]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
block: return on congested block device
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48 int ddir, bytes, bucket;
49
50 ddir = rq_data_dir(rq);
51 bytes = blk_rq_bytes(rq);
52
53 bucket = ddir + 2*(ilog2(bytes) - 9);
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61 }
62
63 /*
64 * Check if any of the ctx's have pending work in this hardware queue
65 */
66 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 return sbitmap_any_bit_set(&hctx->ctx_map) ||
69 !list_empty_careful(&hctx->dispatch) ||
70 blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78 {
79 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85 {
86 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 }
88
89 void blk_freeze_queue_start(struct request_queue *q)
90 {
91 int freeze_depth;
92
93 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94 if (freeze_depth == 1) {
95 percpu_ref_kill(&q->q_usage_counter);
96 blk_mq_run_hw_queues(q, false);
97 }
98 }
99 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100
101 void blk_mq_freeze_queue_wait(struct request_queue *q)
102 {
103 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106
107 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108 unsigned long timeout)
109 {
110 return wait_event_timeout(q->mq_freeze_wq,
111 percpu_ref_is_zero(&q->q_usage_counter),
112 timeout);
113 }
114 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115
116 /*
117 * Guarantee no request is in use, so we can change any data structure of
118 * the queue afterward.
119 */
120 void blk_freeze_queue(struct request_queue *q)
121 {
122 /*
123 * In the !blk_mq case we are only calling this to kill the
124 * q_usage_counter, otherwise this increases the freeze depth
125 * and waits for it to return to zero. For this reason there is
126 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127 * exported to drivers as the only user for unfreeze is blk_mq.
128 */
129 blk_freeze_queue_start(q);
130 blk_mq_freeze_queue_wait(q);
131 }
132
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135 /*
136 * ...just an alias to keep freeze and unfreeze actions balanced
137 * in the blk_mq_* namespace
138 */
139 blk_freeze_queue(q);
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143 void blk_mq_unfreeze_queue(struct request_queue *q)
144 {
145 int freeze_depth;
146
147 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148 WARN_ON_ONCE(freeze_depth < 0);
149 if (!freeze_depth) {
150 percpu_ref_reinit(&q->q_usage_counter);
151 wake_up_all(&q->mq_freeze_wq);
152 }
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156 /**
157 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
158 * @q: request queue.
159 *
160 * Note: this function does not prevent that the struct request end_io()
161 * callback function is invoked. Once this function is returned, we make
162 * sure no dispatch can happen until the queue is unquiesced via
163 * blk_mq_unquiesce_queue().
164 */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
171 blk_mq_quiesce_queue_nowait(q);
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 /*
185 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
186 * @q: request queue.
187 *
188 * This function recovers queue into the state before quiescing
189 * which is done by blk_mq_quiesce_queue.
190 */
191 void blk_mq_unquiesce_queue(struct request_queue *q)
192 {
193 spin_lock_irq(q->queue_lock);
194 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
195 spin_unlock_irq(q->queue_lock);
196
197 /* dispatch requests which are inserted during quiescing */
198 blk_mq_run_hw_queues(q, true);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
201
202 void blk_mq_wake_waiters(struct request_queue *q)
203 {
204 struct blk_mq_hw_ctx *hctx;
205 unsigned int i;
206
207 queue_for_each_hw_ctx(q, hctx, i)
208 if (blk_mq_hw_queue_mapped(hctx))
209 blk_mq_tag_wakeup_all(hctx->tags, true);
210
211 /*
212 * If we are called because the queue has now been marked as
213 * dying, we need to ensure that processes currently waiting on
214 * the queue are notified as well.
215 */
216 wake_up_all(&q->mq_freeze_wq);
217 }
218
219 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
220 {
221 return blk_mq_has_free_tags(hctx->tags);
222 }
223 EXPORT_SYMBOL(blk_mq_can_queue);
224
225 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
226 unsigned int tag, unsigned int op)
227 {
228 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
229 struct request *rq = tags->static_rqs[tag];
230
231 if (data->flags & BLK_MQ_REQ_INTERNAL) {
232 rq->tag = -1;
233 rq->internal_tag = tag;
234 } else {
235 if (blk_mq_tag_busy(data->hctx)) {
236 rq->rq_flags = RQF_MQ_INFLIGHT;
237 atomic_inc(&data->hctx->nr_active);
238 }
239 rq->tag = tag;
240 rq->internal_tag = -1;
241 data->hctx->tags->rqs[rq->tag] = rq;
242 }
243
244 INIT_LIST_HEAD(&rq->queuelist);
245 /* csd/requeue_work/fifo_time is initialized before use */
246 rq->q = data->q;
247 rq->mq_ctx = data->ctx;
248 rq->cmd_flags = op;
249 if (blk_queue_io_stat(data->q))
250 rq->rq_flags |= RQF_IO_STAT;
251 /* do not touch atomic flags, it needs atomic ops against the timer */
252 rq->cpu = -1;
253 INIT_HLIST_NODE(&rq->hash);
254 RB_CLEAR_NODE(&rq->rb_node);
255 rq->rq_disk = NULL;
256 rq->part = NULL;
257 rq->start_time = jiffies;
258 #ifdef CONFIG_BLK_CGROUP
259 rq->rl = NULL;
260 set_start_time_ns(rq);
261 rq->io_start_time_ns = 0;
262 #endif
263 rq->nr_phys_segments = 0;
264 #if defined(CONFIG_BLK_DEV_INTEGRITY)
265 rq->nr_integrity_segments = 0;
266 #endif
267 rq->special = NULL;
268 /* tag was already set */
269 rq->extra_len = 0;
270
271 INIT_LIST_HEAD(&rq->timeout_list);
272 rq->timeout = 0;
273
274 rq->end_io = NULL;
275 rq->end_io_data = NULL;
276 rq->next_rq = NULL;
277
278 data->ctx->rq_dispatched[op_is_sync(op)]++;
279 return rq;
280 }
281
282 static struct request *blk_mq_get_request(struct request_queue *q,
283 struct bio *bio, unsigned int op,
284 struct blk_mq_alloc_data *data)
285 {
286 struct elevator_queue *e = q->elevator;
287 struct request *rq;
288 unsigned int tag;
289
290 blk_queue_enter_live(q);
291 data->q = q;
292 if (likely(!data->ctx))
293 data->ctx = blk_mq_get_ctx(q);
294 if (likely(!data->hctx))
295 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
296 if (op & REQ_NOWAIT)
297 data->flags |= BLK_MQ_REQ_NOWAIT;
298
299 if (e) {
300 data->flags |= BLK_MQ_REQ_INTERNAL;
301
302 /*
303 * Flush requests are special and go directly to the
304 * dispatch list.
305 */
306 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
307 e->type->ops.mq.limit_depth(op, data);
308 }
309
310 tag = blk_mq_get_tag(data);
311 if (tag == BLK_MQ_TAG_FAIL) {
312 blk_queue_exit(q);
313 return NULL;
314 }
315
316 rq = blk_mq_rq_ctx_init(data, tag, op);
317 if (!op_is_flush(op)) {
318 rq->elv.icq = NULL;
319 if (e && e->type->ops.mq.prepare_request) {
320 if (e->type->icq_cache && rq_ioc(bio))
321 blk_mq_sched_assign_ioc(rq, bio);
322
323 e->type->ops.mq.prepare_request(rq, bio);
324 rq->rq_flags |= RQF_ELVPRIV;
325 }
326 }
327 data->hctx->queued++;
328 return rq;
329 }
330
331 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
332 unsigned int flags)
333 {
334 struct blk_mq_alloc_data alloc_data = { .flags = flags };
335 struct request *rq;
336 int ret;
337
338 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
339 if (ret)
340 return ERR_PTR(ret);
341
342 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
343
344 blk_mq_put_ctx(alloc_data.ctx);
345 blk_queue_exit(q);
346
347 if (!rq)
348 return ERR_PTR(-EWOULDBLOCK);
349
350 rq->__data_len = 0;
351 rq->__sector = (sector_t) -1;
352 rq->bio = rq->biotail = NULL;
353 return rq;
354 }
355 EXPORT_SYMBOL(blk_mq_alloc_request);
356
357 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
358 unsigned int flags, unsigned int hctx_idx)
359 {
360 struct blk_mq_alloc_data alloc_data = { .flags = flags };
361 struct request *rq;
362 unsigned int cpu;
363 int ret;
364
365 /*
366 * If the tag allocator sleeps we could get an allocation for a
367 * different hardware context. No need to complicate the low level
368 * allocator for this for the rare use case of a command tied to
369 * a specific queue.
370 */
371 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
372 return ERR_PTR(-EINVAL);
373
374 if (hctx_idx >= q->nr_hw_queues)
375 return ERR_PTR(-EIO);
376
377 ret = blk_queue_enter(q, true);
378 if (ret)
379 return ERR_PTR(ret);
380
381 /*
382 * Check if the hardware context is actually mapped to anything.
383 * If not tell the caller that it should skip this queue.
384 */
385 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
386 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
387 blk_queue_exit(q);
388 return ERR_PTR(-EXDEV);
389 }
390 cpu = cpumask_first(alloc_data.hctx->cpumask);
391 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
392
393 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
394
395 blk_queue_exit(q);
396
397 if (!rq)
398 return ERR_PTR(-EWOULDBLOCK);
399
400 return rq;
401 }
402 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
403
404 void blk_mq_free_request(struct request *rq)
405 {
406 struct request_queue *q = rq->q;
407 struct elevator_queue *e = q->elevator;
408 struct blk_mq_ctx *ctx = rq->mq_ctx;
409 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
410 const int sched_tag = rq->internal_tag;
411
412 if (rq->rq_flags & RQF_ELVPRIV) {
413 if (e && e->type->ops.mq.finish_request)
414 e->type->ops.mq.finish_request(rq);
415 if (rq->elv.icq) {
416 put_io_context(rq->elv.icq->ioc);
417 rq->elv.icq = NULL;
418 }
419 }
420
421 ctx->rq_completed[rq_is_sync(rq)]++;
422 if (rq->rq_flags & RQF_MQ_INFLIGHT)
423 atomic_dec(&hctx->nr_active);
424
425 wbt_done(q->rq_wb, &rq->issue_stat);
426 rq->rq_flags = 0;
427
428 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
429 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
430 if (rq->tag != -1)
431 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
432 if (sched_tag != -1)
433 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
434 blk_mq_sched_restart(hctx);
435 blk_queue_exit(q);
436 }
437 EXPORT_SYMBOL_GPL(blk_mq_free_request);
438
439 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
440 {
441 blk_account_io_done(rq);
442
443 if (rq->end_io) {
444 wbt_done(rq->q->rq_wb, &rq->issue_stat);
445 rq->end_io(rq, error);
446 } else {
447 if (unlikely(blk_bidi_rq(rq)))
448 blk_mq_free_request(rq->next_rq);
449 blk_mq_free_request(rq);
450 }
451 }
452 EXPORT_SYMBOL(__blk_mq_end_request);
453
454 void blk_mq_end_request(struct request *rq, blk_status_t error)
455 {
456 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
457 BUG();
458 __blk_mq_end_request(rq, error);
459 }
460 EXPORT_SYMBOL(blk_mq_end_request);
461
462 static void __blk_mq_complete_request_remote(void *data)
463 {
464 struct request *rq = data;
465
466 rq->q->softirq_done_fn(rq);
467 }
468
469 static void __blk_mq_complete_request(struct request *rq)
470 {
471 struct blk_mq_ctx *ctx = rq->mq_ctx;
472 bool shared = false;
473 int cpu;
474
475 if (rq->internal_tag != -1)
476 blk_mq_sched_completed_request(rq);
477 if (rq->rq_flags & RQF_STATS) {
478 blk_mq_poll_stats_start(rq->q);
479 blk_stat_add(rq);
480 }
481
482 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
483 rq->q->softirq_done_fn(rq);
484 return;
485 }
486
487 cpu = get_cpu();
488 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
489 shared = cpus_share_cache(cpu, ctx->cpu);
490
491 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
492 rq->csd.func = __blk_mq_complete_request_remote;
493 rq->csd.info = rq;
494 rq->csd.flags = 0;
495 smp_call_function_single_async(ctx->cpu, &rq->csd);
496 } else {
497 rq->q->softirq_done_fn(rq);
498 }
499 put_cpu();
500 }
501
502 /**
503 * blk_mq_complete_request - end I/O on a request
504 * @rq: the request being processed
505 *
506 * Description:
507 * Ends all I/O on a request. It does not handle partial completions.
508 * The actual completion happens out-of-order, through a IPI handler.
509 **/
510 void blk_mq_complete_request(struct request *rq)
511 {
512 struct request_queue *q = rq->q;
513
514 if (unlikely(blk_should_fake_timeout(q)))
515 return;
516 if (!blk_mark_rq_complete(rq))
517 __blk_mq_complete_request(rq);
518 }
519 EXPORT_SYMBOL(blk_mq_complete_request);
520
521 int blk_mq_request_started(struct request *rq)
522 {
523 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
524 }
525 EXPORT_SYMBOL_GPL(blk_mq_request_started);
526
527 void blk_mq_start_request(struct request *rq)
528 {
529 struct request_queue *q = rq->q;
530
531 blk_mq_sched_started_request(rq);
532
533 trace_block_rq_issue(q, rq);
534
535 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
536 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
537 rq->rq_flags |= RQF_STATS;
538 wbt_issue(q->rq_wb, &rq->issue_stat);
539 }
540
541 blk_add_timer(rq);
542
543 /*
544 * Ensure that ->deadline is visible before set the started
545 * flag and clear the completed flag.
546 */
547 smp_mb__before_atomic();
548
549 /*
550 * Mark us as started and clear complete. Complete might have been
551 * set if requeue raced with timeout, which then marked it as
552 * complete. So be sure to clear complete again when we start
553 * the request, otherwise we'll ignore the completion event.
554 */
555 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
556 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
557 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
558 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
559
560 if (q->dma_drain_size && blk_rq_bytes(rq)) {
561 /*
562 * Make sure space for the drain appears. We know we can do
563 * this because max_hw_segments has been adjusted to be one
564 * fewer than the device can handle.
565 */
566 rq->nr_phys_segments++;
567 }
568 }
569 EXPORT_SYMBOL(blk_mq_start_request);
570
571 /*
572 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
573 * flag isn't set yet, so there may be race with timeout handler,
574 * but given rq->deadline is just set in .queue_rq() under
575 * this situation, the race won't be possible in reality because
576 * rq->timeout should be set as big enough to cover the window
577 * between blk_mq_start_request() called from .queue_rq() and
578 * clearing REQ_ATOM_STARTED here.
579 */
580 static void __blk_mq_requeue_request(struct request *rq)
581 {
582 struct request_queue *q = rq->q;
583
584 trace_block_rq_requeue(q, rq);
585 wbt_requeue(q->rq_wb, &rq->issue_stat);
586 blk_mq_sched_requeue_request(rq);
587
588 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
589 if (q->dma_drain_size && blk_rq_bytes(rq))
590 rq->nr_phys_segments--;
591 }
592 }
593
594 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
595 {
596 __blk_mq_requeue_request(rq);
597
598 BUG_ON(blk_queued_rq(rq));
599 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
600 }
601 EXPORT_SYMBOL(blk_mq_requeue_request);
602
603 static void blk_mq_requeue_work(struct work_struct *work)
604 {
605 struct request_queue *q =
606 container_of(work, struct request_queue, requeue_work.work);
607 LIST_HEAD(rq_list);
608 struct request *rq, *next;
609 unsigned long flags;
610
611 spin_lock_irqsave(&q->requeue_lock, flags);
612 list_splice_init(&q->requeue_list, &rq_list);
613 spin_unlock_irqrestore(&q->requeue_lock, flags);
614
615 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
616 if (!(rq->rq_flags & RQF_SOFTBARRIER))
617 continue;
618
619 rq->rq_flags &= ~RQF_SOFTBARRIER;
620 list_del_init(&rq->queuelist);
621 blk_mq_sched_insert_request(rq, true, false, false, true);
622 }
623
624 while (!list_empty(&rq_list)) {
625 rq = list_entry(rq_list.next, struct request, queuelist);
626 list_del_init(&rq->queuelist);
627 blk_mq_sched_insert_request(rq, false, false, false, true);
628 }
629
630 blk_mq_run_hw_queues(q, false);
631 }
632
633 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
634 bool kick_requeue_list)
635 {
636 struct request_queue *q = rq->q;
637 unsigned long flags;
638
639 /*
640 * We abuse this flag that is otherwise used by the I/O scheduler to
641 * request head insertation from the workqueue.
642 */
643 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
644
645 spin_lock_irqsave(&q->requeue_lock, flags);
646 if (at_head) {
647 rq->rq_flags |= RQF_SOFTBARRIER;
648 list_add(&rq->queuelist, &q->requeue_list);
649 } else {
650 list_add_tail(&rq->queuelist, &q->requeue_list);
651 }
652 spin_unlock_irqrestore(&q->requeue_lock, flags);
653
654 if (kick_requeue_list)
655 blk_mq_kick_requeue_list(q);
656 }
657 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
658
659 void blk_mq_kick_requeue_list(struct request_queue *q)
660 {
661 kblockd_schedule_delayed_work(&q->requeue_work, 0);
662 }
663 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
664
665 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
666 unsigned long msecs)
667 {
668 kblockd_schedule_delayed_work(&q->requeue_work,
669 msecs_to_jiffies(msecs));
670 }
671 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
672
673 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
674 {
675 if (tag < tags->nr_tags) {
676 prefetch(tags->rqs[tag]);
677 return tags->rqs[tag];
678 }
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(blk_mq_tag_to_rq);
683
684 struct blk_mq_timeout_data {
685 unsigned long next;
686 unsigned int next_set;
687 };
688
689 void blk_mq_rq_timed_out(struct request *req, bool reserved)
690 {
691 const struct blk_mq_ops *ops = req->q->mq_ops;
692 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
693
694 /*
695 * We know that complete is set at this point. If STARTED isn't set
696 * anymore, then the request isn't active and the "timeout" should
697 * just be ignored. This can happen due to the bitflag ordering.
698 * Timeout first checks if STARTED is set, and if it is, assumes
699 * the request is active. But if we race with completion, then
700 * both flags will get cleared. So check here again, and ignore
701 * a timeout event with a request that isn't active.
702 */
703 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
704 return;
705
706 if (ops->timeout)
707 ret = ops->timeout(req, reserved);
708
709 switch (ret) {
710 case BLK_EH_HANDLED:
711 __blk_mq_complete_request(req);
712 break;
713 case BLK_EH_RESET_TIMER:
714 blk_add_timer(req);
715 blk_clear_rq_complete(req);
716 break;
717 case BLK_EH_NOT_HANDLED:
718 break;
719 default:
720 printk(KERN_ERR "block: bad eh return: %d\n", ret);
721 break;
722 }
723 }
724
725 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
726 struct request *rq, void *priv, bool reserved)
727 {
728 struct blk_mq_timeout_data *data = priv;
729
730 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
731 return;
732
733 /*
734 * The rq being checked may have been freed and reallocated
735 * out already here, we avoid this race by checking rq->deadline
736 * and REQ_ATOM_COMPLETE flag together:
737 *
738 * - if rq->deadline is observed as new value because of
739 * reusing, the rq won't be timed out because of timing.
740 * - if rq->deadline is observed as previous value,
741 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
742 * because we put a barrier between setting rq->deadline
743 * and clearing the flag in blk_mq_start_request(), so
744 * this rq won't be timed out too.
745 */
746 if (time_after_eq(jiffies, rq->deadline)) {
747 if (!blk_mark_rq_complete(rq))
748 blk_mq_rq_timed_out(rq, reserved);
749 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
750 data->next = rq->deadline;
751 data->next_set = 1;
752 }
753 }
754
755 static void blk_mq_timeout_work(struct work_struct *work)
756 {
757 struct request_queue *q =
758 container_of(work, struct request_queue, timeout_work);
759 struct blk_mq_timeout_data data = {
760 .next = 0,
761 .next_set = 0,
762 };
763 int i;
764
765 /* A deadlock might occur if a request is stuck requiring a
766 * timeout at the same time a queue freeze is waiting
767 * completion, since the timeout code would not be able to
768 * acquire the queue reference here.
769 *
770 * That's why we don't use blk_queue_enter here; instead, we use
771 * percpu_ref_tryget directly, because we need to be able to
772 * obtain a reference even in the short window between the queue
773 * starting to freeze, by dropping the first reference in
774 * blk_freeze_queue_start, and the moment the last request is
775 * consumed, marked by the instant q_usage_counter reaches
776 * zero.
777 */
778 if (!percpu_ref_tryget(&q->q_usage_counter))
779 return;
780
781 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
782
783 if (data.next_set) {
784 data.next = blk_rq_timeout(round_jiffies_up(data.next));
785 mod_timer(&q->timeout, data.next);
786 } else {
787 struct blk_mq_hw_ctx *hctx;
788
789 queue_for_each_hw_ctx(q, hctx, i) {
790 /* the hctx may be unmapped, so check it here */
791 if (blk_mq_hw_queue_mapped(hctx))
792 blk_mq_tag_idle(hctx);
793 }
794 }
795 blk_queue_exit(q);
796 }
797
798 struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
801 };
802
803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804 {
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
814 }
815
816 /*
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
819 */
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821 {
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
825 };
826
827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828 }
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830
831 static inline unsigned int queued_to_index(unsigned int queued)
832 {
833 if (!queued)
834 return 0;
835
836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 }
838
839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
841 {
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846 };
847
848 might_sleep_if(wait);
849
850 if (rq->tag != -1)
851 goto done;
852
853 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
854 data.flags |= BLK_MQ_REQ_RESERVED;
855
856 rq->tag = blk_mq_get_tag(&data);
857 if (rq->tag >= 0) {
858 if (blk_mq_tag_busy(data.hctx)) {
859 rq->rq_flags |= RQF_MQ_INFLIGHT;
860 atomic_inc(&data.hctx->nr_active);
861 }
862 data.hctx->tags->rqs[rq->tag] = rq;
863 }
864
865 done:
866 if (hctx)
867 *hctx = data.hctx;
868 return rq->tag != -1;
869 }
870
871 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
872 struct request *rq)
873 {
874 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
875 rq->tag = -1;
876
877 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
878 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
879 atomic_dec(&hctx->nr_active);
880 }
881 }
882
883 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
884 struct request *rq)
885 {
886 if (rq->tag == -1 || rq->internal_tag == -1)
887 return;
888
889 __blk_mq_put_driver_tag(hctx, rq);
890 }
891
892 static void blk_mq_put_driver_tag(struct request *rq)
893 {
894 struct blk_mq_hw_ctx *hctx;
895
896 if (rq->tag == -1 || rq->internal_tag == -1)
897 return;
898
899 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
900 __blk_mq_put_driver_tag(hctx, rq);
901 }
902
903 /*
904 * If we fail getting a driver tag because all the driver tags are already
905 * assigned and on the dispatch list, BUT the first entry does not have a
906 * tag, then we could deadlock. For that case, move entries with assigned
907 * driver tags to the front, leaving the set of tagged requests in the
908 * same order, and the untagged set in the same order.
909 */
910 static bool reorder_tags_to_front(struct list_head *list)
911 {
912 struct request *rq, *tmp, *first = NULL;
913
914 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
915 if (rq == first)
916 break;
917 if (rq->tag != -1) {
918 list_move(&rq->queuelist, list);
919 if (!first)
920 first = rq;
921 }
922 }
923
924 return first != NULL;
925 }
926
927 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
928 void *key)
929 {
930 struct blk_mq_hw_ctx *hctx;
931
932 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
933
934 list_del(&wait->task_list);
935 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
936 blk_mq_run_hw_queue(hctx, true);
937 return 1;
938 }
939
940 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
941 {
942 struct sbq_wait_state *ws;
943
944 /*
945 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
946 * The thread which wins the race to grab this bit adds the hardware
947 * queue to the wait queue.
948 */
949 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
950 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
951 return false;
952
953 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
954 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
955
956 /*
957 * As soon as this returns, it's no longer safe to fiddle with
958 * hctx->dispatch_wait, since a completion can wake up the wait queue
959 * and unlock the bit.
960 */
961 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
962 return true;
963 }
964
965 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
966 {
967 struct blk_mq_hw_ctx *hctx;
968 struct request *rq;
969 int errors, queued;
970
971 if (list_empty(list))
972 return false;
973
974 /*
975 * Now process all the entries, sending them to the driver.
976 */
977 errors = queued = 0;
978 do {
979 struct blk_mq_queue_data bd;
980 blk_status_t ret;
981
982 rq = list_first_entry(list, struct request, queuelist);
983 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
984 if (!queued && reorder_tags_to_front(list))
985 continue;
986
987 /*
988 * The initial allocation attempt failed, so we need to
989 * rerun the hardware queue when a tag is freed.
990 */
991 if (!blk_mq_dispatch_wait_add(hctx))
992 break;
993
994 /*
995 * It's possible that a tag was freed in the window
996 * between the allocation failure and adding the
997 * hardware queue to the wait queue.
998 */
999 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1000 break;
1001 }
1002
1003 list_del_init(&rq->queuelist);
1004
1005 bd.rq = rq;
1006
1007 /*
1008 * Flag last if we have no more requests, or if we have more
1009 * but can't assign a driver tag to it.
1010 */
1011 if (list_empty(list))
1012 bd.last = true;
1013 else {
1014 struct request *nxt;
1015
1016 nxt = list_first_entry(list, struct request, queuelist);
1017 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1018 }
1019
1020 ret = q->mq_ops->queue_rq(hctx, &bd);
1021 if (ret == BLK_STS_RESOURCE) {
1022 blk_mq_put_driver_tag_hctx(hctx, rq);
1023 list_add(&rq->queuelist, list);
1024 __blk_mq_requeue_request(rq);
1025 break;
1026 }
1027
1028 if (unlikely(ret != BLK_STS_OK)) {
1029 errors++;
1030 blk_mq_end_request(rq, BLK_STS_IOERR);
1031 continue;
1032 }
1033
1034 queued++;
1035 } while (!list_empty(list));
1036
1037 hctx->dispatched[queued_to_index(queued)]++;
1038
1039 /*
1040 * Any items that need requeuing? Stuff them into hctx->dispatch,
1041 * that is where we will continue on next queue run.
1042 */
1043 if (!list_empty(list)) {
1044 /*
1045 * If an I/O scheduler has been configured and we got a driver
1046 * tag for the next request already, free it again.
1047 */
1048 rq = list_first_entry(list, struct request, queuelist);
1049 blk_mq_put_driver_tag(rq);
1050
1051 spin_lock(&hctx->lock);
1052 list_splice_init(list, &hctx->dispatch);
1053 spin_unlock(&hctx->lock);
1054
1055 /*
1056 * If SCHED_RESTART was set by the caller of this function and
1057 * it is no longer set that means that it was cleared by another
1058 * thread and hence that a queue rerun is needed.
1059 *
1060 * If TAG_WAITING is set that means that an I/O scheduler has
1061 * been configured and another thread is waiting for a driver
1062 * tag. To guarantee fairness, do not rerun this hardware queue
1063 * but let the other thread grab the driver tag.
1064 *
1065 * If no I/O scheduler has been configured it is possible that
1066 * the hardware queue got stopped and restarted before requests
1067 * were pushed back onto the dispatch list. Rerun the queue to
1068 * avoid starvation. Notes:
1069 * - blk_mq_run_hw_queue() checks whether or not a queue has
1070 * been stopped before rerunning a queue.
1071 * - Some but not all block drivers stop a queue before
1072 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1073 * and dm-rq.
1074 */
1075 if (!blk_mq_sched_needs_restart(hctx) &&
1076 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1077 blk_mq_run_hw_queue(hctx, true);
1078 }
1079
1080 return (queued + errors) != 0;
1081 }
1082
1083 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1084 {
1085 int srcu_idx;
1086
1087 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1088 cpu_online(hctx->next_cpu));
1089
1090 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1091 rcu_read_lock();
1092 blk_mq_sched_dispatch_requests(hctx);
1093 rcu_read_unlock();
1094 } else {
1095 might_sleep();
1096
1097 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1098 blk_mq_sched_dispatch_requests(hctx);
1099 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1100 }
1101 }
1102
1103 /*
1104 * It'd be great if the workqueue API had a way to pass
1105 * in a mask and had some smarts for more clever placement.
1106 * For now we just round-robin here, switching for every
1107 * BLK_MQ_CPU_WORK_BATCH queued items.
1108 */
1109 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1110 {
1111 if (hctx->queue->nr_hw_queues == 1)
1112 return WORK_CPU_UNBOUND;
1113
1114 if (--hctx->next_cpu_batch <= 0) {
1115 int next_cpu;
1116
1117 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1118 if (next_cpu >= nr_cpu_ids)
1119 next_cpu = cpumask_first(hctx->cpumask);
1120
1121 hctx->next_cpu = next_cpu;
1122 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1123 }
1124
1125 return hctx->next_cpu;
1126 }
1127
1128 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1129 unsigned long msecs)
1130 {
1131 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1132 !blk_mq_hw_queue_mapped(hctx)))
1133 return;
1134
1135 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1136 int cpu = get_cpu();
1137 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1138 __blk_mq_run_hw_queue(hctx);
1139 put_cpu();
1140 return;
1141 }
1142
1143 put_cpu();
1144 }
1145
1146 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1147 &hctx->run_work,
1148 msecs_to_jiffies(msecs));
1149 }
1150
1151 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1152 {
1153 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1154 }
1155 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1156
1157 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1158 {
1159 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1160 }
1161 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1162
1163 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1164 {
1165 struct blk_mq_hw_ctx *hctx;
1166 int i;
1167
1168 queue_for_each_hw_ctx(q, hctx, i) {
1169 if (!blk_mq_hctx_has_pending(hctx) ||
1170 blk_mq_hctx_stopped(hctx))
1171 continue;
1172
1173 blk_mq_run_hw_queue(hctx, async);
1174 }
1175 }
1176 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1177
1178 /**
1179 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1180 * @q: request queue.
1181 *
1182 * The caller is responsible for serializing this function against
1183 * blk_mq_{start,stop}_hw_queue().
1184 */
1185 bool blk_mq_queue_stopped(struct request_queue *q)
1186 {
1187 struct blk_mq_hw_ctx *hctx;
1188 int i;
1189
1190 queue_for_each_hw_ctx(q, hctx, i)
1191 if (blk_mq_hctx_stopped(hctx))
1192 return true;
1193
1194 return false;
1195 }
1196 EXPORT_SYMBOL(blk_mq_queue_stopped);
1197
1198 /*
1199 * This function is often used for pausing .queue_rq() by driver when
1200 * there isn't enough resource or some conditions aren't satisfied, and
1201 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1202 *
1203 * We do not guarantee that dispatch can be drained or blocked
1204 * after blk_mq_stop_hw_queue() returns. Please use
1205 * blk_mq_quiesce_queue() for that requirement.
1206 */
1207 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1208 {
1209 cancel_delayed_work(&hctx->run_work);
1210
1211 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1212 }
1213 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1214
1215 /*
1216 * This function is often used for pausing .queue_rq() by driver when
1217 * there isn't enough resource or some conditions aren't satisfied, and
1218 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1219 *
1220 * We do not guarantee that dispatch can be drained or blocked
1221 * after blk_mq_stop_hw_queues() returns. Please use
1222 * blk_mq_quiesce_queue() for that requirement.
1223 */
1224 void blk_mq_stop_hw_queues(struct request_queue *q)
1225 {
1226 struct blk_mq_hw_ctx *hctx;
1227 int i;
1228
1229 queue_for_each_hw_ctx(q, hctx, i)
1230 blk_mq_stop_hw_queue(hctx);
1231 }
1232 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1233
1234 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1235 {
1236 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1237
1238 blk_mq_run_hw_queue(hctx, false);
1239 }
1240 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1241
1242 void blk_mq_start_hw_queues(struct request_queue *q)
1243 {
1244 struct blk_mq_hw_ctx *hctx;
1245 int i;
1246
1247 queue_for_each_hw_ctx(q, hctx, i)
1248 blk_mq_start_hw_queue(hctx);
1249 }
1250 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1251
1252 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1253 {
1254 if (!blk_mq_hctx_stopped(hctx))
1255 return;
1256
1257 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1258 blk_mq_run_hw_queue(hctx, async);
1259 }
1260 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1261
1262 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1263 {
1264 struct blk_mq_hw_ctx *hctx;
1265 int i;
1266
1267 queue_for_each_hw_ctx(q, hctx, i)
1268 blk_mq_start_stopped_hw_queue(hctx, async);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1271
1272 static void blk_mq_run_work_fn(struct work_struct *work)
1273 {
1274 struct blk_mq_hw_ctx *hctx;
1275
1276 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1277
1278 /*
1279 * If we are stopped, don't run the queue. The exception is if
1280 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1281 * the STOPPED bit and run it.
1282 */
1283 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1284 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1285 return;
1286
1287 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1288 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1289 }
1290
1291 __blk_mq_run_hw_queue(hctx);
1292 }
1293
1294
1295 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1296 {
1297 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1298 return;
1299
1300 /*
1301 * Stop the hw queue, then modify currently delayed work.
1302 * This should prevent us from running the queue prematurely.
1303 * Mark the queue as auto-clearing STOPPED when it runs.
1304 */
1305 blk_mq_stop_hw_queue(hctx);
1306 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1307 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1308 &hctx->run_work,
1309 msecs_to_jiffies(msecs));
1310 }
1311 EXPORT_SYMBOL(blk_mq_delay_queue);
1312
1313 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1314 struct request *rq,
1315 bool at_head)
1316 {
1317 struct blk_mq_ctx *ctx = rq->mq_ctx;
1318
1319 trace_block_rq_insert(hctx->queue, rq);
1320
1321 if (at_head)
1322 list_add(&rq->queuelist, &ctx->rq_list);
1323 else
1324 list_add_tail(&rq->queuelist, &ctx->rq_list);
1325 }
1326
1327 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1328 bool at_head)
1329 {
1330 struct blk_mq_ctx *ctx = rq->mq_ctx;
1331
1332 __blk_mq_insert_req_list(hctx, rq, at_head);
1333 blk_mq_hctx_mark_pending(hctx, ctx);
1334 }
1335
1336 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1337 struct list_head *list)
1338
1339 {
1340 /*
1341 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1342 * offline now
1343 */
1344 spin_lock(&ctx->lock);
1345 while (!list_empty(list)) {
1346 struct request *rq;
1347
1348 rq = list_first_entry(list, struct request, queuelist);
1349 BUG_ON(rq->mq_ctx != ctx);
1350 list_del_init(&rq->queuelist);
1351 __blk_mq_insert_req_list(hctx, rq, false);
1352 }
1353 blk_mq_hctx_mark_pending(hctx, ctx);
1354 spin_unlock(&ctx->lock);
1355 }
1356
1357 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1358 {
1359 struct request *rqa = container_of(a, struct request, queuelist);
1360 struct request *rqb = container_of(b, struct request, queuelist);
1361
1362 return !(rqa->mq_ctx < rqb->mq_ctx ||
1363 (rqa->mq_ctx == rqb->mq_ctx &&
1364 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1365 }
1366
1367 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1368 {
1369 struct blk_mq_ctx *this_ctx;
1370 struct request_queue *this_q;
1371 struct request *rq;
1372 LIST_HEAD(list);
1373 LIST_HEAD(ctx_list);
1374 unsigned int depth;
1375
1376 list_splice_init(&plug->mq_list, &list);
1377
1378 list_sort(NULL, &list, plug_ctx_cmp);
1379
1380 this_q = NULL;
1381 this_ctx = NULL;
1382 depth = 0;
1383
1384 while (!list_empty(&list)) {
1385 rq = list_entry_rq(list.next);
1386 list_del_init(&rq->queuelist);
1387 BUG_ON(!rq->q);
1388 if (rq->mq_ctx != this_ctx) {
1389 if (this_ctx) {
1390 trace_block_unplug(this_q, depth, from_schedule);
1391 blk_mq_sched_insert_requests(this_q, this_ctx,
1392 &ctx_list,
1393 from_schedule);
1394 }
1395
1396 this_ctx = rq->mq_ctx;
1397 this_q = rq->q;
1398 depth = 0;
1399 }
1400
1401 depth++;
1402 list_add_tail(&rq->queuelist, &ctx_list);
1403 }
1404
1405 /*
1406 * If 'this_ctx' is set, we know we have entries to complete
1407 * on 'ctx_list'. Do those.
1408 */
1409 if (this_ctx) {
1410 trace_block_unplug(this_q, depth, from_schedule);
1411 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1412 from_schedule);
1413 }
1414 }
1415
1416 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1417 {
1418 blk_init_request_from_bio(rq, bio);
1419
1420 blk_account_io_start(rq, true);
1421 }
1422
1423 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1424 {
1425 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1426 !blk_queue_nomerges(hctx->queue);
1427 }
1428
1429 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1430 struct blk_mq_ctx *ctx,
1431 struct request *rq)
1432 {
1433 spin_lock(&ctx->lock);
1434 __blk_mq_insert_request(hctx, rq, false);
1435 spin_unlock(&ctx->lock);
1436 }
1437
1438 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1439 {
1440 if (rq->tag != -1)
1441 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1442
1443 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1444 }
1445
1446 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1447 struct request *rq,
1448 blk_qc_t *cookie, bool may_sleep)
1449 {
1450 struct request_queue *q = rq->q;
1451 struct blk_mq_queue_data bd = {
1452 .rq = rq,
1453 .last = true,
1454 };
1455 blk_qc_t new_cookie;
1456 blk_status_t ret;
1457 bool run_queue = true;
1458
1459 /* RCU or SRCU read lock is needed before checking quiesced flag */
1460 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1461 run_queue = false;
1462 goto insert;
1463 }
1464
1465 if (q->elevator)
1466 goto insert;
1467
1468 if (!blk_mq_get_driver_tag(rq, NULL, false))
1469 goto insert;
1470
1471 new_cookie = request_to_qc_t(hctx, rq);
1472
1473 /*
1474 * For OK queue, we are done. For error, kill it. Any other
1475 * error (busy), just add it to our list as we previously
1476 * would have done
1477 */
1478 ret = q->mq_ops->queue_rq(hctx, &bd);
1479 switch (ret) {
1480 case BLK_STS_OK:
1481 *cookie = new_cookie;
1482 return;
1483 case BLK_STS_RESOURCE:
1484 __blk_mq_requeue_request(rq);
1485 goto insert;
1486 default:
1487 *cookie = BLK_QC_T_NONE;
1488 blk_mq_end_request(rq, ret);
1489 return;
1490 }
1491
1492 insert:
1493 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1494 }
1495
1496 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1497 struct request *rq, blk_qc_t *cookie)
1498 {
1499 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1500 rcu_read_lock();
1501 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1502 rcu_read_unlock();
1503 } else {
1504 unsigned int srcu_idx;
1505
1506 might_sleep();
1507
1508 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1509 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1510 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1511 }
1512 }
1513
1514 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1515 {
1516 const int is_sync = op_is_sync(bio->bi_opf);
1517 const int is_flush_fua = op_is_flush(bio->bi_opf);
1518 struct blk_mq_alloc_data data = { .flags = 0 };
1519 struct request *rq;
1520 unsigned int request_count = 0;
1521 struct blk_plug *plug;
1522 struct request *same_queue_rq = NULL;
1523 blk_qc_t cookie;
1524 unsigned int wb_acct;
1525
1526 blk_queue_bounce(q, &bio);
1527
1528 blk_queue_split(q, &bio);
1529
1530 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1531 bio_io_error(bio);
1532 return BLK_QC_T_NONE;
1533 }
1534
1535 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1536 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1537 return BLK_QC_T_NONE;
1538
1539 if (blk_mq_sched_bio_merge(q, bio))
1540 return BLK_QC_T_NONE;
1541
1542 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1543
1544 trace_block_getrq(q, bio, bio->bi_opf);
1545
1546 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1547 if (unlikely(!rq)) {
1548 __wbt_done(q->rq_wb, wb_acct);
1549 if (bio->bi_opf & REQ_NOWAIT)
1550 bio_wouldblock_error(bio);
1551 return BLK_QC_T_NONE;
1552 }
1553
1554 wbt_track(&rq->issue_stat, wb_acct);
1555
1556 cookie = request_to_qc_t(data.hctx, rq);
1557
1558 plug = current->plug;
1559 if (unlikely(is_flush_fua)) {
1560 blk_mq_put_ctx(data.ctx);
1561 blk_mq_bio_to_request(rq, bio);
1562 if (q->elevator) {
1563 blk_mq_sched_insert_request(rq, false, true, true,
1564 true);
1565 } else {
1566 blk_insert_flush(rq);
1567 blk_mq_run_hw_queue(data.hctx, true);
1568 }
1569 } else if (plug && q->nr_hw_queues == 1) {
1570 struct request *last = NULL;
1571
1572 blk_mq_put_ctx(data.ctx);
1573 blk_mq_bio_to_request(rq, bio);
1574
1575 /*
1576 * @request_count may become stale because of schedule
1577 * out, so check the list again.
1578 */
1579 if (list_empty(&plug->mq_list))
1580 request_count = 0;
1581 else if (blk_queue_nomerges(q))
1582 request_count = blk_plug_queued_count(q);
1583
1584 if (!request_count)
1585 trace_block_plug(q);
1586 else
1587 last = list_entry_rq(plug->mq_list.prev);
1588
1589 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1590 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1591 blk_flush_plug_list(plug, false);
1592 trace_block_plug(q);
1593 }
1594
1595 list_add_tail(&rq->queuelist, &plug->mq_list);
1596 } else if (plug && !blk_queue_nomerges(q)) {
1597 blk_mq_bio_to_request(rq, bio);
1598
1599 /*
1600 * We do limited plugging. If the bio can be merged, do that.
1601 * Otherwise the existing request in the plug list will be
1602 * issued. So the plug list will have one request at most
1603 * The plug list might get flushed before this. If that happens,
1604 * the plug list is empty, and same_queue_rq is invalid.
1605 */
1606 if (list_empty(&plug->mq_list))
1607 same_queue_rq = NULL;
1608 if (same_queue_rq)
1609 list_del_init(&same_queue_rq->queuelist);
1610 list_add_tail(&rq->queuelist, &plug->mq_list);
1611
1612 blk_mq_put_ctx(data.ctx);
1613
1614 if (same_queue_rq) {
1615 data.hctx = blk_mq_map_queue(q,
1616 same_queue_rq->mq_ctx->cpu);
1617 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1618 &cookie);
1619 }
1620 } else if (q->nr_hw_queues > 1 && is_sync) {
1621 blk_mq_put_ctx(data.ctx);
1622 blk_mq_bio_to_request(rq, bio);
1623 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1624 } else if (q->elevator) {
1625 blk_mq_put_ctx(data.ctx);
1626 blk_mq_bio_to_request(rq, bio);
1627 blk_mq_sched_insert_request(rq, false, true, true, true);
1628 } else {
1629 blk_mq_put_ctx(data.ctx);
1630 blk_mq_bio_to_request(rq, bio);
1631 blk_mq_queue_io(data.hctx, data.ctx, rq);
1632 blk_mq_run_hw_queue(data.hctx, true);
1633 }
1634
1635 return cookie;
1636 }
1637
1638 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1639 unsigned int hctx_idx)
1640 {
1641 struct page *page;
1642
1643 if (tags->rqs && set->ops->exit_request) {
1644 int i;
1645
1646 for (i = 0; i < tags->nr_tags; i++) {
1647 struct request *rq = tags->static_rqs[i];
1648
1649 if (!rq)
1650 continue;
1651 set->ops->exit_request(set, rq, hctx_idx);
1652 tags->static_rqs[i] = NULL;
1653 }
1654 }
1655
1656 while (!list_empty(&tags->page_list)) {
1657 page = list_first_entry(&tags->page_list, struct page, lru);
1658 list_del_init(&page->lru);
1659 /*
1660 * Remove kmemleak object previously allocated in
1661 * blk_mq_init_rq_map().
1662 */
1663 kmemleak_free(page_address(page));
1664 __free_pages(page, page->private);
1665 }
1666 }
1667
1668 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1669 {
1670 kfree(tags->rqs);
1671 tags->rqs = NULL;
1672 kfree(tags->static_rqs);
1673 tags->static_rqs = NULL;
1674
1675 blk_mq_free_tags(tags);
1676 }
1677
1678 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1679 unsigned int hctx_idx,
1680 unsigned int nr_tags,
1681 unsigned int reserved_tags)
1682 {
1683 struct blk_mq_tags *tags;
1684 int node;
1685
1686 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1687 if (node == NUMA_NO_NODE)
1688 node = set->numa_node;
1689
1690 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1691 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1692 if (!tags)
1693 return NULL;
1694
1695 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1696 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1697 node);
1698 if (!tags->rqs) {
1699 blk_mq_free_tags(tags);
1700 return NULL;
1701 }
1702
1703 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1704 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705 node);
1706 if (!tags->static_rqs) {
1707 kfree(tags->rqs);
1708 blk_mq_free_tags(tags);
1709 return NULL;
1710 }
1711
1712 return tags;
1713 }
1714
1715 static size_t order_to_size(unsigned int order)
1716 {
1717 return (size_t)PAGE_SIZE << order;
1718 }
1719
1720 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1721 unsigned int hctx_idx, unsigned int depth)
1722 {
1723 unsigned int i, j, entries_per_page, max_order = 4;
1724 size_t rq_size, left;
1725 int node;
1726
1727 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1728 if (node == NUMA_NO_NODE)
1729 node = set->numa_node;
1730
1731 INIT_LIST_HEAD(&tags->page_list);
1732
1733 /*
1734 * rq_size is the size of the request plus driver payload, rounded
1735 * to the cacheline size
1736 */
1737 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1738 cache_line_size());
1739 left = rq_size * depth;
1740
1741 for (i = 0; i < depth; ) {
1742 int this_order = max_order;
1743 struct page *page;
1744 int to_do;
1745 void *p;
1746
1747 while (this_order && left < order_to_size(this_order - 1))
1748 this_order--;
1749
1750 do {
1751 page = alloc_pages_node(node,
1752 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1753 this_order);
1754 if (page)
1755 break;
1756 if (!this_order--)
1757 break;
1758 if (order_to_size(this_order) < rq_size)
1759 break;
1760 } while (1);
1761
1762 if (!page)
1763 goto fail;
1764
1765 page->private = this_order;
1766 list_add_tail(&page->lru, &tags->page_list);
1767
1768 p = page_address(page);
1769 /*
1770 * Allow kmemleak to scan these pages as they contain pointers
1771 * to additional allocations like via ops->init_request().
1772 */
1773 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1774 entries_per_page = order_to_size(this_order) / rq_size;
1775 to_do = min(entries_per_page, depth - i);
1776 left -= to_do * rq_size;
1777 for (j = 0; j < to_do; j++) {
1778 struct request *rq = p;
1779
1780 tags->static_rqs[i] = rq;
1781 if (set->ops->init_request) {
1782 if (set->ops->init_request(set, rq, hctx_idx,
1783 node)) {
1784 tags->static_rqs[i] = NULL;
1785 goto fail;
1786 }
1787 }
1788
1789 p += rq_size;
1790 i++;
1791 }
1792 }
1793 return 0;
1794
1795 fail:
1796 blk_mq_free_rqs(set, tags, hctx_idx);
1797 return -ENOMEM;
1798 }
1799
1800 /*
1801 * 'cpu' is going away. splice any existing rq_list entries from this
1802 * software queue to the hw queue dispatch list, and ensure that it
1803 * gets run.
1804 */
1805 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1806 {
1807 struct blk_mq_hw_ctx *hctx;
1808 struct blk_mq_ctx *ctx;
1809 LIST_HEAD(tmp);
1810
1811 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1812 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1813
1814 spin_lock(&ctx->lock);
1815 if (!list_empty(&ctx->rq_list)) {
1816 list_splice_init(&ctx->rq_list, &tmp);
1817 blk_mq_hctx_clear_pending(hctx, ctx);
1818 }
1819 spin_unlock(&ctx->lock);
1820
1821 if (list_empty(&tmp))
1822 return 0;
1823
1824 spin_lock(&hctx->lock);
1825 list_splice_tail_init(&tmp, &hctx->dispatch);
1826 spin_unlock(&hctx->lock);
1827
1828 blk_mq_run_hw_queue(hctx, true);
1829 return 0;
1830 }
1831
1832 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1833 {
1834 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1835 &hctx->cpuhp_dead);
1836 }
1837
1838 /* hctx->ctxs will be freed in queue's release handler */
1839 static void blk_mq_exit_hctx(struct request_queue *q,
1840 struct blk_mq_tag_set *set,
1841 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1842 {
1843 blk_mq_debugfs_unregister_hctx(hctx);
1844
1845 blk_mq_tag_idle(hctx);
1846
1847 if (set->ops->exit_request)
1848 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1849
1850 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1851
1852 if (set->ops->exit_hctx)
1853 set->ops->exit_hctx(hctx, hctx_idx);
1854
1855 if (hctx->flags & BLK_MQ_F_BLOCKING)
1856 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1857
1858 blk_mq_remove_cpuhp(hctx);
1859 blk_free_flush_queue(hctx->fq);
1860 sbitmap_free(&hctx->ctx_map);
1861 }
1862
1863 static void blk_mq_exit_hw_queues(struct request_queue *q,
1864 struct blk_mq_tag_set *set, int nr_queue)
1865 {
1866 struct blk_mq_hw_ctx *hctx;
1867 unsigned int i;
1868
1869 queue_for_each_hw_ctx(q, hctx, i) {
1870 if (i == nr_queue)
1871 break;
1872 blk_mq_exit_hctx(q, set, hctx, i);
1873 }
1874 }
1875
1876 static int blk_mq_init_hctx(struct request_queue *q,
1877 struct blk_mq_tag_set *set,
1878 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1879 {
1880 int node;
1881
1882 node = hctx->numa_node;
1883 if (node == NUMA_NO_NODE)
1884 node = hctx->numa_node = set->numa_node;
1885
1886 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1887 spin_lock_init(&hctx->lock);
1888 INIT_LIST_HEAD(&hctx->dispatch);
1889 hctx->queue = q;
1890 hctx->queue_num = hctx_idx;
1891 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1892
1893 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1894
1895 hctx->tags = set->tags[hctx_idx];
1896
1897 /*
1898 * Allocate space for all possible cpus to avoid allocation at
1899 * runtime
1900 */
1901 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1902 GFP_KERNEL, node);
1903 if (!hctx->ctxs)
1904 goto unregister_cpu_notifier;
1905
1906 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1907 node))
1908 goto free_ctxs;
1909
1910 hctx->nr_ctx = 0;
1911
1912 if (set->ops->init_hctx &&
1913 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1914 goto free_bitmap;
1915
1916 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1917 goto exit_hctx;
1918
1919 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1920 if (!hctx->fq)
1921 goto sched_exit_hctx;
1922
1923 if (set->ops->init_request &&
1924 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1925 node))
1926 goto free_fq;
1927
1928 if (hctx->flags & BLK_MQ_F_BLOCKING)
1929 init_srcu_struct(&hctx->queue_rq_srcu);
1930
1931 blk_mq_debugfs_register_hctx(q, hctx);
1932
1933 return 0;
1934
1935 free_fq:
1936 kfree(hctx->fq);
1937 sched_exit_hctx:
1938 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1939 exit_hctx:
1940 if (set->ops->exit_hctx)
1941 set->ops->exit_hctx(hctx, hctx_idx);
1942 free_bitmap:
1943 sbitmap_free(&hctx->ctx_map);
1944 free_ctxs:
1945 kfree(hctx->ctxs);
1946 unregister_cpu_notifier:
1947 blk_mq_remove_cpuhp(hctx);
1948 return -1;
1949 }
1950
1951 static void blk_mq_init_cpu_queues(struct request_queue *q,
1952 unsigned int nr_hw_queues)
1953 {
1954 unsigned int i;
1955
1956 for_each_possible_cpu(i) {
1957 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1958 struct blk_mq_hw_ctx *hctx;
1959
1960 __ctx->cpu = i;
1961 spin_lock_init(&__ctx->lock);
1962 INIT_LIST_HEAD(&__ctx->rq_list);
1963 __ctx->queue = q;
1964
1965 /* If the cpu isn't online, the cpu is mapped to first hctx */
1966 if (!cpu_online(i))
1967 continue;
1968
1969 hctx = blk_mq_map_queue(q, i);
1970
1971 /*
1972 * Set local node, IFF we have more than one hw queue. If
1973 * not, we remain on the home node of the device
1974 */
1975 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1976 hctx->numa_node = local_memory_node(cpu_to_node(i));
1977 }
1978 }
1979
1980 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1981 {
1982 int ret = 0;
1983
1984 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1985 set->queue_depth, set->reserved_tags);
1986 if (!set->tags[hctx_idx])
1987 return false;
1988
1989 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1990 set->queue_depth);
1991 if (!ret)
1992 return true;
1993
1994 blk_mq_free_rq_map(set->tags[hctx_idx]);
1995 set->tags[hctx_idx] = NULL;
1996 return false;
1997 }
1998
1999 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2000 unsigned int hctx_idx)
2001 {
2002 if (set->tags[hctx_idx]) {
2003 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2004 blk_mq_free_rq_map(set->tags[hctx_idx]);
2005 set->tags[hctx_idx] = NULL;
2006 }
2007 }
2008
2009 static void blk_mq_map_swqueue(struct request_queue *q,
2010 const struct cpumask *online_mask)
2011 {
2012 unsigned int i, hctx_idx;
2013 struct blk_mq_hw_ctx *hctx;
2014 struct blk_mq_ctx *ctx;
2015 struct blk_mq_tag_set *set = q->tag_set;
2016
2017 /*
2018 * Avoid others reading imcomplete hctx->cpumask through sysfs
2019 */
2020 mutex_lock(&q->sysfs_lock);
2021
2022 queue_for_each_hw_ctx(q, hctx, i) {
2023 cpumask_clear(hctx->cpumask);
2024 hctx->nr_ctx = 0;
2025 }
2026
2027 /*
2028 * Map software to hardware queues
2029 */
2030 for_each_possible_cpu(i) {
2031 /* If the cpu isn't online, the cpu is mapped to first hctx */
2032 if (!cpumask_test_cpu(i, online_mask))
2033 continue;
2034
2035 hctx_idx = q->mq_map[i];
2036 /* unmapped hw queue can be remapped after CPU topo changed */
2037 if (!set->tags[hctx_idx] &&
2038 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2039 /*
2040 * If tags initialization fail for some hctx,
2041 * that hctx won't be brought online. In this
2042 * case, remap the current ctx to hctx[0] which
2043 * is guaranteed to always have tags allocated
2044 */
2045 q->mq_map[i] = 0;
2046 }
2047
2048 ctx = per_cpu_ptr(q->queue_ctx, i);
2049 hctx = blk_mq_map_queue(q, i);
2050
2051 cpumask_set_cpu(i, hctx->cpumask);
2052 ctx->index_hw = hctx->nr_ctx;
2053 hctx->ctxs[hctx->nr_ctx++] = ctx;
2054 }
2055
2056 mutex_unlock(&q->sysfs_lock);
2057
2058 queue_for_each_hw_ctx(q, hctx, i) {
2059 /*
2060 * If no software queues are mapped to this hardware queue,
2061 * disable it and free the request entries.
2062 */
2063 if (!hctx->nr_ctx) {
2064 /* Never unmap queue 0. We need it as a
2065 * fallback in case of a new remap fails
2066 * allocation
2067 */
2068 if (i && set->tags[i])
2069 blk_mq_free_map_and_requests(set, i);
2070
2071 hctx->tags = NULL;
2072 continue;
2073 }
2074
2075 hctx->tags = set->tags[i];
2076 WARN_ON(!hctx->tags);
2077
2078 /*
2079 * Set the map size to the number of mapped software queues.
2080 * This is more accurate and more efficient than looping
2081 * over all possibly mapped software queues.
2082 */
2083 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2084
2085 /*
2086 * Initialize batch roundrobin counts
2087 */
2088 hctx->next_cpu = cpumask_first(hctx->cpumask);
2089 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2090 }
2091 }
2092
2093 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2094 {
2095 struct blk_mq_hw_ctx *hctx;
2096 int i;
2097
2098 queue_for_each_hw_ctx(q, hctx, i) {
2099 if (shared)
2100 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2101 else
2102 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2103 }
2104 }
2105
2106 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2107 {
2108 struct request_queue *q;
2109
2110 lockdep_assert_held(&set->tag_list_lock);
2111
2112 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2113 blk_mq_freeze_queue(q);
2114 queue_set_hctx_shared(q, shared);
2115 blk_mq_unfreeze_queue(q);
2116 }
2117 }
2118
2119 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2120 {
2121 struct blk_mq_tag_set *set = q->tag_set;
2122
2123 mutex_lock(&set->tag_list_lock);
2124 list_del_rcu(&q->tag_set_list);
2125 INIT_LIST_HEAD(&q->tag_set_list);
2126 if (list_is_singular(&set->tag_list)) {
2127 /* just transitioned to unshared */
2128 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2129 /* update existing queue */
2130 blk_mq_update_tag_set_depth(set, false);
2131 }
2132 mutex_unlock(&set->tag_list_lock);
2133
2134 synchronize_rcu();
2135 }
2136
2137 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2138 struct request_queue *q)
2139 {
2140 q->tag_set = set;
2141
2142 mutex_lock(&set->tag_list_lock);
2143
2144 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2145 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2146 set->flags |= BLK_MQ_F_TAG_SHARED;
2147 /* update existing queue */
2148 blk_mq_update_tag_set_depth(set, true);
2149 }
2150 if (set->flags & BLK_MQ_F_TAG_SHARED)
2151 queue_set_hctx_shared(q, true);
2152 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2153
2154 mutex_unlock(&set->tag_list_lock);
2155 }
2156
2157 /*
2158 * It is the actual release handler for mq, but we do it from
2159 * request queue's release handler for avoiding use-after-free
2160 * and headache because q->mq_kobj shouldn't have been introduced,
2161 * but we can't group ctx/kctx kobj without it.
2162 */
2163 void blk_mq_release(struct request_queue *q)
2164 {
2165 struct blk_mq_hw_ctx *hctx;
2166 unsigned int i;
2167
2168 /* hctx kobj stays in hctx */
2169 queue_for_each_hw_ctx(q, hctx, i) {
2170 if (!hctx)
2171 continue;
2172 kobject_put(&hctx->kobj);
2173 }
2174
2175 q->mq_map = NULL;
2176
2177 kfree(q->queue_hw_ctx);
2178
2179 /*
2180 * release .mq_kobj and sw queue's kobject now because
2181 * both share lifetime with request queue.
2182 */
2183 blk_mq_sysfs_deinit(q);
2184
2185 free_percpu(q->queue_ctx);
2186 }
2187
2188 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2189 {
2190 struct request_queue *uninit_q, *q;
2191
2192 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2193 if (!uninit_q)
2194 return ERR_PTR(-ENOMEM);
2195
2196 q = blk_mq_init_allocated_queue(set, uninit_q);
2197 if (IS_ERR(q))
2198 blk_cleanup_queue(uninit_q);
2199
2200 return q;
2201 }
2202 EXPORT_SYMBOL(blk_mq_init_queue);
2203
2204 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2205 struct request_queue *q)
2206 {
2207 int i, j;
2208 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2209
2210 blk_mq_sysfs_unregister(q);
2211 for (i = 0; i < set->nr_hw_queues; i++) {
2212 int node;
2213
2214 if (hctxs[i])
2215 continue;
2216
2217 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2218 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2219 GFP_KERNEL, node);
2220 if (!hctxs[i])
2221 break;
2222
2223 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2224 node)) {
2225 kfree(hctxs[i]);
2226 hctxs[i] = NULL;
2227 break;
2228 }
2229
2230 atomic_set(&hctxs[i]->nr_active, 0);
2231 hctxs[i]->numa_node = node;
2232 hctxs[i]->queue_num = i;
2233
2234 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2235 free_cpumask_var(hctxs[i]->cpumask);
2236 kfree(hctxs[i]);
2237 hctxs[i] = NULL;
2238 break;
2239 }
2240 blk_mq_hctx_kobj_init(hctxs[i]);
2241 }
2242 for (j = i; j < q->nr_hw_queues; j++) {
2243 struct blk_mq_hw_ctx *hctx = hctxs[j];
2244
2245 if (hctx) {
2246 if (hctx->tags)
2247 blk_mq_free_map_and_requests(set, j);
2248 blk_mq_exit_hctx(q, set, hctx, j);
2249 kobject_put(&hctx->kobj);
2250 hctxs[j] = NULL;
2251
2252 }
2253 }
2254 q->nr_hw_queues = i;
2255 blk_mq_sysfs_register(q);
2256 }
2257
2258 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2259 struct request_queue *q)
2260 {
2261 /* mark the queue as mq asap */
2262 q->mq_ops = set->ops;
2263
2264 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2265 blk_mq_poll_stats_bkt,
2266 BLK_MQ_POLL_STATS_BKTS, q);
2267 if (!q->poll_cb)
2268 goto err_exit;
2269
2270 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2271 if (!q->queue_ctx)
2272 goto err_exit;
2273
2274 /* init q->mq_kobj and sw queues' kobjects */
2275 blk_mq_sysfs_init(q);
2276
2277 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2278 GFP_KERNEL, set->numa_node);
2279 if (!q->queue_hw_ctx)
2280 goto err_percpu;
2281
2282 q->mq_map = set->mq_map;
2283
2284 blk_mq_realloc_hw_ctxs(set, q);
2285 if (!q->nr_hw_queues)
2286 goto err_hctxs;
2287
2288 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2289 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2290
2291 q->nr_queues = nr_cpu_ids;
2292
2293 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2294
2295 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2296 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2297
2298 q->sg_reserved_size = INT_MAX;
2299
2300 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2301 INIT_LIST_HEAD(&q->requeue_list);
2302 spin_lock_init(&q->requeue_lock);
2303
2304 blk_queue_make_request(q, blk_mq_make_request);
2305
2306 /*
2307 * Do this after blk_queue_make_request() overrides it...
2308 */
2309 q->nr_requests = set->queue_depth;
2310
2311 /*
2312 * Default to classic polling
2313 */
2314 q->poll_nsec = -1;
2315
2316 if (set->ops->complete)
2317 blk_queue_softirq_done(q, set->ops->complete);
2318
2319 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2320
2321 get_online_cpus();
2322 mutex_lock(&all_q_mutex);
2323
2324 list_add_tail(&q->all_q_node, &all_q_list);
2325 blk_mq_add_queue_tag_set(set, q);
2326 blk_mq_map_swqueue(q, cpu_online_mask);
2327
2328 mutex_unlock(&all_q_mutex);
2329 put_online_cpus();
2330
2331 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2332 int ret;
2333
2334 ret = blk_mq_sched_init(q);
2335 if (ret)
2336 return ERR_PTR(ret);
2337 }
2338
2339 return q;
2340
2341 err_hctxs:
2342 kfree(q->queue_hw_ctx);
2343 err_percpu:
2344 free_percpu(q->queue_ctx);
2345 err_exit:
2346 q->mq_ops = NULL;
2347 return ERR_PTR(-ENOMEM);
2348 }
2349 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2350
2351 void blk_mq_free_queue(struct request_queue *q)
2352 {
2353 struct blk_mq_tag_set *set = q->tag_set;
2354
2355 mutex_lock(&all_q_mutex);
2356 list_del_init(&q->all_q_node);
2357 mutex_unlock(&all_q_mutex);
2358
2359 blk_mq_del_queue_tag_set(q);
2360
2361 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2362 }
2363
2364 /* Basically redo blk_mq_init_queue with queue frozen */
2365 static void blk_mq_queue_reinit(struct request_queue *q,
2366 const struct cpumask *online_mask)
2367 {
2368 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2369
2370 blk_mq_debugfs_unregister_hctxs(q);
2371 blk_mq_sysfs_unregister(q);
2372
2373 /*
2374 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2375 * we should change hctx numa_node according to new topology (this
2376 * involves free and re-allocate memory, worthy doing?)
2377 */
2378
2379 blk_mq_map_swqueue(q, online_mask);
2380
2381 blk_mq_sysfs_register(q);
2382 blk_mq_debugfs_register_hctxs(q);
2383 }
2384
2385 /*
2386 * New online cpumask which is going to be set in this hotplug event.
2387 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2388 * one-by-one and dynamically allocating this could result in a failure.
2389 */
2390 static struct cpumask cpuhp_online_new;
2391
2392 static void blk_mq_queue_reinit_work(void)
2393 {
2394 struct request_queue *q;
2395
2396 mutex_lock(&all_q_mutex);
2397 /*
2398 * We need to freeze and reinit all existing queues. Freezing
2399 * involves synchronous wait for an RCU grace period and doing it
2400 * one by one may take a long time. Start freezing all queues in
2401 * one swoop and then wait for the completions so that freezing can
2402 * take place in parallel.
2403 */
2404 list_for_each_entry(q, &all_q_list, all_q_node)
2405 blk_freeze_queue_start(q);
2406 list_for_each_entry(q, &all_q_list, all_q_node)
2407 blk_mq_freeze_queue_wait(q);
2408
2409 list_for_each_entry(q, &all_q_list, all_q_node)
2410 blk_mq_queue_reinit(q, &cpuhp_online_new);
2411
2412 list_for_each_entry(q, &all_q_list, all_q_node)
2413 blk_mq_unfreeze_queue(q);
2414
2415 mutex_unlock(&all_q_mutex);
2416 }
2417
2418 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2419 {
2420 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2421 blk_mq_queue_reinit_work();
2422 return 0;
2423 }
2424
2425 /*
2426 * Before hotadded cpu starts handling requests, new mappings must be
2427 * established. Otherwise, these requests in hw queue might never be
2428 * dispatched.
2429 *
2430 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2431 * for CPU0, and ctx1 for CPU1).
2432 *
2433 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2434 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2435 *
2436 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2437 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2438 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2439 * ignored.
2440 */
2441 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2442 {
2443 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2444 cpumask_set_cpu(cpu, &cpuhp_online_new);
2445 blk_mq_queue_reinit_work();
2446 return 0;
2447 }
2448
2449 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2450 {
2451 int i;
2452
2453 for (i = 0; i < set->nr_hw_queues; i++)
2454 if (!__blk_mq_alloc_rq_map(set, i))
2455 goto out_unwind;
2456
2457 return 0;
2458
2459 out_unwind:
2460 while (--i >= 0)
2461 blk_mq_free_rq_map(set->tags[i]);
2462
2463 return -ENOMEM;
2464 }
2465
2466 /*
2467 * Allocate the request maps associated with this tag_set. Note that this
2468 * may reduce the depth asked for, if memory is tight. set->queue_depth
2469 * will be updated to reflect the allocated depth.
2470 */
2471 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2472 {
2473 unsigned int depth;
2474 int err;
2475
2476 depth = set->queue_depth;
2477 do {
2478 err = __blk_mq_alloc_rq_maps(set);
2479 if (!err)
2480 break;
2481
2482 set->queue_depth >>= 1;
2483 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2484 err = -ENOMEM;
2485 break;
2486 }
2487 } while (set->queue_depth);
2488
2489 if (!set->queue_depth || err) {
2490 pr_err("blk-mq: failed to allocate request map\n");
2491 return -ENOMEM;
2492 }
2493
2494 if (depth != set->queue_depth)
2495 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2496 depth, set->queue_depth);
2497
2498 return 0;
2499 }
2500
2501 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2502 {
2503 if (set->ops->map_queues)
2504 return set->ops->map_queues(set);
2505 else
2506 return blk_mq_map_queues(set);
2507 }
2508
2509 /*
2510 * Alloc a tag set to be associated with one or more request queues.
2511 * May fail with EINVAL for various error conditions. May adjust the
2512 * requested depth down, if if it too large. In that case, the set
2513 * value will be stored in set->queue_depth.
2514 */
2515 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2516 {
2517 int ret;
2518
2519 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2520
2521 if (!set->nr_hw_queues)
2522 return -EINVAL;
2523 if (!set->queue_depth)
2524 return -EINVAL;
2525 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2526 return -EINVAL;
2527
2528 if (!set->ops->queue_rq)
2529 return -EINVAL;
2530
2531 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2532 pr_info("blk-mq: reduced tag depth to %u\n",
2533 BLK_MQ_MAX_DEPTH);
2534 set->queue_depth = BLK_MQ_MAX_DEPTH;
2535 }
2536
2537 /*
2538 * If a crashdump is active, then we are potentially in a very
2539 * memory constrained environment. Limit us to 1 queue and
2540 * 64 tags to prevent using too much memory.
2541 */
2542 if (is_kdump_kernel()) {
2543 set->nr_hw_queues = 1;
2544 set->queue_depth = min(64U, set->queue_depth);
2545 }
2546 /*
2547 * There is no use for more h/w queues than cpus.
2548 */
2549 if (set->nr_hw_queues > nr_cpu_ids)
2550 set->nr_hw_queues = nr_cpu_ids;
2551
2552 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2553 GFP_KERNEL, set->numa_node);
2554 if (!set->tags)
2555 return -ENOMEM;
2556
2557 ret = -ENOMEM;
2558 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2559 GFP_KERNEL, set->numa_node);
2560 if (!set->mq_map)
2561 goto out_free_tags;
2562
2563 ret = blk_mq_update_queue_map(set);
2564 if (ret)
2565 goto out_free_mq_map;
2566
2567 ret = blk_mq_alloc_rq_maps(set);
2568 if (ret)
2569 goto out_free_mq_map;
2570
2571 mutex_init(&set->tag_list_lock);
2572 INIT_LIST_HEAD(&set->tag_list);
2573
2574 return 0;
2575
2576 out_free_mq_map:
2577 kfree(set->mq_map);
2578 set->mq_map = NULL;
2579 out_free_tags:
2580 kfree(set->tags);
2581 set->tags = NULL;
2582 return ret;
2583 }
2584 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2585
2586 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2587 {
2588 int i;
2589
2590 for (i = 0; i < nr_cpu_ids; i++)
2591 blk_mq_free_map_and_requests(set, i);
2592
2593 kfree(set->mq_map);
2594 set->mq_map = NULL;
2595
2596 kfree(set->tags);
2597 set->tags = NULL;
2598 }
2599 EXPORT_SYMBOL(blk_mq_free_tag_set);
2600
2601 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2602 {
2603 struct blk_mq_tag_set *set = q->tag_set;
2604 struct blk_mq_hw_ctx *hctx;
2605 int i, ret;
2606
2607 if (!set)
2608 return -EINVAL;
2609
2610 blk_mq_freeze_queue(q);
2611
2612 ret = 0;
2613 queue_for_each_hw_ctx(q, hctx, i) {
2614 if (!hctx->tags)
2615 continue;
2616 /*
2617 * If we're using an MQ scheduler, just update the scheduler
2618 * queue depth. This is similar to what the old code would do.
2619 */
2620 if (!hctx->sched_tags) {
2621 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2622 min(nr, set->queue_depth),
2623 false);
2624 } else {
2625 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2626 nr, true);
2627 }
2628 if (ret)
2629 break;
2630 }
2631
2632 if (!ret)
2633 q->nr_requests = nr;
2634
2635 blk_mq_unfreeze_queue(q);
2636
2637 return ret;
2638 }
2639
2640 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2641 int nr_hw_queues)
2642 {
2643 struct request_queue *q;
2644
2645 lockdep_assert_held(&set->tag_list_lock);
2646
2647 if (nr_hw_queues > nr_cpu_ids)
2648 nr_hw_queues = nr_cpu_ids;
2649 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2650 return;
2651
2652 list_for_each_entry(q, &set->tag_list, tag_set_list)
2653 blk_mq_freeze_queue(q);
2654
2655 set->nr_hw_queues = nr_hw_queues;
2656 blk_mq_update_queue_map(set);
2657 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2658 blk_mq_realloc_hw_ctxs(set, q);
2659 blk_mq_queue_reinit(q, cpu_online_mask);
2660 }
2661
2662 list_for_each_entry(q, &set->tag_list, tag_set_list)
2663 blk_mq_unfreeze_queue(q);
2664 }
2665
2666 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2667 {
2668 mutex_lock(&set->tag_list_lock);
2669 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2670 mutex_unlock(&set->tag_list_lock);
2671 }
2672 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2673
2674 /* Enable polling stats and return whether they were already enabled. */
2675 static bool blk_poll_stats_enable(struct request_queue *q)
2676 {
2677 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2678 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2679 return true;
2680 blk_stat_add_callback(q, q->poll_cb);
2681 return false;
2682 }
2683
2684 static void blk_mq_poll_stats_start(struct request_queue *q)
2685 {
2686 /*
2687 * We don't arm the callback if polling stats are not enabled or the
2688 * callback is already active.
2689 */
2690 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2691 blk_stat_is_active(q->poll_cb))
2692 return;
2693
2694 blk_stat_activate_msecs(q->poll_cb, 100);
2695 }
2696
2697 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2698 {
2699 struct request_queue *q = cb->data;
2700 int bucket;
2701
2702 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2703 if (cb->stat[bucket].nr_samples)
2704 q->poll_stat[bucket] = cb->stat[bucket];
2705 }
2706 }
2707
2708 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2709 struct blk_mq_hw_ctx *hctx,
2710 struct request *rq)
2711 {
2712 unsigned long ret = 0;
2713 int bucket;
2714
2715 /*
2716 * If stats collection isn't on, don't sleep but turn it on for
2717 * future users
2718 */
2719 if (!blk_poll_stats_enable(q))
2720 return 0;
2721
2722 /*
2723 * As an optimistic guess, use half of the mean service time
2724 * for this type of request. We can (and should) make this smarter.
2725 * For instance, if the completion latencies are tight, we can
2726 * get closer than just half the mean. This is especially
2727 * important on devices where the completion latencies are longer
2728 * than ~10 usec. We do use the stats for the relevant IO size
2729 * if available which does lead to better estimates.
2730 */
2731 bucket = blk_mq_poll_stats_bkt(rq);
2732 if (bucket < 0)
2733 return ret;
2734
2735 if (q->poll_stat[bucket].nr_samples)
2736 ret = (q->poll_stat[bucket].mean + 1) / 2;
2737
2738 return ret;
2739 }
2740
2741 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2742 struct blk_mq_hw_ctx *hctx,
2743 struct request *rq)
2744 {
2745 struct hrtimer_sleeper hs;
2746 enum hrtimer_mode mode;
2747 unsigned int nsecs;
2748 ktime_t kt;
2749
2750 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2751 return false;
2752
2753 /*
2754 * poll_nsec can be:
2755 *
2756 * -1: don't ever hybrid sleep
2757 * 0: use half of prev avg
2758 * >0: use this specific value
2759 */
2760 if (q->poll_nsec == -1)
2761 return false;
2762 else if (q->poll_nsec > 0)
2763 nsecs = q->poll_nsec;
2764 else
2765 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2766
2767 if (!nsecs)
2768 return false;
2769
2770 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2771
2772 /*
2773 * This will be replaced with the stats tracking code, using
2774 * 'avg_completion_time / 2' as the pre-sleep target.
2775 */
2776 kt = nsecs;
2777
2778 mode = HRTIMER_MODE_REL;
2779 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2780 hrtimer_set_expires(&hs.timer, kt);
2781
2782 hrtimer_init_sleeper(&hs, current);
2783 do {
2784 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2785 break;
2786 set_current_state(TASK_UNINTERRUPTIBLE);
2787 hrtimer_start_expires(&hs.timer, mode);
2788 if (hs.task)
2789 io_schedule();
2790 hrtimer_cancel(&hs.timer);
2791 mode = HRTIMER_MODE_ABS;
2792 } while (hs.task && !signal_pending(current));
2793
2794 __set_current_state(TASK_RUNNING);
2795 destroy_hrtimer_on_stack(&hs.timer);
2796 return true;
2797 }
2798
2799 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2800 {
2801 struct request_queue *q = hctx->queue;
2802 long state;
2803
2804 /*
2805 * If we sleep, have the caller restart the poll loop to reset
2806 * the state. Like for the other success return cases, the
2807 * caller is responsible for checking if the IO completed. If
2808 * the IO isn't complete, we'll get called again and will go
2809 * straight to the busy poll loop.
2810 */
2811 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2812 return true;
2813
2814 hctx->poll_considered++;
2815
2816 state = current->state;
2817 while (!need_resched()) {
2818 int ret;
2819
2820 hctx->poll_invoked++;
2821
2822 ret = q->mq_ops->poll(hctx, rq->tag);
2823 if (ret > 0) {
2824 hctx->poll_success++;
2825 set_current_state(TASK_RUNNING);
2826 return true;
2827 }
2828
2829 if (signal_pending_state(state, current))
2830 set_current_state(TASK_RUNNING);
2831
2832 if (current->state == TASK_RUNNING)
2833 return true;
2834 if (ret < 0)
2835 break;
2836 cpu_relax();
2837 }
2838
2839 return false;
2840 }
2841
2842 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2843 {
2844 struct blk_mq_hw_ctx *hctx;
2845 struct blk_plug *plug;
2846 struct request *rq;
2847
2848 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2849 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2850 return false;
2851
2852 plug = current->plug;
2853 if (plug)
2854 blk_flush_plug_list(plug, false);
2855
2856 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2857 if (!blk_qc_t_is_internal(cookie))
2858 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2859 else {
2860 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2861 /*
2862 * With scheduling, if the request has completed, we'll
2863 * get a NULL return here, as we clear the sched tag when
2864 * that happens. The request still remains valid, like always,
2865 * so we should be safe with just the NULL check.
2866 */
2867 if (!rq)
2868 return false;
2869 }
2870
2871 return __blk_mq_poll(hctx, rq);
2872 }
2873 EXPORT_SYMBOL_GPL(blk_mq_poll);
2874
2875 void blk_mq_disable_hotplug(void)
2876 {
2877 mutex_lock(&all_q_mutex);
2878 }
2879
2880 void blk_mq_enable_hotplug(void)
2881 {
2882 mutex_unlock(&all_q_mutex);
2883 }
2884
2885 static int __init blk_mq_init(void)
2886 {
2887 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2888 blk_mq_hctx_notify_dead);
2889
2890 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2891 blk_mq_queue_reinit_prepare,
2892 blk_mq_queue_reinit_dead);
2893 return 0;
2894 }
2895 subsys_initcall(blk_mq_init);