]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: Fix poll_stat for new size-based bucketing.
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 int ddir, bytes, bucket;
48
49 ddir = blk_stat_rq_ddir(rq);
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60 }
61
62 /*
63 * Check if any of the ctx's have pending work in this hardware queue
64 */
65 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 return sbitmap_any_bit_set(&hctx->ctx_map) ||
68 !list_empty_careful(&hctx->dispatch) ||
69 blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73 * Mark this ctx as having pending work in this hardware queue
74 */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
77 {
78 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83 struct blk_mq_ctx *ctx)
84 {
85 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87
88 void blk_freeze_queue_start(struct request_queue *q)
89 {
90 int freeze_depth;
91
92 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
93 if (freeze_depth == 1) {
94 percpu_ref_kill(&q->q_usage_counter);
95 blk_mq_run_hw_queues(q, false);
96 }
97 }
98 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
99
100 void blk_mq_freeze_queue_wait(struct request_queue *q)
101 {
102 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
103 }
104 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
105
106 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
107 unsigned long timeout)
108 {
109 return wait_event_timeout(q->mq_freeze_wq,
110 percpu_ref_is_zero(&q->q_usage_counter),
111 timeout);
112 }
113 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
114
115 /*
116 * Guarantee no request is in use, so we can change any data structure of
117 * the queue afterward.
118 */
119 void blk_freeze_queue(struct request_queue *q)
120 {
121 /*
122 * In the !blk_mq case we are only calling this to kill the
123 * q_usage_counter, otherwise this increases the freeze depth
124 * and waits for it to return to zero. For this reason there is
125 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
126 * exported to drivers as the only user for unfreeze is blk_mq.
127 */
128 blk_freeze_queue_start(q);
129 blk_mq_freeze_queue_wait(q);
130 }
131
132 void blk_mq_freeze_queue(struct request_queue *q)
133 {
134 /*
135 * ...just an alias to keep freeze and unfreeze actions balanced
136 * in the blk_mq_* namespace
137 */
138 blk_freeze_queue(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144 int freeze_depth;
145
146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 WARN_ON_ONCE(freeze_depth < 0);
148 if (!freeze_depth) {
149 percpu_ref_reinit(&q->q_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
151 }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 /**
156 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
157 * @q: request queue.
158 *
159 * Note: this function does not prevent that the struct request end_io()
160 * callback function is invoked. Additionally, it is not prevented that
161 * new queue_rq() calls occur unless the queue has been stopped first.
162 */
163 void blk_mq_quiesce_queue(struct request_queue *q)
164 {
165 struct blk_mq_hw_ctx *hctx;
166 unsigned int i;
167 bool rcu = false;
168
169 blk_mq_stop_hw_queues(q);
170
171 queue_for_each_hw_ctx(q, hctx, i) {
172 if (hctx->flags & BLK_MQ_F_BLOCKING)
173 synchronize_srcu(&hctx->queue_rq_srcu);
174 else
175 rcu = true;
176 }
177 if (rcu)
178 synchronize_rcu();
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
181
182 void blk_mq_wake_waiters(struct request_queue *q)
183 {
184 struct blk_mq_hw_ctx *hctx;
185 unsigned int i;
186
187 queue_for_each_hw_ctx(q, hctx, i)
188 if (blk_mq_hw_queue_mapped(hctx))
189 blk_mq_tag_wakeup_all(hctx->tags, true);
190
191 /*
192 * If we are called because the queue has now been marked as
193 * dying, we need to ensure that processes currently waiting on
194 * the queue are notified as well.
195 */
196 wake_up_all(&q->mq_freeze_wq);
197 }
198
199 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
200 {
201 return blk_mq_has_free_tags(hctx->tags);
202 }
203 EXPORT_SYMBOL(blk_mq_can_queue);
204
205 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
206 struct request *rq, unsigned int op)
207 {
208 INIT_LIST_HEAD(&rq->queuelist);
209 /* csd/requeue_work/fifo_time is initialized before use */
210 rq->q = q;
211 rq->mq_ctx = ctx;
212 rq->cmd_flags = op;
213 if (blk_queue_io_stat(q))
214 rq->rq_flags |= RQF_IO_STAT;
215 /* do not touch atomic flags, it needs atomic ops against the timer */
216 rq->cpu = -1;
217 INIT_HLIST_NODE(&rq->hash);
218 RB_CLEAR_NODE(&rq->rb_node);
219 rq->rq_disk = NULL;
220 rq->part = NULL;
221 rq->start_time = jiffies;
222 #ifdef CONFIG_BLK_CGROUP
223 rq->rl = NULL;
224 set_start_time_ns(rq);
225 rq->io_start_time_ns = 0;
226 #endif
227 rq->nr_phys_segments = 0;
228 #if defined(CONFIG_BLK_DEV_INTEGRITY)
229 rq->nr_integrity_segments = 0;
230 #endif
231 rq->special = NULL;
232 /* tag was already set */
233 rq->extra_len = 0;
234
235 INIT_LIST_HEAD(&rq->timeout_list);
236 rq->timeout = 0;
237
238 rq->end_io = NULL;
239 rq->end_io_data = NULL;
240 rq->next_rq = NULL;
241
242 ctx->rq_dispatched[op_is_sync(op)]++;
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
245
246 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
247 unsigned int op)
248 {
249 struct request *rq;
250 unsigned int tag;
251
252 tag = blk_mq_get_tag(data);
253 if (tag != BLK_MQ_TAG_FAIL) {
254 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
255
256 rq = tags->static_rqs[tag];
257
258 if (data->flags & BLK_MQ_REQ_INTERNAL) {
259 rq->tag = -1;
260 rq->internal_tag = tag;
261 } else {
262 if (blk_mq_tag_busy(data->hctx)) {
263 rq->rq_flags = RQF_MQ_INFLIGHT;
264 atomic_inc(&data->hctx->nr_active);
265 }
266 rq->tag = tag;
267 rq->internal_tag = -1;
268 data->hctx->tags->rqs[rq->tag] = rq;
269 }
270
271 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
272 return rq;
273 }
274
275 return NULL;
276 }
277 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
278
279 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
280 unsigned int flags)
281 {
282 struct blk_mq_alloc_data alloc_data = { .flags = flags };
283 struct request *rq;
284 int ret;
285
286 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
287 if (ret)
288 return ERR_PTR(ret);
289
290 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
291
292 blk_mq_put_ctx(alloc_data.ctx);
293 blk_queue_exit(q);
294
295 if (!rq)
296 return ERR_PTR(-EWOULDBLOCK);
297
298 rq->__data_len = 0;
299 rq->__sector = (sector_t) -1;
300 rq->bio = rq->biotail = NULL;
301 return rq;
302 }
303 EXPORT_SYMBOL(blk_mq_alloc_request);
304
305 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
306 unsigned int flags, unsigned int hctx_idx)
307 {
308 struct blk_mq_alloc_data alloc_data = { .flags = flags };
309 struct request *rq;
310 unsigned int cpu;
311 int ret;
312
313 /*
314 * If the tag allocator sleeps we could get an allocation for a
315 * different hardware context. No need to complicate the low level
316 * allocator for this for the rare use case of a command tied to
317 * a specific queue.
318 */
319 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
320 return ERR_PTR(-EINVAL);
321
322 if (hctx_idx >= q->nr_hw_queues)
323 return ERR_PTR(-EIO);
324
325 ret = blk_queue_enter(q, true);
326 if (ret)
327 return ERR_PTR(ret);
328
329 /*
330 * Check if the hardware context is actually mapped to anything.
331 * If not tell the caller that it should skip this queue.
332 */
333 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
334 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
335 blk_queue_exit(q);
336 return ERR_PTR(-EXDEV);
337 }
338 cpu = cpumask_first(alloc_data.hctx->cpumask);
339 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
340
341 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
342
343 blk_queue_exit(q);
344
345 if (!rq)
346 return ERR_PTR(-EWOULDBLOCK);
347
348 return rq;
349 }
350 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
351
352 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
353 struct request *rq)
354 {
355 const int sched_tag = rq->internal_tag;
356 struct request_queue *q = rq->q;
357
358 if (rq->rq_flags & RQF_MQ_INFLIGHT)
359 atomic_dec(&hctx->nr_active);
360
361 wbt_done(q->rq_wb, &rq->issue_stat);
362 rq->rq_flags = 0;
363
364 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
365 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
366 if (rq->tag != -1)
367 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
368 if (sched_tag != -1)
369 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
370 blk_mq_sched_restart(hctx);
371 blk_queue_exit(q);
372 }
373
374 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
375 struct request *rq)
376 {
377 struct blk_mq_ctx *ctx = rq->mq_ctx;
378
379 ctx->rq_completed[rq_is_sync(rq)]++;
380 __blk_mq_finish_request(hctx, ctx, rq);
381 }
382
383 void blk_mq_finish_request(struct request *rq)
384 {
385 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
386 }
387 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
388
389 void blk_mq_free_request(struct request *rq)
390 {
391 blk_mq_sched_put_request(rq);
392 }
393 EXPORT_SYMBOL_GPL(blk_mq_free_request);
394
395 inline void __blk_mq_end_request(struct request *rq, int error)
396 {
397 blk_account_io_done(rq);
398
399 if (rq->end_io) {
400 wbt_done(rq->q->rq_wb, &rq->issue_stat);
401 rq->end_io(rq, error);
402 } else {
403 if (unlikely(blk_bidi_rq(rq)))
404 blk_mq_free_request(rq->next_rq);
405 blk_mq_free_request(rq);
406 }
407 }
408 EXPORT_SYMBOL(__blk_mq_end_request);
409
410 void blk_mq_end_request(struct request *rq, int error)
411 {
412 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
413 BUG();
414 __blk_mq_end_request(rq, error);
415 }
416 EXPORT_SYMBOL(blk_mq_end_request);
417
418 static void __blk_mq_complete_request_remote(void *data)
419 {
420 struct request *rq = data;
421
422 rq->q->softirq_done_fn(rq);
423 }
424
425 static void __blk_mq_complete_request(struct request *rq)
426 {
427 struct blk_mq_ctx *ctx = rq->mq_ctx;
428 bool shared = false;
429 int cpu;
430
431 if (rq->internal_tag != -1)
432 blk_mq_sched_completed_request(rq);
433 if (rq->rq_flags & RQF_STATS) {
434 blk_mq_poll_stats_start(rq->q);
435 blk_stat_add(rq);
436 }
437
438 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
439 rq->q->softirq_done_fn(rq);
440 return;
441 }
442
443 cpu = get_cpu();
444 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
445 shared = cpus_share_cache(cpu, ctx->cpu);
446
447 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
448 rq->csd.func = __blk_mq_complete_request_remote;
449 rq->csd.info = rq;
450 rq->csd.flags = 0;
451 smp_call_function_single_async(ctx->cpu, &rq->csd);
452 } else {
453 rq->q->softirq_done_fn(rq);
454 }
455 put_cpu();
456 }
457
458 /**
459 * blk_mq_complete_request - end I/O on a request
460 * @rq: the request being processed
461 *
462 * Description:
463 * Ends all I/O on a request. It does not handle partial completions.
464 * The actual completion happens out-of-order, through a IPI handler.
465 **/
466 void blk_mq_complete_request(struct request *rq)
467 {
468 struct request_queue *q = rq->q;
469
470 if (unlikely(blk_should_fake_timeout(q)))
471 return;
472 if (!blk_mark_rq_complete(rq))
473 __blk_mq_complete_request(rq);
474 }
475 EXPORT_SYMBOL(blk_mq_complete_request);
476
477 int blk_mq_request_started(struct request *rq)
478 {
479 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_request_started);
482
483 void blk_mq_start_request(struct request *rq)
484 {
485 struct request_queue *q = rq->q;
486
487 blk_mq_sched_started_request(rq);
488
489 trace_block_rq_issue(q, rq);
490
491 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
492 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
493 rq->rq_flags |= RQF_STATS;
494 wbt_issue(q->rq_wb, &rq->issue_stat);
495 }
496
497 blk_add_timer(rq);
498
499 /*
500 * Ensure that ->deadline is visible before set the started
501 * flag and clear the completed flag.
502 */
503 smp_mb__before_atomic();
504
505 /*
506 * Mark us as started and clear complete. Complete might have been
507 * set if requeue raced with timeout, which then marked it as
508 * complete. So be sure to clear complete again when we start
509 * the request, otherwise we'll ignore the completion event.
510 */
511 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
512 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
513 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
514 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
515
516 if (q->dma_drain_size && blk_rq_bytes(rq)) {
517 /*
518 * Make sure space for the drain appears. We know we can do
519 * this because max_hw_segments has been adjusted to be one
520 * fewer than the device can handle.
521 */
522 rq->nr_phys_segments++;
523 }
524 }
525 EXPORT_SYMBOL(blk_mq_start_request);
526
527 /*
528 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
529 * flag isn't set yet, so there may be race with timeout handler,
530 * but given rq->deadline is just set in .queue_rq() under
531 * this situation, the race won't be possible in reality because
532 * rq->timeout should be set as big enough to cover the window
533 * between blk_mq_start_request() called from .queue_rq() and
534 * clearing REQ_ATOM_STARTED here.
535 */
536 static void __blk_mq_requeue_request(struct request *rq)
537 {
538 struct request_queue *q = rq->q;
539
540 trace_block_rq_requeue(q, rq);
541 wbt_requeue(q->rq_wb, &rq->issue_stat);
542 blk_mq_sched_requeue_request(rq);
543
544 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
545 if (q->dma_drain_size && blk_rq_bytes(rq))
546 rq->nr_phys_segments--;
547 }
548 }
549
550 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
551 {
552 __blk_mq_requeue_request(rq);
553
554 BUG_ON(blk_queued_rq(rq));
555 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
556 }
557 EXPORT_SYMBOL(blk_mq_requeue_request);
558
559 static void blk_mq_requeue_work(struct work_struct *work)
560 {
561 struct request_queue *q =
562 container_of(work, struct request_queue, requeue_work.work);
563 LIST_HEAD(rq_list);
564 struct request *rq, *next;
565 unsigned long flags;
566
567 spin_lock_irqsave(&q->requeue_lock, flags);
568 list_splice_init(&q->requeue_list, &rq_list);
569 spin_unlock_irqrestore(&q->requeue_lock, flags);
570
571 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
572 if (!(rq->rq_flags & RQF_SOFTBARRIER))
573 continue;
574
575 rq->rq_flags &= ~RQF_SOFTBARRIER;
576 list_del_init(&rq->queuelist);
577 blk_mq_sched_insert_request(rq, true, false, false, true);
578 }
579
580 while (!list_empty(&rq_list)) {
581 rq = list_entry(rq_list.next, struct request, queuelist);
582 list_del_init(&rq->queuelist);
583 blk_mq_sched_insert_request(rq, false, false, false, true);
584 }
585
586 blk_mq_run_hw_queues(q, false);
587 }
588
589 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
590 bool kick_requeue_list)
591 {
592 struct request_queue *q = rq->q;
593 unsigned long flags;
594
595 /*
596 * We abuse this flag that is otherwise used by the I/O scheduler to
597 * request head insertation from the workqueue.
598 */
599 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
600
601 spin_lock_irqsave(&q->requeue_lock, flags);
602 if (at_head) {
603 rq->rq_flags |= RQF_SOFTBARRIER;
604 list_add(&rq->queuelist, &q->requeue_list);
605 } else {
606 list_add_tail(&rq->queuelist, &q->requeue_list);
607 }
608 spin_unlock_irqrestore(&q->requeue_lock, flags);
609
610 if (kick_requeue_list)
611 blk_mq_kick_requeue_list(q);
612 }
613 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
614
615 void blk_mq_kick_requeue_list(struct request_queue *q)
616 {
617 kblockd_schedule_delayed_work(&q->requeue_work, 0);
618 }
619 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
620
621 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
622 unsigned long msecs)
623 {
624 kblockd_schedule_delayed_work(&q->requeue_work,
625 msecs_to_jiffies(msecs));
626 }
627 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
628
629 void blk_mq_abort_requeue_list(struct request_queue *q)
630 {
631 unsigned long flags;
632 LIST_HEAD(rq_list);
633
634 spin_lock_irqsave(&q->requeue_lock, flags);
635 list_splice_init(&q->requeue_list, &rq_list);
636 spin_unlock_irqrestore(&q->requeue_lock, flags);
637
638 while (!list_empty(&rq_list)) {
639 struct request *rq;
640
641 rq = list_first_entry(&rq_list, struct request, queuelist);
642 list_del_init(&rq->queuelist);
643 blk_mq_end_request(rq, -EIO);
644 }
645 }
646 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
648 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649 {
650 if (tag < tags->nr_tags) {
651 prefetch(tags->rqs[tag]);
652 return tags->rqs[tag];
653 }
654
655 return NULL;
656 }
657 EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
659 struct blk_mq_timeout_data {
660 unsigned long next;
661 unsigned int next_set;
662 };
663
664 void blk_mq_rq_timed_out(struct request *req, bool reserved)
665 {
666 const struct blk_mq_ops *ops = req->q->mq_ops;
667 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668
669 /*
670 * We know that complete is set at this point. If STARTED isn't set
671 * anymore, then the request isn't active and the "timeout" should
672 * just be ignored. This can happen due to the bitflag ordering.
673 * Timeout first checks if STARTED is set, and if it is, assumes
674 * the request is active. But if we race with completion, then
675 * both flags will get cleared. So check here again, and ignore
676 * a timeout event with a request that isn't active.
677 */
678 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679 return;
680
681 if (ops->timeout)
682 ret = ops->timeout(req, reserved);
683
684 switch (ret) {
685 case BLK_EH_HANDLED:
686 __blk_mq_complete_request(req);
687 break;
688 case BLK_EH_RESET_TIMER:
689 blk_add_timer(req);
690 blk_clear_rq_complete(req);
691 break;
692 case BLK_EH_NOT_HANDLED:
693 break;
694 default:
695 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696 break;
697 }
698 }
699
700 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701 struct request *rq, void *priv, bool reserved)
702 {
703 struct blk_mq_timeout_data *data = priv;
704
705 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706 return;
707
708 /*
709 * The rq being checked may have been freed and reallocated
710 * out already here, we avoid this race by checking rq->deadline
711 * and REQ_ATOM_COMPLETE flag together:
712 *
713 * - if rq->deadline is observed as new value because of
714 * reusing, the rq won't be timed out because of timing.
715 * - if rq->deadline is observed as previous value,
716 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717 * because we put a barrier between setting rq->deadline
718 * and clearing the flag in blk_mq_start_request(), so
719 * this rq won't be timed out too.
720 */
721 if (time_after_eq(jiffies, rq->deadline)) {
722 if (!blk_mark_rq_complete(rq))
723 blk_mq_rq_timed_out(rq, reserved);
724 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725 data->next = rq->deadline;
726 data->next_set = 1;
727 }
728 }
729
730 static void blk_mq_timeout_work(struct work_struct *work)
731 {
732 struct request_queue *q =
733 container_of(work, struct request_queue, timeout_work);
734 struct blk_mq_timeout_data data = {
735 .next = 0,
736 .next_set = 0,
737 };
738 int i;
739
740 /* A deadlock might occur if a request is stuck requiring a
741 * timeout at the same time a queue freeze is waiting
742 * completion, since the timeout code would not be able to
743 * acquire the queue reference here.
744 *
745 * That's why we don't use blk_queue_enter here; instead, we use
746 * percpu_ref_tryget directly, because we need to be able to
747 * obtain a reference even in the short window between the queue
748 * starting to freeze, by dropping the first reference in
749 * blk_freeze_queue_start, and the moment the last request is
750 * consumed, marked by the instant q_usage_counter reaches
751 * zero.
752 */
753 if (!percpu_ref_tryget(&q->q_usage_counter))
754 return;
755
756 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757
758 if (data.next_set) {
759 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760 mod_timer(&q->timeout, data.next);
761 } else {
762 struct blk_mq_hw_ctx *hctx;
763
764 queue_for_each_hw_ctx(q, hctx, i) {
765 /* the hctx may be unmapped, so check it here */
766 if (blk_mq_hw_queue_mapped(hctx))
767 blk_mq_tag_idle(hctx);
768 }
769 }
770 blk_queue_exit(q);
771 }
772
773 /*
774 * Reverse check our software queue for entries that we could potentially
775 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776 * too much time checking for merges.
777 */
778 static bool blk_mq_attempt_merge(struct request_queue *q,
779 struct blk_mq_ctx *ctx, struct bio *bio)
780 {
781 struct request *rq;
782 int checked = 8;
783
784 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785 bool merged = false;
786
787 if (!checked--)
788 break;
789
790 if (!blk_rq_merge_ok(rq, bio))
791 continue;
792
793 switch (blk_try_merge(rq, bio)) {
794 case ELEVATOR_BACK_MERGE:
795 if (blk_mq_sched_allow_merge(q, rq, bio))
796 merged = bio_attempt_back_merge(q, rq, bio);
797 break;
798 case ELEVATOR_FRONT_MERGE:
799 if (blk_mq_sched_allow_merge(q, rq, bio))
800 merged = bio_attempt_front_merge(q, rq, bio);
801 break;
802 case ELEVATOR_DISCARD_MERGE:
803 merged = bio_attempt_discard_merge(q, rq, bio);
804 break;
805 default:
806 continue;
807 }
808
809 if (merged)
810 ctx->rq_merged++;
811 return merged;
812 }
813
814 return false;
815 }
816
817 struct flush_busy_ctx_data {
818 struct blk_mq_hw_ctx *hctx;
819 struct list_head *list;
820 };
821
822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 {
824 struct flush_busy_ctx_data *flush_data = data;
825 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828 sbitmap_clear_bit(sb, bitnr);
829 spin_lock(&ctx->lock);
830 list_splice_tail_init(&ctx->rq_list, flush_data->list);
831 spin_unlock(&ctx->lock);
832 return true;
833 }
834
835 /*
836 * Process software queues that have been marked busy, splicing them
837 * to the for-dispatch
838 */
839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 {
841 struct flush_busy_ctx_data data = {
842 .hctx = hctx,
843 .list = list,
844 };
845
846 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 }
848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849
850 static inline unsigned int queued_to_index(unsigned int queued)
851 {
852 if (!queued)
853 return 0;
854
855 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 }
857
858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859 bool wait)
860 {
861 struct blk_mq_alloc_data data = {
862 .q = rq->q,
863 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865 };
866
867 if (rq->tag != -1)
868 goto done;
869
870 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
871 data.flags |= BLK_MQ_REQ_RESERVED;
872
873 rq->tag = blk_mq_get_tag(&data);
874 if (rq->tag >= 0) {
875 if (blk_mq_tag_busy(data.hctx)) {
876 rq->rq_flags |= RQF_MQ_INFLIGHT;
877 atomic_inc(&data.hctx->nr_active);
878 }
879 data.hctx->tags->rqs[rq->tag] = rq;
880 }
881
882 done:
883 if (hctx)
884 *hctx = data.hctx;
885 return rq->tag != -1;
886 }
887
888 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
889 struct request *rq)
890 {
891 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
892 rq->tag = -1;
893
894 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
895 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
896 atomic_dec(&hctx->nr_active);
897 }
898 }
899
900 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
901 struct request *rq)
902 {
903 if (rq->tag == -1 || rq->internal_tag == -1)
904 return;
905
906 __blk_mq_put_driver_tag(hctx, rq);
907 }
908
909 static void blk_mq_put_driver_tag(struct request *rq)
910 {
911 struct blk_mq_hw_ctx *hctx;
912
913 if (rq->tag == -1 || rq->internal_tag == -1)
914 return;
915
916 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
917 __blk_mq_put_driver_tag(hctx, rq);
918 }
919
920 /*
921 * If we fail getting a driver tag because all the driver tags are already
922 * assigned and on the dispatch list, BUT the first entry does not have a
923 * tag, then we could deadlock. For that case, move entries with assigned
924 * driver tags to the front, leaving the set of tagged requests in the
925 * same order, and the untagged set in the same order.
926 */
927 static bool reorder_tags_to_front(struct list_head *list)
928 {
929 struct request *rq, *tmp, *first = NULL;
930
931 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
932 if (rq == first)
933 break;
934 if (rq->tag != -1) {
935 list_move(&rq->queuelist, list);
936 if (!first)
937 first = rq;
938 }
939 }
940
941 return first != NULL;
942 }
943
944 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
945 void *key)
946 {
947 struct blk_mq_hw_ctx *hctx;
948
949 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
950
951 list_del(&wait->task_list);
952 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
953 blk_mq_run_hw_queue(hctx, true);
954 return 1;
955 }
956
957 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
958 {
959 struct sbq_wait_state *ws;
960
961 /*
962 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
963 * The thread which wins the race to grab this bit adds the hardware
964 * queue to the wait queue.
965 */
966 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
967 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
968 return false;
969
970 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
971 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
972
973 /*
974 * As soon as this returns, it's no longer safe to fiddle with
975 * hctx->dispatch_wait, since a completion can wake up the wait queue
976 * and unlock the bit.
977 */
978 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
979 return true;
980 }
981
982 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
983 {
984 struct blk_mq_hw_ctx *hctx;
985 struct request *rq;
986 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
987
988 if (list_empty(list))
989 return false;
990
991 /*
992 * Now process all the entries, sending them to the driver.
993 */
994 errors = queued = 0;
995 do {
996 struct blk_mq_queue_data bd;
997
998 rq = list_first_entry(list, struct request, queuelist);
999 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1000 if (!queued && reorder_tags_to_front(list))
1001 continue;
1002
1003 /*
1004 * The initial allocation attempt failed, so we need to
1005 * rerun the hardware queue when a tag is freed.
1006 */
1007 if (!blk_mq_dispatch_wait_add(hctx))
1008 break;
1009
1010 /*
1011 * It's possible that a tag was freed in the window
1012 * between the allocation failure and adding the
1013 * hardware queue to the wait queue.
1014 */
1015 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1016 break;
1017 }
1018
1019 list_del_init(&rq->queuelist);
1020
1021 bd.rq = rq;
1022
1023 /*
1024 * Flag last if we have no more requests, or if we have more
1025 * but can't assign a driver tag to it.
1026 */
1027 if (list_empty(list))
1028 bd.last = true;
1029 else {
1030 struct request *nxt;
1031
1032 nxt = list_first_entry(list, struct request, queuelist);
1033 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034 }
1035
1036 ret = q->mq_ops->queue_rq(hctx, &bd);
1037 switch (ret) {
1038 case BLK_MQ_RQ_QUEUE_OK:
1039 queued++;
1040 break;
1041 case BLK_MQ_RQ_QUEUE_BUSY:
1042 blk_mq_put_driver_tag_hctx(hctx, rq);
1043 list_add(&rq->queuelist, list);
1044 __blk_mq_requeue_request(rq);
1045 break;
1046 default:
1047 pr_err("blk-mq: bad return on queue: %d\n", ret);
1048 case BLK_MQ_RQ_QUEUE_ERROR:
1049 errors++;
1050 blk_mq_end_request(rq, -EIO);
1051 break;
1052 }
1053
1054 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1055 break;
1056 } while (!list_empty(list));
1057
1058 hctx->dispatched[queued_to_index(queued)]++;
1059
1060 /*
1061 * Any items that need requeuing? Stuff them into hctx->dispatch,
1062 * that is where we will continue on next queue run.
1063 */
1064 if (!list_empty(list)) {
1065 /*
1066 * If an I/O scheduler has been configured and we got a driver
1067 * tag for the next request already, free it again.
1068 */
1069 rq = list_first_entry(list, struct request, queuelist);
1070 blk_mq_put_driver_tag(rq);
1071
1072 spin_lock(&hctx->lock);
1073 list_splice_init(list, &hctx->dispatch);
1074 spin_unlock(&hctx->lock);
1075
1076 /*
1077 * If SCHED_RESTART was set by the caller of this function and
1078 * it is no longer set that means that it was cleared by another
1079 * thread and hence that a queue rerun is needed.
1080 *
1081 * If TAG_WAITING is set that means that an I/O scheduler has
1082 * been configured and another thread is waiting for a driver
1083 * tag. To guarantee fairness, do not rerun this hardware queue
1084 * but let the other thread grab the driver tag.
1085 *
1086 * If no I/O scheduler has been configured it is possible that
1087 * the hardware queue got stopped and restarted before requests
1088 * were pushed back onto the dispatch list. Rerun the queue to
1089 * avoid starvation. Notes:
1090 * - blk_mq_run_hw_queue() checks whether or not a queue has
1091 * been stopped before rerunning a queue.
1092 * - Some but not all block drivers stop a queue before
1093 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1094 * and dm-rq.
1095 */
1096 if (!blk_mq_sched_needs_restart(hctx) &&
1097 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1098 blk_mq_run_hw_queue(hctx, true);
1099 }
1100
1101 return (queued + errors) != 0;
1102 }
1103
1104 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1105 {
1106 int srcu_idx;
1107
1108 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1109 cpu_online(hctx->next_cpu));
1110
1111 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1112 rcu_read_lock();
1113 blk_mq_sched_dispatch_requests(hctx);
1114 rcu_read_unlock();
1115 } else {
1116 might_sleep();
1117
1118 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1119 blk_mq_sched_dispatch_requests(hctx);
1120 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1121 }
1122 }
1123
1124 /*
1125 * It'd be great if the workqueue API had a way to pass
1126 * in a mask and had some smarts for more clever placement.
1127 * For now we just round-robin here, switching for every
1128 * BLK_MQ_CPU_WORK_BATCH queued items.
1129 */
1130 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1131 {
1132 if (hctx->queue->nr_hw_queues == 1)
1133 return WORK_CPU_UNBOUND;
1134
1135 if (--hctx->next_cpu_batch <= 0) {
1136 int next_cpu;
1137
1138 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1139 if (next_cpu >= nr_cpu_ids)
1140 next_cpu = cpumask_first(hctx->cpumask);
1141
1142 hctx->next_cpu = next_cpu;
1143 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1144 }
1145
1146 return hctx->next_cpu;
1147 }
1148
1149 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1150 unsigned long msecs)
1151 {
1152 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1153 !blk_mq_hw_queue_mapped(hctx)))
1154 return;
1155
1156 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1157 int cpu = get_cpu();
1158 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1159 __blk_mq_run_hw_queue(hctx);
1160 put_cpu();
1161 return;
1162 }
1163
1164 put_cpu();
1165 }
1166
1167 if (msecs == 0)
1168 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1169 &hctx->run_work);
1170 else
1171 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1172 &hctx->delayed_run_work,
1173 msecs_to_jiffies(msecs));
1174 }
1175
1176 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1177 {
1178 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1179 }
1180 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1181
1182 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1183 {
1184 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1185 }
1186 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1187
1188 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1189 {
1190 struct blk_mq_hw_ctx *hctx;
1191 int i;
1192
1193 queue_for_each_hw_ctx(q, hctx, i) {
1194 if (!blk_mq_hctx_has_pending(hctx) ||
1195 blk_mq_hctx_stopped(hctx))
1196 continue;
1197
1198 blk_mq_run_hw_queue(hctx, async);
1199 }
1200 }
1201 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1202
1203 /**
1204 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1205 * @q: request queue.
1206 *
1207 * The caller is responsible for serializing this function against
1208 * blk_mq_{start,stop}_hw_queue().
1209 */
1210 bool blk_mq_queue_stopped(struct request_queue *q)
1211 {
1212 struct blk_mq_hw_ctx *hctx;
1213 int i;
1214
1215 queue_for_each_hw_ctx(q, hctx, i)
1216 if (blk_mq_hctx_stopped(hctx))
1217 return true;
1218
1219 return false;
1220 }
1221 EXPORT_SYMBOL(blk_mq_queue_stopped);
1222
1223 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1224 {
1225 cancel_work(&hctx->run_work);
1226 cancel_delayed_work(&hctx->delay_work);
1227 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1228 }
1229 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1230
1231 void blk_mq_stop_hw_queues(struct request_queue *q)
1232 {
1233 struct blk_mq_hw_ctx *hctx;
1234 int i;
1235
1236 queue_for_each_hw_ctx(q, hctx, i)
1237 blk_mq_stop_hw_queue(hctx);
1238 }
1239 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1240
1241 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1242 {
1243 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1244
1245 blk_mq_run_hw_queue(hctx, false);
1246 }
1247 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1248
1249 void blk_mq_start_hw_queues(struct request_queue *q)
1250 {
1251 struct blk_mq_hw_ctx *hctx;
1252 int i;
1253
1254 queue_for_each_hw_ctx(q, hctx, i)
1255 blk_mq_start_hw_queue(hctx);
1256 }
1257 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1258
1259 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1260 {
1261 if (!blk_mq_hctx_stopped(hctx))
1262 return;
1263
1264 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1265 blk_mq_run_hw_queue(hctx, async);
1266 }
1267 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1268
1269 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1270 {
1271 struct blk_mq_hw_ctx *hctx;
1272 int i;
1273
1274 queue_for_each_hw_ctx(q, hctx, i)
1275 blk_mq_start_stopped_hw_queue(hctx, async);
1276 }
1277 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1278
1279 static void blk_mq_run_work_fn(struct work_struct *work)
1280 {
1281 struct blk_mq_hw_ctx *hctx;
1282
1283 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1284
1285 __blk_mq_run_hw_queue(hctx);
1286 }
1287
1288 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1289 {
1290 struct blk_mq_hw_ctx *hctx;
1291
1292 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1293
1294 __blk_mq_run_hw_queue(hctx);
1295 }
1296
1297 static void blk_mq_delay_work_fn(struct work_struct *work)
1298 {
1299 struct blk_mq_hw_ctx *hctx;
1300
1301 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1302
1303 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1304 __blk_mq_run_hw_queue(hctx);
1305 }
1306
1307 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1308 {
1309 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1310 return;
1311
1312 blk_mq_stop_hw_queue(hctx);
1313 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1314 &hctx->delay_work, msecs_to_jiffies(msecs));
1315 }
1316 EXPORT_SYMBOL(blk_mq_delay_queue);
1317
1318 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1319 struct request *rq,
1320 bool at_head)
1321 {
1322 struct blk_mq_ctx *ctx = rq->mq_ctx;
1323
1324 trace_block_rq_insert(hctx->queue, rq);
1325
1326 if (at_head)
1327 list_add(&rq->queuelist, &ctx->rq_list);
1328 else
1329 list_add_tail(&rq->queuelist, &ctx->rq_list);
1330 }
1331
1332 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1333 bool at_head)
1334 {
1335 struct blk_mq_ctx *ctx = rq->mq_ctx;
1336
1337 __blk_mq_insert_req_list(hctx, rq, at_head);
1338 blk_mq_hctx_mark_pending(hctx, ctx);
1339 }
1340
1341 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1342 struct list_head *list)
1343
1344 {
1345 /*
1346 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1347 * offline now
1348 */
1349 spin_lock(&ctx->lock);
1350 while (!list_empty(list)) {
1351 struct request *rq;
1352
1353 rq = list_first_entry(list, struct request, queuelist);
1354 BUG_ON(rq->mq_ctx != ctx);
1355 list_del_init(&rq->queuelist);
1356 __blk_mq_insert_req_list(hctx, rq, false);
1357 }
1358 blk_mq_hctx_mark_pending(hctx, ctx);
1359 spin_unlock(&ctx->lock);
1360 }
1361
1362 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1363 {
1364 struct request *rqa = container_of(a, struct request, queuelist);
1365 struct request *rqb = container_of(b, struct request, queuelist);
1366
1367 return !(rqa->mq_ctx < rqb->mq_ctx ||
1368 (rqa->mq_ctx == rqb->mq_ctx &&
1369 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1370 }
1371
1372 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1373 {
1374 struct blk_mq_ctx *this_ctx;
1375 struct request_queue *this_q;
1376 struct request *rq;
1377 LIST_HEAD(list);
1378 LIST_HEAD(ctx_list);
1379 unsigned int depth;
1380
1381 list_splice_init(&plug->mq_list, &list);
1382
1383 list_sort(NULL, &list, plug_ctx_cmp);
1384
1385 this_q = NULL;
1386 this_ctx = NULL;
1387 depth = 0;
1388
1389 while (!list_empty(&list)) {
1390 rq = list_entry_rq(list.next);
1391 list_del_init(&rq->queuelist);
1392 BUG_ON(!rq->q);
1393 if (rq->mq_ctx != this_ctx) {
1394 if (this_ctx) {
1395 trace_block_unplug(this_q, depth, from_schedule);
1396 blk_mq_sched_insert_requests(this_q, this_ctx,
1397 &ctx_list,
1398 from_schedule);
1399 }
1400
1401 this_ctx = rq->mq_ctx;
1402 this_q = rq->q;
1403 depth = 0;
1404 }
1405
1406 depth++;
1407 list_add_tail(&rq->queuelist, &ctx_list);
1408 }
1409
1410 /*
1411 * If 'this_ctx' is set, we know we have entries to complete
1412 * on 'ctx_list'. Do those.
1413 */
1414 if (this_ctx) {
1415 trace_block_unplug(this_q, depth, from_schedule);
1416 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1417 from_schedule);
1418 }
1419 }
1420
1421 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1422 {
1423 blk_init_request_from_bio(rq, bio);
1424
1425 blk_account_io_start(rq, true);
1426 }
1427
1428 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1429 {
1430 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1431 !blk_queue_nomerges(hctx->queue);
1432 }
1433
1434 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1435 struct blk_mq_ctx *ctx,
1436 struct request *rq, struct bio *bio)
1437 {
1438 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1439 blk_mq_bio_to_request(rq, bio);
1440 spin_lock(&ctx->lock);
1441 insert_rq:
1442 __blk_mq_insert_request(hctx, rq, false);
1443 spin_unlock(&ctx->lock);
1444 return false;
1445 } else {
1446 struct request_queue *q = hctx->queue;
1447
1448 spin_lock(&ctx->lock);
1449 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1450 blk_mq_bio_to_request(rq, bio);
1451 goto insert_rq;
1452 }
1453
1454 spin_unlock(&ctx->lock);
1455 __blk_mq_finish_request(hctx, ctx, rq);
1456 return true;
1457 }
1458 }
1459
1460 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1461 {
1462 if (rq->tag != -1)
1463 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1464
1465 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1466 }
1467
1468 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1469 bool may_sleep)
1470 {
1471 struct request_queue *q = rq->q;
1472 struct blk_mq_queue_data bd = {
1473 .rq = rq,
1474 .last = true,
1475 };
1476 struct blk_mq_hw_ctx *hctx;
1477 blk_qc_t new_cookie;
1478 int ret;
1479
1480 if (q->elevator)
1481 goto insert;
1482
1483 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1484 goto insert;
1485
1486 new_cookie = request_to_qc_t(hctx, rq);
1487
1488 /*
1489 * For OK queue, we are done. For error, kill it. Any other
1490 * error (busy), just add it to our list as we previously
1491 * would have done
1492 */
1493 ret = q->mq_ops->queue_rq(hctx, &bd);
1494 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1495 *cookie = new_cookie;
1496 return;
1497 }
1498
1499 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1500 *cookie = BLK_QC_T_NONE;
1501 blk_mq_end_request(rq, -EIO);
1502 return;
1503 }
1504
1505 __blk_mq_requeue_request(rq);
1506 insert:
1507 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1508 }
1509
1510 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1511 struct request *rq, blk_qc_t *cookie)
1512 {
1513 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1514 rcu_read_lock();
1515 __blk_mq_try_issue_directly(rq, cookie, false);
1516 rcu_read_unlock();
1517 } else {
1518 unsigned int srcu_idx;
1519
1520 might_sleep();
1521
1522 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1523 __blk_mq_try_issue_directly(rq, cookie, true);
1524 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1525 }
1526 }
1527
1528 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1529 {
1530 const int is_sync = op_is_sync(bio->bi_opf);
1531 const int is_flush_fua = op_is_flush(bio->bi_opf);
1532 struct blk_mq_alloc_data data = { .flags = 0 };
1533 struct request *rq;
1534 unsigned int request_count = 0;
1535 struct blk_plug *plug;
1536 struct request *same_queue_rq = NULL;
1537 blk_qc_t cookie;
1538 unsigned int wb_acct;
1539
1540 blk_queue_bounce(q, &bio);
1541
1542 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1543 bio_io_error(bio);
1544 return BLK_QC_T_NONE;
1545 }
1546
1547 blk_queue_split(q, &bio, q->bio_split);
1548
1549 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1550 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1551 return BLK_QC_T_NONE;
1552
1553 if (blk_mq_sched_bio_merge(q, bio))
1554 return BLK_QC_T_NONE;
1555
1556 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1557
1558 trace_block_getrq(q, bio, bio->bi_opf);
1559
1560 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1561 if (unlikely(!rq)) {
1562 __wbt_done(q->rq_wb, wb_acct);
1563 return BLK_QC_T_NONE;
1564 }
1565
1566 wbt_track(&rq->issue_stat, wb_acct);
1567
1568 cookie = request_to_qc_t(data.hctx, rq);
1569
1570 plug = current->plug;
1571 if (unlikely(is_flush_fua)) {
1572 blk_mq_put_ctx(data.ctx);
1573 blk_mq_bio_to_request(rq, bio);
1574 if (q->elevator) {
1575 blk_mq_sched_insert_request(rq, false, true, true,
1576 true);
1577 } else {
1578 blk_insert_flush(rq);
1579 blk_mq_run_hw_queue(data.hctx, true);
1580 }
1581 } else if (plug && q->nr_hw_queues == 1) {
1582 struct request *last = NULL;
1583
1584 blk_mq_put_ctx(data.ctx);
1585 blk_mq_bio_to_request(rq, bio);
1586
1587 /*
1588 * @request_count may become stale because of schedule
1589 * out, so check the list again.
1590 */
1591 if (list_empty(&plug->mq_list))
1592 request_count = 0;
1593 else if (blk_queue_nomerges(q))
1594 request_count = blk_plug_queued_count(q);
1595
1596 if (!request_count)
1597 trace_block_plug(q);
1598 else
1599 last = list_entry_rq(plug->mq_list.prev);
1600
1601 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1602 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1603 blk_flush_plug_list(plug, false);
1604 trace_block_plug(q);
1605 }
1606
1607 list_add_tail(&rq->queuelist, &plug->mq_list);
1608 } else if (plug && !blk_queue_nomerges(q)) {
1609 blk_mq_bio_to_request(rq, bio);
1610
1611 /*
1612 * We do limited plugging. If the bio can be merged, do that.
1613 * Otherwise the existing request in the plug list will be
1614 * issued. So the plug list will have one request at most
1615 * The plug list might get flushed before this. If that happens,
1616 * the plug list is empty, and same_queue_rq is invalid.
1617 */
1618 if (list_empty(&plug->mq_list))
1619 same_queue_rq = NULL;
1620 if (same_queue_rq)
1621 list_del_init(&same_queue_rq->queuelist);
1622 list_add_tail(&rq->queuelist, &plug->mq_list);
1623
1624 blk_mq_put_ctx(data.ctx);
1625
1626 if (same_queue_rq)
1627 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1628 &cookie);
1629 } else if (q->nr_hw_queues > 1 && is_sync) {
1630 blk_mq_put_ctx(data.ctx);
1631 blk_mq_bio_to_request(rq, bio);
1632 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1633 } else if (q->elevator) {
1634 blk_mq_put_ctx(data.ctx);
1635 blk_mq_bio_to_request(rq, bio);
1636 blk_mq_sched_insert_request(rq, false, true, true, true);
1637 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1638 blk_mq_put_ctx(data.ctx);
1639 blk_mq_run_hw_queue(data.hctx, true);
1640 }
1641
1642 return cookie;
1643 }
1644
1645 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1646 unsigned int hctx_idx)
1647 {
1648 struct page *page;
1649
1650 if (tags->rqs && set->ops->exit_request) {
1651 int i;
1652
1653 for (i = 0; i < tags->nr_tags; i++) {
1654 struct request *rq = tags->static_rqs[i];
1655
1656 if (!rq)
1657 continue;
1658 set->ops->exit_request(set->driver_data, rq,
1659 hctx_idx, i);
1660 tags->static_rqs[i] = NULL;
1661 }
1662 }
1663
1664 while (!list_empty(&tags->page_list)) {
1665 page = list_first_entry(&tags->page_list, struct page, lru);
1666 list_del_init(&page->lru);
1667 /*
1668 * Remove kmemleak object previously allocated in
1669 * blk_mq_init_rq_map().
1670 */
1671 kmemleak_free(page_address(page));
1672 __free_pages(page, page->private);
1673 }
1674 }
1675
1676 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1677 {
1678 kfree(tags->rqs);
1679 tags->rqs = NULL;
1680 kfree(tags->static_rqs);
1681 tags->static_rqs = NULL;
1682
1683 blk_mq_free_tags(tags);
1684 }
1685
1686 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1687 unsigned int hctx_idx,
1688 unsigned int nr_tags,
1689 unsigned int reserved_tags)
1690 {
1691 struct blk_mq_tags *tags;
1692 int node;
1693
1694 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1695 if (node == NUMA_NO_NODE)
1696 node = set->numa_node;
1697
1698 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1699 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1700 if (!tags)
1701 return NULL;
1702
1703 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1704 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705 node);
1706 if (!tags->rqs) {
1707 blk_mq_free_tags(tags);
1708 return NULL;
1709 }
1710
1711 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1712 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1713 node);
1714 if (!tags->static_rqs) {
1715 kfree(tags->rqs);
1716 blk_mq_free_tags(tags);
1717 return NULL;
1718 }
1719
1720 return tags;
1721 }
1722
1723 static size_t order_to_size(unsigned int order)
1724 {
1725 return (size_t)PAGE_SIZE << order;
1726 }
1727
1728 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1729 unsigned int hctx_idx, unsigned int depth)
1730 {
1731 unsigned int i, j, entries_per_page, max_order = 4;
1732 size_t rq_size, left;
1733 int node;
1734
1735 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1736 if (node == NUMA_NO_NODE)
1737 node = set->numa_node;
1738
1739 INIT_LIST_HEAD(&tags->page_list);
1740
1741 /*
1742 * rq_size is the size of the request plus driver payload, rounded
1743 * to the cacheline size
1744 */
1745 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1746 cache_line_size());
1747 left = rq_size * depth;
1748
1749 for (i = 0; i < depth; ) {
1750 int this_order = max_order;
1751 struct page *page;
1752 int to_do;
1753 void *p;
1754
1755 while (this_order && left < order_to_size(this_order - 1))
1756 this_order--;
1757
1758 do {
1759 page = alloc_pages_node(node,
1760 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1761 this_order);
1762 if (page)
1763 break;
1764 if (!this_order--)
1765 break;
1766 if (order_to_size(this_order) < rq_size)
1767 break;
1768 } while (1);
1769
1770 if (!page)
1771 goto fail;
1772
1773 page->private = this_order;
1774 list_add_tail(&page->lru, &tags->page_list);
1775
1776 p = page_address(page);
1777 /*
1778 * Allow kmemleak to scan these pages as they contain pointers
1779 * to additional allocations like via ops->init_request().
1780 */
1781 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1782 entries_per_page = order_to_size(this_order) / rq_size;
1783 to_do = min(entries_per_page, depth - i);
1784 left -= to_do * rq_size;
1785 for (j = 0; j < to_do; j++) {
1786 struct request *rq = p;
1787
1788 tags->static_rqs[i] = rq;
1789 if (set->ops->init_request) {
1790 if (set->ops->init_request(set->driver_data,
1791 rq, hctx_idx, i,
1792 node)) {
1793 tags->static_rqs[i] = NULL;
1794 goto fail;
1795 }
1796 }
1797
1798 p += rq_size;
1799 i++;
1800 }
1801 }
1802 return 0;
1803
1804 fail:
1805 blk_mq_free_rqs(set, tags, hctx_idx);
1806 return -ENOMEM;
1807 }
1808
1809 /*
1810 * 'cpu' is going away. splice any existing rq_list entries from this
1811 * software queue to the hw queue dispatch list, and ensure that it
1812 * gets run.
1813 */
1814 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1815 {
1816 struct blk_mq_hw_ctx *hctx;
1817 struct blk_mq_ctx *ctx;
1818 LIST_HEAD(tmp);
1819
1820 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1821 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1822
1823 spin_lock(&ctx->lock);
1824 if (!list_empty(&ctx->rq_list)) {
1825 list_splice_init(&ctx->rq_list, &tmp);
1826 blk_mq_hctx_clear_pending(hctx, ctx);
1827 }
1828 spin_unlock(&ctx->lock);
1829
1830 if (list_empty(&tmp))
1831 return 0;
1832
1833 spin_lock(&hctx->lock);
1834 list_splice_tail_init(&tmp, &hctx->dispatch);
1835 spin_unlock(&hctx->lock);
1836
1837 blk_mq_run_hw_queue(hctx, true);
1838 return 0;
1839 }
1840
1841 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1842 {
1843 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1844 &hctx->cpuhp_dead);
1845 }
1846
1847 /* hctx->ctxs will be freed in queue's release handler */
1848 static void blk_mq_exit_hctx(struct request_queue *q,
1849 struct blk_mq_tag_set *set,
1850 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1851 {
1852 unsigned flush_start_tag = set->queue_depth;
1853
1854 blk_mq_tag_idle(hctx);
1855
1856 if (set->ops->exit_request)
1857 set->ops->exit_request(set->driver_data,
1858 hctx->fq->flush_rq, hctx_idx,
1859 flush_start_tag + hctx_idx);
1860
1861 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1862
1863 if (set->ops->exit_hctx)
1864 set->ops->exit_hctx(hctx, hctx_idx);
1865
1866 if (hctx->flags & BLK_MQ_F_BLOCKING)
1867 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1868
1869 blk_mq_remove_cpuhp(hctx);
1870 blk_free_flush_queue(hctx->fq);
1871 sbitmap_free(&hctx->ctx_map);
1872 }
1873
1874 static void blk_mq_exit_hw_queues(struct request_queue *q,
1875 struct blk_mq_tag_set *set, int nr_queue)
1876 {
1877 struct blk_mq_hw_ctx *hctx;
1878 unsigned int i;
1879
1880 queue_for_each_hw_ctx(q, hctx, i) {
1881 if (i == nr_queue)
1882 break;
1883 blk_mq_exit_hctx(q, set, hctx, i);
1884 }
1885 }
1886
1887 static int blk_mq_init_hctx(struct request_queue *q,
1888 struct blk_mq_tag_set *set,
1889 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1890 {
1891 int node;
1892 unsigned flush_start_tag = set->queue_depth;
1893
1894 node = hctx->numa_node;
1895 if (node == NUMA_NO_NODE)
1896 node = hctx->numa_node = set->numa_node;
1897
1898 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1899 INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1900 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1901 spin_lock_init(&hctx->lock);
1902 INIT_LIST_HEAD(&hctx->dispatch);
1903 hctx->queue = q;
1904 hctx->queue_num = hctx_idx;
1905 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1906
1907 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1908
1909 hctx->tags = set->tags[hctx_idx];
1910
1911 /*
1912 * Allocate space for all possible cpus to avoid allocation at
1913 * runtime
1914 */
1915 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1916 GFP_KERNEL, node);
1917 if (!hctx->ctxs)
1918 goto unregister_cpu_notifier;
1919
1920 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1921 node))
1922 goto free_ctxs;
1923
1924 hctx->nr_ctx = 0;
1925
1926 if (set->ops->init_hctx &&
1927 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1928 goto free_bitmap;
1929
1930 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1931 goto exit_hctx;
1932
1933 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1934 if (!hctx->fq)
1935 goto sched_exit_hctx;
1936
1937 if (set->ops->init_request &&
1938 set->ops->init_request(set->driver_data,
1939 hctx->fq->flush_rq, hctx_idx,
1940 flush_start_tag + hctx_idx, node))
1941 goto free_fq;
1942
1943 if (hctx->flags & BLK_MQ_F_BLOCKING)
1944 init_srcu_struct(&hctx->queue_rq_srcu);
1945
1946 return 0;
1947
1948 free_fq:
1949 kfree(hctx->fq);
1950 sched_exit_hctx:
1951 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1952 exit_hctx:
1953 if (set->ops->exit_hctx)
1954 set->ops->exit_hctx(hctx, hctx_idx);
1955 free_bitmap:
1956 sbitmap_free(&hctx->ctx_map);
1957 free_ctxs:
1958 kfree(hctx->ctxs);
1959 unregister_cpu_notifier:
1960 blk_mq_remove_cpuhp(hctx);
1961 return -1;
1962 }
1963
1964 static void blk_mq_init_cpu_queues(struct request_queue *q,
1965 unsigned int nr_hw_queues)
1966 {
1967 unsigned int i;
1968
1969 for_each_possible_cpu(i) {
1970 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1971 struct blk_mq_hw_ctx *hctx;
1972
1973 __ctx->cpu = i;
1974 spin_lock_init(&__ctx->lock);
1975 INIT_LIST_HEAD(&__ctx->rq_list);
1976 __ctx->queue = q;
1977
1978 /* If the cpu isn't online, the cpu is mapped to first hctx */
1979 if (!cpu_online(i))
1980 continue;
1981
1982 hctx = blk_mq_map_queue(q, i);
1983
1984 /*
1985 * Set local node, IFF we have more than one hw queue. If
1986 * not, we remain on the home node of the device
1987 */
1988 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1989 hctx->numa_node = local_memory_node(cpu_to_node(i));
1990 }
1991 }
1992
1993 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1994 {
1995 int ret = 0;
1996
1997 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1998 set->queue_depth, set->reserved_tags);
1999 if (!set->tags[hctx_idx])
2000 return false;
2001
2002 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2003 set->queue_depth);
2004 if (!ret)
2005 return true;
2006
2007 blk_mq_free_rq_map(set->tags[hctx_idx]);
2008 set->tags[hctx_idx] = NULL;
2009 return false;
2010 }
2011
2012 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2013 unsigned int hctx_idx)
2014 {
2015 if (set->tags[hctx_idx]) {
2016 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2017 blk_mq_free_rq_map(set->tags[hctx_idx]);
2018 set->tags[hctx_idx] = NULL;
2019 }
2020 }
2021
2022 static void blk_mq_map_swqueue(struct request_queue *q,
2023 const struct cpumask *online_mask)
2024 {
2025 unsigned int i, hctx_idx;
2026 struct blk_mq_hw_ctx *hctx;
2027 struct blk_mq_ctx *ctx;
2028 struct blk_mq_tag_set *set = q->tag_set;
2029
2030 /*
2031 * Avoid others reading imcomplete hctx->cpumask through sysfs
2032 */
2033 mutex_lock(&q->sysfs_lock);
2034
2035 queue_for_each_hw_ctx(q, hctx, i) {
2036 cpumask_clear(hctx->cpumask);
2037 hctx->nr_ctx = 0;
2038 }
2039
2040 /*
2041 * Map software to hardware queues
2042 */
2043 for_each_possible_cpu(i) {
2044 /* If the cpu isn't online, the cpu is mapped to first hctx */
2045 if (!cpumask_test_cpu(i, online_mask))
2046 continue;
2047
2048 hctx_idx = q->mq_map[i];
2049 /* unmapped hw queue can be remapped after CPU topo changed */
2050 if (!set->tags[hctx_idx] &&
2051 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2052 /*
2053 * If tags initialization fail for some hctx,
2054 * that hctx won't be brought online. In this
2055 * case, remap the current ctx to hctx[0] which
2056 * is guaranteed to always have tags allocated
2057 */
2058 q->mq_map[i] = 0;
2059 }
2060
2061 ctx = per_cpu_ptr(q->queue_ctx, i);
2062 hctx = blk_mq_map_queue(q, i);
2063
2064 cpumask_set_cpu(i, hctx->cpumask);
2065 ctx->index_hw = hctx->nr_ctx;
2066 hctx->ctxs[hctx->nr_ctx++] = ctx;
2067 }
2068
2069 mutex_unlock(&q->sysfs_lock);
2070
2071 queue_for_each_hw_ctx(q, hctx, i) {
2072 /*
2073 * If no software queues are mapped to this hardware queue,
2074 * disable it and free the request entries.
2075 */
2076 if (!hctx->nr_ctx) {
2077 /* Never unmap queue 0. We need it as a
2078 * fallback in case of a new remap fails
2079 * allocation
2080 */
2081 if (i && set->tags[i])
2082 blk_mq_free_map_and_requests(set, i);
2083
2084 hctx->tags = NULL;
2085 continue;
2086 }
2087
2088 hctx->tags = set->tags[i];
2089 WARN_ON(!hctx->tags);
2090
2091 /*
2092 * Set the map size to the number of mapped software queues.
2093 * This is more accurate and more efficient than looping
2094 * over all possibly mapped software queues.
2095 */
2096 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2097
2098 /*
2099 * Initialize batch roundrobin counts
2100 */
2101 hctx->next_cpu = cpumask_first(hctx->cpumask);
2102 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2103 }
2104 }
2105
2106 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2107 {
2108 struct blk_mq_hw_ctx *hctx;
2109 int i;
2110
2111 queue_for_each_hw_ctx(q, hctx, i) {
2112 if (shared)
2113 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2114 else
2115 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2116 }
2117 }
2118
2119 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2120 {
2121 struct request_queue *q;
2122
2123 lockdep_assert_held(&set->tag_list_lock);
2124
2125 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2126 blk_mq_freeze_queue(q);
2127 queue_set_hctx_shared(q, shared);
2128 blk_mq_unfreeze_queue(q);
2129 }
2130 }
2131
2132 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2133 {
2134 struct blk_mq_tag_set *set = q->tag_set;
2135
2136 mutex_lock(&set->tag_list_lock);
2137 list_del_rcu(&q->tag_set_list);
2138 INIT_LIST_HEAD(&q->tag_set_list);
2139 if (list_is_singular(&set->tag_list)) {
2140 /* just transitioned to unshared */
2141 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2142 /* update existing queue */
2143 blk_mq_update_tag_set_depth(set, false);
2144 }
2145 mutex_unlock(&set->tag_list_lock);
2146
2147 synchronize_rcu();
2148 }
2149
2150 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2151 struct request_queue *q)
2152 {
2153 q->tag_set = set;
2154
2155 mutex_lock(&set->tag_list_lock);
2156
2157 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2158 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2159 set->flags |= BLK_MQ_F_TAG_SHARED;
2160 /* update existing queue */
2161 blk_mq_update_tag_set_depth(set, true);
2162 }
2163 if (set->flags & BLK_MQ_F_TAG_SHARED)
2164 queue_set_hctx_shared(q, true);
2165 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2166
2167 mutex_unlock(&set->tag_list_lock);
2168 }
2169
2170 /*
2171 * It is the actual release handler for mq, but we do it from
2172 * request queue's release handler for avoiding use-after-free
2173 * and headache because q->mq_kobj shouldn't have been introduced,
2174 * but we can't group ctx/kctx kobj without it.
2175 */
2176 void blk_mq_release(struct request_queue *q)
2177 {
2178 struct blk_mq_hw_ctx *hctx;
2179 unsigned int i;
2180
2181 /* hctx kobj stays in hctx */
2182 queue_for_each_hw_ctx(q, hctx, i) {
2183 if (!hctx)
2184 continue;
2185 kobject_put(&hctx->kobj);
2186 }
2187
2188 q->mq_map = NULL;
2189
2190 kfree(q->queue_hw_ctx);
2191
2192 /*
2193 * release .mq_kobj and sw queue's kobject now because
2194 * both share lifetime with request queue.
2195 */
2196 blk_mq_sysfs_deinit(q);
2197
2198 free_percpu(q->queue_ctx);
2199 }
2200
2201 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2202 {
2203 struct request_queue *uninit_q, *q;
2204
2205 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2206 if (!uninit_q)
2207 return ERR_PTR(-ENOMEM);
2208
2209 q = blk_mq_init_allocated_queue(set, uninit_q);
2210 if (IS_ERR(q))
2211 blk_cleanup_queue(uninit_q);
2212
2213 return q;
2214 }
2215 EXPORT_SYMBOL(blk_mq_init_queue);
2216
2217 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2218 struct request_queue *q)
2219 {
2220 int i, j;
2221 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2222
2223 blk_mq_sysfs_unregister(q);
2224 for (i = 0; i < set->nr_hw_queues; i++) {
2225 int node;
2226
2227 if (hctxs[i])
2228 continue;
2229
2230 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2231 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2232 GFP_KERNEL, node);
2233 if (!hctxs[i])
2234 break;
2235
2236 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2237 node)) {
2238 kfree(hctxs[i]);
2239 hctxs[i] = NULL;
2240 break;
2241 }
2242
2243 atomic_set(&hctxs[i]->nr_active, 0);
2244 hctxs[i]->numa_node = node;
2245 hctxs[i]->queue_num = i;
2246
2247 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2248 free_cpumask_var(hctxs[i]->cpumask);
2249 kfree(hctxs[i]);
2250 hctxs[i] = NULL;
2251 break;
2252 }
2253 blk_mq_hctx_kobj_init(hctxs[i]);
2254 }
2255 for (j = i; j < q->nr_hw_queues; j++) {
2256 struct blk_mq_hw_ctx *hctx = hctxs[j];
2257
2258 if (hctx) {
2259 if (hctx->tags)
2260 blk_mq_free_map_and_requests(set, j);
2261 blk_mq_exit_hctx(q, set, hctx, j);
2262 kobject_put(&hctx->kobj);
2263 hctxs[j] = NULL;
2264
2265 }
2266 }
2267 q->nr_hw_queues = i;
2268 blk_mq_sysfs_register(q);
2269 }
2270
2271 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2272 struct request_queue *q)
2273 {
2274 /* mark the queue as mq asap */
2275 q->mq_ops = set->ops;
2276
2277 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2278 blk_mq_poll_stats_bkt,
2279 BLK_MQ_POLL_STATS_BKTS, q);
2280 if (!q->poll_cb)
2281 goto err_exit;
2282
2283 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2284 if (!q->queue_ctx)
2285 goto err_exit;
2286
2287 /* init q->mq_kobj and sw queues' kobjects */
2288 blk_mq_sysfs_init(q);
2289
2290 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2291 GFP_KERNEL, set->numa_node);
2292 if (!q->queue_hw_ctx)
2293 goto err_percpu;
2294
2295 q->mq_map = set->mq_map;
2296
2297 blk_mq_realloc_hw_ctxs(set, q);
2298 if (!q->nr_hw_queues)
2299 goto err_hctxs;
2300
2301 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2302 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2303
2304 q->nr_queues = nr_cpu_ids;
2305
2306 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2307
2308 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2309 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2310
2311 q->sg_reserved_size = INT_MAX;
2312
2313 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2314 INIT_LIST_HEAD(&q->requeue_list);
2315 spin_lock_init(&q->requeue_lock);
2316
2317 blk_queue_make_request(q, blk_mq_make_request);
2318
2319 /*
2320 * Do this after blk_queue_make_request() overrides it...
2321 */
2322 q->nr_requests = set->queue_depth;
2323
2324 /*
2325 * Default to classic polling
2326 */
2327 q->poll_nsec = -1;
2328
2329 if (set->ops->complete)
2330 blk_queue_softirq_done(q, set->ops->complete);
2331
2332 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2333
2334 get_online_cpus();
2335 mutex_lock(&all_q_mutex);
2336
2337 list_add_tail(&q->all_q_node, &all_q_list);
2338 blk_mq_add_queue_tag_set(set, q);
2339 blk_mq_map_swqueue(q, cpu_online_mask);
2340
2341 mutex_unlock(&all_q_mutex);
2342 put_online_cpus();
2343
2344 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2345 int ret;
2346
2347 ret = blk_mq_sched_init(q);
2348 if (ret)
2349 return ERR_PTR(ret);
2350 }
2351
2352 return q;
2353
2354 err_hctxs:
2355 kfree(q->queue_hw_ctx);
2356 err_percpu:
2357 free_percpu(q->queue_ctx);
2358 err_exit:
2359 q->mq_ops = NULL;
2360 return ERR_PTR(-ENOMEM);
2361 }
2362 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2363
2364 void blk_mq_free_queue(struct request_queue *q)
2365 {
2366 struct blk_mq_tag_set *set = q->tag_set;
2367
2368 mutex_lock(&all_q_mutex);
2369 list_del_init(&q->all_q_node);
2370 mutex_unlock(&all_q_mutex);
2371
2372 blk_mq_del_queue_tag_set(q);
2373
2374 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2375 }
2376
2377 /* Basically redo blk_mq_init_queue with queue frozen */
2378 static void blk_mq_queue_reinit(struct request_queue *q,
2379 const struct cpumask *online_mask)
2380 {
2381 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2382
2383 blk_mq_sysfs_unregister(q);
2384
2385 /*
2386 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2387 * we should change hctx numa_node according to new topology (this
2388 * involves free and re-allocate memory, worthy doing?)
2389 */
2390
2391 blk_mq_map_swqueue(q, online_mask);
2392
2393 blk_mq_sysfs_register(q);
2394 }
2395
2396 /*
2397 * New online cpumask which is going to be set in this hotplug event.
2398 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2399 * one-by-one and dynamically allocating this could result in a failure.
2400 */
2401 static struct cpumask cpuhp_online_new;
2402
2403 static void blk_mq_queue_reinit_work(void)
2404 {
2405 struct request_queue *q;
2406
2407 mutex_lock(&all_q_mutex);
2408 /*
2409 * We need to freeze and reinit all existing queues. Freezing
2410 * involves synchronous wait for an RCU grace period and doing it
2411 * one by one may take a long time. Start freezing all queues in
2412 * one swoop and then wait for the completions so that freezing can
2413 * take place in parallel.
2414 */
2415 list_for_each_entry(q, &all_q_list, all_q_node)
2416 blk_freeze_queue_start(q);
2417 list_for_each_entry(q, &all_q_list, all_q_node)
2418 blk_mq_freeze_queue_wait(q);
2419
2420 list_for_each_entry(q, &all_q_list, all_q_node)
2421 blk_mq_queue_reinit(q, &cpuhp_online_new);
2422
2423 list_for_each_entry(q, &all_q_list, all_q_node)
2424 blk_mq_unfreeze_queue(q);
2425
2426 mutex_unlock(&all_q_mutex);
2427 }
2428
2429 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2430 {
2431 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2432 blk_mq_queue_reinit_work();
2433 return 0;
2434 }
2435
2436 /*
2437 * Before hotadded cpu starts handling requests, new mappings must be
2438 * established. Otherwise, these requests in hw queue might never be
2439 * dispatched.
2440 *
2441 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2442 * for CPU0, and ctx1 for CPU1).
2443 *
2444 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2445 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2446 *
2447 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2448 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2449 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2450 * ignored.
2451 */
2452 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2453 {
2454 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2455 cpumask_set_cpu(cpu, &cpuhp_online_new);
2456 blk_mq_queue_reinit_work();
2457 return 0;
2458 }
2459
2460 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2461 {
2462 int i;
2463
2464 for (i = 0; i < set->nr_hw_queues; i++)
2465 if (!__blk_mq_alloc_rq_map(set, i))
2466 goto out_unwind;
2467
2468 return 0;
2469
2470 out_unwind:
2471 while (--i >= 0)
2472 blk_mq_free_rq_map(set->tags[i]);
2473
2474 return -ENOMEM;
2475 }
2476
2477 /*
2478 * Allocate the request maps associated with this tag_set. Note that this
2479 * may reduce the depth asked for, if memory is tight. set->queue_depth
2480 * will be updated to reflect the allocated depth.
2481 */
2482 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2483 {
2484 unsigned int depth;
2485 int err;
2486
2487 depth = set->queue_depth;
2488 do {
2489 err = __blk_mq_alloc_rq_maps(set);
2490 if (!err)
2491 break;
2492
2493 set->queue_depth >>= 1;
2494 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2495 err = -ENOMEM;
2496 break;
2497 }
2498 } while (set->queue_depth);
2499
2500 if (!set->queue_depth || err) {
2501 pr_err("blk-mq: failed to allocate request map\n");
2502 return -ENOMEM;
2503 }
2504
2505 if (depth != set->queue_depth)
2506 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2507 depth, set->queue_depth);
2508
2509 return 0;
2510 }
2511
2512 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2513 {
2514 if (set->ops->map_queues)
2515 return set->ops->map_queues(set);
2516 else
2517 return blk_mq_map_queues(set);
2518 }
2519
2520 /*
2521 * Alloc a tag set to be associated with one or more request queues.
2522 * May fail with EINVAL for various error conditions. May adjust the
2523 * requested depth down, if if it too large. In that case, the set
2524 * value will be stored in set->queue_depth.
2525 */
2526 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2527 {
2528 int ret;
2529
2530 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2531
2532 if (!set->nr_hw_queues)
2533 return -EINVAL;
2534 if (!set->queue_depth)
2535 return -EINVAL;
2536 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2537 return -EINVAL;
2538
2539 if (!set->ops->queue_rq)
2540 return -EINVAL;
2541
2542 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2543 pr_info("blk-mq: reduced tag depth to %u\n",
2544 BLK_MQ_MAX_DEPTH);
2545 set->queue_depth = BLK_MQ_MAX_DEPTH;
2546 }
2547
2548 /*
2549 * If a crashdump is active, then we are potentially in a very
2550 * memory constrained environment. Limit us to 1 queue and
2551 * 64 tags to prevent using too much memory.
2552 */
2553 if (is_kdump_kernel()) {
2554 set->nr_hw_queues = 1;
2555 set->queue_depth = min(64U, set->queue_depth);
2556 }
2557 /*
2558 * There is no use for more h/w queues than cpus.
2559 */
2560 if (set->nr_hw_queues > nr_cpu_ids)
2561 set->nr_hw_queues = nr_cpu_ids;
2562
2563 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2564 GFP_KERNEL, set->numa_node);
2565 if (!set->tags)
2566 return -ENOMEM;
2567
2568 ret = -ENOMEM;
2569 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2570 GFP_KERNEL, set->numa_node);
2571 if (!set->mq_map)
2572 goto out_free_tags;
2573
2574 ret = blk_mq_update_queue_map(set);
2575 if (ret)
2576 goto out_free_mq_map;
2577
2578 ret = blk_mq_alloc_rq_maps(set);
2579 if (ret)
2580 goto out_free_mq_map;
2581
2582 mutex_init(&set->tag_list_lock);
2583 INIT_LIST_HEAD(&set->tag_list);
2584
2585 return 0;
2586
2587 out_free_mq_map:
2588 kfree(set->mq_map);
2589 set->mq_map = NULL;
2590 out_free_tags:
2591 kfree(set->tags);
2592 set->tags = NULL;
2593 return ret;
2594 }
2595 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2596
2597 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2598 {
2599 int i;
2600
2601 for (i = 0; i < nr_cpu_ids; i++)
2602 blk_mq_free_map_and_requests(set, i);
2603
2604 kfree(set->mq_map);
2605 set->mq_map = NULL;
2606
2607 kfree(set->tags);
2608 set->tags = NULL;
2609 }
2610 EXPORT_SYMBOL(blk_mq_free_tag_set);
2611
2612 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2613 {
2614 struct blk_mq_tag_set *set = q->tag_set;
2615 struct blk_mq_hw_ctx *hctx;
2616 int i, ret;
2617
2618 if (!set)
2619 return -EINVAL;
2620
2621 blk_mq_freeze_queue(q);
2622 blk_mq_quiesce_queue(q);
2623
2624 ret = 0;
2625 queue_for_each_hw_ctx(q, hctx, i) {
2626 if (!hctx->tags)
2627 continue;
2628 /*
2629 * If we're using an MQ scheduler, just update the scheduler
2630 * queue depth. This is similar to what the old code would do.
2631 */
2632 if (!hctx->sched_tags) {
2633 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2634 min(nr, set->queue_depth),
2635 false);
2636 } else {
2637 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2638 nr, true);
2639 }
2640 if (ret)
2641 break;
2642 }
2643
2644 if (!ret)
2645 q->nr_requests = nr;
2646
2647 blk_mq_unfreeze_queue(q);
2648 blk_mq_start_stopped_hw_queues(q, true);
2649
2650 return ret;
2651 }
2652
2653 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2654 {
2655 struct request_queue *q;
2656
2657 lockdep_assert_held(&set->tag_list_lock);
2658
2659 if (nr_hw_queues > nr_cpu_ids)
2660 nr_hw_queues = nr_cpu_ids;
2661 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2662 return;
2663
2664 list_for_each_entry(q, &set->tag_list, tag_set_list)
2665 blk_mq_freeze_queue(q);
2666
2667 set->nr_hw_queues = nr_hw_queues;
2668 blk_mq_update_queue_map(set);
2669 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2670 blk_mq_realloc_hw_ctxs(set, q);
2671 blk_mq_queue_reinit(q, cpu_online_mask);
2672 }
2673
2674 list_for_each_entry(q, &set->tag_list, tag_set_list)
2675 blk_mq_unfreeze_queue(q);
2676 }
2677 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2678
2679 /* Enable polling stats and return whether they were already enabled. */
2680 static bool blk_poll_stats_enable(struct request_queue *q)
2681 {
2682 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2683 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2684 return true;
2685 blk_stat_add_callback(q, q->poll_cb);
2686 return false;
2687 }
2688
2689 static void blk_mq_poll_stats_start(struct request_queue *q)
2690 {
2691 /*
2692 * We don't arm the callback if polling stats are not enabled or the
2693 * callback is already active.
2694 */
2695 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2696 blk_stat_is_active(q->poll_cb))
2697 return;
2698
2699 blk_stat_activate_msecs(q->poll_cb, 100);
2700 }
2701
2702 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2703 {
2704 struct request_queue *q = cb->data;
2705 int bucket;
2706
2707 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2708 if (cb->stat[bucket].nr_samples)
2709 q->poll_stat[bucket] = cb->stat[bucket];
2710 }
2711 }
2712
2713 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2714 struct blk_mq_hw_ctx *hctx,
2715 struct request *rq)
2716 {
2717 unsigned long ret = 0;
2718 int bucket;
2719
2720 /*
2721 * If stats collection isn't on, don't sleep but turn it on for
2722 * future users
2723 */
2724 if (!blk_poll_stats_enable(q))
2725 return 0;
2726
2727 /*
2728 * As an optimistic guess, use half of the mean service time
2729 * for this type of request. We can (and should) make this smarter.
2730 * For instance, if the completion latencies are tight, we can
2731 * get closer than just half the mean. This is especially
2732 * important on devices where the completion latencies are longer
2733 * than ~10 usec. We do use the stats for the relevant IO size
2734 * if available which does lead to better estimates.
2735 */
2736 bucket = blk_mq_poll_stats_bkt(rq);
2737 if (bucket < 0)
2738 return ret;
2739
2740 if (q->poll_stat[bucket].nr_samples)
2741 ret = (q->poll_stat[bucket].mean + 1) / 2;
2742
2743 return ret;
2744 }
2745
2746 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2747 struct blk_mq_hw_ctx *hctx,
2748 struct request *rq)
2749 {
2750 struct hrtimer_sleeper hs;
2751 enum hrtimer_mode mode;
2752 unsigned int nsecs;
2753 ktime_t kt;
2754
2755 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2756 return false;
2757
2758 /*
2759 * poll_nsec can be:
2760 *
2761 * -1: don't ever hybrid sleep
2762 * 0: use half of prev avg
2763 * >0: use this specific value
2764 */
2765 if (q->poll_nsec == -1)
2766 return false;
2767 else if (q->poll_nsec > 0)
2768 nsecs = q->poll_nsec;
2769 else
2770 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2771
2772 if (!nsecs)
2773 return false;
2774
2775 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2776
2777 /*
2778 * This will be replaced with the stats tracking code, using
2779 * 'avg_completion_time / 2' as the pre-sleep target.
2780 */
2781 kt = nsecs;
2782
2783 mode = HRTIMER_MODE_REL;
2784 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2785 hrtimer_set_expires(&hs.timer, kt);
2786
2787 hrtimer_init_sleeper(&hs, current);
2788 do {
2789 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2790 break;
2791 set_current_state(TASK_UNINTERRUPTIBLE);
2792 hrtimer_start_expires(&hs.timer, mode);
2793 if (hs.task)
2794 io_schedule();
2795 hrtimer_cancel(&hs.timer);
2796 mode = HRTIMER_MODE_ABS;
2797 } while (hs.task && !signal_pending(current));
2798
2799 __set_current_state(TASK_RUNNING);
2800 destroy_hrtimer_on_stack(&hs.timer);
2801 return true;
2802 }
2803
2804 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2805 {
2806 struct request_queue *q = hctx->queue;
2807 long state;
2808
2809 /*
2810 * If we sleep, have the caller restart the poll loop to reset
2811 * the state. Like for the other success return cases, the
2812 * caller is responsible for checking if the IO completed. If
2813 * the IO isn't complete, we'll get called again and will go
2814 * straight to the busy poll loop.
2815 */
2816 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2817 return true;
2818
2819 hctx->poll_considered++;
2820
2821 state = current->state;
2822 while (!need_resched()) {
2823 int ret;
2824
2825 hctx->poll_invoked++;
2826
2827 ret = q->mq_ops->poll(hctx, rq->tag);
2828 if (ret > 0) {
2829 hctx->poll_success++;
2830 set_current_state(TASK_RUNNING);
2831 return true;
2832 }
2833
2834 if (signal_pending_state(state, current))
2835 set_current_state(TASK_RUNNING);
2836
2837 if (current->state == TASK_RUNNING)
2838 return true;
2839 if (ret < 0)
2840 break;
2841 cpu_relax();
2842 }
2843
2844 return false;
2845 }
2846
2847 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2848 {
2849 struct blk_mq_hw_ctx *hctx;
2850 struct blk_plug *plug;
2851 struct request *rq;
2852
2853 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2854 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2855 return false;
2856
2857 plug = current->plug;
2858 if (plug)
2859 blk_flush_plug_list(plug, false);
2860
2861 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2862 if (!blk_qc_t_is_internal(cookie))
2863 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2864 else
2865 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2866
2867 return __blk_mq_poll(hctx, rq);
2868 }
2869 EXPORT_SYMBOL_GPL(blk_mq_poll);
2870
2871 void blk_mq_disable_hotplug(void)
2872 {
2873 mutex_lock(&all_q_mutex);
2874 }
2875
2876 void blk_mq_enable_hotplug(void)
2877 {
2878 mutex_unlock(&all_q_mutex);
2879 }
2880
2881 static int __init blk_mq_init(void)
2882 {
2883 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2884 blk_mq_hctx_notify_dead);
2885
2886 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2887 blk_mq_queue_reinit_prepare,
2888 blk_mq_queue_reinit_dead);
2889 return 0;
2890 }
2891 subsys_initcall(blk_mq_init);