]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: don't allocate driver tag upfront for flush rq
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return sbitmap_any_bit_set(&hctx->ctx_map) ||
67 !list_empty_careful(&hctx->dispatch) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 blk_mq_run_hw_queues(q, false);
130 }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142 {
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
162 blk_freeze_queue_start(q);
163 blk_mq_freeze_queue_wait(q);
164 }
165
166 void blk_mq_freeze_queue(struct request_queue *q)
167 {
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173 }
174 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175
176 void blk_mq_unfreeze_queue(struct request_queue *q)
177 {
178 int freeze_depth;
179
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
183 percpu_ref_reinit(&q->q_usage_counter);
184 wake_up_all(&q->mq_freeze_wq);
185 }
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188
189 /*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194 {
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
203 /**
204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
211 */
212 void blk_mq_quiesce_queue(struct request_queue *q)
213 {
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
218 blk_mq_quiesce_queue_nowait(q);
219
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
222 synchronize_srcu(hctx->queue_rq_srcu);
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
231 /*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238 void blk_mq_unquiesce_queue(struct request_queue *q)
239 {
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
251 void blk_mq_wake_waiters(struct request_queue *q)
252 {
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
259
260 /*
261 * If we are called because the queue has now been marked as
262 * dying, we need to ensure that processes currently waiting on
263 * the queue are notified as well.
264 */
265 wake_up_all(&q->mq_freeze_wq);
266 }
267
268 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
269 {
270 return blk_mq_has_free_tags(hctx->tags);
271 }
272 EXPORT_SYMBOL(blk_mq_can_queue);
273
274 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
275 unsigned int tag, unsigned int op)
276 {
277 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
278 struct request *rq = tags->static_rqs[tag];
279
280 rq->rq_flags = 0;
281
282 if (data->flags & BLK_MQ_REQ_INTERNAL) {
283 rq->tag = -1;
284 rq->internal_tag = tag;
285 } else {
286 if (blk_mq_tag_busy(data->hctx)) {
287 rq->rq_flags = RQF_MQ_INFLIGHT;
288 atomic_inc(&data->hctx->nr_active);
289 }
290 rq->tag = tag;
291 rq->internal_tag = -1;
292 data->hctx->tags->rqs[rq->tag] = rq;
293 }
294
295 INIT_LIST_HEAD(&rq->queuelist);
296 /* csd/requeue_work/fifo_time is initialized before use */
297 rq->q = data->q;
298 rq->mq_ctx = data->ctx;
299 rq->cmd_flags = op;
300 if (blk_queue_io_stat(data->q))
301 rq->rq_flags |= RQF_IO_STAT;
302 /* do not touch atomic flags, it needs atomic ops against the timer */
303 rq->cpu = -1;
304 INIT_HLIST_NODE(&rq->hash);
305 RB_CLEAR_NODE(&rq->rb_node);
306 rq->rq_disk = NULL;
307 rq->part = NULL;
308 rq->start_time = jiffies;
309 #ifdef CONFIG_BLK_CGROUP
310 rq->rl = NULL;
311 set_start_time_ns(rq);
312 rq->io_start_time_ns = 0;
313 #endif
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321
322 INIT_LIST_HEAD(&rq->timeout_list);
323 rq->timeout = 0;
324
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
327 rq->next_rq = NULL;
328
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 return rq;
331 }
332
333 static struct request *blk_mq_get_request(struct request_queue *q,
334 struct bio *bio, unsigned int op,
335 struct blk_mq_alloc_data *data)
336 {
337 struct elevator_queue *e = q->elevator;
338 struct request *rq;
339 unsigned int tag;
340 bool put_ctx_on_error = false;
341
342 blk_queue_enter_live(q);
343 data->q = q;
344 if (likely(!data->ctx)) {
345 data->ctx = blk_mq_get_ctx(q);
346 put_ctx_on_error = true;
347 }
348 if (likely(!data->hctx))
349 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
350 if (op & REQ_NOWAIT)
351 data->flags |= BLK_MQ_REQ_NOWAIT;
352
353 if (e) {
354 data->flags |= BLK_MQ_REQ_INTERNAL;
355
356 /*
357 * Flush requests are special and go directly to the
358 * dispatch list.
359 */
360 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
361 e->type->ops.mq.limit_depth(op, data);
362 }
363
364 tag = blk_mq_get_tag(data);
365 if (tag == BLK_MQ_TAG_FAIL) {
366 if (put_ctx_on_error) {
367 blk_mq_put_ctx(data->ctx);
368 data->ctx = NULL;
369 }
370 blk_queue_exit(q);
371 return NULL;
372 }
373
374 rq = blk_mq_rq_ctx_init(data, tag, op);
375 if (!op_is_flush(op)) {
376 rq->elv.icq = NULL;
377 if (e && e->type->ops.mq.prepare_request) {
378 if (e->type->icq_cache && rq_ioc(bio))
379 blk_mq_sched_assign_ioc(rq, bio);
380
381 e->type->ops.mq.prepare_request(rq, bio);
382 rq->rq_flags |= RQF_ELVPRIV;
383 }
384 }
385 data->hctx->queued++;
386 return rq;
387 }
388
389 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
390 unsigned int flags)
391 {
392 struct blk_mq_alloc_data alloc_data = { .flags = flags };
393 struct request *rq;
394 int ret;
395
396 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
397 if (ret)
398 return ERR_PTR(ret);
399
400 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
401 blk_queue_exit(q);
402
403 if (!rq)
404 return ERR_PTR(-EWOULDBLOCK);
405
406 blk_mq_put_ctx(alloc_data.ctx);
407
408 rq->__data_len = 0;
409 rq->__sector = (sector_t) -1;
410 rq->bio = rq->biotail = NULL;
411 return rq;
412 }
413 EXPORT_SYMBOL(blk_mq_alloc_request);
414
415 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
416 unsigned int op, unsigned int flags, unsigned int hctx_idx)
417 {
418 struct blk_mq_alloc_data alloc_data = { .flags = flags };
419 struct request *rq;
420 unsigned int cpu;
421 int ret;
422
423 /*
424 * If the tag allocator sleeps we could get an allocation for a
425 * different hardware context. No need to complicate the low level
426 * allocator for this for the rare use case of a command tied to
427 * a specific queue.
428 */
429 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
430 return ERR_PTR(-EINVAL);
431
432 if (hctx_idx >= q->nr_hw_queues)
433 return ERR_PTR(-EIO);
434
435 ret = blk_queue_enter(q, true);
436 if (ret)
437 return ERR_PTR(ret);
438
439 /*
440 * Check if the hardware context is actually mapped to anything.
441 * If not tell the caller that it should skip this queue.
442 */
443 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
444 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
445 blk_queue_exit(q);
446 return ERR_PTR(-EXDEV);
447 }
448 cpu = cpumask_first(alloc_data.hctx->cpumask);
449 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
450
451 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
452 blk_queue_exit(q);
453
454 if (!rq)
455 return ERR_PTR(-EWOULDBLOCK);
456
457 return rq;
458 }
459 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
460
461 void blk_mq_free_request(struct request *rq)
462 {
463 struct request_queue *q = rq->q;
464 struct elevator_queue *e = q->elevator;
465 struct blk_mq_ctx *ctx = rq->mq_ctx;
466 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
467 const int sched_tag = rq->internal_tag;
468
469 if (rq->rq_flags & RQF_ELVPRIV) {
470 if (e && e->type->ops.mq.finish_request)
471 e->type->ops.mq.finish_request(rq);
472 if (rq->elv.icq) {
473 put_io_context(rq->elv.icq->ioc);
474 rq->elv.icq = NULL;
475 }
476 }
477
478 ctx->rq_completed[rq_is_sync(rq)]++;
479 if (rq->rq_flags & RQF_MQ_INFLIGHT)
480 atomic_dec(&hctx->nr_active);
481
482 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
483 laptop_io_completion(q->backing_dev_info);
484
485 wbt_done(q->rq_wb, &rq->issue_stat);
486
487 if (blk_rq_rl(rq))
488 blk_put_rl(blk_rq_rl(rq));
489
490 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
492 if (rq->tag != -1)
493 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494 if (sched_tag != -1)
495 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496 blk_mq_sched_restart(hctx);
497 blk_queue_exit(q);
498 }
499 EXPORT_SYMBOL_GPL(blk_mq_free_request);
500
501 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
502 {
503 blk_account_io_done(rq);
504
505 if (rq->end_io) {
506 wbt_done(rq->q->rq_wb, &rq->issue_stat);
507 rq->end_io(rq, error);
508 } else {
509 if (unlikely(blk_bidi_rq(rq)))
510 blk_mq_free_request(rq->next_rq);
511 blk_mq_free_request(rq);
512 }
513 }
514 EXPORT_SYMBOL(__blk_mq_end_request);
515
516 void blk_mq_end_request(struct request *rq, blk_status_t error)
517 {
518 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
519 BUG();
520 __blk_mq_end_request(rq, error);
521 }
522 EXPORT_SYMBOL(blk_mq_end_request);
523
524 static void __blk_mq_complete_request_remote(void *data)
525 {
526 struct request *rq = data;
527
528 rq->q->softirq_done_fn(rq);
529 }
530
531 static void __blk_mq_complete_request(struct request *rq)
532 {
533 struct blk_mq_ctx *ctx = rq->mq_ctx;
534 bool shared = false;
535 int cpu;
536
537 if (rq->internal_tag != -1)
538 blk_mq_sched_completed_request(rq);
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq);
542 }
543
544 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 rq->q->softirq_done_fn(rq);
546 return;
547 }
548
549 cpu = get_cpu();
550 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551 shared = cpus_share_cache(cpu, ctx->cpu);
552
553 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554 rq->csd.func = __blk_mq_complete_request_remote;
555 rq->csd.info = rq;
556 rq->csd.flags = 0;
557 smp_call_function_single_async(ctx->cpu, &rq->csd);
558 } else {
559 rq->q->softirq_done_fn(rq);
560 }
561 put_cpu();
562 }
563
564 /**
565 * blk_mq_complete_request - end I/O on a request
566 * @rq: the request being processed
567 *
568 * Description:
569 * Ends all I/O on a request. It does not handle partial completions.
570 * The actual completion happens out-of-order, through a IPI handler.
571 **/
572 void blk_mq_complete_request(struct request *rq)
573 {
574 struct request_queue *q = rq->q;
575
576 if (unlikely(blk_should_fake_timeout(q)))
577 return;
578 if (!blk_mark_rq_complete(rq))
579 __blk_mq_complete_request(rq);
580 }
581 EXPORT_SYMBOL(blk_mq_complete_request);
582
583 int blk_mq_request_started(struct request *rq)
584 {
585 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
586 }
587 EXPORT_SYMBOL_GPL(blk_mq_request_started);
588
589 void blk_mq_start_request(struct request *rq)
590 {
591 struct request_queue *q = rq->q;
592
593 blk_mq_sched_started_request(rq);
594
595 trace_block_rq_issue(q, rq);
596
597 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
598 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
599 rq->rq_flags |= RQF_STATS;
600 wbt_issue(q->rq_wb, &rq->issue_stat);
601 }
602
603 blk_add_timer(rq);
604
605 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
606
607 /*
608 * Mark us as started and clear complete. Complete might have been
609 * set if requeue raced with timeout, which then marked it as
610 * complete. So be sure to clear complete again when we start
611 * the request, otherwise we'll ignore the completion event.
612 *
613 * Ensure that ->deadline is visible before we set STARTED, such that
614 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
615 * it observes STARTED.
616 */
617 smp_wmb();
618 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
619 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
620 /*
621 * Coherence order guarantees these consecutive stores to a
622 * single variable propagate in the specified order. Thus the
623 * clear_bit() is ordered _after_ the set bit. See
624 * blk_mq_check_expired().
625 *
626 * (the bits must be part of the same byte for this to be
627 * true).
628 */
629 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
630 }
631
632 if (q->dma_drain_size && blk_rq_bytes(rq)) {
633 /*
634 * Make sure space for the drain appears. We know we can do
635 * this because max_hw_segments has been adjusted to be one
636 * fewer than the device can handle.
637 */
638 rq->nr_phys_segments++;
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_start_request);
642
643 /*
644 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
645 * flag isn't set yet, so there may be race with timeout handler,
646 * but given rq->deadline is just set in .queue_rq() under
647 * this situation, the race won't be possible in reality because
648 * rq->timeout should be set as big enough to cover the window
649 * between blk_mq_start_request() called from .queue_rq() and
650 * clearing REQ_ATOM_STARTED here.
651 */
652 static void __blk_mq_requeue_request(struct request *rq)
653 {
654 struct request_queue *q = rq->q;
655
656 blk_mq_put_driver_tag(rq);
657
658 trace_block_rq_requeue(q, rq);
659 wbt_requeue(q->rq_wb, &rq->issue_stat);
660 blk_mq_sched_requeue_request(rq);
661
662 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
663 if (q->dma_drain_size && blk_rq_bytes(rq))
664 rq->nr_phys_segments--;
665 }
666 }
667
668 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
669 {
670 __blk_mq_requeue_request(rq);
671
672 BUG_ON(blk_queued_rq(rq));
673 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
674 }
675 EXPORT_SYMBOL(blk_mq_requeue_request);
676
677 static void blk_mq_requeue_work(struct work_struct *work)
678 {
679 struct request_queue *q =
680 container_of(work, struct request_queue, requeue_work.work);
681 LIST_HEAD(rq_list);
682 struct request *rq, *next;
683
684 spin_lock_irq(&q->requeue_lock);
685 list_splice_init(&q->requeue_list, &rq_list);
686 spin_unlock_irq(&q->requeue_lock);
687
688 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
689 if (!(rq->rq_flags & RQF_SOFTBARRIER))
690 continue;
691
692 rq->rq_flags &= ~RQF_SOFTBARRIER;
693 list_del_init(&rq->queuelist);
694 blk_mq_sched_insert_request(rq, true, false, false, true);
695 }
696
697 while (!list_empty(&rq_list)) {
698 rq = list_entry(rq_list.next, struct request, queuelist);
699 list_del_init(&rq->queuelist);
700 blk_mq_sched_insert_request(rq, false, false, false, true);
701 }
702
703 blk_mq_run_hw_queues(q, false);
704 }
705
706 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
707 bool kick_requeue_list)
708 {
709 struct request_queue *q = rq->q;
710 unsigned long flags;
711
712 /*
713 * We abuse this flag that is otherwise used by the I/O scheduler to
714 * request head insertation from the workqueue.
715 */
716 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
717
718 spin_lock_irqsave(&q->requeue_lock, flags);
719 if (at_head) {
720 rq->rq_flags |= RQF_SOFTBARRIER;
721 list_add(&rq->queuelist, &q->requeue_list);
722 } else {
723 list_add_tail(&rq->queuelist, &q->requeue_list);
724 }
725 spin_unlock_irqrestore(&q->requeue_lock, flags);
726
727 if (kick_requeue_list)
728 blk_mq_kick_requeue_list(q);
729 }
730 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
731
732 void blk_mq_kick_requeue_list(struct request_queue *q)
733 {
734 kblockd_schedule_delayed_work(&q->requeue_work, 0);
735 }
736 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
737
738 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
739 unsigned long msecs)
740 {
741 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
742 msecs_to_jiffies(msecs));
743 }
744 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
745
746 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
747 {
748 if (tag < tags->nr_tags) {
749 prefetch(tags->rqs[tag]);
750 return tags->rqs[tag];
751 }
752
753 return NULL;
754 }
755 EXPORT_SYMBOL(blk_mq_tag_to_rq);
756
757 struct blk_mq_timeout_data {
758 unsigned long next;
759 unsigned int next_set;
760 };
761
762 void blk_mq_rq_timed_out(struct request *req, bool reserved)
763 {
764 const struct blk_mq_ops *ops = req->q->mq_ops;
765 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
766
767 /*
768 * We know that complete is set at this point. If STARTED isn't set
769 * anymore, then the request isn't active and the "timeout" should
770 * just be ignored. This can happen due to the bitflag ordering.
771 * Timeout first checks if STARTED is set, and if it is, assumes
772 * the request is active. But if we race with completion, then
773 * both flags will get cleared. So check here again, and ignore
774 * a timeout event with a request that isn't active.
775 */
776 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
777 return;
778
779 if (ops->timeout)
780 ret = ops->timeout(req, reserved);
781
782 switch (ret) {
783 case BLK_EH_HANDLED:
784 __blk_mq_complete_request(req);
785 break;
786 case BLK_EH_RESET_TIMER:
787 blk_add_timer(req);
788 blk_clear_rq_complete(req);
789 break;
790 case BLK_EH_NOT_HANDLED:
791 break;
792 default:
793 printk(KERN_ERR "block: bad eh return: %d\n", ret);
794 break;
795 }
796 }
797
798 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
799 struct request *rq, void *priv, bool reserved)
800 {
801 struct blk_mq_timeout_data *data = priv;
802 unsigned long deadline;
803
804 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
805 return;
806
807 /*
808 * Ensures that if we see STARTED we must also see our
809 * up-to-date deadline, see blk_mq_start_request().
810 */
811 smp_rmb();
812
813 deadline = READ_ONCE(rq->deadline);
814
815 /*
816 * The rq being checked may have been freed and reallocated
817 * out already here, we avoid this race by checking rq->deadline
818 * and REQ_ATOM_COMPLETE flag together:
819 *
820 * - if rq->deadline is observed as new value because of
821 * reusing, the rq won't be timed out because of timing.
822 * - if rq->deadline is observed as previous value,
823 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
824 * because we put a barrier between setting rq->deadline
825 * and clearing the flag in blk_mq_start_request(), so
826 * this rq won't be timed out too.
827 */
828 if (time_after_eq(jiffies, deadline)) {
829 if (!blk_mark_rq_complete(rq)) {
830 /*
831 * Again coherence order ensures that consecutive reads
832 * from the same variable must be in that order. This
833 * ensures that if we see COMPLETE clear, we must then
834 * see STARTED set and we'll ignore this timeout.
835 *
836 * (There's also the MB implied by the test_and_clear())
837 */
838 blk_mq_rq_timed_out(rq, reserved);
839 }
840 } else if (!data->next_set || time_after(data->next, deadline)) {
841 data->next = deadline;
842 data->next_set = 1;
843 }
844 }
845
846 static void blk_mq_timeout_work(struct work_struct *work)
847 {
848 struct request_queue *q =
849 container_of(work, struct request_queue, timeout_work);
850 struct blk_mq_timeout_data data = {
851 .next = 0,
852 .next_set = 0,
853 };
854 int i;
855
856 /* A deadlock might occur if a request is stuck requiring a
857 * timeout at the same time a queue freeze is waiting
858 * completion, since the timeout code would not be able to
859 * acquire the queue reference here.
860 *
861 * That's why we don't use blk_queue_enter here; instead, we use
862 * percpu_ref_tryget directly, because we need to be able to
863 * obtain a reference even in the short window between the queue
864 * starting to freeze, by dropping the first reference in
865 * blk_freeze_queue_start, and the moment the last request is
866 * consumed, marked by the instant q_usage_counter reaches
867 * zero.
868 */
869 if (!percpu_ref_tryget(&q->q_usage_counter))
870 return;
871
872 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
873
874 if (data.next_set) {
875 data.next = blk_rq_timeout(round_jiffies_up(data.next));
876 mod_timer(&q->timeout, data.next);
877 } else {
878 struct blk_mq_hw_ctx *hctx;
879
880 queue_for_each_hw_ctx(q, hctx, i) {
881 /* the hctx may be unmapped, so check it here */
882 if (blk_mq_hw_queue_mapped(hctx))
883 blk_mq_tag_idle(hctx);
884 }
885 }
886 blk_queue_exit(q);
887 }
888
889 struct flush_busy_ctx_data {
890 struct blk_mq_hw_ctx *hctx;
891 struct list_head *list;
892 };
893
894 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
895 {
896 struct flush_busy_ctx_data *flush_data = data;
897 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
898 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
899
900 sbitmap_clear_bit(sb, bitnr);
901 spin_lock(&ctx->lock);
902 list_splice_tail_init(&ctx->rq_list, flush_data->list);
903 spin_unlock(&ctx->lock);
904 return true;
905 }
906
907 /*
908 * Process software queues that have been marked busy, splicing them
909 * to the for-dispatch
910 */
911 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
912 {
913 struct flush_busy_ctx_data data = {
914 .hctx = hctx,
915 .list = list,
916 };
917
918 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
919 }
920 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
921
922 struct dispatch_rq_data {
923 struct blk_mq_hw_ctx *hctx;
924 struct request *rq;
925 };
926
927 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
928 void *data)
929 {
930 struct dispatch_rq_data *dispatch_data = data;
931 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
932 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
933
934 spin_lock(&ctx->lock);
935 if (unlikely(!list_empty(&ctx->rq_list))) {
936 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
937 list_del_init(&dispatch_data->rq->queuelist);
938 if (list_empty(&ctx->rq_list))
939 sbitmap_clear_bit(sb, bitnr);
940 }
941 spin_unlock(&ctx->lock);
942
943 return !dispatch_data->rq;
944 }
945
946 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
947 struct blk_mq_ctx *start)
948 {
949 unsigned off = start ? start->index_hw : 0;
950 struct dispatch_rq_data data = {
951 .hctx = hctx,
952 .rq = NULL,
953 };
954
955 __sbitmap_for_each_set(&hctx->ctx_map, off,
956 dispatch_rq_from_ctx, &data);
957
958 return data.rq;
959 }
960
961 static inline unsigned int queued_to_index(unsigned int queued)
962 {
963 if (!queued)
964 return 0;
965
966 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 }
968
969 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
970 bool wait)
971 {
972 struct blk_mq_alloc_data data = {
973 .q = rq->q,
974 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
975 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
976 };
977
978 might_sleep_if(wait);
979
980 if (rq->tag != -1)
981 goto done;
982
983 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
984 data.flags |= BLK_MQ_REQ_RESERVED;
985
986 rq->tag = blk_mq_get_tag(&data);
987 if (rq->tag >= 0) {
988 if (blk_mq_tag_busy(data.hctx)) {
989 rq->rq_flags |= RQF_MQ_INFLIGHT;
990 atomic_inc(&data.hctx->nr_active);
991 }
992 data.hctx->tags->rqs[rq->tag] = rq;
993 }
994
995 done:
996 if (hctx)
997 *hctx = data.hctx;
998 return rq->tag != -1;
999 }
1000
1001 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1002 void *key)
1003 {
1004 struct blk_mq_hw_ctx *hctx;
1005
1006 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1007
1008 list_del(&wait->entry);
1009 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1010 blk_mq_run_hw_queue(hctx, true);
1011 return 1;
1012 }
1013
1014 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1015 {
1016 struct sbq_wait_state *ws;
1017
1018 /*
1019 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1020 * The thread which wins the race to grab this bit adds the hardware
1021 * queue to the wait queue.
1022 */
1023 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1024 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1025 return false;
1026
1027 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1028 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1029
1030 /*
1031 * As soon as this returns, it's no longer safe to fiddle with
1032 * hctx->dispatch_wait, since a completion can wake up the wait queue
1033 * and unlock the bit.
1034 */
1035 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1036 return true;
1037 }
1038
1039 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1040 bool got_budget)
1041 {
1042 struct blk_mq_hw_ctx *hctx;
1043 struct request *rq, *nxt;
1044 int errors, queued;
1045
1046 if (list_empty(list))
1047 return false;
1048
1049 WARN_ON(!list_is_singular(list) && got_budget);
1050
1051 /*
1052 * Now process all the entries, sending them to the driver.
1053 */
1054 errors = queued = 0;
1055 do {
1056 struct blk_mq_queue_data bd;
1057 blk_status_t ret;
1058
1059 rq = list_first_entry(list, struct request, queuelist);
1060 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1061 /*
1062 * The initial allocation attempt failed, so we need to
1063 * rerun the hardware queue when a tag is freed.
1064 */
1065 if (!blk_mq_dispatch_wait_add(hctx)) {
1066 if (got_budget)
1067 blk_mq_put_dispatch_budget(hctx);
1068 break;
1069 }
1070
1071 /*
1072 * It's possible that a tag was freed in the window
1073 * between the allocation failure and adding the
1074 * hardware queue to the wait queue.
1075 */
1076 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1077 if (got_budget)
1078 blk_mq_put_dispatch_budget(hctx);
1079 break;
1080 }
1081 }
1082
1083 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1084 break;
1085
1086 list_del_init(&rq->queuelist);
1087
1088 bd.rq = rq;
1089
1090 /*
1091 * Flag last if we have no more requests, or if we have more
1092 * but can't assign a driver tag to it.
1093 */
1094 if (list_empty(list))
1095 bd.last = true;
1096 else {
1097 nxt = list_first_entry(list, struct request, queuelist);
1098 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1099 }
1100
1101 ret = q->mq_ops->queue_rq(hctx, &bd);
1102 if (ret == BLK_STS_RESOURCE) {
1103 /*
1104 * If an I/O scheduler has been configured and we got a
1105 * driver tag for the next request already, free it again.
1106 */
1107 if (!list_empty(list)) {
1108 nxt = list_first_entry(list, struct request, queuelist);
1109 blk_mq_put_driver_tag(nxt);
1110 }
1111 list_add(&rq->queuelist, list);
1112 __blk_mq_requeue_request(rq);
1113 break;
1114 }
1115
1116 if (unlikely(ret != BLK_STS_OK)) {
1117 errors++;
1118 blk_mq_end_request(rq, BLK_STS_IOERR);
1119 continue;
1120 }
1121
1122 queued++;
1123 } while (!list_empty(list));
1124
1125 hctx->dispatched[queued_to_index(queued)]++;
1126
1127 /*
1128 * Any items that need requeuing? Stuff them into hctx->dispatch,
1129 * that is where we will continue on next queue run.
1130 */
1131 if (!list_empty(list)) {
1132 spin_lock(&hctx->lock);
1133 list_splice_init(list, &hctx->dispatch);
1134 spin_unlock(&hctx->lock);
1135
1136 /*
1137 * If SCHED_RESTART was set by the caller of this function and
1138 * it is no longer set that means that it was cleared by another
1139 * thread and hence that a queue rerun is needed.
1140 *
1141 * If TAG_WAITING is set that means that an I/O scheduler has
1142 * been configured and another thread is waiting for a driver
1143 * tag. To guarantee fairness, do not rerun this hardware queue
1144 * but let the other thread grab the driver tag.
1145 *
1146 * If no I/O scheduler has been configured it is possible that
1147 * the hardware queue got stopped and restarted before requests
1148 * were pushed back onto the dispatch list. Rerun the queue to
1149 * avoid starvation. Notes:
1150 * - blk_mq_run_hw_queue() checks whether or not a queue has
1151 * been stopped before rerunning a queue.
1152 * - Some but not all block drivers stop a queue before
1153 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1154 * and dm-rq.
1155 */
1156 if (!blk_mq_sched_needs_restart(hctx) &&
1157 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1158 blk_mq_run_hw_queue(hctx, true);
1159 }
1160
1161 return (queued + errors) != 0;
1162 }
1163
1164 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1165 {
1166 int srcu_idx;
1167
1168 /*
1169 * We should be running this queue from one of the CPUs that
1170 * are mapped to it.
1171 */
1172 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1173 cpu_online(hctx->next_cpu));
1174
1175 /*
1176 * We can't run the queue inline with ints disabled. Ensure that
1177 * we catch bad users of this early.
1178 */
1179 WARN_ON_ONCE(in_interrupt());
1180
1181 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1182 rcu_read_lock();
1183 blk_mq_sched_dispatch_requests(hctx);
1184 rcu_read_unlock();
1185 } else {
1186 might_sleep();
1187
1188 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1189 blk_mq_sched_dispatch_requests(hctx);
1190 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1191 }
1192 }
1193
1194 /*
1195 * It'd be great if the workqueue API had a way to pass
1196 * in a mask and had some smarts for more clever placement.
1197 * For now we just round-robin here, switching for every
1198 * BLK_MQ_CPU_WORK_BATCH queued items.
1199 */
1200 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1201 {
1202 if (hctx->queue->nr_hw_queues == 1)
1203 return WORK_CPU_UNBOUND;
1204
1205 if (--hctx->next_cpu_batch <= 0) {
1206 int next_cpu;
1207
1208 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1209 if (next_cpu >= nr_cpu_ids)
1210 next_cpu = cpumask_first(hctx->cpumask);
1211
1212 hctx->next_cpu = next_cpu;
1213 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1214 }
1215
1216 return hctx->next_cpu;
1217 }
1218
1219 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1220 unsigned long msecs)
1221 {
1222 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1223 return;
1224
1225 if (unlikely(blk_mq_hctx_stopped(hctx)))
1226 return;
1227
1228 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1229 int cpu = get_cpu();
1230 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1231 __blk_mq_run_hw_queue(hctx);
1232 put_cpu();
1233 return;
1234 }
1235
1236 put_cpu();
1237 }
1238
1239 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1240 &hctx->run_work,
1241 msecs_to_jiffies(msecs));
1242 }
1243
1244 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1245 {
1246 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1247 }
1248 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1249
1250 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1251 {
1252 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1253 }
1254 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1255
1256 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1257 {
1258 struct blk_mq_hw_ctx *hctx;
1259 int i;
1260
1261 queue_for_each_hw_ctx(q, hctx, i) {
1262 if (!blk_mq_hctx_has_pending(hctx) ||
1263 blk_mq_hctx_stopped(hctx))
1264 continue;
1265
1266 blk_mq_run_hw_queue(hctx, async);
1267 }
1268 }
1269 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1270
1271 /**
1272 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1273 * @q: request queue.
1274 *
1275 * The caller is responsible for serializing this function against
1276 * blk_mq_{start,stop}_hw_queue().
1277 */
1278 bool blk_mq_queue_stopped(struct request_queue *q)
1279 {
1280 struct blk_mq_hw_ctx *hctx;
1281 int i;
1282
1283 queue_for_each_hw_ctx(q, hctx, i)
1284 if (blk_mq_hctx_stopped(hctx))
1285 return true;
1286
1287 return false;
1288 }
1289 EXPORT_SYMBOL(blk_mq_queue_stopped);
1290
1291 /*
1292 * This function is often used for pausing .queue_rq() by driver when
1293 * there isn't enough resource or some conditions aren't satisfied, and
1294 * BLK_STS_RESOURCE is usually returned.
1295 *
1296 * We do not guarantee that dispatch can be drained or blocked
1297 * after blk_mq_stop_hw_queue() returns. Please use
1298 * blk_mq_quiesce_queue() for that requirement.
1299 */
1300 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1301 {
1302 cancel_delayed_work(&hctx->run_work);
1303
1304 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1305 }
1306 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1307
1308 /*
1309 * This function is often used for pausing .queue_rq() by driver when
1310 * there isn't enough resource or some conditions aren't satisfied, and
1311 * BLK_STS_RESOURCE is usually returned.
1312 *
1313 * We do not guarantee that dispatch can be drained or blocked
1314 * after blk_mq_stop_hw_queues() returns. Please use
1315 * blk_mq_quiesce_queue() for that requirement.
1316 */
1317 void blk_mq_stop_hw_queues(struct request_queue *q)
1318 {
1319 struct blk_mq_hw_ctx *hctx;
1320 int i;
1321
1322 queue_for_each_hw_ctx(q, hctx, i)
1323 blk_mq_stop_hw_queue(hctx);
1324 }
1325 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1326
1327 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1328 {
1329 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1330
1331 blk_mq_run_hw_queue(hctx, false);
1332 }
1333 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1334
1335 void blk_mq_start_hw_queues(struct request_queue *q)
1336 {
1337 struct blk_mq_hw_ctx *hctx;
1338 int i;
1339
1340 queue_for_each_hw_ctx(q, hctx, i)
1341 blk_mq_start_hw_queue(hctx);
1342 }
1343 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1344
1345 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1346 {
1347 if (!blk_mq_hctx_stopped(hctx))
1348 return;
1349
1350 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1351 blk_mq_run_hw_queue(hctx, async);
1352 }
1353 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1354
1355 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1356 {
1357 struct blk_mq_hw_ctx *hctx;
1358 int i;
1359
1360 queue_for_each_hw_ctx(q, hctx, i)
1361 blk_mq_start_stopped_hw_queue(hctx, async);
1362 }
1363 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1364
1365 static void blk_mq_run_work_fn(struct work_struct *work)
1366 {
1367 struct blk_mq_hw_ctx *hctx;
1368
1369 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1370
1371 /*
1372 * If we are stopped, don't run the queue. The exception is if
1373 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1374 * the STOPPED bit and run it.
1375 */
1376 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1377 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1378 return;
1379
1380 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1381 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1382 }
1383
1384 __blk_mq_run_hw_queue(hctx);
1385 }
1386
1387
1388 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1389 {
1390 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1391 return;
1392
1393 /*
1394 * Stop the hw queue, then modify currently delayed work.
1395 * This should prevent us from running the queue prematurely.
1396 * Mark the queue as auto-clearing STOPPED when it runs.
1397 */
1398 blk_mq_stop_hw_queue(hctx);
1399 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1400 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1401 &hctx->run_work,
1402 msecs_to_jiffies(msecs));
1403 }
1404 EXPORT_SYMBOL(blk_mq_delay_queue);
1405
1406 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1407 struct request *rq,
1408 bool at_head)
1409 {
1410 struct blk_mq_ctx *ctx = rq->mq_ctx;
1411
1412 lockdep_assert_held(&ctx->lock);
1413
1414 trace_block_rq_insert(hctx->queue, rq);
1415
1416 if (at_head)
1417 list_add(&rq->queuelist, &ctx->rq_list);
1418 else
1419 list_add_tail(&rq->queuelist, &ctx->rq_list);
1420 }
1421
1422 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1423 bool at_head)
1424 {
1425 struct blk_mq_ctx *ctx = rq->mq_ctx;
1426
1427 lockdep_assert_held(&ctx->lock);
1428
1429 __blk_mq_insert_req_list(hctx, rq, at_head);
1430 blk_mq_hctx_mark_pending(hctx, ctx);
1431 }
1432
1433 /*
1434 * Should only be used carefully, when the caller knows we want to
1435 * bypass a potential IO scheduler on the target device.
1436 */
1437 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1438 {
1439 struct blk_mq_ctx *ctx = rq->mq_ctx;
1440 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1441
1442 spin_lock(&hctx->lock);
1443 list_add_tail(&rq->queuelist, &hctx->dispatch);
1444 spin_unlock(&hctx->lock);
1445
1446 if (run_queue)
1447 blk_mq_run_hw_queue(hctx, false);
1448 }
1449
1450 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1451 struct list_head *list)
1452
1453 {
1454 /*
1455 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1456 * offline now
1457 */
1458 spin_lock(&ctx->lock);
1459 while (!list_empty(list)) {
1460 struct request *rq;
1461
1462 rq = list_first_entry(list, struct request, queuelist);
1463 BUG_ON(rq->mq_ctx != ctx);
1464 list_del_init(&rq->queuelist);
1465 __blk_mq_insert_req_list(hctx, rq, false);
1466 }
1467 blk_mq_hctx_mark_pending(hctx, ctx);
1468 spin_unlock(&ctx->lock);
1469 }
1470
1471 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1472 {
1473 struct request *rqa = container_of(a, struct request, queuelist);
1474 struct request *rqb = container_of(b, struct request, queuelist);
1475
1476 return !(rqa->mq_ctx < rqb->mq_ctx ||
1477 (rqa->mq_ctx == rqb->mq_ctx &&
1478 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1479 }
1480
1481 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1482 {
1483 struct blk_mq_ctx *this_ctx;
1484 struct request_queue *this_q;
1485 struct request *rq;
1486 LIST_HEAD(list);
1487 LIST_HEAD(ctx_list);
1488 unsigned int depth;
1489
1490 list_splice_init(&plug->mq_list, &list);
1491
1492 list_sort(NULL, &list, plug_ctx_cmp);
1493
1494 this_q = NULL;
1495 this_ctx = NULL;
1496 depth = 0;
1497
1498 while (!list_empty(&list)) {
1499 rq = list_entry_rq(list.next);
1500 list_del_init(&rq->queuelist);
1501 BUG_ON(!rq->q);
1502 if (rq->mq_ctx != this_ctx) {
1503 if (this_ctx) {
1504 trace_block_unplug(this_q, depth, from_schedule);
1505 blk_mq_sched_insert_requests(this_q, this_ctx,
1506 &ctx_list,
1507 from_schedule);
1508 }
1509
1510 this_ctx = rq->mq_ctx;
1511 this_q = rq->q;
1512 depth = 0;
1513 }
1514
1515 depth++;
1516 list_add_tail(&rq->queuelist, &ctx_list);
1517 }
1518
1519 /*
1520 * If 'this_ctx' is set, we know we have entries to complete
1521 * on 'ctx_list'. Do those.
1522 */
1523 if (this_ctx) {
1524 trace_block_unplug(this_q, depth, from_schedule);
1525 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1526 from_schedule);
1527 }
1528 }
1529
1530 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1531 {
1532 blk_init_request_from_bio(rq, bio);
1533
1534 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1535
1536 blk_account_io_start(rq, true);
1537 }
1538
1539 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1540 struct blk_mq_ctx *ctx,
1541 struct request *rq)
1542 {
1543 spin_lock(&ctx->lock);
1544 __blk_mq_insert_request(hctx, rq, false);
1545 spin_unlock(&ctx->lock);
1546 }
1547
1548 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1549 {
1550 if (rq->tag != -1)
1551 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1552
1553 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1554 }
1555
1556 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1557 struct request *rq,
1558 blk_qc_t *cookie, bool may_sleep)
1559 {
1560 struct request_queue *q = rq->q;
1561 struct blk_mq_queue_data bd = {
1562 .rq = rq,
1563 .last = true,
1564 };
1565 blk_qc_t new_cookie;
1566 blk_status_t ret;
1567 bool run_queue = true;
1568
1569 /* RCU or SRCU read lock is needed before checking quiesced flag */
1570 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1571 run_queue = false;
1572 goto insert;
1573 }
1574
1575 if (q->elevator)
1576 goto insert;
1577
1578 if (!blk_mq_get_driver_tag(rq, NULL, false))
1579 goto insert;
1580
1581 if (!blk_mq_get_dispatch_budget(hctx)) {
1582 blk_mq_put_driver_tag(rq);
1583 goto insert;
1584 }
1585
1586 new_cookie = request_to_qc_t(hctx, rq);
1587
1588 /*
1589 * For OK queue, we are done. For error, kill it. Any other
1590 * error (busy), just add it to our list as we previously
1591 * would have done
1592 */
1593 ret = q->mq_ops->queue_rq(hctx, &bd);
1594 switch (ret) {
1595 case BLK_STS_OK:
1596 *cookie = new_cookie;
1597 return;
1598 case BLK_STS_RESOURCE:
1599 __blk_mq_requeue_request(rq);
1600 goto insert;
1601 default:
1602 *cookie = BLK_QC_T_NONE;
1603 blk_mq_end_request(rq, ret);
1604 return;
1605 }
1606
1607 insert:
1608 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1609 }
1610
1611 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1612 struct request *rq, blk_qc_t *cookie)
1613 {
1614 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1615 rcu_read_lock();
1616 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1617 rcu_read_unlock();
1618 } else {
1619 unsigned int srcu_idx;
1620
1621 might_sleep();
1622
1623 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1624 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1625 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1626 }
1627 }
1628
1629 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1630 {
1631 const int is_sync = op_is_sync(bio->bi_opf);
1632 const int is_flush_fua = op_is_flush(bio->bi_opf);
1633 struct blk_mq_alloc_data data = { .flags = 0 };
1634 struct request *rq;
1635 unsigned int request_count = 0;
1636 struct blk_plug *plug;
1637 struct request *same_queue_rq = NULL;
1638 blk_qc_t cookie;
1639 unsigned int wb_acct;
1640
1641 blk_queue_bounce(q, &bio);
1642
1643 blk_queue_split(q, &bio);
1644
1645 if (!bio_integrity_prep(bio))
1646 return BLK_QC_T_NONE;
1647
1648 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1649 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1650 return BLK_QC_T_NONE;
1651
1652 if (blk_mq_sched_bio_merge(q, bio))
1653 return BLK_QC_T_NONE;
1654
1655 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1656
1657 trace_block_getrq(q, bio, bio->bi_opf);
1658
1659 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1660 if (unlikely(!rq)) {
1661 __wbt_done(q->rq_wb, wb_acct);
1662 if (bio->bi_opf & REQ_NOWAIT)
1663 bio_wouldblock_error(bio);
1664 return BLK_QC_T_NONE;
1665 }
1666
1667 wbt_track(&rq->issue_stat, wb_acct);
1668
1669 cookie = request_to_qc_t(data.hctx, rq);
1670
1671 plug = current->plug;
1672 if (unlikely(is_flush_fua)) {
1673 blk_mq_put_ctx(data.ctx);
1674 blk_mq_bio_to_request(rq, bio);
1675
1676 /* bypass scheduler for flush rq */
1677 blk_insert_flush(rq);
1678 blk_mq_run_hw_queue(data.hctx, true);
1679 } else if (plug && q->nr_hw_queues == 1) {
1680 struct request *last = NULL;
1681
1682 blk_mq_put_ctx(data.ctx);
1683 blk_mq_bio_to_request(rq, bio);
1684
1685 /*
1686 * @request_count may become stale because of schedule
1687 * out, so check the list again.
1688 */
1689 if (list_empty(&plug->mq_list))
1690 request_count = 0;
1691 else if (blk_queue_nomerges(q))
1692 request_count = blk_plug_queued_count(q);
1693
1694 if (!request_count)
1695 trace_block_plug(q);
1696 else
1697 last = list_entry_rq(plug->mq_list.prev);
1698
1699 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1700 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1701 blk_flush_plug_list(plug, false);
1702 trace_block_plug(q);
1703 }
1704
1705 list_add_tail(&rq->queuelist, &plug->mq_list);
1706 } else if (plug && !blk_queue_nomerges(q)) {
1707 blk_mq_bio_to_request(rq, bio);
1708
1709 /*
1710 * We do limited plugging. If the bio can be merged, do that.
1711 * Otherwise the existing request in the plug list will be
1712 * issued. So the plug list will have one request at most
1713 * The plug list might get flushed before this. If that happens,
1714 * the plug list is empty, and same_queue_rq is invalid.
1715 */
1716 if (list_empty(&plug->mq_list))
1717 same_queue_rq = NULL;
1718 if (same_queue_rq)
1719 list_del_init(&same_queue_rq->queuelist);
1720 list_add_tail(&rq->queuelist, &plug->mq_list);
1721
1722 blk_mq_put_ctx(data.ctx);
1723
1724 if (same_queue_rq) {
1725 data.hctx = blk_mq_map_queue(q,
1726 same_queue_rq->mq_ctx->cpu);
1727 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1728 &cookie);
1729 }
1730 } else if (q->nr_hw_queues > 1 && is_sync) {
1731 blk_mq_put_ctx(data.ctx);
1732 blk_mq_bio_to_request(rq, bio);
1733 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1734 } else if (q->elevator) {
1735 blk_mq_put_ctx(data.ctx);
1736 blk_mq_bio_to_request(rq, bio);
1737 blk_mq_sched_insert_request(rq, false, true, true, true);
1738 } else {
1739 blk_mq_put_ctx(data.ctx);
1740 blk_mq_bio_to_request(rq, bio);
1741 blk_mq_queue_io(data.hctx, data.ctx, rq);
1742 blk_mq_run_hw_queue(data.hctx, true);
1743 }
1744
1745 return cookie;
1746 }
1747
1748 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1749 unsigned int hctx_idx)
1750 {
1751 struct page *page;
1752
1753 if (tags->rqs && set->ops->exit_request) {
1754 int i;
1755
1756 for (i = 0; i < tags->nr_tags; i++) {
1757 struct request *rq = tags->static_rqs[i];
1758
1759 if (!rq)
1760 continue;
1761 set->ops->exit_request(set, rq, hctx_idx);
1762 tags->static_rqs[i] = NULL;
1763 }
1764 }
1765
1766 while (!list_empty(&tags->page_list)) {
1767 page = list_first_entry(&tags->page_list, struct page, lru);
1768 list_del_init(&page->lru);
1769 /*
1770 * Remove kmemleak object previously allocated in
1771 * blk_mq_init_rq_map().
1772 */
1773 kmemleak_free(page_address(page));
1774 __free_pages(page, page->private);
1775 }
1776 }
1777
1778 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1779 {
1780 kfree(tags->rqs);
1781 tags->rqs = NULL;
1782 kfree(tags->static_rqs);
1783 tags->static_rqs = NULL;
1784
1785 blk_mq_free_tags(tags);
1786 }
1787
1788 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1789 unsigned int hctx_idx,
1790 unsigned int nr_tags,
1791 unsigned int reserved_tags)
1792 {
1793 struct blk_mq_tags *tags;
1794 int node;
1795
1796 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1797 if (node == NUMA_NO_NODE)
1798 node = set->numa_node;
1799
1800 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1801 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1802 if (!tags)
1803 return NULL;
1804
1805 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1806 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1807 node);
1808 if (!tags->rqs) {
1809 blk_mq_free_tags(tags);
1810 return NULL;
1811 }
1812
1813 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1814 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1815 node);
1816 if (!tags->static_rqs) {
1817 kfree(tags->rqs);
1818 blk_mq_free_tags(tags);
1819 return NULL;
1820 }
1821
1822 return tags;
1823 }
1824
1825 static size_t order_to_size(unsigned int order)
1826 {
1827 return (size_t)PAGE_SIZE << order;
1828 }
1829
1830 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1831 unsigned int hctx_idx, unsigned int depth)
1832 {
1833 unsigned int i, j, entries_per_page, max_order = 4;
1834 size_t rq_size, left;
1835 int node;
1836
1837 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1838 if (node == NUMA_NO_NODE)
1839 node = set->numa_node;
1840
1841 INIT_LIST_HEAD(&tags->page_list);
1842
1843 /*
1844 * rq_size is the size of the request plus driver payload, rounded
1845 * to the cacheline size
1846 */
1847 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1848 cache_line_size());
1849 left = rq_size * depth;
1850
1851 for (i = 0; i < depth; ) {
1852 int this_order = max_order;
1853 struct page *page;
1854 int to_do;
1855 void *p;
1856
1857 while (this_order && left < order_to_size(this_order - 1))
1858 this_order--;
1859
1860 do {
1861 page = alloc_pages_node(node,
1862 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1863 this_order);
1864 if (page)
1865 break;
1866 if (!this_order--)
1867 break;
1868 if (order_to_size(this_order) < rq_size)
1869 break;
1870 } while (1);
1871
1872 if (!page)
1873 goto fail;
1874
1875 page->private = this_order;
1876 list_add_tail(&page->lru, &tags->page_list);
1877
1878 p = page_address(page);
1879 /*
1880 * Allow kmemleak to scan these pages as they contain pointers
1881 * to additional allocations like via ops->init_request().
1882 */
1883 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1884 entries_per_page = order_to_size(this_order) / rq_size;
1885 to_do = min(entries_per_page, depth - i);
1886 left -= to_do * rq_size;
1887 for (j = 0; j < to_do; j++) {
1888 struct request *rq = p;
1889
1890 tags->static_rqs[i] = rq;
1891 if (set->ops->init_request) {
1892 if (set->ops->init_request(set, rq, hctx_idx,
1893 node)) {
1894 tags->static_rqs[i] = NULL;
1895 goto fail;
1896 }
1897 }
1898
1899 p += rq_size;
1900 i++;
1901 }
1902 }
1903 return 0;
1904
1905 fail:
1906 blk_mq_free_rqs(set, tags, hctx_idx);
1907 return -ENOMEM;
1908 }
1909
1910 /*
1911 * 'cpu' is going away. splice any existing rq_list entries from this
1912 * software queue to the hw queue dispatch list, and ensure that it
1913 * gets run.
1914 */
1915 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1916 {
1917 struct blk_mq_hw_ctx *hctx;
1918 struct blk_mq_ctx *ctx;
1919 LIST_HEAD(tmp);
1920
1921 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1922 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1923
1924 spin_lock(&ctx->lock);
1925 if (!list_empty(&ctx->rq_list)) {
1926 list_splice_init(&ctx->rq_list, &tmp);
1927 blk_mq_hctx_clear_pending(hctx, ctx);
1928 }
1929 spin_unlock(&ctx->lock);
1930
1931 if (list_empty(&tmp))
1932 return 0;
1933
1934 spin_lock(&hctx->lock);
1935 list_splice_tail_init(&tmp, &hctx->dispatch);
1936 spin_unlock(&hctx->lock);
1937
1938 blk_mq_run_hw_queue(hctx, true);
1939 return 0;
1940 }
1941
1942 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1943 {
1944 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1945 &hctx->cpuhp_dead);
1946 }
1947
1948 /* hctx->ctxs will be freed in queue's release handler */
1949 static void blk_mq_exit_hctx(struct request_queue *q,
1950 struct blk_mq_tag_set *set,
1951 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1952 {
1953 blk_mq_debugfs_unregister_hctx(hctx);
1954
1955 blk_mq_tag_idle(hctx);
1956
1957 if (set->ops->exit_request)
1958 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1959
1960 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1961
1962 if (set->ops->exit_hctx)
1963 set->ops->exit_hctx(hctx, hctx_idx);
1964
1965 if (hctx->flags & BLK_MQ_F_BLOCKING)
1966 cleanup_srcu_struct(hctx->queue_rq_srcu);
1967
1968 blk_mq_remove_cpuhp(hctx);
1969 blk_free_flush_queue(hctx->fq);
1970 sbitmap_free(&hctx->ctx_map);
1971 }
1972
1973 static void blk_mq_exit_hw_queues(struct request_queue *q,
1974 struct blk_mq_tag_set *set, int nr_queue)
1975 {
1976 struct blk_mq_hw_ctx *hctx;
1977 unsigned int i;
1978
1979 queue_for_each_hw_ctx(q, hctx, i) {
1980 if (i == nr_queue)
1981 break;
1982 blk_mq_exit_hctx(q, set, hctx, i);
1983 }
1984 }
1985
1986 static int blk_mq_init_hctx(struct request_queue *q,
1987 struct blk_mq_tag_set *set,
1988 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1989 {
1990 int node;
1991
1992 node = hctx->numa_node;
1993 if (node == NUMA_NO_NODE)
1994 node = hctx->numa_node = set->numa_node;
1995
1996 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1997 spin_lock_init(&hctx->lock);
1998 INIT_LIST_HEAD(&hctx->dispatch);
1999 hctx->queue = q;
2000 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2001
2002 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2003
2004 hctx->tags = set->tags[hctx_idx];
2005
2006 /*
2007 * Allocate space for all possible cpus to avoid allocation at
2008 * runtime
2009 */
2010 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2011 GFP_KERNEL, node);
2012 if (!hctx->ctxs)
2013 goto unregister_cpu_notifier;
2014
2015 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2016 node))
2017 goto free_ctxs;
2018
2019 hctx->nr_ctx = 0;
2020
2021 if (set->ops->init_hctx &&
2022 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2023 goto free_bitmap;
2024
2025 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2026 goto exit_hctx;
2027
2028 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2029 if (!hctx->fq)
2030 goto sched_exit_hctx;
2031
2032 if (set->ops->init_request &&
2033 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2034 node))
2035 goto free_fq;
2036
2037 if (hctx->flags & BLK_MQ_F_BLOCKING)
2038 init_srcu_struct(hctx->queue_rq_srcu);
2039
2040 blk_mq_debugfs_register_hctx(q, hctx);
2041
2042 return 0;
2043
2044 free_fq:
2045 kfree(hctx->fq);
2046 sched_exit_hctx:
2047 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2048 exit_hctx:
2049 if (set->ops->exit_hctx)
2050 set->ops->exit_hctx(hctx, hctx_idx);
2051 free_bitmap:
2052 sbitmap_free(&hctx->ctx_map);
2053 free_ctxs:
2054 kfree(hctx->ctxs);
2055 unregister_cpu_notifier:
2056 blk_mq_remove_cpuhp(hctx);
2057 return -1;
2058 }
2059
2060 static void blk_mq_init_cpu_queues(struct request_queue *q,
2061 unsigned int nr_hw_queues)
2062 {
2063 unsigned int i;
2064
2065 for_each_possible_cpu(i) {
2066 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2067 struct blk_mq_hw_ctx *hctx;
2068
2069 __ctx->cpu = i;
2070 spin_lock_init(&__ctx->lock);
2071 INIT_LIST_HEAD(&__ctx->rq_list);
2072 __ctx->queue = q;
2073
2074 /* If the cpu isn't present, the cpu is mapped to first hctx */
2075 if (!cpu_present(i))
2076 continue;
2077
2078 hctx = blk_mq_map_queue(q, i);
2079
2080 /*
2081 * Set local node, IFF we have more than one hw queue. If
2082 * not, we remain on the home node of the device
2083 */
2084 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2085 hctx->numa_node = local_memory_node(cpu_to_node(i));
2086 }
2087 }
2088
2089 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2090 {
2091 int ret = 0;
2092
2093 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2094 set->queue_depth, set->reserved_tags);
2095 if (!set->tags[hctx_idx])
2096 return false;
2097
2098 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2099 set->queue_depth);
2100 if (!ret)
2101 return true;
2102
2103 blk_mq_free_rq_map(set->tags[hctx_idx]);
2104 set->tags[hctx_idx] = NULL;
2105 return false;
2106 }
2107
2108 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2109 unsigned int hctx_idx)
2110 {
2111 if (set->tags[hctx_idx]) {
2112 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2113 blk_mq_free_rq_map(set->tags[hctx_idx]);
2114 set->tags[hctx_idx] = NULL;
2115 }
2116 }
2117
2118 static void blk_mq_map_swqueue(struct request_queue *q)
2119 {
2120 unsigned int i, hctx_idx;
2121 struct blk_mq_hw_ctx *hctx;
2122 struct blk_mq_ctx *ctx;
2123 struct blk_mq_tag_set *set = q->tag_set;
2124
2125 /*
2126 * Avoid others reading imcomplete hctx->cpumask through sysfs
2127 */
2128 mutex_lock(&q->sysfs_lock);
2129
2130 queue_for_each_hw_ctx(q, hctx, i) {
2131 cpumask_clear(hctx->cpumask);
2132 hctx->nr_ctx = 0;
2133 }
2134
2135 /*
2136 * Map software to hardware queues.
2137 *
2138 * If the cpu isn't present, the cpu is mapped to first hctx.
2139 */
2140 for_each_present_cpu(i) {
2141 hctx_idx = q->mq_map[i];
2142 /* unmapped hw queue can be remapped after CPU topo changed */
2143 if (!set->tags[hctx_idx] &&
2144 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2145 /*
2146 * If tags initialization fail for some hctx,
2147 * that hctx won't be brought online. In this
2148 * case, remap the current ctx to hctx[0] which
2149 * is guaranteed to always have tags allocated
2150 */
2151 q->mq_map[i] = 0;
2152 }
2153
2154 ctx = per_cpu_ptr(q->queue_ctx, i);
2155 hctx = blk_mq_map_queue(q, i);
2156
2157 cpumask_set_cpu(i, hctx->cpumask);
2158 ctx->index_hw = hctx->nr_ctx;
2159 hctx->ctxs[hctx->nr_ctx++] = ctx;
2160 }
2161
2162 mutex_unlock(&q->sysfs_lock);
2163
2164 queue_for_each_hw_ctx(q, hctx, i) {
2165 /*
2166 * If no software queues are mapped to this hardware queue,
2167 * disable it and free the request entries.
2168 */
2169 if (!hctx->nr_ctx) {
2170 /* Never unmap queue 0. We need it as a
2171 * fallback in case of a new remap fails
2172 * allocation
2173 */
2174 if (i && set->tags[i])
2175 blk_mq_free_map_and_requests(set, i);
2176
2177 hctx->tags = NULL;
2178 continue;
2179 }
2180
2181 hctx->tags = set->tags[i];
2182 WARN_ON(!hctx->tags);
2183
2184 /*
2185 * Set the map size to the number of mapped software queues.
2186 * This is more accurate and more efficient than looping
2187 * over all possibly mapped software queues.
2188 */
2189 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2190
2191 /*
2192 * Initialize batch roundrobin counts
2193 */
2194 hctx->next_cpu = cpumask_first(hctx->cpumask);
2195 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2196 }
2197 }
2198
2199 /*
2200 * Caller needs to ensure that we're either frozen/quiesced, or that
2201 * the queue isn't live yet.
2202 */
2203 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2204 {
2205 struct blk_mq_hw_ctx *hctx;
2206 int i;
2207
2208 queue_for_each_hw_ctx(q, hctx, i) {
2209 if (shared) {
2210 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2211 atomic_inc(&q->shared_hctx_restart);
2212 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2213 } else {
2214 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2215 atomic_dec(&q->shared_hctx_restart);
2216 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2217 }
2218 }
2219 }
2220
2221 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2222 bool shared)
2223 {
2224 struct request_queue *q;
2225
2226 lockdep_assert_held(&set->tag_list_lock);
2227
2228 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2229 blk_mq_freeze_queue(q);
2230 queue_set_hctx_shared(q, shared);
2231 blk_mq_unfreeze_queue(q);
2232 }
2233 }
2234
2235 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2236 {
2237 struct blk_mq_tag_set *set = q->tag_set;
2238
2239 mutex_lock(&set->tag_list_lock);
2240 list_del_rcu(&q->tag_set_list);
2241 INIT_LIST_HEAD(&q->tag_set_list);
2242 if (list_is_singular(&set->tag_list)) {
2243 /* just transitioned to unshared */
2244 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2245 /* update existing queue */
2246 blk_mq_update_tag_set_depth(set, false);
2247 }
2248 mutex_unlock(&set->tag_list_lock);
2249
2250 synchronize_rcu();
2251 }
2252
2253 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2254 struct request_queue *q)
2255 {
2256 q->tag_set = set;
2257
2258 mutex_lock(&set->tag_list_lock);
2259
2260 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2261 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2262 set->flags |= BLK_MQ_F_TAG_SHARED;
2263 /* update existing queue */
2264 blk_mq_update_tag_set_depth(set, true);
2265 }
2266 if (set->flags & BLK_MQ_F_TAG_SHARED)
2267 queue_set_hctx_shared(q, true);
2268 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2269
2270 mutex_unlock(&set->tag_list_lock);
2271 }
2272
2273 /*
2274 * It is the actual release handler for mq, but we do it from
2275 * request queue's release handler for avoiding use-after-free
2276 * and headache because q->mq_kobj shouldn't have been introduced,
2277 * but we can't group ctx/kctx kobj without it.
2278 */
2279 void blk_mq_release(struct request_queue *q)
2280 {
2281 struct blk_mq_hw_ctx *hctx;
2282 unsigned int i;
2283
2284 /* hctx kobj stays in hctx */
2285 queue_for_each_hw_ctx(q, hctx, i) {
2286 if (!hctx)
2287 continue;
2288 kobject_put(&hctx->kobj);
2289 }
2290
2291 q->mq_map = NULL;
2292
2293 kfree(q->queue_hw_ctx);
2294
2295 /*
2296 * release .mq_kobj and sw queue's kobject now because
2297 * both share lifetime with request queue.
2298 */
2299 blk_mq_sysfs_deinit(q);
2300
2301 free_percpu(q->queue_ctx);
2302 }
2303
2304 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2305 {
2306 struct request_queue *uninit_q, *q;
2307
2308 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2309 if (!uninit_q)
2310 return ERR_PTR(-ENOMEM);
2311
2312 q = blk_mq_init_allocated_queue(set, uninit_q);
2313 if (IS_ERR(q))
2314 blk_cleanup_queue(uninit_q);
2315
2316 return q;
2317 }
2318 EXPORT_SYMBOL(blk_mq_init_queue);
2319
2320 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2321 {
2322 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2323
2324 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2325 __alignof__(struct blk_mq_hw_ctx)) !=
2326 sizeof(struct blk_mq_hw_ctx));
2327
2328 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2329 hw_ctx_size += sizeof(struct srcu_struct);
2330
2331 return hw_ctx_size;
2332 }
2333
2334 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2335 struct request_queue *q)
2336 {
2337 int i, j;
2338 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2339
2340 blk_mq_sysfs_unregister(q);
2341 for (i = 0; i < set->nr_hw_queues; i++) {
2342 int node;
2343
2344 if (hctxs[i])
2345 continue;
2346
2347 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2348 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2349 GFP_KERNEL, node);
2350 if (!hctxs[i])
2351 break;
2352
2353 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2354 node)) {
2355 kfree(hctxs[i]);
2356 hctxs[i] = NULL;
2357 break;
2358 }
2359
2360 atomic_set(&hctxs[i]->nr_active, 0);
2361 hctxs[i]->numa_node = node;
2362 hctxs[i]->queue_num = i;
2363
2364 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2365 free_cpumask_var(hctxs[i]->cpumask);
2366 kfree(hctxs[i]);
2367 hctxs[i] = NULL;
2368 break;
2369 }
2370 blk_mq_hctx_kobj_init(hctxs[i]);
2371 }
2372 for (j = i; j < q->nr_hw_queues; j++) {
2373 struct blk_mq_hw_ctx *hctx = hctxs[j];
2374
2375 if (hctx) {
2376 if (hctx->tags)
2377 blk_mq_free_map_and_requests(set, j);
2378 blk_mq_exit_hctx(q, set, hctx, j);
2379 kobject_put(&hctx->kobj);
2380 hctxs[j] = NULL;
2381
2382 }
2383 }
2384 q->nr_hw_queues = i;
2385 blk_mq_sysfs_register(q);
2386 }
2387
2388 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2389 struct request_queue *q)
2390 {
2391 /* mark the queue as mq asap */
2392 q->mq_ops = set->ops;
2393
2394 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2395 blk_mq_poll_stats_bkt,
2396 BLK_MQ_POLL_STATS_BKTS, q);
2397 if (!q->poll_cb)
2398 goto err_exit;
2399
2400 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2401 if (!q->queue_ctx)
2402 goto err_exit;
2403
2404 /* init q->mq_kobj and sw queues' kobjects */
2405 blk_mq_sysfs_init(q);
2406
2407 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2408 GFP_KERNEL, set->numa_node);
2409 if (!q->queue_hw_ctx)
2410 goto err_percpu;
2411
2412 q->mq_map = set->mq_map;
2413
2414 blk_mq_realloc_hw_ctxs(set, q);
2415 if (!q->nr_hw_queues)
2416 goto err_hctxs;
2417
2418 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2419 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2420
2421 q->nr_queues = nr_cpu_ids;
2422
2423 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2424
2425 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2426 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2427
2428 q->sg_reserved_size = INT_MAX;
2429
2430 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2431 INIT_LIST_HEAD(&q->requeue_list);
2432 spin_lock_init(&q->requeue_lock);
2433
2434 blk_queue_make_request(q, blk_mq_make_request);
2435 if (q->mq_ops->poll)
2436 q->poll_fn = blk_mq_poll;
2437
2438 /*
2439 * Do this after blk_queue_make_request() overrides it...
2440 */
2441 q->nr_requests = set->queue_depth;
2442
2443 /*
2444 * Default to classic polling
2445 */
2446 q->poll_nsec = -1;
2447
2448 if (set->ops->complete)
2449 blk_queue_softirq_done(q, set->ops->complete);
2450
2451 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2452 blk_mq_add_queue_tag_set(set, q);
2453 blk_mq_map_swqueue(q);
2454
2455 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2456 int ret;
2457
2458 ret = blk_mq_sched_init(q);
2459 if (ret)
2460 return ERR_PTR(ret);
2461 }
2462
2463 return q;
2464
2465 err_hctxs:
2466 kfree(q->queue_hw_ctx);
2467 err_percpu:
2468 free_percpu(q->queue_ctx);
2469 err_exit:
2470 q->mq_ops = NULL;
2471 return ERR_PTR(-ENOMEM);
2472 }
2473 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2474
2475 void blk_mq_free_queue(struct request_queue *q)
2476 {
2477 struct blk_mq_tag_set *set = q->tag_set;
2478
2479 blk_mq_del_queue_tag_set(q);
2480 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2481 }
2482
2483 /* Basically redo blk_mq_init_queue with queue frozen */
2484 static void blk_mq_queue_reinit(struct request_queue *q)
2485 {
2486 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2487
2488 blk_mq_debugfs_unregister_hctxs(q);
2489 blk_mq_sysfs_unregister(q);
2490
2491 /*
2492 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2493 * we should change hctx numa_node according to new topology (this
2494 * involves free and re-allocate memory, worthy doing?)
2495 */
2496
2497 blk_mq_map_swqueue(q);
2498
2499 blk_mq_sysfs_register(q);
2500 blk_mq_debugfs_register_hctxs(q);
2501 }
2502
2503 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2504 {
2505 int i;
2506
2507 for (i = 0; i < set->nr_hw_queues; i++)
2508 if (!__blk_mq_alloc_rq_map(set, i))
2509 goto out_unwind;
2510
2511 return 0;
2512
2513 out_unwind:
2514 while (--i >= 0)
2515 blk_mq_free_rq_map(set->tags[i]);
2516
2517 return -ENOMEM;
2518 }
2519
2520 /*
2521 * Allocate the request maps associated with this tag_set. Note that this
2522 * may reduce the depth asked for, if memory is tight. set->queue_depth
2523 * will be updated to reflect the allocated depth.
2524 */
2525 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2526 {
2527 unsigned int depth;
2528 int err;
2529
2530 depth = set->queue_depth;
2531 do {
2532 err = __blk_mq_alloc_rq_maps(set);
2533 if (!err)
2534 break;
2535
2536 set->queue_depth >>= 1;
2537 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2538 err = -ENOMEM;
2539 break;
2540 }
2541 } while (set->queue_depth);
2542
2543 if (!set->queue_depth || err) {
2544 pr_err("blk-mq: failed to allocate request map\n");
2545 return -ENOMEM;
2546 }
2547
2548 if (depth != set->queue_depth)
2549 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2550 depth, set->queue_depth);
2551
2552 return 0;
2553 }
2554
2555 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2556 {
2557 if (set->ops->map_queues)
2558 return set->ops->map_queues(set);
2559 else
2560 return blk_mq_map_queues(set);
2561 }
2562
2563 /*
2564 * Alloc a tag set to be associated with one or more request queues.
2565 * May fail with EINVAL for various error conditions. May adjust the
2566 * requested depth down, if if it too large. In that case, the set
2567 * value will be stored in set->queue_depth.
2568 */
2569 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2570 {
2571 int ret;
2572
2573 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2574
2575 if (!set->nr_hw_queues)
2576 return -EINVAL;
2577 if (!set->queue_depth)
2578 return -EINVAL;
2579 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2580 return -EINVAL;
2581
2582 if (!set->ops->queue_rq)
2583 return -EINVAL;
2584
2585 if (!set->ops->get_budget ^ !set->ops->put_budget)
2586 return -EINVAL;
2587
2588 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2589 pr_info("blk-mq: reduced tag depth to %u\n",
2590 BLK_MQ_MAX_DEPTH);
2591 set->queue_depth = BLK_MQ_MAX_DEPTH;
2592 }
2593
2594 /*
2595 * If a crashdump is active, then we are potentially in a very
2596 * memory constrained environment. Limit us to 1 queue and
2597 * 64 tags to prevent using too much memory.
2598 */
2599 if (is_kdump_kernel()) {
2600 set->nr_hw_queues = 1;
2601 set->queue_depth = min(64U, set->queue_depth);
2602 }
2603 /*
2604 * There is no use for more h/w queues than cpus.
2605 */
2606 if (set->nr_hw_queues > nr_cpu_ids)
2607 set->nr_hw_queues = nr_cpu_ids;
2608
2609 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2610 GFP_KERNEL, set->numa_node);
2611 if (!set->tags)
2612 return -ENOMEM;
2613
2614 ret = -ENOMEM;
2615 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2616 GFP_KERNEL, set->numa_node);
2617 if (!set->mq_map)
2618 goto out_free_tags;
2619
2620 ret = blk_mq_update_queue_map(set);
2621 if (ret)
2622 goto out_free_mq_map;
2623
2624 ret = blk_mq_alloc_rq_maps(set);
2625 if (ret)
2626 goto out_free_mq_map;
2627
2628 mutex_init(&set->tag_list_lock);
2629 INIT_LIST_HEAD(&set->tag_list);
2630
2631 return 0;
2632
2633 out_free_mq_map:
2634 kfree(set->mq_map);
2635 set->mq_map = NULL;
2636 out_free_tags:
2637 kfree(set->tags);
2638 set->tags = NULL;
2639 return ret;
2640 }
2641 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2642
2643 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2644 {
2645 int i;
2646
2647 for (i = 0; i < nr_cpu_ids; i++)
2648 blk_mq_free_map_and_requests(set, i);
2649
2650 kfree(set->mq_map);
2651 set->mq_map = NULL;
2652
2653 kfree(set->tags);
2654 set->tags = NULL;
2655 }
2656 EXPORT_SYMBOL(blk_mq_free_tag_set);
2657
2658 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2659 {
2660 struct blk_mq_tag_set *set = q->tag_set;
2661 struct blk_mq_hw_ctx *hctx;
2662 int i, ret;
2663
2664 if (!set)
2665 return -EINVAL;
2666
2667 blk_mq_freeze_queue(q);
2668
2669 ret = 0;
2670 queue_for_each_hw_ctx(q, hctx, i) {
2671 if (!hctx->tags)
2672 continue;
2673 /*
2674 * If we're using an MQ scheduler, just update the scheduler
2675 * queue depth. This is similar to what the old code would do.
2676 */
2677 if (!hctx->sched_tags) {
2678 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2679 false);
2680 } else {
2681 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2682 nr, true);
2683 }
2684 if (ret)
2685 break;
2686 }
2687
2688 if (!ret)
2689 q->nr_requests = nr;
2690
2691 blk_mq_unfreeze_queue(q);
2692
2693 return ret;
2694 }
2695
2696 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2697 int nr_hw_queues)
2698 {
2699 struct request_queue *q;
2700
2701 lockdep_assert_held(&set->tag_list_lock);
2702
2703 if (nr_hw_queues > nr_cpu_ids)
2704 nr_hw_queues = nr_cpu_ids;
2705 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2706 return;
2707
2708 list_for_each_entry(q, &set->tag_list, tag_set_list)
2709 blk_mq_freeze_queue(q);
2710
2711 set->nr_hw_queues = nr_hw_queues;
2712 blk_mq_update_queue_map(set);
2713 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2714 blk_mq_realloc_hw_ctxs(set, q);
2715 blk_mq_queue_reinit(q);
2716 }
2717
2718 list_for_each_entry(q, &set->tag_list, tag_set_list)
2719 blk_mq_unfreeze_queue(q);
2720 }
2721
2722 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2723 {
2724 mutex_lock(&set->tag_list_lock);
2725 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2726 mutex_unlock(&set->tag_list_lock);
2727 }
2728 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2729
2730 /* Enable polling stats and return whether they were already enabled. */
2731 static bool blk_poll_stats_enable(struct request_queue *q)
2732 {
2733 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2734 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2735 return true;
2736 blk_stat_add_callback(q, q->poll_cb);
2737 return false;
2738 }
2739
2740 static void blk_mq_poll_stats_start(struct request_queue *q)
2741 {
2742 /*
2743 * We don't arm the callback if polling stats are not enabled or the
2744 * callback is already active.
2745 */
2746 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2747 blk_stat_is_active(q->poll_cb))
2748 return;
2749
2750 blk_stat_activate_msecs(q->poll_cb, 100);
2751 }
2752
2753 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2754 {
2755 struct request_queue *q = cb->data;
2756 int bucket;
2757
2758 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2759 if (cb->stat[bucket].nr_samples)
2760 q->poll_stat[bucket] = cb->stat[bucket];
2761 }
2762 }
2763
2764 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2765 struct blk_mq_hw_ctx *hctx,
2766 struct request *rq)
2767 {
2768 unsigned long ret = 0;
2769 int bucket;
2770
2771 /*
2772 * If stats collection isn't on, don't sleep but turn it on for
2773 * future users
2774 */
2775 if (!blk_poll_stats_enable(q))
2776 return 0;
2777
2778 /*
2779 * As an optimistic guess, use half of the mean service time
2780 * for this type of request. We can (and should) make this smarter.
2781 * For instance, if the completion latencies are tight, we can
2782 * get closer than just half the mean. This is especially
2783 * important on devices where the completion latencies are longer
2784 * than ~10 usec. We do use the stats for the relevant IO size
2785 * if available which does lead to better estimates.
2786 */
2787 bucket = blk_mq_poll_stats_bkt(rq);
2788 if (bucket < 0)
2789 return ret;
2790
2791 if (q->poll_stat[bucket].nr_samples)
2792 ret = (q->poll_stat[bucket].mean + 1) / 2;
2793
2794 return ret;
2795 }
2796
2797 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2798 struct blk_mq_hw_ctx *hctx,
2799 struct request *rq)
2800 {
2801 struct hrtimer_sleeper hs;
2802 enum hrtimer_mode mode;
2803 unsigned int nsecs;
2804 ktime_t kt;
2805
2806 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2807 return false;
2808
2809 /*
2810 * poll_nsec can be:
2811 *
2812 * -1: don't ever hybrid sleep
2813 * 0: use half of prev avg
2814 * >0: use this specific value
2815 */
2816 if (q->poll_nsec == -1)
2817 return false;
2818 else if (q->poll_nsec > 0)
2819 nsecs = q->poll_nsec;
2820 else
2821 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2822
2823 if (!nsecs)
2824 return false;
2825
2826 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2827
2828 /*
2829 * This will be replaced with the stats tracking code, using
2830 * 'avg_completion_time / 2' as the pre-sleep target.
2831 */
2832 kt = nsecs;
2833
2834 mode = HRTIMER_MODE_REL;
2835 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2836 hrtimer_set_expires(&hs.timer, kt);
2837
2838 hrtimer_init_sleeper(&hs, current);
2839 do {
2840 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2841 break;
2842 set_current_state(TASK_UNINTERRUPTIBLE);
2843 hrtimer_start_expires(&hs.timer, mode);
2844 if (hs.task)
2845 io_schedule();
2846 hrtimer_cancel(&hs.timer);
2847 mode = HRTIMER_MODE_ABS;
2848 } while (hs.task && !signal_pending(current));
2849
2850 __set_current_state(TASK_RUNNING);
2851 destroy_hrtimer_on_stack(&hs.timer);
2852 return true;
2853 }
2854
2855 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2856 {
2857 struct request_queue *q = hctx->queue;
2858 long state;
2859
2860 /*
2861 * If we sleep, have the caller restart the poll loop to reset
2862 * the state. Like for the other success return cases, the
2863 * caller is responsible for checking if the IO completed. If
2864 * the IO isn't complete, we'll get called again and will go
2865 * straight to the busy poll loop.
2866 */
2867 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2868 return true;
2869
2870 hctx->poll_considered++;
2871
2872 state = current->state;
2873 while (!need_resched()) {
2874 int ret;
2875
2876 hctx->poll_invoked++;
2877
2878 ret = q->mq_ops->poll(hctx, rq->tag);
2879 if (ret > 0) {
2880 hctx->poll_success++;
2881 set_current_state(TASK_RUNNING);
2882 return true;
2883 }
2884
2885 if (signal_pending_state(state, current))
2886 set_current_state(TASK_RUNNING);
2887
2888 if (current->state == TASK_RUNNING)
2889 return true;
2890 if (ret < 0)
2891 break;
2892 cpu_relax();
2893 }
2894
2895 return false;
2896 }
2897
2898 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2899 {
2900 struct blk_mq_hw_ctx *hctx;
2901 struct request *rq;
2902
2903 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2904 return false;
2905
2906 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2907 if (!blk_qc_t_is_internal(cookie))
2908 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2909 else {
2910 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2911 /*
2912 * With scheduling, if the request has completed, we'll
2913 * get a NULL return here, as we clear the sched tag when
2914 * that happens. The request still remains valid, like always,
2915 * so we should be safe with just the NULL check.
2916 */
2917 if (!rq)
2918 return false;
2919 }
2920
2921 return __blk_mq_poll(hctx, rq);
2922 }
2923
2924 static int __init blk_mq_init(void)
2925 {
2926 /*
2927 * See comment in block/blk.h rq_atomic_flags enum
2928 */
2929 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2930 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2931
2932 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2933 blk_mq_hctx_notify_dead);
2934 return 0;
2935 }
2936 subsys_initcall(blk_mq_init);