]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk: remove bio_set arg from blk_queue_split()
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 int ddir, bytes, bucket;
50
51 ddir = rq_data_dir(rq);
52 bytes = blk_rq_bytes(rq);
53
54 bucket = ddir + 2*(ilog2(bytes) - 9);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62 }
63
64 /*
65 * Check if any of the ctx's have pending work in this hardware queue
66 */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 !list_empty_careful(&hctx->dispatch) ||
71 blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79 {
80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92 int freeze_depth;
93
94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 if (freeze_depth == 1) {
96 percpu_ref_kill(&q->q_usage_counter);
97 blk_mq_run_hw_queues(q, false);
98 }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 unsigned long timeout)
110 {
111 return wait_event_timeout(q->mq_freeze_wq,
112 percpu_ref_is_zero(&q->q_usage_counter),
113 timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118 * Guarantee no request is in use, so we can change any data structure of
119 * the queue afterward.
120 */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123 /*
124 * In the !blk_mq case we are only calling this to kill the
125 * q_usage_counter, otherwise this increases the freeze depth
126 * and waits for it to return to zero. For this reason there is
127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 * exported to drivers as the only user for unfreeze is blk_mq.
129 */
130 blk_freeze_queue_start(q);
131 blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 /*
137 * ...just an alias to keep freeze and unfreeze actions balanced
138 * in the blk_mq_* namespace
139 */
140 blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 int freeze_depth;
147
148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 WARN_ON_ONCE(freeze_depth < 0);
150 if (!freeze_depth) {
151 percpu_ref_reinit(&q->q_usage_counter);
152 wake_up_all(&q->mq_freeze_wq);
153 }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159 * @q: request queue.
160 *
161 * Note: this function does not prevent that the struct request end_io()
162 * callback function is invoked. Additionally, it is not prevented that
163 * new queue_rq() calls occur unless the queue has been stopped first.
164 */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
171 __blk_mq_stop_hw_queues(q, true);
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186 struct blk_mq_hw_ctx *hctx;
187 unsigned int i;
188
189 queue_for_each_hw_ctx(q, hctx, i)
190 if (blk_mq_hw_queue_mapped(hctx))
191 blk_mq_tag_wakeup_all(hctx->tags, true);
192
193 /*
194 * If we are called because the queue has now been marked as
195 * dying, we need to ensure that processes currently waiting on
196 * the queue are notified as well.
197 */
198 wake_up_all(&q->mq_freeze_wq);
199 }
200
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203 return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206
207 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
208 unsigned int tag, unsigned int op)
209 {
210 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
211 struct request *rq = tags->static_rqs[tag];
212
213 if (data->flags & BLK_MQ_REQ_INTERNAL) {
214 rq->tag = -1;
215 rq->internal_tag = tag;
216 } else {
217 if (blk_mq_tag_busy(data->hctx)) {
218 rq->rq_flags = RQF_MQ_INFLIGHT;
219 atomic_inc(&data->hctx->nr_active);
220 }
221 rq->tag = tag;
222 rq->internal_tag = -1;
223 data->hctx->tags->rqs[rq->tag] = rq;
224 }
225
226 INIT_LIST_HEAD(&rq->queuelist);
227 /* csd/requeue_work/fifo_time is initialized before use */
228 rq->q = data->q;
229 rq->mq_ctx = data->ctx;
230 rq->cmd_flags = op;
231 if (blk_queue_io_stat(data->q))
232 rq->rq_flags |= RQF_IO_STAT;
233 /* do not touch atomic flags, it needs atomic ops against the timer */
234 rq->cpu = -1;
235 INIT_HLIST_NODE(&rq->hash);
236 RB_CLEAR_NODE(&rq->rb_node);
237 rq->rq_disk = NULL;
238 rq->part = NULL;
239 rq->start_time = jiffies;
240 #ifdef CONFIG_BLK_CGROUP
241 rq->rl = NULL;
242 set_start_time_ns(rq);
243 rq->io_start_time_ns = 0;
244 #endif
245 rq->nr_phys_segments = 0;
246 #if defined(CONFIG_BLK_DEV_INTEGRITY)
247 rq->nr_integrity_segments = 0;
248 #endif
249 rq->special = NULL;
250 /* tag was already set */
251 rq->extra_len = 0;
252
253 INIT_LIST_HEAD(&rq->timeout_list);
254 rq->timeout = 0;
255
256 rq->end_io = NULL;
257 rq->end_io_data = NULL;
258 rq->next_rq = NULL;
259
260 data->ctx->rq_dispatched[op_is_sync(op)]++;
261 return rq;
262 }
263
264 static struct request *blk_mq_get_request(struct request_queue *q,
265 struct bio *bio, unsigned int op,
266 struct blk_mq_alloc_data *data)
267 {
268 struct elevator_queue *e = q->elevator;
269 struct request *rq;
270 unsigned int tag;
271
272 blk_queue_enter_live(q);
273 data->q = q;
274 if (likely(!data->ctx))
275 data->ctx = blk_mq_get_ctx(q);
276 if (likely(!data->hctx))
277 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
278
279 if (e) {
280 data->flags |= BLK_MQ_REQ_INTERNAL;
281
282 /*
283 * Flush requests are special and go directly to the
284 * dispatch list.
285 */
286 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
287 e->type->ops.mq.limit_depth(op, data);
288 }
289
290 tag = blk_mq_get_tag(data);
291 if (tag == BLK_MQ_TAG_FAIL) {
292 blk_queue_exit(q);
293 return NULL;
294 }
295
296 rq = blk_mq_rq_ctx_init(data, tag, op);
297 if (!op_is_flush(op)) {
298 rq->elv.icq = NULL;
299 if (e && e->type->ops.mq.prepare_request) {
300 if (e->type->icq_cache && rq_ioc(bio))
301 blk_mq_sched_assign_ioc(rq, bio);
302
303 e->type->ops.mq.prepare_request(rq, bio);
304 rq->rq_flags |= RQF_ELVPRIV;
305 }
306 }
307 data->hctx->queued++;
308 return rq;
309 }
310
311 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
312 unsigned int flags)
313 {
314 struct blk_mq_alloc_data alloc_data = { .flags = flags };
315 struct request *rq;
316 int ret;
317
318 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
319 if (ret)
320 return ERR_PTR(ret);
321
322 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
323
324 blk_mq_put_ctx(alloc_data.ctx);
325 blk_queue_exit(q);
326
327 if (!rq)
328 return ERR_PTR(-EWOULDBLOCK);
329
330 rq->__data_len = 0;
331 rq->__sector = (sector_t) -1;
332 rq->bio = rq->biotail = NULL;
333 return rq;
334 }
335 EXPORT_SYMBOL(blk_mq_alloc_request);
336
337 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
338 unsigned int flags, unsigned int hctx_idx)
339 {
340 struct blk_mq_alloc_data alloc_data = { .flags = flags };
341 struct request *rq;
342 unsigned int cpu;
343 int ret;
344
345 /*
346 * If the tag allocator sleeps we could get an allocation for a
347 * different hardware context. No need to complicate the low level
348 * allocator for this for the rare use case of a command tied to
349 * a specific queue.
350 */
351 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
352 return ERR_PTR(-EINVAL);
353
354 if (hctx_idx >= q->nr_hw_queues)
355 return ERR_PTR(-EIO);
356
357 ret = blk_queue_enter(q, true);
358 if (ret)
359 return ERR_PTR(ret);
360
361 /*
362 * Check if the hardware context is actually mapped to anything.
363 * If not tell the caller that it should skip this queue.
364 */
365 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
366 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
367 blk_queue_exit(q);
368 return ERR_PTR(-EXDEV);
369 }
370 cpu = cpumask_first(alloc_data.hctx->cpumask);
371 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
372
373 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
374
375 blk_queue_exit(q);
376
377 if (!rq)
378 return ERR_PTR(-EWOULDBLOCK);
379
380 return rq;
381 }
382 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
383
384 void blk_mq_free_request(struct request *rq)
385 {
386 struct request_queue *q = rq->q;
387 struct elevator_queue *e = q->elevator;
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
389 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
390 const int sched_tag = rq->internal_tag;
391
392 if (rq->rq_flags & RQF_ELVPRIV) {
393 if (e && e->type->ops.mq.finish_request)
394 e->type->ops.mq.finish_request(rq);
395 if (rq->elv.icq) {
396 put_io_context(rq->elv.icq->ioc);
397 rq->elv.icq = NULL;
398 }
399 }
400
401 ctx->rq_completed[rq_is_sync(rq)]++;
402 if (rq->rq_flags & RQF_MQ_INFLIGHT)
403 atomic_dec(&hctx->nr_active);
404
405 wbt_done(q->rq_wb, &rq->issue_stat);
406 rq->rq_flags = 0;
407
408 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
409 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
410 if (rq->tag != -1)
411 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
412 if (sched_tag != -1)
413 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
414 blk_mq_sched_restart(hctx);
415 blk_queue_exit(q);
416 }
417 EXPORT_SYMBOL_GPL(blk_mq_free_request);
418
419 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
420 {
421 blk_account_io_done(rq);
422
423 if (rq->end_io) {
424 wbt_done(rq->q->rq_wb, &rq->issue_stat);
425 rq->end_io(rq, error);
426 } else {
427 if (unlikely(blk_bidi_rq(rq)))
428 blk_mq_free_request(rq->next_rq);
429 blk_mq_free_request(rq);
430 }
431 }
432 EXPORT_SYMBOL(__blk_mq_end_request);
433
434 void blk_mq_end_request(struct request *rq, blk_status_t error)
435 {
436 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
437 BUG();
438 __blk_mq_end_request(rq, error);
439 }
440 EXPORT_SYMBOL(blk_mq_end_request);
441
442 static void __blk_mq_complete_request_remote(void *data)
443 {
444 struct request *rq = data;
445
446 rq->q->softirq_done_fn(rq);
447 }
448
449 static void __blk_mq_complete_request(struct request *rq)
450 {
451 struct blk_mq_ctx *ctx = rq->mq_ctx;
452 bool shared = false;
453 int cpu;
454
455 if (rq->internal_tag != -1)
456 blk_mq_sched_completed_request(rq);
457 if (rq->rq_flags & RQF_STATS) {
458 blk_mq_poll_stats_start(rq->q);
459 blk_stat_add(rq);
460 }
461
462 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
463 rq->q->softirq_done_fn(rq);
464 return;
465 }
466
467 cpu = get_cpu();
468 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
469 shared = cpus_share_cache(cpu, ctx->cpu);
470
471 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
472 rq->csd.func = __blk_mq_complete_request_remote;
473 rq->csd.info = rq;
474 rq->csd.flags = 0;
475 smp_call_function_single_async(ctx->cpu, &rq->csd);
476 } else {
477 rq->q->softirq_done_fn(rq);
478 }
479 put_cpu();
480 }
481
482 /**
483 * blk_mq_complete_request - end I/O on a request
484 * @rq: the request being processed
485 *
486 * Description:
487 * Ends all I/O on a request. It does not handle partial completions.
488 * The actual completion happens out-of-order, through a IPI handler.
489 **/
490 void blk_mq_complete_request(struct request *rq)
491 {
492 struct request_queue *q = rq->q;
493
494 if (unlikely(blk_should_fake_timeout(q)))
495 return;
496 if (!blk_mark_rq_complete(rq))
497 __blk_mq_complete_request(rq);
498 }
499 EXPORT_SYMBOL(blk_mq_complete_request);
500
501 int blk_mq_request_started(struct request *rq)
502 {
503 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
504 }
505 EXPORT_SYMBOL_GPL(blk_mq_request_started);
506
507 void blk_mq_start_request(struct request *rq)
508 {
509 struct request_queue *q = rq->q;
510
511 blk_mq_sched_started_request(rq);
512
513 trace_block_rq_issue(q, rq);
514
515 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
516 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
517 rq->rq_flags |= RQF_STATS;
518 wbt_issue(q->rq_wb, &rq->issue_stat);
519 }
520
521 blk_add_timer(rq);
522
523 /*
524 * Ensure that ->deadline is visible before set the started
525 * flag and clear the completed flag.
526 */
527 smp_mb__before_atomic();
528
529 /*
530 * Mark us as started and clear complete. Complete might have been
531 * set if requeue raced with timeout, which then marked it as
532 * complete. So be sure to clear complete again when we start
533 * the request, otherwise we'll ignore the completion event.
534 */
535 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
536 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
537 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
538 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
539
540 if (q->dma_drain_size && blk_rq_bytes(rq)) {
541 /*
542 * Make sure space for the drain appears. We know we can do
543 * this because max_hw_segments has been adjusted to be one
544 * fewer than the device can handle.
545 */
546 rq->nr_phys_segments++;
547 }
548 }
549 EXPORT_SYMBOL(blk_mq_start_request);
550
551 /*
552 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
553 * flag isn't set yet, so there may be race with timeout handler,
554 * but given rq->deadline is just set in .queue_rq() under
555 * this situation, the race won't be possible in reality because
556 * rq->timeout should be set as big enough to cover the window
557 * between blk_mq_start_request() called from .queue_rq() and
558 * clearing REQ_ATOM_STARTED here.
559 */
560 static void __blk_mq_requeue_request(struct request *rq)
561 {
562 struct request_queue *q = rq->q;
563
564 trace_block_rq_requeue(q, rq);
565 wbt_requeue(q->rq_wb, &rq->issue_stat);
566 blk_mq_sched_requeue_request(rq);
567
568 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
569 if (q->dma_drain_size && blk_rq_bytes(rq))
570 rq->nr_phys_segments--;
571 }
572 }
573
574 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
575 {
576 __blk_mq_requeue_request(rq);
577
578 BUG_ON(blk_queued_rq(rq));
579 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
580 }
581 EXPORT_SYMBOL(blk_mq_requeue_request);
582
583 static void blk_mq_requeue_work(struct work_struct *work)
584 {
585 struct request_queue *q =
586 container_of(work, struct request_queue, requeue_work.work);
587 LIST_HEAD(rq_list);
588 struct request *rq, *next;
589 unsigned long flags;
590
591 spin_lock_irqsave(&q->requeue_lock, flags);
592 list_splice_init(&q->requeue_list, &rq_list);
593 spin_unlock_irqrestore(&q->requeue_lock, flags);
594
595 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
596 if (!(rq->rq_flags & RQF_SOFTBARRIER))
597 continue;
598
599 rq->rq_flags &= ~RQF_SOFTBARRIER;
600 list_del_init(&rq->queuelist);
601 blk_mq_sched_insert_request(rq, true, false, false, true);
602 }
603
604 while (!list_empty(&rq_list)) {
605 rq = list_entry(rq_list.next, struct request, queuelist);
606 list_del_init(&rq->queuelist);
607 blk_mq_sched_insert_request(rq, false, false, false, true);
608 }
609
610 blk_mq_run_hw_queues(q, false);
611 }
612
613 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
614 bool kick_requeue_list)
615 {
616 struct request_queue *q = rq->q;
617 unsigned long flags;
618
619 /*
620 * We abuse this flag that is otherwise used by the I/O scheduler to
621 * request head insertation from the workqueue.
622 */
623 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
624
625 spin_lock_irqsave(&q->requeue_lock, flags);
626 if (at_head) {
627 rq->rq_flags |= RQF_SOFTBARRIER;
628 list_add(&rq->queuelist, &q->requeue_list);
629 } else {
630 list_add_tail(&rq->queuelist, &q->requeue_list);
631 }
632 spin_unlock_irqrestore(&q->requeue_lock, flags);
633
634 if (kick_requeue_list)
635 blk_mq_kick_requeue_list(q);
636 }
637 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
638
639 void blk_mq_kick_requeue_list(struct request_queue *q)
640 {
641 kblockd_schedule_delayed_work(&q->requeue_work, 0);
642 }
643 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
644
645 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
646 unsigned long msecs)
647 {
648 kblockd_schedule_delayed_work(&q->requeue_work,
649 msecs_to_jiffies(msecs));
650 }
651 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
652
653 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
654 {
655 if (tag < tags->nr_tags) {
656 prefetch(tags->rqs[tag]);
657 return tags->rqs[tag];
658 }
659
660 return NULL;
661 }
662 EXPORT_SYMBOL(blk_mq_tag_to_rq);
663
664 struct blk_mq_timeout_data {
665 unsigned long next;
666 unsigned int next_set;
667 };
668
669 void blk_mq_rq_timed_out(struct request *req, bool reserved)
670 {
671 const struct blk_mq_ops *ops = req->q->mq_ops;
672 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
673
674 /*
675 * We know that complete is set at this point. If STARTED isn't set
676 * anymore, then the request isn't active and the "timeout" should
677 * just be ignored. This can happen due to the bitflag ordering.
678 * Timeout first checks if STARTED is set, and if it is, assumes
679 * the request is active. But if we race with completion, then
680 * both flags will get cleared. So check here again, and ignore
681 * a timeout event with a request that isn't active.
682 */
683 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
684 return;
685
686 if (ops->timeout)
687 ret = ops->timeout(req, reserved);
688
689 switch (ret) {
690 case BLK_EH_HANDLED:
691 __blk_mq_complete_request(req);
692 break;
693 case BLK_EH_RESET_TIMER:
694 blk_add_timer(req);
695 blk_clear_rq_complete(req);
696 break;
697 case BLK_EH_NOT_HANDLED:
698 break;
699 default:
700 printk(KERN_ERR "block: bad eh return: %d\n", ret);
701 break;
702 }
703 }
704
705 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
706 struct request *rq, void *priv, bool reserved)
707 {
708 struct blk_mq_timeout_data *data = priv;
709
710 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
711 return;
712
713 /*
714 * The rq being checked may have been freed and reallocated
715 * out already here, we avoid this race by checking rq->deadline
716 * and REQ_ATOM_COMPLETE flag together:
717 *
718 * - if rq->deadline is observed as new value because of
719 * reusing, the rq won't be timed out because of timing.
720 * - if rq->deadline is observed as previous value,
721 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
722 * because we put a barrier between setting rq->deadline
723 * and clearing the flag in blk_mq_start_request(), so
724 * this rq won't be timed out too.
725 */
726 if (time_after_eq(jiffies, rq->deadline)) {
727 if (!blk_mark_rq_complete(rq))
728 blk_mq_rq_timed_out(rq, reserved);
729 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
730 data->next = rq->deadline;
731 data->next_set = 1;
732 }
733 }
734
735 static void blk_mq_timeout_work(struct work_struct *work)
736 {
737 struct request_queue *q =
738 container_of(work, struct request_queue, timeout_work);
739 struct blk_mq_timeout_data data = {
740 .next = 0,
741 .next_set = 0,
742 };
743 int i;
744
745 /* A deadlock might occur if a request is stuck requiring a
746 * timeout at the same time a queue freeze is waiting
747 * completion, since the timeout code would not be able to
748 * acquire the queue reference here.
749 *
750 * That's why we don't use blk_queue_enter here; instead, we use
751 * percpu_ref_tryget directly, because we need to be able to
752 * obtain a reference even in the short window between the queue
753 * starting to freeze, by dropping the first reference in
754 * blk_freeze_queue_start, and the moment the last request is
755 * consumed, marked by the instant q_usage_counter reaches
756 * zero.
757 */
758 if (!percpu_ref_tryget(&q->q_usage_counter))
759 return;
760
761 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
762
763 if (data.next_set) {
764 data.next = blk_rq_timeout(round_jiffies_up(data.next));
765 mod_timer(&q->timeout, data.next);
766 } else {
767 struct blk_mq_hw_ctx *hctx;
768
769 queue_for_each_hw_ctx(q, hctx, i) {
770 /* the hctx may be unmapped, so check it here */
771 if (blk_mq_hw_queue_mapped(hctx))
772 blk_mq_tag_idle(hctx);
773 }
774 }
775 blk_queue_exit(q);
776 }
777
778 struct flush_busy_ctx_data {
779 struct blk_mq_hw_ctx *hctx;
780 struct list_head *list;
781 };
782
783 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
784 {
785 struct flush_busy_ctx_data *flush_data = data;
786 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
787 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
788
789 sbitmap_clear_bit(sb, bitnr);
790 spin_lock(&ctx->lock);
791 list_splice_tail_init(&ctx->rq_list, flush_data->list);
792 spin_unlock(&ctx->lock);
793 return true;
794 }
795
796 /*
797 * Process software queues that have been marked busy, splicing them
798 * to the for-dispatch
799 */
800 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
801 {
802 struct flush_busy_ctx_data data = {
803 .hctx = hctx,
804 .list = list,
805 };
806
807 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
808 }
809 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
810
811 static inline unsigned int queued_to_index(unsigned int queued)
812 {
813 if (!queued)
814 return 0;
815
816 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
817 }
818
819 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
820 bool wait)
821 {
822 struct blk_mq_alloc_data data = {
823 .q = rq->q,
824 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
825 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
826 };
827
828 might_sleep_if(wait);
829
830 if (rq->tag != -1)
831 goto done;
832
833 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
834 data.flags |= BLK_MQ_REQ_RESERVED;
835
836 rq->tag = blk_mq_get_tag(&data);
837 if (rq->tag >= 0) {
838 if (blk_mq_tag_busy(data.hctx)) {
839 rq->rq_flags |= RQF_MQ_INFLIGHT;
840 atomic_inc(&data.hctx->nr_active);
841 }
842 data.hctx->tags->rqs[rq->tag] = rq;
843 }
844
845 done:
846 if (hctx)
847 *hctx = data.hctx;
848 return rq->tag != -1;
849 }
850
851 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
852 struct request *rq)
853 {
854 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
855 rq->tag = -1;
856
857 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
858 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
859 atomic_dec(&hctx->nr_active);
860 }
861 }
862
863 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
864 struct request *rq)
865 {
866 if (rq->tag == -1 || rq->internal_tag == -1)
867 return;
868
869 __blk_mq_put_driver_tag(hctx, rq);
870 }
871
872 static void blk_mq_put_driver_tag(struct request *rq)
873 {
874 struct blk_mq_hw_ctx *hctx;
875
876 if (rq->tag == -1 || rq->internal_tag == -1)
877 return;
878
879 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
880 __blk_mq_put_driver_tag(hctx, rq);
881 }
882
883 /*
884 * If we fail getting a driver tag because all the driver tags are already
885 * assigned and on the dispatch list, BUT the first entry does not have a
886 * tag, then we could deadlock. For that case, move entries with assigned
887 * driver tags to the front, leaving the set of tagged requests in the
888 * same order, and the untagged set in the same order.
889 */
890 static bool reorder_tags_to_front(struct list_head *list)
891 {
892 struct request *rq, *tmp, *first = NULL;
893
894 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
895 if (rq == first)
896 break;
897 if (rq->tag != -1) {
898 list_move(&rq->queuelist, list);
899 if (!first)
900 first = rq;
901 }
902 }
903
904 return first != NULL;
905 }
906
907 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
908 void *key)
909 {
910 struct blk_mq_hw_ctx *hctx;
911
912 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
913
914 list_del(&wait->task_list);
915 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
916 blk_mq_run_hw_queue(hctx, true);
917 return 1;
918 }
919
920 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
921 {
922 struct sbq_wait_state *ws;
923
924 /*
925 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
926 * The thread which wins the race to grab this bit adds the hardware
927 * queue to the wait queue.
928 */
929 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
930 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
931 return false;
932
933 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
934 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
935
936 /*
937 * As soon as this returns, it's no longer safe to fiddle with
938 * hctx->dispatch_wait, since a completion can wake up the wait queue
939 * and unlock the bit.
940 */
941 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
942 return true;
943 }
944
945 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
946 {
947 struct blk_mq_hw_ctx *hctx;
948 struct request *rq;
949 int errors, queued;
950
951 if (list_empty(list))
952 return false;
953
954 /*
955 * Now process all the entries, sending them to the driver.
956 */
957 errors = queued = 0;
958 do {
959 struct blk_mq_queue_data bd;
960 blk_status_t ret;
961
962 rq = list_first_entry(list, struct request, queuelist);
963 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
964 if (!queued && reorder_tags_to_front(list))
965 continue;
966
967 /*
968 * The initial allocation attempt failed, so we need to
969 * rerun the hardware queue when a tag is freed.
970 */
971 if (!blk_mq_dispatch_wait_add(hctx))
972 break;
973
974 /*
975 * It's possible that a tag was freed in the window
976 * between the allocation failure and adding the
977 * hardware queue to the wait queue.
978 */
979 if (!blk_mq_get_driver_tag(rq, &hctx, false))
980 break;
981 }
982
983 list_del_init(&rq->queuelist);
984
985 bd.rq = rq;
986
987 /*
988 * Flag last if we have no more requests, or if we have more
989 * but can't assign a driver tag to it.
990 */
991 if (list_empty(list))
992 bd.last = true;
993 else {
994 struct request *nxt;
995
996 nxt = list_first_entry(list, struct request, queuelist);
997 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
998 }
999
1000 ret = q->mq_ops->queue_rq(hctx, &bd);
1001 if (ret == BLK_STS_RESOURCE) {
1002 blk_mq_put_driver_tag_hctx(hctx, rq);
1003 list_add(&rq->queuelist, list);
1004 __blk_mq_requeue_request(rq);
1005 break;
1006 }
1007
1008 if (unlikely(ret != BLK_STS_OK)) {
1009 errors++;
1010 blk_mq_end_request(rq, BLK_STS_IOERR);
1011 continue;
1012 }
1013
1014 queued++;
1015 } while (!list_empty(list));
1016
1017 hctx->dispatched[queued_to_index(queued)]++;
1018
1019 /*
1020 * Any items that need requeuing? Stuff them into hctx->dispatch,
1021 * that is where we will continue on next queue run.
1022 */
1023 if (!list_empty(list)) {
1024 /*
1025 * If an I/O scheduler has been configured and we got a driver
1026 * tag for the next request already, free it again.
1027 */
1028 rq = list_first_entry(list, struct request, queuelist);
1029 blk_mq_put_driver_tag(rq);
1030
1031 spin_lock(&hctx->lock);
1032 list_splice_init(list, &hctx->dispatch);
1033 spin_unlock(&hctx->lock);
1034
1035 /*
1036 * If SCHED_RESTART was set by the caller of this function and
1037 * it is no longer set that means that it was cleared by another
1038 * thread and hence that a queue rerun is needed.
1039 *
1040 * If TAG_WAITING is set that means that an I/O scheduler has
1041 * been configured and another thread is waiting for a driver
1042 * tag. To guarantee fairness, do not rerun this hardware queue
1043 * but let the other thread grab the driver tag.
1044 *
1045 * If no I/O scheduler has been configured it is possible that
1046 * the hardware queue got stopped and restarted before requests
1047 * were pushed back onto the dispatch list. Rerun the queue to
1048 * avoid starvation. Notes:
1049 * - blk_mq_run_hw_queue() checks whether or not a queue has
1050 * been stopped before rerunning a queue.
1051 * - Some but not all block drivers stop a queue before
1052 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1053 * and dm-rq.
1054 */
1055 if (!blk_mq_sched_needs_restart(hctx) &&
1056 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1057 blk_mq_run_hw_queue(hctx, true);
1058 }
1059
1060 return (queued + errors) != 0;
1061 }
1062
1063 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1064 {
1065 int srcu_idx;
1066
1067 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1068 cpu_online(hctx->next_cpu));
1069
1070 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1071 rcu_read_lock();
1072 blk_mq_sched_dispatch_requests(hctx);
1073 rcu_read_unlock();
1074 } else {
1075 might_sleep();
1076
1077 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1078 blk_mq_sched_dispatch_requests(hctx);
1079 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1080 }
1081 }
1082
1083 /*
1084 * It'd be great if the workqueue API had a way to pass
1085 * in a mask and had some smarts for more clever placement.
1086 * For now we just round-robin here, switching for every
1087 * BLK_MQ_CPU_WORK_BATCH queued items.
1088 */
1089 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1090 {
1091 if (hctx->queue->nr_hw_queues == 1)
1092 return WORK_CPU_UNBOUND;
1093
1094 if (--hctx->next_cpu_batch <= 0) {
1095 int next_cpu;
1096
1097 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1098 if (next_cpu >= nr_cpu_ids)
1099 next_cpu = cpumask_first(hctx->cpumask);
1100
1101 hctx->next_cpu = next_cpu;
1102 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1103 }
1104
1105 return hctx->next_cpu;
1106 }
1107
1108 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1109 unsigned long msecs)
1110 {
1111 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1112 !blk_mq_hw_queue_mapped(hctx)))
1113 return;
1114
1115 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1116 int cpu = get_cpu();
1117 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1118 __blk_mq_run_hw_queue(hctx);
1119 put_cpu();
1120 return;
1121 }
1122
1123 put_cpu();
1124 }
1125
1126 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1127 &hctx->run_work,
1128 msecs_to_jiffies(msecs));
1129 }
1130
1131 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1132 {
1133 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1134 }
1135 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1136
1137 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1138 {
1139 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1140 }
1141 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1142
1143 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1144 {
1145 struct blk_mq_hw_ctx *hctx;
1146 int i;
1147
1148 queue_for_each_hw_ctx(q, hctx, i) {
1149 if (!blk_mq_hctx_has_pending(hctx) ||
1150 blk_mq_hctx_stopped(hctx))
1151 continue;
1152
1153 blk_mq_run_hw_queue(hctx, async);
1154 }
1155 }
1156 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1157
1158 /**
1159 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1160 * @q: request queue.
1161 *
1162 * The caller is responsible for serializing this function against
1163 * blk_mq_{start,stop}_hw_queue().
1164 */
1165 bool blk_mq_queue_stopped(struct request_queue *q)
1166 {
1167 struct blk_mq_hw_ctx *hctx;
1168 int i;
1169
1170 queue_for_each_hw_ctx(q, hctx, i)
1171 if (blk_mq_hctx_stopped(hctx))
1172 return true;
1173
1174 return false;
1175 }
1176 EXPORT_SYMBOL(blk_mq_queue_stopped);
1177
1178 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1179 {
1180 if (sync)
1181 cancel_delayed_work_sync(&hctx->run_work);
1182 else
1183 cancel_delayed_work(&hctx->run_work);
1184
1185 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1186 }
1187
1188 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1189 {
1190 __blk_mq_stop_hw_queue(hctx, false);
1191 }
1192 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1193
1194 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1195 {
1196 struct blk_mq_hw_ctx *hctx;
1197 int i;
1198
1199 queue_for_each_hw_ctx(q, hctx, i)
1200 __blk_mq_stop_hw_queue(hctx, sync);
1201 }
1202
1203 void blk_mq_stop_hw_queues(struct request_queue *q)
1204 {
1205 __blk_mq_stop_hw_queues(q, false);
1206 }
1207 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1208
1209 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1210 {
1211 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1212
1213 blk_mq_run_hw_queue(hctx, false);
1214 }
1215 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1216
1217 void blk_mq_start_hw_queues(struct request_queue *q)
1218 {
1219 struct blk_mq_hw_ctx *hctx;
1220 int i;
1221
1222 queue_for_each_hw_ctx(q, hctx, i)
1223 blk_mq_start_hw_queue(hctx);
1224 }
1225 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1226
1227 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1228 {
1229 if (!blk_mq_hctx_stopped(hctx))
1230 return;
1231
1232 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1233 blk_mq_run_hw_queue(hctx, async);
1234 }
1235 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1236
1237 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1238 {
1239 struct blk_mq_hw_ctx *hctx;
1240 int i;
1241
1242 queue_for_each_hw_ctx(q, hctx, i)
1243 blk_mq_start_stopped_hw_queue(hctx, async);
1244 }
1245 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1246
1247 static void blk_mq_run_work_fn(struct work_struct *work)
1248 {
1249 struct blk_mq_hw_ctx *hctx;
1250
1251 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1252
1253 /*
1254 * If we are stopped, don't run the queue. The exception is if
1255 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1256 * the STOPPED bit and run it.
1257 */
1258 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1259 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1260 return;
1261
1262 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1263 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1264 }
1265
1266 __blk_mq_run_hw_queue(hctx);
1267 }
1268
1269
1270 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1271 {
1272 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1273 return;
1274
1275 /*
1276 * Stop the hw queue, then modify currently delayed work.
1277 * This should prevent us from running the queue prematurely.
1278 * Mark the queue as auto-clearing STOPPED when it runs.
1279 */
1280 blk_mq_stop_hw_queue(hctx);
1281 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1282 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1283 &hctx->run_work,
1284 msecs_to_jiffies(msecs));
1285 }
1286 EXPORT_SYMBOL(blk_mq_delay_queue);
1287
1288 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1289 struct request *rq,
1290 bool at_head)
1291 {
1292 struct blk_mq_ctx *ctx = rq->mq_ctx;
1293
1294 trace_block_rq_insert(hctx->queue, rq);
1295
1296 if (at_head)
1297 list_add(&rq->queuelist, &ctx->rq_list);
1298 else
1299 list_add_tail(&rq->queuelist, &ctx->rq_list);
1300 }
1301
1302 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1303 bool at_head)
1304 {
1305 struct blk_mq_ctx *ctx = rq->mq_ctx;
1306
1307 __blk_mq_insert_req_list(hctx, rq, at_head);
1308 blk_mq_hctx_mark_pending(hctx, ctx);
1309 }
1310
1311 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1312 struct list_head *list)
1313
1314 {
1315 /*
1316 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1317 * offline now
1318 */
1319 spin_lock(&ctx->lock);
1320 while (!list_empty(list)) {
1321 struct request *rq;
1322
1323 rq = list_first_entry(list, struct request, queuelist);
1324 BUG_ON(rq->mq_ctx != ctx);
1325 list_del_init(&rq->queuelist);
1326 __blk_mq_insert_req_list(hctx, rq, false);
1327 }
1328 blk_mq_hctx_mark_pending(hctx, ctx);
1329 spin_unlock(&ctx->lock);
1330 }
1331
1332 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1333 {
1334 struct request *rqa = container_of(a, struct request, queuelist);
1335 struct request *rqb = container_of(b, struct request, queuelist);
1336
1337 return !(rqa->mq_ctx < rqb->mq_ctx ||
1338 (rqa->mq_ctx == rqb->mq_ctx &&
1339 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1340 }
1341
1342 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1343 {
1344 struct blk_mq_ctx *this_ctx;
1345 struct request_queue *this_q;
1346 struct request *rq;
1347 LIST_HEAD(list);
1348 LIST_HEAD(ctx_list);
1349 unsigned int depth;
1350
1351 list_splice_init(&plug->mq_list, &list);
1352
1353 list_sort(NULL, &list, plug_ctx_cmp);
1354
1355 this_q = NULL;
1356 this_ctx = NULL;
1357 depth = 0;
1358
1359 while (!list_empty(&list)) {
1360 rq = list_entry_rq(list.next);
1361 list_del_init(&rq->queuelist);
1362 BUG_ON(!rq->q);
1363 if (rq->mq_ctx != this_ctx) {
1364 if (this_ctx) {
1365 trace_block_unplug(this_q, depth, from_schedule);
1366 blk_mq_sched_insert_requests(this_q, this_ctx,
1367 &ctx_list,
1368 from_schedule);
1369 }
1370
1371 this_ctx = rq->mq_ctx;
1372 this_q = rq->q;
1373 depth = 0;
1374 }
1375
1376 depth++;
1377 list_add_tail(&rq->queuelist, &ctx_list);
1378 }
1379
1380 /*
1381 * If 'this_ctx' is set, we know we have entries to complete
1382 * on 'ctx_list'. Do those.
1383 */
1384 if (this_ctx) {
1385 trace_block_unplug(this_q, depth, from_schedule);
1386 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1387 from_schedule);
1388 }
1389 }
1390
1391 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1392 {
1393 blk_init_request_from_bio(rq, bio);
1394
1395 blk_account_io_start(rq, true);
1396 }
1397
1398 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1399 {
1400 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1401 !blk_queue_nomerges(hctx->queue);
1402 }
1403
1404 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1405 struct blk_mq_ctx *ctx,
1406 struct request *rq)
1407 {
1408 spin_lock(&ctx->lock);
1409 __blk_mq_insert_request(hctx, rq, false);
1410 spin_unlock(&ctx->lock);
1411 }
1412
1413 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1414 {
1415 if (rq->tag != -1)
1416 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1417
1418 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1419 }
1420
1421 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1422 struct request *rq,
1423 blk_qc_t *cookie, bool may_sleep)
1424 {
1425 struct request_queue *q = rq->q;
1426 struct blk_mq_queue_data bd = {
1427 .rq = rq,
1428 .last = true,
1429 };
1430 blk_qc_t new_cookie;
1431 blk_status_t ret;
1432 bool run_queue = true;
1433
1434 if (blk_mq_hctx_stopped(hctx)) {
1435 run_queue = false;
1436 goto insert;
1437 }
1438
1439 if (q->elevator)
1440 goto insert;
1441
1442 if (!blk_mq_get_driver_tag(rq, NULL, false))
1443 goto insert;
1444
1445 new_cookie = request_to_qc_t(hctx, rq);
1446
1447 /*
1448 * For OK queue, we are done. For error, kill it. Any other
1449 * error (busy), just add it to our list as we previously
1450 * would have done
1451 */
1452 ret = q->mq_ops->queue_rq(hctx, &bd);
1453 switch (ret) {
1454 case BLK_STS_OK:
1455 *cookie = new_cookie;
1456 return;
1457 case BLK_STS_RESOURCE:
1458 __blk_mq_requeue_request(rq);
1459 goto insert;
1460 default:
1461 *cookie = BLK_QC_T_NONE;
1462 blk_mq_end_request(rq, ret);
1463 return;
1464 }
1465
1466 insert:
1467 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1468 }
1469
1470 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1471 struct request *rq, blk_qc_t *cookie)
1472 {
1473 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1474 rcu_read_lock();
1475 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1476 rcu_read_unlock();
1477 } else {
1478 unsigned int srcu_idx;
1479
1480 might_sleep();
1481
1482 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1483 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1484 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1485 }
1486 }
1487
1488 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1489 {
1490 const int is_sync = op_is_sync(bio->bi_opf);
1491 const int is_flush_fua = op_is_flush(bio->bi_opf);
1492 struct blk_mq_alloc_data data = { .flags = 0 };
1493 struct request *rq;
1494 unsigned int request_count = 0;
1495 struct blk_plug *plug;
1496 struct request *same_queue_rq = NULL;
1497 blk_qc_t cookie;
1498 unsigned int wb_acct;
1499
1500 blk_queue_bounce(q, &bio);
1501
1502 blk_queue_split(q, &bio);
1503
1504 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1505 bio_io_error(bio);
1506 return BLK_QC_T_NONE;
1507 }
1508
1509 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1510 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1511 return BLK_QC_T_NONE;
1512
1513 if (blk_mq_sched_bio_merge(q, bio))
1514 return BLK_QC_T_NONE;
1515
1516 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1517
1518 trace_block_getrq(q, bio, bio->bi_opf);
1519
1520 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1521 if (unlikely(!rq)) {
1522 __wbt_done(q->rq_wb, wb_acct);
1523 return BLK_QC_T_NONE;
1524 }
1525
1526 wbt_track(&rq->issue_stat, wb_acct);
1527
1528 cookie = request_to_qc_t(data.hctx, rq);
1529
1530 plug = current->plug;
1531 if (unlikely(is_flush_fua)) {
1532 blk_mq_put_ctx(data.ctx);
1533 blk_mq_bio_to_request(rq, bio);
1534 if (q->elevator) {
1535 blk_mq_sched_insert_request(rq, false, true, true,
1536 true);
1537 } else {
1538 blk_insert_flush(rq);
1539 blk_mq_run_hw_queue(data.hctx, true);
1540 }
1541 } else if (plug && q->nr_hw_queues == 1) {
1542 struct request *last = NULL;
1543
1544 blk_mq_put_ctx(data.ctx);
1545 blk_mq_bio_to_request(rq, bio);
1546
1547 /*
1548 * @request_count may become stale because of schedule
1549 * out, so check the list again.
1550 */
1551 if (list_empty(&plug->mq_list))
1552 request_count = 0;
1553 else if (blk_queue_nomerges(q))
1554 request_count = blk_plug_queued_count(q);
1555
1556 if (!request_count)
1557 trace_block_plug(q);
1558 else
1559 last = list_entry_rq(plug->mq_list.prev);
1560
1561 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1562 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1563 blk_flush_plug_list(plug, false);
1564 trace_block_plug(q);
1565 }
1566
1567 list_add_tail(&rq->queuelist, &plug->mq_list);
1568 } else if (plug && !blk_queue_nomerges(q)) {
1569 blk_mq_bio_to_request(rq, bio);
1570
1571 /*
1572 * We do limited plugging. If the bio can be merged, do that.
1573 * Otherwise the existing request in the plug list will be
1574 * issued. So the plug list will have one request at most
1575 * The plug list might get flushed before this. If that happens,
1576 * the plug list is empty, and same_queue_rq is invalid.
1577 */
1578 if (list_empty(&plug->mq_list))
1579 same_queue_rq = NULL;
1580 if (same_queue_rq)
1581 list_del_init(&same_queue_rq->queuelist);
1582 list_add_tail(&rq->queuelist, &plug->mq_list);
1583
1584 blk_mq_put_ctx(data.ctx);
1585
1586 if (same_queue_rq) {
1587 data.hctx = blk_mq_map_queue(q,
1588 same_queue_rq->mq_ctx->cpu);
1589 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1590 &cookie);
1591 }
1592 } else if (q->nr_hw_queues > 1 && is_sync) {
1593 blk_mq_put_ctx(data.ctx);
1594 blk_mq_bio_to_request(rq, bio);
1595 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1596 } else if (q->elevator) {
1597 blk_mq_put_ctx(data.ctx);
1598 blk_mq_bio_to_request(rq, bio);
1599 blk_mq_sched_insert_request(rq, false, true, true, true);
1600 } else {
1601 blk_mq_put_ctx(data.ctx);
1602 blk_mq_bio_to_request(rq, bio);
1603 blk_mq_queue_io(data.hctx, data.ctx, rq);
1604 blk_mq_run_hw_queue(data.hctx, true);
1605 }
1606
1607 return cookie;
1608 }
1609
1610 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1611 unsigned int hctx_idx)
1612 {
1613 struct page *page;
1614
1615 if (tags->rqs && set->ops->exit_request) {
1616 int i;
1617
1618 for (i = 0; i < tags->nr_tags; i++) {
1619 struct request *rq = tags->static_rqs[i];
1620
1621 if (!rq)
1622 continue;
1623 set->ops->exit_request(set, rq, hctx_idx);
1624 tags->static_rqs[i] = NULL;
1625 }
1626 }
1627
1628 while (!list_empty(&tags->page_list)) {
1629 page = list_first_entry(&tags->page_list, struct page, lru);
1630 list_del_init(&page->lru);
1631 /*
1632 * Remove kmemleak object previously allocated in
1633 * blk_mq_init_rq_map().
1634 */
1635 kmemleak_free(page_address(page));
1636 __free_pages(page, page->private);
1637 }
1638 }
1639
1640 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1641 {
1642 kfree(tags->rqs);
1643 tags->rqs = NULL;
1644 kfree(tags->static_rqs);
1645 tags->static_rqs = NULL;
1646
1647 blk_mq_free_tags(tags);
1648 }
1649
1650 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1651 unsigned int hctx_idx,
1652 unsigned int nr_tags,
1653 unsigned int reserved_tags)
1654 {
1655 struct blk_mq_tags *tags;
1656 int node;
1657
1658 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1659 if (node == NUMA_NO_NODE)
1660 node = set->numa_node;
1661
1662 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1663 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1664 if (!tags)
1665 return NULL;
1666
1667 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1668 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1669 node);
1670 if (!tags->rqs) {
1671 blk_mq_free_tags(tags);
1672 return NULL;
1673 }
1674
1675 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1676 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1677 node);
1678 if (!tags->static_rqs) {
1679 kfree(tags->rqs);
1680 blk_mq_free_tags(tags);
1681 return NULL;
1682 }
1683
1684 return tags;
1685 }
1686
1687 static size_t order_to_size(unsigned int order)
1688 {
1689 return (size_t)PAGE_SIZE << order;
1690 }
1691
1692 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1693 unsigned int hctx_idx, unsigned int depth)
1694 {
1695 unsigned int i, j, entries_per_page, max_order = 4;
1696 size_t rq_size, left;
1697 int node;
1698
1699 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1700 if (node == NUMA_NO_NODE)
1701 node = set->numa_node;
1702
1703 INIT_LIST_HEAD(&tags->page_list);
1704
1705 /*
1706 * rq_size is the size of the request plus driver payload, rounded
1707 * to the cacheline size
1708 */
1709 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1710 cache_line_size());
1711 left = rq_size * depth;
1712
1713 for (i = 0; i < depth; ) {
1714 int this_order = max_order;
1715 struct page *page;
1716 int to_do;
1717 void *p;
1718
1719 while (this_order && left < order_to_size(this_order - 1))
1720 this_order--;
1721
1722 do {
1723 page = alloc_pages_node(node,
1724 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1725 this_order);
1726 if (page)
1727 break;
1728 if (!this_order--)
1729 break;
1730 if (order_to_size(this_order) < rq_size)
1731 break;
1732 } while (1);
1733
1734 if (!page)
1735 goto fail;
1736
1737 page->private = this_order;
1738 list_add_tail(&page->lru, &tags->page_list);
1739
1740 p = page_address(page);
1741 /*
1742 * Allow kmemleak to scan these pages as they contain pointers
1743 * to additional allocations like via ops->init_request().
1744 */
1745 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1746 entries_per_page = order_to_size(this_order) / rq_size;
1747 to_do = min(entries_per_page, depth - i);
1748 left -= to_do * rq_size;
1749 for (j = 0; j < to_do; j++) {
1750 struct request *rq = p;
1751
1752 tags->static_rqs[i] = rq;
1753 if (set->ops->init_request) {
1754 if (set->ops->init_request(set, rq, hctx_idx,
1755 node)) {
1756 tags->static_rqs[i] = NULL;
1757 goto fail;
1758 }
1759 }
1760
1761 p += rq_size;
1762 i++;
1763 }
1764 }
1765 return 0;
1766
1767 fail:
1768 blk_mq_free_rqs(set, tags, hctx_idx);
1769 return -ENOMEM;
1770 }
1771
1772 /*
1773 * 'cpu' is going away. splice any existing rq_list entries from this
1774 * software queue to the hw queue dispatch list, and ensure that it
1775 * gets run.
1776 */
1777 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1778 {
1779 struct blk_mq_hw_ctx *hctx;
1780 struct blk_mq_ctx *ctx;
1781 LIST_HEAD(tmp);
1782
1783 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1784 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1785
1786 spin_lock(&ctx->lock);
1787 if (!list_empty(&ctx->rq_list)) {
1788 list_splice_init(&ctx->rq_list, &tmp);
1789 blk_mq_hctx_clear_pending(hctx, ctx);
1790 }
1791 spin_unlock(&ctx->lock);
1792
1793 if (list_empty(&tmp))
1794 return 0;
1795
1796 spin_lock(&hctx->lock);
1797 list_splice_tail_init(&tmp, &hctx->dispatch);
1798 spin_unlock(&hctx->lock);
1799
1800 blk_mq_run_hw_queue(hctx, true);
1801 return 0;
1802 }
1803
1804 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1805 {
1806 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1807 &hctx->cpuhp_dead);
1808 }
1809
1810 /* hctx->ctxs will be freed in queue's release handler */
1811 static void blk_mq_exit_hctx(struct request_queue *q,
1812 struct blk_mq_tag_set *set,
1813 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1814 {
1815 blk_mq_debugfs_unregister_hctx(hctx);
1816
1817 blk_mq_tag_idle(hctx);
1818
1819 if (set->ops->exit_request)
1820 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1821
1822 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1823
1824 if (set->ops->exit_hctx)
1825 set->ops->exit_hctx(hctx, hctx_idx);
1826
1827 if (hctx->flags & BLK_MQ_F_BLOCKING)
1828 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1829
1830 blk_mq_remove_cpuhp(hctx);
1831 blk_free_flush_queue(hctx->fq);
1832 sbitmap_free(&hctx->ctx_map);
1833 }
1834
1835 static void blk_mq_exit_hw_queues(struct request_queue *q,
1836 struct blk_mq_tag_set *set, int nr_queue)
1837 {
1838 struct blk_mq_hw_ctx *hctx;
1839 unsigned int i;
1840
1841 queue_for_each_hw_ctx(q, hctx, i) {
1842 if (i == nr_queue)
1843 break;
1844 blk_mq_exit_hctx(q, set, hctx, i);
1845 }
1846 }
1847
1848 static int blk_mq_init_hctx(struct request_queue *q,
1849 struct blk_mq_tag_set *set,
1850 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1851 {
1852 int node;
1853
1854 node = hctx->numa_node;
1855 if (node == NUMA_NO_NODE)
1856 node = hctx->numa_node = set->numa_node;
1857
1858 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1859 spin_lock_init(&hctx->lock);
1860 INIT_LIST_HEAD(&hctx->dispatch);
1861 hctx->queue = q;
1862 hctx->queue_num = hctx_idx;
1863 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1864
1865 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1866
1867 hctx->tags = set->tags[hctx_idx];
1868
1869 /*
1870 * Allocate space for all possible cpus to avoid allocation at
1871 * runtime
1872 */
1873 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1874 GFP_KERNEL, node);
1875 if (!hctx->ctxs)
1876 goto unregister_cpu_notifier;
1877
1878 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1879 node))
1880 goto free_ctxs;
1881
1882 hctx->nr_ctx = 0;
1883
1884 if (set->ops->init_hctx &&
1885 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1886 goto free_bitmap;
1887
1888 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1889 goto exit_hctx;
1890
1891 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1892 if (!hctx->fq)
1893 goto sched_exit_hctx;
1894
1895 if (set->ops->init_request &&
1896 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1897 node))
1898 goto free_fq;
1899
1900 if (hctx->flags & BLK_MQ_F_BLOCKING)
1901 init_srcu_struct(&hctx->queue_rq_srcu);
1902
1903 blk_mq_debugfs_register_hctx(q, hctx);
1904
1905 return 0;
1906
1907 free_fq:
1908 kfree(hctx->fq);
1909 sched_exit_hctx:
1910 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1911 exit_hctx:
1912 if (set->ops->exit_hctx)
1913 set->ops->exit_hctx(hctx, hctx_idx);
1914 free_bitmap:
1915 sbitmap_free(&hctx->ctx_map);
1916 free_ctxs:
1917 kfree(hctx->ctxs);
1918 unregister_cpu_notifier:
1919 blk_mq_remove_cpuhp(hctx);
1920 return -1;
1921 }
1922
1923 static void blk_mq_init_cpu_queues(struct request_queue *q,
1924 unsigned int nr_hw_queues)
1925 {
1926 unsigned int i;
1927
1928 for_each_possible_cpu(i) {
1929 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1930 struct blk_mq_hw_ctx *hctx;
1931
1932 __ctx->cpu = i;
1933 spin_lock_init(&__ctx->lock);
1934 INIT_LIST_HEAD(&__ctx->rq_list);
1935 __ctx->queue = q;
1936
1937 /* If the cpu isn't online, the cpu is mapped to first hctx */
1938 if (!cpu_online(i))
1939 continue;
1940
1941 hctx = blk_mq_map_queue(q, i);
1942
1943 /*
1944 * Set local node, IFF we have more than one hw queue. If
1945 * not, we remain on the home node of the device
1946 */
1947 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1948 hctx->numa_node = local_memory_node(cpu_to_node(i));
1949 }
1950 }
1951
1952 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1953 {
1954 int ret = 0;
1955
1956 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1957 set->queue_depth, set->reserved_tags);
1958 if (!set->tags[hctx_idx])
1959 return false;
1960
1961 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1962 set->queue_depth);
1963 if (!ret)
1964 return true;
1965
1966 blk_mq_free_rq_map(set->tags[hctx_idx]);
1967 set->tags[hctx_idx] = NULL;
1968 return false;
1969 }
1970
1971 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1972 unsigned int hctx_idx)
1973 {
1974 if (set->tags[hctx_idx]) {
1975 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1976 blk_mq_free_rq_map(set->tags[hctx_idx]);
1977 set->tags[hctx_idx] = NULL;
1978 }
1979 }
1980
1981 static void blk_mq_map_swqueue(struct request_queue *q,
1982 const struct cpumask *online_mask)
1983 {
1984 unsigned int i, hctx_idx;
1985 struct blk_mq_hw_ctx *hctx;
1986 struct blk_mq_ctx *ctx;
1987 struct blk_mq_tag_set *set = q->tag_set;
1988
1989 /*
1990 * Avoid others reading imcomplete hctx->cpumask through sysfs
1991 */
1992 mutex_lock(&q->sysfs_lock);
1993
1994 queue_for_each_hw_ctx(q, hctx, i) {
1995 cpumask_clear(hctx->cpumask);
1996 hctx->nr_ctx = 0;
1997 }
1998
1999 /*
2000 * Map software to hardware queues
2001 */
2002 for_each_possible_cpu(i) {
2003 /* If the cpu isn't online, the cpu is mapped to first hctx */
2004 if (!cpumask_test_cpu(i, online_mask))
2005 continue;
2006
2007 hctx_idx = q->mq_map[i];
2008 /* unmapped hw queue can be remapped after CPU topo changed */
2009 if (!set->tags[hctx_idx] &&
2010 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2011 /*
2012 * If tags initialization fail for some hctx,
2013 * that hctx won't be brought online. In this
2014 * case, remap the current ctx to hctx[0] which
2015 * is guaranteed to always have tags allocated
2016 */
2017 q->mq_map[i] = 0;
2018 }
2019
2020 ctx = per_cpu_ptr(q->queue_ctx, i);
2021 hctx = blk_mq_map_queue(q, i);
2022
2023 cpumask_set_cpu(i, hctx->cpumask);
2024 ctx->index_hw = hctx->nr_ctx;
2025 hctx->ctxs[hctx->nr_ctx++] = ctx;
2026 }
2027
2028 mutex_unlock(&q->sysfs_lock);
2029
2030 queue_for_each_hw_ctx(q, hctx, i) {
2031 /*
2032 * If no software queues are mapped to this hardware queue,
2033 * disable it and free the request entries.
2034 */
2035 if (!hctx->nr_ctx) {
2036 /* Never unmap queue 0. We need it as a
2037 * fallback in case of a new remap fails
2038 * allocation
2039 */
2040 if (i && set->tags[i])
2041 blk_mq_free_map_and_requests(set, i);
2042
2043 hctx->tags = NULL;
2044 continue;
2045 }
2046
2047 hctx->tags = set->tags[i];
2048 WARN_ON(!hctx->tags);
2049
2050 /*
2051 * Set the map size to the number of mapped software queues.
2052 * This is more accurate and more efficient than looping
2053 * over all possibly mapped software queues.
2054 */
2055 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2056
2057 /*
2058 * Initialize batch roundrobin counts
2059 */
2060 hctx->next_cpu = cpumask_first(hctx->cpumask);
2061 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2062 }
2063 }
2064
2065 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2066 {
2067 struct blk_mq_hw_ctx *hctx;
2068 int i;
2069
2070 queue_for_each_hw_ctx(q, hctx, i) {
2071 if (shared)
2072 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2073 else
2074 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2075 }
2076 }
2077
2078 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2079 {
2080 struct request_queue *q;
2081
2082 lockdep_assert_held(&set->tag_list_lock);
2083
2084 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2085 blk_mq_freeze_queue(q);
2086 queue_set_hctx_shared(q, shared);
2087 blk_mq_unfreeze_queue(q);
2088 }
2089 }
2090
2091 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2092 {
2093 struct blk_mq_tag_set *set = q->tag_set;
2094
2095 mutex_lock(&set->tag_list_lock);
2096 list_del_rcu(&q->tag_set_list);
2097 INIT_LIST_HEAD(&q->tag_set_list);
2098 if (list_is_singular(&set->tag_list)) {
2099 /* just transitioned to unshared */
2100 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2101 /* update existing queue */
2102 blk_mq_update_tag_set_depth(set, false);
2103 }
2104 mutex_unlock(&set->tag_list_lock);
2105
2106 synchronize_rcu();
2107 }
2108
2109 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2110 struct request_queue *q)
2111 {
2112 q->tag_set = set;
2113
2114 mutex_lock(&set->tag_list_lock);
2115
2116 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2117 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2118 set->flags |= BLK_MQ_F_TAG_SHARED;
2119 /* update existing queue */
2120 blk_mq_update_tag_set_depth(set, true);
2121 }
2122 if (set->flags & BLK_MQ_F_TAG_SHARED)
2123 queue_set_hctx_shared(q, true);
2124 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2125
2126 mutex_unlock(&set->tag_list_lock);
2127 }
2128
2129 /*
2130 * It is the actual release handler for mq, but we do it from
2131 * request queue's release handler for avoiding use-after-free
2132 * and headache because q->mq_kobj shouldn't have been introduced,
2133 * but we can't group ctx/kctx kobj without it.
2134 */
2135 void blk_mq_release(struct request_queue *q)
2136 {
2137 struct blk_mq_hw_ctx *hctx;
2138 unsigned int i;
2139
2140 /* hctx kobj stays in hctx */
2141 queue_for_each_hw_ctx(q, hctx, i) {
2142 if (!hctx)
2143 continue;
2144 kobject_put(&hctx->kobj);
2145 }
2146
2147 q->mq_map = NULL;
2148
2149 kfree(q->queue_hw_ctx);
2150
2151 /*
2152 * release .mq_kobj and sw queue's kobject now because
2153 * both share lifetime with request queue.
2154 */
2155 blk_mq_sysfs_deinit(q);
2156
2157 free_percpu(q->queue_ctx);
2158 }
2159
2160 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2161 {
2162 struct request_queue *uninit_q, *q;
2163
2164 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2165 if (!uninit_q)
2166 return ERR_PTR(-ENOMEM);
2167
2168 q = blk_mq_init_allocated_queue(set, uninit_q);
2169 if (IS_ERR(q))
2170 blk_cleanup_queue(uninit_q);
2171
2172 return q;
2173 }
2174 EXPORT_SYMBOL(blk_mq_init_queue);
2175
2176 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2177 struct request_queue *q)
2178 {
2179 int i, j;
2180 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2181
2182 blk_mq_sysfs_unregister(q);
2183 for (i = 0; i < set->nr_hw_queues; i++) {
2184 int node;
2185
2186 if (hctxs[i])
2187 continue;
2188
2189 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2190 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2191 GFP_KERNEL, node);
2192 if (!hctxs[i])
2193 break;
2194
2195 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2196 node)) {
2197 kfree(hctxs[i]);
2198 hctxs[i] = NULL;
2199 break;
2200 }
2201
2202 atomic_set(&hctxs[i]->nr_active, 0);
2203 hctxs[i]->numa_node = node;
2204 hctxs[i]->queue_num = i;
2205
2206 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2207 free_cpumask_var(hctxs[i]->cpumask);
2208 kfree(hctxs[i]);
2209 hctxs[i] = NULL;
2210 break;
2211 }
2212 blk_mq_hctx_kobj_init(hctxs[i]);
2213 }
2214 for (j = i; j < q->nr_hw_queues; j++) {
2215 struct blk_mq_hw_ctx *hctx = hctxs[j];
2216
2217 if (hctx) {
2218 if (hctx->tags)
2219 blk_mq_free_map_and_requests(set, j);
2220 blk_mq_exit_hctx(q, set, hctx, j);
2221 kobject_put(&hctx->kobj);
2222 hctxs[j] = NULL;
2223
2224 }
2225 }
2226 q->nr_hw_queues = i;
2227 blk_mq_sysfs_register(q);
2228 }
2229
2230 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2231 struct request_queue *q)
2232 {
2233 /* mark the queue as mq asap */
2234 q->mq_ops = set->ops;
2235
2236 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2237 blk_mq_poll_stats_bkt,
2238 BLK_MQ_POLL_STATS_BKTS, q);
2239 if (!q->poll_cb)
2240 goto err_exit;
2241
2242 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2243 if (!q->queue_ctx)
2244 goto err_exit;
2245
2246 /* init q->mq_kobj and sw queues' kobjects */
2247 blk_mq_sysfs_init(q);
2248
2249 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2250 GFP_KERNEL, set->numa_node);
2251 if (!q->queue_hw_ctx)
2252 goto err_percpu;
2253
2254 q->mq_map = set->mq_map;
2255
2256 blk_mq_realloc_hw_ctxs(set, q);
2257 if (!q->nr_hw_queues)
2258 goto err_hctxs;
2259
2260 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2261 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2262
2263 q->nr_queues = nr_cpu_ids;
2264
2265 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2266
2267 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2268 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2269
2270 q->sg_reserved_size = INT_MAX;
2271
2272 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2273 INIT_LIST_HEAD(&q->requeue_list);
2274 spin_lock_init(&q->requeue_lock);
2275
2276 blk_queue_make_request(q, blk_mq_make_request);
2277
2278 /*
2279 * Do this after blk_queue_make_request() overrides it...
2280 */
2281 q->nr_requests = set->queue_depth;
2282
2283 /*
2284 * Default to classic polling
2285 */
2286 q->poll_nsec = -1;
2287
2288 if (set->ops->complete)
2289 blk_queue_softirq_done(q, set->ops->complete);
2290
2291 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2292
2293 get_online_cpus();
2294 mutex_lock(&all_q_mutex);
2295
2296 list_add_tail(&q->all_q_node, &all_q_list);
2297 blk_mq_add_queue_tag_set(set, q);
2298 blk_mq_map_swqueue(q, cpu_online_mask);
2299
2300 mutex_unlock(&all_q_mutex);
2301 put_online_cpus();
2302
2303 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2304 int ret;
2305
2306 ret = blk_mq_sched_init(q);
2307 if (ret)
2308 return ERR_PTR(ret);
2309 }
2310
2311 return q;
2312
2313 err_hctxs:
2314 kfree(q->queue_hw_ctx);
2315 err_percpu:
2316 free_percpu(q->queue_ctx);
2317 err_exit:
2318 q->mq_ops = NULL;
2319 return ERR_PTR(-ENOMEM);
2320 }
2321 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2322
2323 void blk_mq_free_queue(struct request_queue *q)
2324 {
2325 struct blk_mq_tag_set *set = q->tag_set;
2326
2327 mutex_lock(&all_q_mutex);
2328 list_del_init(&q->all_q_node);
2329 mutex_unlock(&all_q_mutex);
2330
2331 blk_mq_del_queue_tag_set(q);
2332
2333 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2334 }
2335
2336 /* Basically redo blk_mq_init_queue with queue frozen */
2337 static void blk_mq_queue_reinit(struct request_queue *q,
2338 const struct cpumask *online_mask)
2339 {
2340 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2341
2342 blk_mq_debugfs_unregister_hctxs(q);
2343 blk_mq_sysfs_unregister(q);
2344
2345 /*
2346 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2347 * we should change hctx numa_node according to new topology (this
2348 * involves free and re-allocate memory, worthy doing?)
2349 */
2350
2351 blk_mq_map_swqueue(q, online_mask);
2352
2353 blk_mq_sysfs_register(q);
2354 blk_mq_debugfs_register_hctxs(q);
2355 }
2356
2357 /*
2358 * New online cpumask which is going to be set in this hotplug event.
2359 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2360 * one-by-one and dynamically allocating this could result in a failure.
2361 */
2362 static struct cpumask cpuhp_online_new;
2363
2364 static void blk_mq_queue_reinit_work(void)
2365 {
2366 struct request_queue *q;
2367
2368 mutex_lock(&all_q_mutex);
2369 /*
2370 * We need to freeze and reinit all existing queues. Freezing
2371 * involves synchronous wait for an RCU grace period and doing it
2372 * one by one may take a long time. Start freezing all queues in
2373 * one swoop and then wait for the completions so that freezing can
2374 * take place in parallel.
2375 */
2376 list_for_each_entry(q, &all_q_list, all_q_node)
2377 blk_freeze_queue_start(q);
2378 list_for_each_entry(q, &all_q_list, all_q_node)
2379 blk_mq_freeze_queue_wait(q);
2380
2381 list_for_each_entry(q, &all_q_list, all_q_node)
2382 blk_mq_queue_reinit(q, &cpuhp_online_new);
2383
2384 list_for_each_entry(q, &all_q_list, all_q_node)
2385 blk_mq_unfreeze_queue(q);
2386
2387 mutex_unlock(&all_q_mutex);
2388 }
2389
2390 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2391 {
2392 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2393 blk_mq_queue_reinit_work();
2394 return 0;
2395 }
2396
2397 /*
2398 * Before hotadded cpu starts handling requests, new mappings must be
2399 * established. Otherwise, these requests in hw queue might never be
2400 * dispatched.
2401 *
2402 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2403 * for CPU0, and ctx1 for CPU1).
2404 *
2405 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2406 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2407 *
2408 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2409 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2410 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2411 * ignored.
2412 */
2413 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2414 {
2415 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2416 cpumask_set_cpu(cpu, &cpuhp_online_new);
2417 blk_mq_queue_reinit_work();
2418 return 0;
2419 }
2420
2421 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2422 {
2423 int i;
2424
2425 for (i = 0; i < set->nr_hw_queues; i++)
2426 if (!__blk_mq_alloc_rq_map(set, i))
2427 goto out_unwind;
2428
2429 return 0;
2430
2431 out_unwind:
2432 while (--i >= 0)
2433 blk_mq_free_rq_map(set->tags[i]);
2434
2435 return -ENOMEM;
2436 }
2437
2438 /*
2439 * Allocate the request maps associated with this tag_set. Note that this
2440 * may reduce the depth asked for, if memory is tight. set->queue_depth
2441 * will be updated to reflect the allocated depth.
2442 */
2443 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2444 {
2445 unsigned int depth;
2446 int err;
2447
2448 depth = set->queue_depth;
2449 do {
2450 err = __blk_mq_alloc_rq_maps(set);
2451 if (!err)
2452 break;
2453
2454 set->queue_depth >>= 1;
2455 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2456 err = -ENOMEM;
2457 break;
2458 }
2459 } while (set->queue_depth);
2460
2461 if (!set->queue_depth || err) {
2462 pr_err("blk-mq: failed to allocate request map\n");
2463 return -ENOMEM;
2464 }
2465
2466 if (depth != set->queue_depth)
2467 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2468 depth, set->queue_depth);
2469
2470 return 0;
2471 }
2472
2473 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2474 {
2475 if (set->ops->map_queues)
2476 return set->ops->map_queues(set);
2477 else
2478 return blk_mq_map_queues(set);
2479 }
2480
2481 /*
2482 * Alloc a tag set to be associated with one or more request queues.
2483 * May fail with EINVAL for various error conditions. May adjust the
2484 * requested depth down, if if it too large. In that case, the set
2485 * value will be stored in set->queue_depth.
2486 */
2487 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2488 {
2489 int ret;
2490
2491 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2492
2493 if (!set->nr_hw_queues)
2494 return -EINVAL;
2495 if (!set->queue_depth)
2496 return -EINVAL;
2497 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2498 return -EINVAL;
2499
2500 if (!set->ops->queue_rq)
2501 return -EINVAL;
2502
2503 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2504 pr_info("blk-mq: reduced tag depth to %u\n",
2505 BLK_MQ_MAX_DEPTH);
2506 set->queue_depth = BLK_MQ_MAX_DEPTH;
2507 }
2508
2509 /*
2510 * If a crashdump is active, then we are potentially in a very
2511 * memory constrained environment. Limit us to 1 queue and
2512 * 64 tags to prevent using too much memory.
2513 */
2514 if (is_kdump_kernel()) {
2515 set->nr_hw_queues = 1;
2516 set->queue_depth = min(64U, set->queue_depth);
2517 }
2518 /*
2519 * There is no use for more h/w queues than cpus.
2520 */
2521 if (set->nr_hw_queues > nr_cpu_ids)
2522 set->nr_hw_queues = nr_cpu_ids;
2523
2524 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2525 GFP_KERNEL, set->numa_node);
2526 if (!set->tags)
2527 return -ENOMEM;
2528
2529 ret = -ENOMEM;
2530 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2531 GFP_KERNEL, set->numa_node);
2532 if (!set->mq_map)
2533 goto out_free_tags;
2534
2535 ret = blk_mq_update_queue_map(set);
2536 if (ret)
2537 goto out_free_mq_map;
2538
2539 ret = blk_mq_alloc_rq_maps(set);
2540 if (ret)
2541 goto out_free_mq_map;
2542
2543 mutex_init(&set->tag_list_lock);
2544 INIT_LIST_HEAD(&set->tag_list);
2545
2546 return 0;
2547
2548 out_free_mq_map:
2549 kfree(set->mq_map);
2550 set->mq_map = NULL;
2551 out_free_tags:
2552 kfree(set->tags);
2553 set->tags = NULL;
2554 return ret;
2555 }
2556 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2557
2558 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2559 {
2560 int i;
2561
2562 for (i = 0; i < nr_cpu_ids; i++)
2563 blk_mq_free_map_and_requests(set, i);
2564
2565 kfree(set->mq_map);
2566 set->mq_map = NULL;
2567
2568 kfree(set->tags);
2569 set->tags = NULL;
2570 }
2571 EXPORT_SYMBOL(blk_mq_free_tag_set);
2572
2573 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2574 {
2575 struct blk_mq_tag_set *set = q->tag_set;
2576 struct blk_mq_hw_ctx *hctx;
2577 int i, ret;
2578
2579 if (!set)
2580 return -EINVAL;
2581
2582 blk_mq_freeze_queue(q);
2583
2584 ret = 0;
2585 queue_for_each_hw_ctx(q, hctx, i) {
2586 if (!hctx->tags)
2587 continue;
2588 /*
2589 * If we're using an MQ scheduler, just update the scheduler
2590 * queue depth. This is similar to what the old code would do.
2591 */
2592 if (!hctx->sched_tags) {
2593 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2594 min(nr, set->queue_depth),
2595 false);
2596 } else {
2597 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2598 nr, true);
2599 }
2600 if (ret)
2601 break;
2602 }
2603
2604 if (!ret)
2605 q->nr_requests = nr;
2606
2607 blk_mq_unfreeze_queue(q);
2608
2609 return ret;
2610 }
2611
2612 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2613 int nr_hw_queues)
2614 {
2615 struct request_queue *q;
2616
2617 lockdep_assert_held(&set->tag_list_lock);
2618
2619 if (nr_hw_queues > nr_cpu_ids)
2620 nr_hw_queues = nr_cpu_ids;
2621 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2622 return;
2623
2624 list_for_each_entry(q, &set->tag_list, tag_set_list)
2625 blk_mq_freeze_queue(q);
2626
2627 set->nr_hw_queues = nr_hw_queues;
2628 blk_mq_update_queue_map(set);
2629 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2630 blk_mq_realloc_hw_ctxs(set, q);
2631 blk_mq_queue_reinit(q, cpu_online_mask);
2632 }
2633
2634 list_for_each_entry(q, &set->tag_list, tag_set_list)
2635 blk_mq_unfreeze_queue(q);
2636 }
2637
2638 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2639 {
2640 mutex_lock(&set->tag_list_lock);
2641 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2642 mutex_unlock(&set->tag_list_lock);
2643 }
2644 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2645
2646 /* Enable polling stats and return whether they were already enabled. */
2647 static bool blk_poll_stats_enable(struct request_queue *q)
2648 {
2649 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2650 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2651 return true;
2652 blk_stat_add_callback(q, q->poll_cb);
2653 return false;
2654 }
2655
2656 static void blk_mq_poll_stats_start(struct request_queue *q)
2657 {
2658 /*
2659 * We don't arm the callback if polling stats are not enabled or the
2660 * callback is already active.
2661 */
2662 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2663 blk_stat_is_active(q->poll_cb))
2664 return;
2665
2666 blk_stat_activate_msecs(q->poll_cb, 100);
2667 }
2668
2669 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2670 {
2671 struct request_queue *q = cb->data;
2672 int bucket;
2673
2674 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2675 if (cb->stat[bucket].nr_samples)
2676 q->poll_stat[bucket] = cb->stat[bucket];
2677 }
2678 }
2679
2680 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2681 struct blk_mq_hw_ctx *hctx,
2682 struct request *rq)
2683 {
2684 unsigned long ret = 0;
2685 int bucket;
2686
2687 /*
2688 * If stats collection isn't on, don't sleep but turn it on for
2689 * future users
2690 */
2691 if (!blk_poll_stats_enable(q))
2692 return 0;
2693
2694 /*
2695 * As an optimistic guess, use half of the mean service time
2696 * for this type of request. We can (and should) make this smarter.
2697 * For instance, if the completion latencies are tight, we can
2698 * get closer than just half the mean. This is especially
2699 * important on devices where the completion latencies are longer
2700 * than ~10 usec. We do use the stats for the relevant IO size
2701 * if available which does lead to better estimates.
2702 */
2703 bucket = blk_mq_poll_stats_bkt(rq);
2704 if (bucket < 0)
2705 return ret;
2706
2707 if (q->poll_stat[bucket].nr_samples)
2708 ret = (q->poll_stat[bucket].mean + 1) / 2;
2709
2710 return ret;
2711 }
2712
2713 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2714 struct blk_mq_hw_ctx *hctx,
2715 struct request *rq)
2716 {
2717 struct hrtimer_sleeper hs;
2718 enum hrtimer_mode mode;
2719 unsigned int nsecs;
2720 ktime_t kt;
2721
2722 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2723 return false;
2724
2725 /*
2726 * poll_nsec can be:
2727 *
2728 * -1: don't ever hybrid sleep
2729 * 0: use half of prev avg
2730 * >0: use this specific value
2731 */
2732 if (q->poll_nsec == -1)
2733 return false;
2734 else if (q->poll_nsec > 0)
2735 nsecs = q->poll_nsec;
2736 else
2737 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2738
2739 if (!nsecs)
2740 return false;
2741
2742 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2743
2744 /*
2745 * This will be replaced with the stats tracking code, using
2746 * 'avg_completion_time / 2' as the pre-sleep target.
2747 */
2748 kt = nsecs;
2749
2750 mode = HRTIMER_MODE_REL;
2751 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2752 hrtimer_set_expires(&hs.timer, kt);
2753
2754 hrtimer_init_sleeper(&hs, current);
2755 do {
2756 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2757 break;
2758 set_current_state(TASK_UNINTERRUPTIBLE);
2759 hrtimer_start_expires(&hs.timer, mode);
2760 if (hs.task)
2761 io_schedule();
2762 hrtimer_cancel(&hs.timer);
2763 mode = HRTIMER_MODE_ABS;
2764 } while (hs.task && !signal_pending(current));
2765
2766 __set_current_state(TASK_RUNNING);
2767 destroy_hrtimer_on_stack(&hs.timer);
2768 return true;
2769 }
2770
2771 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2772 {
2773 struct request_queue *q = hctx->queue;
2774 long state;
2775
2776 /*
2777 * If we sleep, have the caller restart the poll loop to reset
2778 * the state. Like for the other success return cases, the
2779 * caller is responsible for checking if the IO completed. If
2780 * the IO isn't complete, we'll get called again and will go
2781 * straight to the busy poll loop.
2782 */
2783 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2784 return true;
2785
2786 hctx->poll_considered++;
2787
2788 state = current->state;
2789 while (!need_resched()) {
2790 int ret;
2791
2792 hctx->poll_invoked++;
2793
2794 ret = q->mq_ops->poll(hctx, rq->tag);
2795 if (ret > 0) {
2796 hctx->poll_success++;
2797 set_current_state(TASK_RUNNING);
2798 return true;
2799 }
2800
2801 if (signal_pending_state(state, current))
2802 set_current_state(TASK_RUNNING);
2803
2804 if (current->state == TASK_RUNNING)
2805 return true;
2806 if (ret < 0)
2807 break;
2808 cpu_relax();
2809 }
2810
2811 return false;
2812 }
2813
2814 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2815 {
2816 struct blk_mq_hw_ctx *hctx;
2817 struct blk_plug *plug;
2818 struct request *rq;
2819
2820 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2821 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2822 return false;
2823
2824 plug = current->plug;
2825 if (plug)
2826 blk_flush_plug_list(plug, false);
2827
2828 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2829 if (!blk_qc_t_is_internal(cookie))
2830 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2831 else {
2832 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2833 /*
2834 * With scheduling, if the request has completed, we'll
2835 * get a NULL return here, as we clear the sched tag when
2836 * that happens. The request still remains valid, like always,
2837 * so we should be safe with just the NULL check.
2838 */
2839 if (!rq)
2840 return false;
2841 }
2842
2843 return __blk_mq_poll(hctx, rq);
2844 }
2845 EXPORT_SYMBOL_GPL(blk_mq_poll);
2846
2847 void blk_mq_disable_hotplug(void)
2848 {
2849 mutex_lock(&all_q_mutex);
2850 }
2851
2852 void blk_mq_enable_hotplug(void)
2853 {
2854 mutex_unlock(&all_q_mutex);
2855 }
2856
2857 static int __init blk_mq_init(void)
2858 {
2859 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2860 blk_mq_hctx_notify_dead);
2861
2862 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2863 blk_mq_queue_reinit_prepare,
2864 blk_mq_queue_reinit_dead);
2865 return 0;
2866 }
2867 subsys_initcall(blk_mq_init);