is
3699 * otherwise marked running (or we need to reschedule).
3700 */
3701 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3702 {
3703 struct blk_mq_hw_ctx *hctx;
3704 long state;
3705
3706 if (!blk_qc_t_valid(cookie) ||
3707 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3708 return 0;
3709
3710 if (current->plug)
3711 blk_flush_plug_list(current->plug, false);
3712
3713 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3714
3715 /*
3716 * If we sleep, have the caller restart the poll loop to reset
3717 * the state. Like for the other success return cases, the
3718 * caller is responsible for checking if the IO completed. If
3719 * the IO isn't complete, we'll get called again and will go
3720 * straight to the busy poll loop.
3721 */
3722 if (blk_mq_poll_hybrid(q, hctx, cookie))
3723 return 1;
3724
3725 hctx->poll_considered++;
3726
3727 state = current->state;
3728 do {
3729 int ret;
3730
3731 hctx->poll_invoked++;
3732
3733 ret = q->mq_ops->poll(hctx);
3734 if (ret > 0) {
3735 hctx->poll_success++;
3736 __set_current_state(TASK_RUNNING);
3737 return ret;
3738 }
3739
3740 if (signal_pending_state(state, current))
3741 __set_current_state(TASK_RUNNING);
3742
3743 if (current->state == TASK_RUNNING)
3744 return 1;
3745 if (ret < 0 || !spin)
3746 break;
3747 cpu_relax();
3748 } while (!need_resched());
3749
3750 __set_current_state(TASK_RUNNING);
3751 return 0;
3752 }
3753 EXPORT_SYMBOL_GPL(blk_poll);
3754
3755 unsigned int blk_mq_rq_cpu(struct request *rq)
3756 {
3757 return rq->mq_ctx->cpu;
3758 }
3759 EXPORT_SYMBOL(blk_mq_rq_cpu);
3760
3761 static int __init blk_mq_init(void)
3762 {
3763 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3764 blk_mq_hctx_notify_dead);
3765 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3766 blk_mq_hctx_notify_online,
3767 blk_mq_hctx_notify_offline);
3768 return 0;
3769 }
3770 subsys_initcall(blk_mq_init);