]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq-sched: fix crash in switch error path
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 /*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46 {
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
50 }
51
52 /*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 }
61
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 }
67
68 void blk_mq_freeze_queue_start(struct request_queue *q)
69 {
70 int freeze_depth;
71
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
74 percpu_ref_kill(&q->q_usage_counter);
75 blk_mq_run_hw_queues(q, false);
76 }
77 }
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
81 {
82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83 }
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88 {
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92 }
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94
95 /*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
99 void blk_freeze_queue(struct request_queue *q)
100 {
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110 }
111
112 void blk_mq_freeze_queue(struct request_queue *q)
113 {
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119 }
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121
122 void blk_mq_unfreeze_queue(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
129 percpu_ref_reinit(&q->q_usage_counter);
130 wake_up_all(&q->mq_freeze_wq);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134
135 /**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143 void blk_mq_quiesce_queue(struct request_queue *q)
144 {
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
162 void blk_mq_wake_waiters(struct request_queue *q)
163 {
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
177 }
178
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181 return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
187 {
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
191 rq->mq_ctx = ctx;
192 rq->cmd_flags = op;
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
199 rq->rq_disk = NULL;
200 rq->part = NULL;
201 rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
204 set_start_time_ns(rq);
205 rq->io_start_time_ns = 0;
206 #endif
207 rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210 #endif
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
214 rq->extra_len = 0;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[op_is_sync(op)]++;
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
229 {
230 struct request *rq;
231 unsigned int tag;
232
233 tag = blk_mq_get_tag(data);
234 if (tag != BLK_MQ_TAG_FAIL) {
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
238
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
247 rq->tag = tag;
248 rq->internal_tag = -1;
249 data->hctx->tags->rqs[rq->tag] = rq;
250 }
251
252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 return rq;
254 }
255
256 return NULL;
257 }
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
262 {
263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
264 struct request *rq;
265 int ret;
266
267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 if (ret)
269 return ERR_PTR(ret);
270
271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
277 return ERR_PTR(-EWOULDBLOCK);
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
282 return rq;
283 }
284 EXPORT_SYMBOL(blk_mq_alloc_request);
285
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288 {
289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
290 struct request *rq;
291 unsigned int cpu;
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
318 }
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
321
322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323
324 blk_queue_exit(q);
325
326 if (!rq)
327 return ERR_PTR(-EWOULDBLOCK);
328
329 return rq;
330 }
331 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
332
333 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
334 struct request *rq)
335 {
336 const int sched_tag = rq->internal_tag;
337 struct request_queue *q = rq->q;
338
339 if (rq->rq_flags & RQF_MQ_INFLIGHT)
340 atomic_dec(&hctx->nr_active);
341
342 wbt_done(q->rq_wb, &rq->issue_stat);
343 rq->rq_flags = 0;
344
345 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
346 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
347 if (rq->tag != -1)
348 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
349 if (sched_tag != -1)
350 blk_mq_sched_completed_request(hctx, rq);
351 blk_mq_sched_restart_queues(hctx);
352 blk_queue_exit(q);
353 }
354
355 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
356 struct request *rq)
357 {
358 struct blk_mq_ctx *ctx = rq->mq_ctx;
359
360 ctx->rq_completed[rq_is_sync(rq)]++;
361 __blk_mq_finish_request(hctx, ctx, rq);
362 }
363
364 void blk_mq_finish_request(struct request *rq)
365 {
366 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
367 }
368
369 void blk_mq_free_request(struct request *rq)
370 {
371 blk_mq_sched_put_request(rq);
372 }
373 EXPORT_SYMBOL_GPL(blk_mq_free_request);
374
375 inline void __blk_mq_end_request(struct request *rq, int error)
376 {
377 blk_account_io_done(rq);
378
379 if (rq->end_io) {
380 wbt_done(rq->q->rq_wb, &rq->issue_stat);
381 rq->end_io(rq, error);
382 } else {
383 if (unlikely(blk_bidi_rq(rq)))
384 blk_mq_free_request(rq->next_rq);
385 blk_mq_free_request(rq);
386 }
387 }
388 EXPORT_SYMBOL(__blk_mq_end_request);
389
390 void blk_mq_end_request(struct request *rq, int error)
391 {
392 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
393 BUG();
394 __blk_mq_end_request(rq, error);
395 }
396 EXPORT_SYMBOL(blk_mq_end_request);
397
398 static void __blk_mq_complete_request_remote(void *data)
399 {
400 struct request *rq = data;
401
402 rq->q->softirq_done_fn(rq);
403 }
404
405 static void blk_mq_ipi_complete_request(struct request *rq)
406 {
407 struct blk_mq_ctx *ctx = rq->mq_ctx;
408 bool shared = false;
409 int cpu;
410
411 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
412 rq->q->softirq_done_fn(rq);
413 return;
414 }
415
416 cpu = get_cpu();
417 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
418 shared = cpus_share_cache(cpu, ctx->cpu);
419
420 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
421 rq->csd.func = __blk_mq_complete_request_remote;
422 rq->csd.info = rq;
423 rq->csd.flags = 0;
424 smp_call_function_single_async(ctx->cpu, &rq->csd);
425 } else {
426 rq->q->softirq_done_fn(rq);
427 }
428 put_cpu();
429 }
430
431 static void blk_mq_stat_add(struct request *rq)
432 {
433 if (rq->rq_flags & RQF_STATS) {
434 /*
435 * We could rq->mq_ctx here, but there's less of a risk
436 * of races if we have the completion event add the stats
437 * to the local software queue.
438 */
439 struct blk_mq_ctx *ctx;
440
441 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
442 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
443 }
444 }
445
446 static void __blk_mq_complete_request(struct request *rq)
447 {
448 struct request_queue *q = rq->q;
449
450 blk_mq_stat_add(rq);
451
452 if (!q->softirq_done_fn)
453 blk_mq_end_request(rq, rq->errors);
454 else
455 blk_mq_ipi_complete_request(rq);
456 }
457
458 /**
459 * blk_mq_complete_request - end I/O on a request
460 * @rq: the request being processed
461 *
462 * Description:
463 * Ends all I/O on a request. It does not handle partial completions.
464 * The actual completion happens out-of-order, through a IPI handler.
465 **/
466 void blk_mq_complete_request(struct request *rq, int error)
467 {
468 struct request_queue *q = rq->q;
469
470 if (unlikely(blk_should_fake_timeout(q)))
471 return;
472 if (!blk_mark_rq_complete(rq)) {
473 rq->errors = error;
474 __blk_mq_complete_request(rq);
475 }
476 }
477 EXPORT_SYMBOL(blk_mq_complete_request);
478
479 int blk_mq_request_started(struct request *rq)
480 {
481 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
485 void blk_mq_start_request(struct request *rq)
486 {
487 struct request_queue *q = rq->q;
488
489 blk_mq_sched_started_request(rq);
490
491 trace_block_rq_issue(q, rq);
492
493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 blk_stat_set_issue_time(&rq->issue_stat);
495 rq->rq_flags |= RQF_STATS;
496 wbt_issue(q->rq_wb, &rq->issue_stat);
497 }
498
499 blk_add_timer(rq);
500
501 /*
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
504 */
505 smp_mb__before_atomic();
506
507 /*
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
512 */
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 /*
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
523 */
524 rq->nr_phys_segments++;
525 }
526 }
527 EXPORT_SYMBOL(blk_mq_start_request);
528
529 static void __blk_mq_requeue_request(struct request *rq)
530 {
531 struct request_queue *q = rq->q;
532
533 trace_block_rq_requeue(q, rq);
534 wbt_requeue(q->rq_wb, &rq->issue_stat);
535 blk_mq_sched_requeue_request(rq);
536
537 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
538 if (q->dma_drain_size && blk_rq_bytes(rq))
539 rq->nr_phys_segments--;
540 }
541 }
542
543 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
544 {
545 __blk_mq_requeue_request(rq);
546
547 BUG_ON(blk_queued_rq(rq));
548 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
549 }
550 EXPORT_SYMBOL(blk_mq_requeue_request);
551
552 static void blk_mq_requeue_work(struct work_struct *work)
553 {
554 struct request_queue *q =
555 container_of(work, struct request_queue, requeue_work.work);
556 LIST_HEAD(rq_list);
557 struct request *rq, *next;
558 unsigned long flags;
559
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
563
564 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
565 if (!(rq->rq_flags & RQF_SOFTBARRIER))
566 continue;
567
568 rq->rq_flags &= ~RQF_SOFTBARRIER;
569 list_del_init(&rq->queuelist);
570 blk_mq_sched_insert_request(rq, true, false, false, true);
571 }
572
573 while (!list_empty(&rq_list)) {
574 rq = list_entry(rq_list.next, struct request, queuelist);
575 list_del_init(&rq->queuelist);
576 blk_mq_sched_insert_request(rq, false, false, false, true);
577 }
578
579 blk_mq_run_hw_queues(q, false);
580 }
581
582 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
583 bool kick_requeue_list)
584 {
585 struct request_queue *q = rq->q;
586 unsigned long flags;
587
588 /*
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
591 */
592 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
593
594 spin_lock_irqsave(&q->requeue_lock, flags);
595 if (at_head) {
596 rq->rq_flags |= RQF_SOFTBARRIER;
597 list_add(&rq->queuelist, &q->requeue_list);
598 } else {
599 list_add_tail(&rq->queuelist, &q->requeue_list);
600 }
601 spin_unlock_irqrestore(&q->requeue_lock, flags);
602
603 if (kick_requeue_list)
604 blk_mq_kick_requeue_list(q);
605 }
606 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
607
608 void blk_mq_kick_requeue_list(struct request_queue *q)
609 {
610 kblockd_schedule_delayed_work(&q->requeue_work, 0);
611 }
612 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
613
614 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
615 unsigned long msecs)
616 {
617 kblockd_schedule_delayed_work(&q->requeue_work,
618 msecs_to_jiffies(msecs));
619 }
620 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
621
622 void blk_mq_abort_requeue_list(struct request_queue *q)
623 {
624 unsigned long flags;
625 LIST_HEAD(rq_list);
626
627 spin_lock_irqsave(&q->requeue_lock, flags);
628 list_splice_init(&q->requeue_list, &rq_list);
629 spin_unlock_irqrestore(&q->requeue_lock, flags);
630
631 while (!list_empty(&rq_list)) {
632 struct request *rq;
633
634 rq = list_first_entry(&rq_list, struct request, queuelist);
635 list_del_init(&rq->queuelist);
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639 }
640 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
641
642 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
643 {
644 if (tag < tags->nr_tags) {
645 prefetch(tags->rqs[tag]);
646 return tags->rqs[tag];
647 }
648
649 return NULL;
650 }
651 EXPORT_SYMBOL(blk_mq_tag_to_rq);
652
653 struct blk_mq_timeout_data {
654 unsigned long next;
655 unsigned int next_set;
656 };
657
658 void blk_mq_rq_timed_out(struct request *req, bool reserved)
659 {
660 const struct blk_mq_ops *ops = req->q->mq_ops;
661 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
662
663 /*
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * we both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
671 */
672 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
673 return;
674
675 if (ops->timeout)
676 ret = ops->timeout(req, reserved);
677
678 switch (ret) {
679 case BLK_EH_HANDLED:
680 __blk_mq_complete_request(req);
681 break;
682 case BLK_EH_RESET_TIMER:
683 blk_add_timer(req);
684 blk_clear_rq_complete(req);
685 break;
686 case BLK_EH_NOT_HANDLED:
687 break;
688 default:
689 printk(KERN_ERR "block: bad eh return: %d\n", ret);
690 break;
691 }
692 }
693
694 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
695 struct request *rq, void *priv, bool reserved)
696 {
697 struct blk_mq_timeout_data *data = priv;
698
699 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
700 return;
701
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
704 blk_mq_rq_timed_out(rq, reserved);
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
708 }
709 }
710
711 static void blk_mq_timeout_work(struct work_struct *work)
712 {
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
718 };
719 int i;
720
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
725 *
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
733 */
734 if (!percpu_ref_tryget(&q->q_usage_counter))
735 return;
736
737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
742 } else {
743 struct blk_mq_hw_ctx *hctx;
744
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
749 }
750 }
751 blk_queue_exit(q);
752 }
753
754 /*
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
758 */
759 static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
761 {
762 struct request *rq;
763 int checked = 8;
764
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766 bool merged = false;
767
768 if (!checked--)
769 break;
770
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
773
774 switch (blk_try_merge(rq, bio)) {
775 case ELEVATOR_BACK_MERGE:
776 if (blk_mq_sched_allow_merge(q, rq, bio))
777 merged = bio_attempt_back_merge(q, rq, bio);
778 break;
779 case ELEVATOR_FRONT_MERGE:
780 if (blk_mq_sched_allow_merge(q, rq, bio))
781 merged = bio_attempt_front_merge(q, rq, bio);
782 break;
783 case ELEVATOR_DISCARD_MERGE:
784 merged = bio_attempt_discard_merge(q, rq, bio);
785 break;
786 default:
787 continue;
788 }
789
790 if (merged)
791 ctx->rq_merged++;
792 return merged;
793 }
794
795 return false;
796 }
797
798 struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
801 };
802
803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804 {
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
814 }
815
816 /*
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
819 */
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821 {
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
825 };
826
827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828 }
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830
831 static inline unsigned int queued_to_index(unsigned int queued)
832 {
833 if (!queued)
834 return 0;
835
836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 }
838
839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
841 {
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846 };
847
848 if (rq->tag != -1)
849 goto done;
850
851 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
852 data.flags |= BLK_MQ_REQ_RESERVED;
853
854 rq->tag = blk_mq_get_tag(&data);
855 if (rq->tag >= 0) {
856 if (blk_mq_tag_busy(data.hctx)) {
857 rq->rq_flags |= RQF_MQ_INFLIGHT;
858 atomic_inc(&data.hctx->nr_active);
859 }
860 data.hctx->tags->rqs[rq->tag] = rq;
861 }
862
863 done:
864 if (hctx)
865 *hctx = data.hctx;
866 return rq->tag != -1;
867 }
868
869 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870 struct request *rq)
871 {
872 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
873 rq->tag = -1;
874
875 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
876 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
877 atomic_dec(&hctx->nr_active);
878 }
879 }
880
881 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
882 struct request *rq)
883 {
884 if (rq->tag == -1 || rq->internal_tag == -1)
885 return;
886
887 __blk_mq_put_driver_tag(hctx, rq);
888 }
889
890 static void blk_mq_put_driver_tag(struct request *rq)
891 {
892 struct blk_mq_hw_ctx *hctx;
893
894 if (rq->tag == -1 || rq->internal_tag == -1)
895 return;
896
897 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
898 __blk_mq_put_driver_tag(hctx, rq);
899 }
900
901 /*
902 * If we fail getting a driver tag because all the driver tags are already
903 * assigned and on the dispatch list, BUT the first entry does not have a
904 * tag, then we could deadlock. For that case, move entries with assigned
905 * driver tags to the front, leaving the set of tagged requests in the
906 * same order, and the untagged set in the same order.
907 */
908 static bool reorder_tags_to_front(struct list_head *list)
909 {
910 struct request *rq, *tmp, *first = NULL;
911
912 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
913 if (rq == first)
914 break;
915 if (rq->tag != -1) {
916 list_move(&rq->queuelist, list);
917 if (!first)
918 first = rq;
919 }
920 }
921
922 return first != NULL;
923 }
924
925 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
926 void *key)
927 {
928 struct blk_mq_hw_ctx *hctx;
929
930 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
931
932 list_del(&wait->task_list);
933 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
934 blk_mq_run_hw_queue(hctx, true);
935 return 1;
936 }
937
938 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
939 {
940 struct sbq_wait_state *ws;
941
942 /*
943 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
944 * The thread which wins the race to grab this bit adds the hardware
945 * queue to the wait queue.
946 */
947 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
948 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
949 return false;
950
951 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
952 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
953
954 /*
955 * As soon as this returns, it's no longer safe to fiddle with
956 * hctx->dispatch_wait, since a completion can wake up the wait queue
957 * and unlock the bit.
958 */
959 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
960 return true;
961 }
962
963 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
964 {
965 struct blk_mq_hw_ctx *hctx;
966 struct request *rq;
967 LIST_HEAD(driver_list);
968 struct list_head *dptr;
969 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
970
971 if (list_empty(list))
972 return false;
973
974 /*
975 * Start off with dptr being NULL, so we start the first request
976 * immediately, even if we have more pending.
977 */
978 dptr = NULL;
979
980 /*
981 * Now process all the entries, sending them to the driver.
982 */
983 errors = queued = 0;
984 do {
985 struct blk_mq_queue_data bd;
986
987 rq = list_first_entry(list, struct request, queuelist);
988 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
989 if (!queued && reorder_tags_to_front(list))
990 continue;
991
992 /*
993 * The initial allocation attempt failed, so we need to
994 * rerun the hardware queue when a tag is freed.
995 */
996 if (blk_mq_dispatch_wait_add(hctx)) {
997 /*
998 * It's possible that a tag was freed in the
999 * window between the allocation failure and
1000 * adding the hardware queue to the wait queue.
1001 */
1002 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1003 break;
1004 } else {
1005 break;
1006 }
1007 }
1008
1009 list_del_init(&rq->queuelist);
1010
1011 bd.rq = rq;
1012 bd.list = dptr;
1013
1014 /*
1015 * Flag last if we have no more requests, or if we have more
1016 * but can't assign a driver tag to it.
1017 */
1018 if (list_empty(list))
1019 bd.last = true;
1020 else {
1021 struct request *nxt;
1022
1023 nxt = list_first_entry(list, struct request, queuelist);
1024 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1025 }
1026
1027 ret = q->mq_ops->queue_rq(hctx, &bd);
1028 switch (ret) {
1029 case BLK_MQ_RQ_QUEUE_OK:
1030 queued++;
1031 break;
1032 case BLK_MQ_RQ_QUEUE_BUSY:
1033 blk_mq_put_driver_tag_hctx(hctx, rq);
1034 list_add(&rq->queuelist, list);
1035 __blk_mq_requeue_request(rq);
1036 break;
1037 default:
1038 pr_err("blk-mq: bad return on queue: %d\n", ret);
1039 case BLK_MQ_RQ_QUEUE_ERROR:
1040 errors++;
1041 rq->errors = -EIO;
1042 blk_mq_end_request(rq, rq->errors);
1043 break;
1044 }
1045
1046 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1047 break;
1048
1049 /*
1050 * We've done the first request. If we have more than 1
1051 * left in the list, set dptr to defer issue.
1052 */
1053 if (!dptr && list->next != list->prev)
1054 dptr = &driver_list;
1055 } while (!list_empty(list));
1056
1057 hctx->dispatched[queued_to_index(queued)]++;
1058
1059 /*
1060 * Any items that need requeuing? Stuff them into hctx->dispatch,
1061 * that is where we will continue on next queue run.
1062 */
1063 if (!list_empty(list)) {
1064 /*
1065 * If we got a driver tag for the next request already,
1066 * free it again.
1067 */
1068 rq = list_first_entry(list, struct request, queuelist);
1069 blk_mq_put_driver_tag(rq);
1070
1071 spin_lock(&hctx->lock);
1072 list_splice_init(list, &hctx->dispatch);
1073 spin_unlock(&hctx->lock);
1074
1075 /*
1076 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1077 * it's possible the queue is stopped and restarted again
1078 * before this. Queue restart will dispatch requests. And since
1079 * requests in rq_list aren't added into hctx->dispatch yet,
1080 * the requests in rq_list might get lost.
1081 *
1082 * blk_mq_run_hw_queue() already checks the STOPPED bit
1083 *
1084 * If RESTART or TAG_WAITING is set, then let completion restart
1085 * the queue instead of potentially looping here.
1086 */
1087 if (!blk_mq_sched_needs_restart(hctx) &&
1088 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1089 blk_mq_run_hw_queue(hctx, true);
1090 }
1091
1092 return (queued + errors) != 0;
1093 }
1094
1095 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1096 {
1097 int srcu_idx;
1098
1099 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1100 cpu_online(hctx->next_cpu));
1101
1102 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1103 rcu_read_lock();
1104 blk_mq_sched_dispatch_requests(hctx);
1105 rcu_read_unlock();
1106 } else {
1107 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1108 blk_mq_sched_dispatch_requests(hctx);
1109 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1110 }
1111 }
1112
1113 /*
1114 * It'd be great if the workqueue API had a way to pass
1115 * in a mask and had some smarts for more clever placement.
1116 * For now we just round-robin here, switching for every
1117 * BLK_MQ_CPU_WORK_BATCH queued items.
1118 */
1119 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1120 {
1121 if (hctx->queue->nr_hw_queues == 1)
1122 return WORK_CPU_UNBOUND;
1123
1124 if (--hctx->next_cpu_batch <= 0) {
1125 int next_cpu;
1126
1127 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1128 if (next_cpu >= nr_cpu_ids)
1129 next_cpu = cpumask_first(hctx->cpumask);
1130
1131 hctx->next_cpu = next_cpu;
1132 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1133 }
1134
1135 return hctx->next_cpu;
1136 }
1137
1138 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1139 {
1140 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1141 !blk_mq_hw_queue_mapped(hctx)))
1142 return;
1143
1144 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1145 int cpu = get_cpu();
1146 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1147 __blk_mq_run_hw_queue(hctx);
1148 put_cpu();
1149 return;
1150 }
1151
1152 put_cpu();
1153 }
1154
1155 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1156 }
1157
1158 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1159 {
1160 struct blk_mq_hw_ctx *hctx;
1161 int i;
1162
1163 queue_for_each_hw_ctx(q, hctx, i) {
1164 if (!blk_mq_hctx_has_pending(hctx) ||
1165 blk_mq_hctx_stopped(hctx))
1166 continue;
1167
1168 blk_mq_run_hw_queue(hctx, async);
1169 }
1170 }
1171 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1172
1173 /**
1174 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1175 * @q: request queue.
1176 *
1177 * The caller is responsible for serializing this function against
1178 * blk_mq_{start,stop}_hw_queue().
1179 */
1180 bool blk_mq_queue_stopped(struct request_queue *q)
1181 {
1182 struct blk_mq_hw_ctx *hctx;
1183 int i;
1184
1185 queue_for_each_hw_ctx(q, hctx, i)
1186 if (blk_mq_hctx_stopped(hctx))
1187 return true;
1188
1189 return false;
1190 }
1191 EXPORT_SYMBOL(blk_mq_queue_stopped);
1192
1193 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1194 {
1195 cancel_work(&hctx->run_work);
1196 cancel_delayed_work(&hctx->delay_work);
1197 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1198 }
1199 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1200
1201 void blk_mq_stop_hw_queues(struct request_queue *q)
1202 {
1203 struct blk_mq_hw_ctx *hctx;
1204 int i;
1205
1206 queue_for_each_hw_ctx(q, hctx, i)
1207 blk_mq_stop_hw_queue(hctx);
1208 }
1209 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1210
1211 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1212 {
1213 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1214
1215 blk_mq_run_hw_queue(hctx, false);
1216 }
1217 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1218
1219 void blk_mq_start_hw_queues(struct request_queue *q)
1220 {
1221 struct blk_mq_hw_ctx *hctx;
1222 int i;
1223
1224 queue_for_each_hw_ctx(q, hctx, i)
1225 blk_mq_start_hw_queue(hctx);
1226 }
1227 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1228
1229 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1230 {
1231 if (!blk_mq_hctx_stopped(hctx))
1232 return;
1233
1234 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235 blk_mq_run_hw_queue(hctx, async);
1236 }
1237 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1238
1239 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1240 {
1241 struct blk_mq_hw_ctx *hctx;
1242 int i;
1243
1244 queue_for_each_hw_ctx(q, hctx, i)
1245 blk_mq_start_stopped_hw_queue(hctx, async);
1246 }
1247 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1248
1249 static void blk_mq_run_work_fn(struct work_struct *work)
1250 {
1251 struct blk_mq_hw_ctx *hctx;
1252
1253 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1254
1255 __blk_mq_run_hw_queue(hctx);
1256 }
1257
1258 static void blk_mq_delay_work_fn(struct work_struct *work)
1259 {
1260 struct blk_mq_hw_ctx *hctx;
1261
1262 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1263
1264 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1265 __blk_mq_run_hw_queue(hctx);
1266 }
1267
1268 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1269 {
1270 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1271 return;
1272
1273 blk_mq_stop_hw_queue(hctx);
1274 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1275 &hctx->delay_work, msecs_to_jiffies(msecs));
1276 }
1277 EXPORT_SYMBOL(blk_mq_delay_queue);
1278
1279 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1280 struct request *rq,
1281 bool at_head)
1282 {
1283 struct blk_mq_ctx *ctx = rq->mq_ctx;
1284
1285 trace_block_rq_insert(hctx->queue, rq);
1286
1287 if (at_head)
1288 list_add(&rq->queuelist, &ctx->rq_list);
1289 else
1290 list_add_tail(&rq->queuelist, &ctx->rq_list);
1291 }
1292
1293 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1294 bool at_head)
1295 {
1296 struct blk_mq_ctx *ctx = rq->mq_ctx;
1297
1298 __blk_mq_insert_req_list(hctx, rq, at_head);
1299 blk_mq_hctx_mark_pending(hctx, ctx);
1300 }
1301
1302 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1303 struct list_head *list)
1304
1305 {
1306 /*
1307 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1308 * offline now
1309 */
1310 spin_lock(&ctx->lock);
1311 while (!list_empty(list)) {
1312 struct request *rq;
1313
1314 rq = list_first_entry(list, struct request, queuelist);
1315 BUG_ON(rq->mq_ctx != ctx);
1316 list_del_init(&rq->queuelist);
1317 __blk_mq_insert_req_list(hctx, rq, false);
1318 }
1319 blk_mq_hctx_mark_pending(hctx, ctx);
1320 spin_unlock(&ctx->lock);
1321 }
1322
1323 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1324 {
1325 struct request *rqa = container_of(a, struct request, queuelist);
1326 struct request *rqb = container_of(b, struct request, queuelist);
1327
1328 return !(rqa->mq_ctx < rqb->mq_ctx ||
1329 (rqa->mq_ctx == rqb->mq_ctx &&
1330 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1331 }
1332
1333 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1334 {
1335 struct blk_mq_ctx *this_ctx;
1336 struct request_queue *this_q;
1337 struct request *rq;
1338 LIST_HEAD(list);
1339 LIST_HEAD(ctx_list);
1340 unsigned int depth;
1341
1342 list_splice_init(&plug->mq_list, &list);
1343
1344 list_sort(NULL, &list, plug_ctx_cmp);
1345
1346 this_q = NULL;
1347 this_ctx = NULL;
1348 depth = 0;
1349
1350 while (!list_empty(&list)) {
1351 rq = list_entry_rq(list.next);
1352 list_del_init(&rq->queuelist);
1353 BUG_ON(!rq->q);
1354 if (rq->mq_ctx != this_ctx) {
1355 if (this_ctx) {
1356 trace_block_unplug(this_q, depth, from_schedule);
1357 blk_mq_sched_insert_requests(this_q, this_ctx,
1358 &ctx_list,
1359 from_schedule);
1360 }
1361
1362 this_ctx = rq->mq_ctx;
1363 this_q = rq->q;
1364 depth = 0;
1365 }
1366
1367 depth++;
1368 list_add_tail(&rq->queuelist, &ctx_list);
1369 }
1370
1371 /*
1372 * If 'this_ctx' is set, we know we have entries to complete
1373 * on 'ctx_list'. Do those.
1374 */
1375 if (this_ctx) {
1376 trace_block_unplug(this_q, depth, from_schedule);
1377 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1378 from_schedule);
1379 }
1380 }
1381
1382 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1383 {
1384 init_request_from_bio(rq, bio);
1385
1386 blk_account_io_start(rq, true);
1387 }
1388
1389 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1390 {
1391 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1392 !blk_queue_nomerges(hctx->queue);
1393 }
1394
1395 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1396 struct blk_mq_ctx *ctx,
1397 struct request *rq, struct bio *bio)
1398 {
1399 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1400 blk_mq_bio_to_request(rq, bio);
1401 spin_lock(&ctx->lock);
1402 insert_rq:
1403 __blk_mq_insert_request(hctx, rq, false);
1404 spin_unlock(&ctx->lock);
1405 return false;
1406 } else {
1407 struct request_queue *q = hctx->queue;
1408
1409 spin_lock(&ctx->lock);
1410 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1411 blk_mq_bio_to_request(rq, bio);
1412 goto insert_rq;
1413 }
1414
1415 spin_unlock(&ctx->lock);
1416 __blk_mq_finish_request(hctx, ctx, rq);
1417 return true;
1418 }
1419 }
1420
1421 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1422 {
1423 if (rq->tag != -1)
1424 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1425
1426 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1427 }
1428
1429 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1430 bool may_sleep)
1431 {
1432 struct request_queue *q = rq->q;
1433 struct blk_mq_queue_data bd = {
1434 .rq = rq,
1435 .list = NULL,
1436 .last = 1
1437 };
1438 struct blk_mq_hw_ctx *hctx;
1439 blk_qc_t new_cookie;
1440 int ret;
1441
1442 if (q->elevator)
1443 goto insert;
1444
1445 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1446 goto insert;
1447
1448 new_cookie = request_to_qc_t(hctx, rq);
1449
1450 /*
1451 * For OK queue, we are done. For error, kill it. Any other
1452 * error (busy), just add it to our list as we previously
1453 * would have done
1454 */
1455 ret = q->mq_ops->queue_rq(hctx, &bd);
1456 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1457 *cookie = new_cookie;
1458 return;
1459 }
1460
1461 __blk_mq_requeue_request(rq);
1462
1463 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1464 *cookie = BLK_QC_T_NONE;
1465 rq->errors = -EIO;
1466 blk_mq_end_request(rq, rq->errors);
1467 return;
1468 }
1469
1470 insert:
1471 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1472 }
1473
1474 /*
1475 * Multiple hardware queue variant. This will not use per-process plugs,
1476 * but will attempt to bypass the hctx queueing if we can go straight to
1477 * hardware for SYNC IO.
1478 */
1479 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1480 {
1481 const int is_sync = op_is_sync(bio->bi_opf);
1482 const int is_flush_fua = op_is_flush(bio->bi_opf);
1483 struct blk_mq_alloc_data data = { .flags = 0 };
1484 struct request *rq;
1485 unsigned int request_count = 0, srcu_idx;
1486 struct blk_plug *plug;
1487 struct request *same_queue_rq = NULL;
1488 blk_qc_t cookie;
1489 unsigned int wb_acct;
1490
1491 blk_queue_bounce(q, &bio);
1492
1493 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1494 bio_io_error(bio);
1495 return BLK_QC_T_NONE;
1496 }
1497
1498 blk_queue_split(q, &bio, q->bio_split);
1499
1500 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1501 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1502 return BLK_QC_T_NONE;
1503
1504 if (blk_mq_sched_bio_merge(q, bio))
1505 return BLK_QC_T_NONE;
1506
1507 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1508
1509 trace_block_getrq(q, bio, bio->bi_opf);
1510
1511 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1512 if (unlikely(!rq)) {
1513 __wbt_done(q->rq_wb, wb_acct);
1514 return BLK_QC_T_NONE;
1515 }
1516
1517 wbt_track(&rq->issue_stat, wb_acct);
1518
1519 cookie = request_to_qc_t(data.hctx, rq);
1520
1521 if (unlikely(is_flush_fua)) {
1522 if (q->elevator)
1523 goto elv_insert;
1524 blk_mq_bio_to_request(rq, bio);
1525 blk_insert_flush(rq);
1526 goto run_queue;
1527 }
1528
1529 plug = current->plug;
1530 /*
1531 * If the driver supports defer issued based on 'last', then
1532 * queue it up like normal since we can potentially save some
1533 * CPU this way.
1534 */
1535 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1536 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1537 struct request *old_rq = NULL;
1538
1539 blk_mq_bio_to_request(rq, bio);
1540
1541 /*
1542 * We do limited plugging. If the bio can be merged, do that.
1543 * Otherwise the existing request in the plug list will be
1544 * issued. So the plug list will have one request at most
1545 */
1546 if (plug) {
1547 /*
1548 * The plug list might get flushed before this. If that
1549 * happens, same_queue_rq is invalid and plug list is
1550 * empty
1551 */
1552 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1553 old_rq = same_queue_rq;
1554 list_del_init(&old_rq->queuelist);
1555 }
1556 list_add_tail(&rq->queuelist, &plug->mq_list);
1557 } else /* is_sync */
1558 old_rq = rq;
1559 blk_mq_put_ctx(data.ctx);
1560 if (!old_rq)
1561 goto done;
1562
1563 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1564 rcu_read_lock();
1565 blk_mq_try_issue_directly(old_rq, &cookie, false);
1566 rcu_read_unlock();
1567 } else {
1568 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1569 blk_mq_try_issue_directly(old_rq, &cookie, true);
1570 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1571 }
1572 goto done;
1573 }
1574
1575 if (q->elevator) {
1576 elv_insert:
1577 blk_mq_put_ctx(data.ctx);
1578 blk_mq_bio_to_request(rq, bio);
1579 blk_mq_sched_insert_request(rq, false, true,
1580 !is_sync || is_flush_fua, true);
1581 goto done;
1582 }
1583 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1584 /*
1585 * For a SYNC request, send it to the hardware immediately. For
1586 * an ASYNC request, just ensure that we run it later on. The
1587 * latter allows for merging opportunities and more efficient
1588 * dispatching.
1589 */
1590 run_queue:
1591 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1592 }
1593 blk_mq_put_ctx(data.ctx);
1594 done:
1595 return cookie;
1596 }
1597
1598 /*
1599 * Single hardware queue variant. This will attempt to use any per-process
1600 * plug for merging and IO deferral.
1601 */
1602 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1603 {
1604 const int is_sync = op_is_sync(bio->bi_opf);
1605 const int is_flush_fua = op_is_flush(bio->bi_opf);
1606 struct blk_plug *plug;
1607 unsigned int request_count = 0;
1608 struct blk_mq_alloc_data data = { .flags = 0 };
1609 struct request *rq;
1610 blk_qc_t cookie;
1611 unsigned int wb_acct;
1612
1613 blk_queue_bounce(q, &bio);
1614
1615 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1616 bio_io_error(bio);
1617 return BLK_QC_T_NONE;
1618 }
1619
1620 blk_queue_split(q, &bio, q->bio_split);
1621
1622 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1623 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1624 return BLK_QC_T_NONE;
1625 } else
1626 request_count = blk_plug_queued_count(q);
1627
1628 if (blk_mq_sched_bio_merge(q, bio))
1629 return BLK_QC_T_NONE;
1630
1631 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1632
1633 trace_block_getrq(q, bio, bio->bi_opf);
1634
1635 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1636 if (unlikely(!rq)) {
1637 __wbt_done(q->rq_wb, wb_acct);
1638 return BLK_QC_T_NONE;
1639 }
1640
1641 wbt_track(&rq->issue_stat, wb_acct);
1642
1643 cookie = request_to_qc_t(data.hctx, rq);
1644
1645 if (unlikely(is_flush_fua)) {
1646 if (q->elevator)
1647 goto elv_insert;
1648 blk_mq_bio_to_request(rq, bio);
1649 blk_insert_flush(rq);
1650 goto run_queue;
1651 }
1652
1653 /*
1654 * A task plug currently exists. Since this is completely lockless,
1655 * utilize that to temporarily store requests until the task is
1656 * either done or scheduled away.
1657 */
1658 plug = current->plug;
1659 if (plug) {
1660 struct request *last = NULL;
1661
1662 blk_mq_bio_to_request(rq, bio);
1663
1664 /*
1665 * @request_count may become stale because of schedule
1666 * out, so check the list again.
1667 */
1668 if (list_empty(&plug->mq_list))
1669 request_count = 0;
1670 if (!request_count)
1671 trace_block_plug(q);
1672 else
1673 last = list_entry_rq(plug->mq_list.prev);
1674
1675 blk_mq_put_ctx(data.ctx);
1676
1677 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1678 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1679 blk_flush_plug_list(plug, false);
1680 trace_block_plug(q);
1681 }
1682
1683 list_add_tail(&rq->queuelist, &plug->mq_list);
1684 return cookie;
1685 }
1686
1687 if (q->elevator) {
1688 elv_insert:
1689 blk_mq_put_ctx(data.ctx);
1690 blk_mq_bio_to_request(rq, bio);
1691 blk_mq_sched_insert_request(rq, false, true,
1692 !is_sync || is_flush_fua, true);
1693 goto done;
1694 }
1695 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1696 /*
1697 * For a SYNC request, send it to the hardware immediately. For
1698 * an ASYNC request, just ensure that we run it later on. The
1699 * latter allows for merging opportunities and more efficient
1700 * dispatching.
1701 */
1702 run_queue:
1703 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1704 }
1705
1706 blk_mq_put_ctx(data.ctx);
1707 done:
1708 return cookie;
1709 }
1710
1711 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1712 unsigned int hctx_idx)
1713 {
1714 struct page *page;
1715
1716 if (tags->rqs && set->ops->exit_request) {
1717 int i;
1718
1719 for (i = 0; i < tags->nr_tags; i++) {
1720 struct request *rq = tags->static_rqs[i];
1721
1722 if (!rq)
1723 continue;
1724 set->ops->exit_request(set->driver_data, rq,
1725 hctx_idx, i);
1726 tags->static_rqs[i] = NULL;
1727 }
1728 }
1729
1730 while (!list_empty(&tags->page_list)) {
1731 page = list_first_entry(&tags->page_list, struct page, lru);
1732 list_del_init(&page->lru);
1733 /*
1734 * Remove kmemleak object previously allocated in
1735 * blk_mq_init_rq_map().
1736 */
1737 kmemleak_free(page_address(page));
1738 __free_pages(page, page->private);
1739 }
1740 }
1741
1742 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1743 {
1744 kfree(tags->rqs);
1745 tags->rqs = NULL;
1746 kfree(tags->static_rqs);
1747 tags->static_rqs = NULL;
1748
1749 blk_mq_free_tags(tags);
1750 }
1751
1752 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1753 unsigned int hctx_idx,
1754 unsigned int nr_tags,
1755 unsigned int reserved_tags)
1756 {
1757 struct blk_mq_tags *tags;
1758 int node;
1759
1760 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1761 if (node == NUMA_NO_NODE)
1762 node = set->numa_node;
1763
1764 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1765 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1766 if (!tags)
1767 return NULL;
1768
1769 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1770 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1771 node);
1772 if (!tags->rqs) {
1773 blk_mq_free_tags(tags);
1774 return NULL;
1775 }
1776
1777 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779 node);
1780 if (!tags->static_rqs) {
1781 kfree(tags->rqs);
1782 blk_mq_free_tags(tags);
1783 return NULL;
1784 }
1785
1786 return tags;
1787 }
1788
1789 static size_t order_to_size(unsigned int order)
1790 {
1791 return (size_t)PAGE_SIZE << order;
1792 }
1793
1794 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1795 unsigned int hctx_idx, unsigned int depth)
1796 {
1797 unsigned int i, j, entries_per_page, max_order = 4;
1798 size_t rq_size, left;
1799 int node;
1800
1801 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1802 if (node == NUMA_NO_NODE)
1803 node = set->numa_node;
1804
1805 INIT_LIST_HEAD(&tags->page_list);
1806
1807 /*
1808 * rq_size is the size of the request plus driver payload, rounded
1809 * to the cacheline size
1810 */
1811 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1812 cache_line_size());
1813 left = rq_size * depth;
1814
1815 for (i = 0; i < depth; ) {
1816 int this_order = max_order;
1817 struct page *page;
1818 int to_do;
1819 void *p;
1820
1821 while (this_order && left < order_to_size(this_order - 1))
1822 this_order--;
1823
1824 do {
1825 page = alloc_pages_node(node,
1826 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1827 this_order);
1828 if (page)
1829 break;
1830 if (!this_order--)
1831 break;
1832 if (order_to_size(this_order) < rq_size)
1833 break;
1834 } while (1);
1835
1836 if (!page)
1837 goto fail;
1838
1839 page->private = this_order;
1840 list_add_tail(&page->lru, &tags->page_list);
1841
1842 p = page_address(page);
1843 /*
1844 * Allow kmemleak to scan these pages as they contain pointers
1845 * to additional allocations like via ops->init_request().
1846 */
1847 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1848 entries_per_page = order_to_size(this_order) / rq_size;
1849 to_do = min(entries_per_page, depth - i);
1850 left -= to_do * rq_size;
1851 for (j = 0; j < to_do; j++) {
1852 struct request *rq = p;
1853
1854 tags->static_rqs[i] = rq;
1855 if (set->ops->init_request) {
1856 if (set->ops->init_request(set->driver_data,
1857 rq, hctx_idx, i,
1858 node)) {
1859 tags->static_rqs[i] = NULL;
1860 goto fail;
1861 }
1862 }
1863
1864 p += rq_size;
1865 i++;
1866 }
1867 }
1868 return 0;
1869
1870 fail:
1871 blk_mq_free_rqs(set, tags, hctx_idx);
1872 return -ENOMEM;
1873 }
1874
1875 /*
1876 * 'cpu' is going away. splice any existing rq_list entries from this
1877 * software queue to the hw queue dispatch list, and ensure that it
1878 * gets run.
1879 */
1880 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1881 {
1882 struct blk_mq_hw_ctx *hctx;
1883 struct blk_mq_ctx *ctx;
1884 LIST_HEAD(tmp);
1885
1886 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1887 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1888
1889 spin_lock(&ctx->lock);
1890 if (!list_empty(&ctx->rq_list)) {
1891 list_splice_init(&ctx->rq_list, &tmp);
1892 blk_mq_hctx_clear_pending(hctx, ctx);
1893 }
1894 spin_unlock(&ctx->lock);
1895
1896 if (list_empty(&tmp))
1897 return 0;
1898
1899 spin_lock(&hctx->lock);
1900 list_splice_tail_init(&tmp, &hctx->dispatch);
1901 spin_unlock(&hctx->lock);
1902
1903 blk_mq_run_hw_queue(hctx, true);
1904 return 0;
1905 }
1906
1907 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1908 {
1909 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1910 &hctx->cpuhp_dead);
1911 }
1912
1913 /* hctx->ctxs will be freed in queue's release handler */
1914 static void blk_mq_exit_hctx(struct request_queue *q,
1915 struct blk_mq_tag_set *set,
1916 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1917 {
1918 unsigned flush_start_tag = set->queue_depth;
1919
1920 blk_mq_tag_idle(hctx);
1921
1922 if (set->ops->exit_request)
1923 set->ops->exit_request(set->driver_data,
1924 hctx->fq->flush_rq, hctx_idx,
1925 flush_start_tag + hctx_idx);
1926
1927 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1928
1929 if (set->ops->exit_hctx)
1930 set->ops->exit_hctx(hctx, hctx_idx);
1931
1932 if (hctx->flags & BLK_MQ_F_BLOCKING)
1933 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1934
1935 blk_mq_remove_cpuhp(hctx);
1936 blk_free_flush_queue(hctx->fq);
1937 sbitmap_free(&hctx->ctx_map);
1938 }
1939
1940 static void blk_mq_exit_hw_queues(struct request_queue *q,
1941 struct blk_mq_tag_set *set, int nr_queue)
1942 {
1943 struct blk_mq_hw_ctx *hctx;
1944 unsigned int i;
1945
1946 queue_for_each_hw_ctx(q, hctx, i) {
1947 if (i == nr_queue)
1948 break;
1949 blk_mq_exit_hctx(q, set, hctx, i);
1950 }
1951 }
1952
1953 static int blk_mq_init_hctx(struct request_queue *q,
1954 struct blk_mq_tag_set *set,
1955 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1956 {
1957 int node;
1958 unsigned flush_start_tag = set->queue_depth;
1959
1960 node = hctx->numa_node;
1961 if (node == NUMA_NO_NODE)
1962 node = hctx->numa_node = set->numa_node;
1963
1964 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1965 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1966 spin_lock_init(&hctx->lock);
1967 INIT_LIST_HEAD(&hctx->dispatch);
1968 hctx->queue = q;
1969 hctx->queue_num = hctx_idx;
1970 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1971
1972 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1973
1974 hctx->tags = set->tags[hctx_idx];
1975
1976 /*
1977 * Allocate space for all possible cpus to avoid allocation at
1978 * runtime
1979 */
1980 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1981 GFP_KERNEL, node);
1982 if (!hctx->ctxs)
1983 goto unregister_cpu_notifier;
1984
1985 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1986 node))
1987 goto free_ctxs;
1988
1989 hctx->nr_ctx = 0;
1990
1991 if (set->ops->init_hctx &&
1992 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1993 goto free_bitmap;
1994
1995 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1996 goto exit_hctx;
1997
1998 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1999 if (!hctx->fq)
2000 goto sched_exit_hctx;
2001
2002 if (set->ops->init_request &&
2003 set->ops->init_request(set->driver_data,
2004 hctx->fq->flush_rq, hctx_idx,
2005 flush_start_tag + hctx_idx, node))
2006 goto free_fq;
2007
2008 if (hctx->flags & BLK_MQ_F_BLOCKING)
2009 init_srcu_struct(&hctx->queue_rq_srcu);
2010
2011 return 0;
2012
2013 free_fq:
2014 kfree(hctx->fq);
2015 sched_exit_hctx:
2016 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2017 exit_hctx:
2018 if (set->ops->exit_hctx)
2019 set->ops->exit_hctx(hctx, hctx_idx);
2020 free_bitmap:
2021 sbitmap_free(&hctx->ctx_map);
2022 free_ctxs:
2023 kfree(hctx->ctxs);
2024 unregister_cpu_notifier:
2025 blk_mq_remove_cpuhp(hctx);
2026 return -1;
2027 }
2028
2029 static void blk_mq_init_cpu_queues(struct request_queue *q,
2030 unsigned int nr_hw_queues)
2031 {
2032 unsigned int i;
2033
2034 for_each_possible_cpu(i) {
2035 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2036 struct blk_mq_hw_ctx *hctx;
2037
2038 __ctx->cpu = i;
2039 spin_lock_init(&__ctx->lock);
2040 INIT_LIST_HEAD(&__ctx->rq_list);
2041 __ctx->queue = q;
2042 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2043 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2044
2045 /* If the cpu isn't online, the cpu is mapped to first hctx */
2046 if (!cpu_online(i))
2047 continue;
2048
2049 hctx = blk_mq_map_queue(q, i);
2050
2051 /*
2052 * Set local node, IFF we have more than one hw queue. If
2053 * not, we remain on the home node of the device
2054 */
2055 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2056 hctx->numa_node = local_memory_node(cpu_to_node(i));
2057 }
2058 }
2059
2060 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2061 {
2062 int ret = 0;
2063
2064 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2065 set->queue_depth, set->reserved_tags);
2066 if (!set->tags[hctx_idx])
2067 return false;
2068
2069 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2070 set->queue_depth);
2071 if (!ret)
2072 return true;
2073
2074 blk_mq_free_rq_map(set->tags[hctx_idx]);
2075 set->tags[hctx_idx] = NULL;
2076 return false;
2077 }
2078
2079 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2080 unsigned int hctx_idx)
2081 {
2082 if (set->tags[hctx_idx]) {
2083 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2084 blk_mq_free_rq_map(set->tags[hctx_idx]);
2085 set->tags[hctx_idx] = NULL;
2086 }
2087 }
2088
2089 static void blk_mq_map_swqueue(struct request_queue *q,
2090 const struct cpumask *online_mask)
2091 {
2092 unsigned int i, hctx_idx;
2093 struct blk_mq_hw_ctx *hctx;
2094 struct blk_mq_ctx *ctx;
2095 struct blk_mq_tag_set *set = q->tag_set;
2096
2097 /*
2098 * Avoid others reading imcomplete hctx->cpumask through sysfs
2099 */
2100 mutex_lock(&q->sysfs_lock);
2101
2102 queue_for_each_hw_ctx(q, hctx, i) {
2103 cpumask_clear(hctx->cpumask);
2104 hctx->nr_ctx = 0;
2105 }
2106
2107 /*
2108 * Map software to hardware queues
2109 */
2110 for_each_possible_cpu(i) {
2111 /* If the cpu isn't online, the cpu is mapped to first hctx */
2112 if (!cpumask_test_cpu(i, online_mask))
2113 continue;
2114
2115 hctx_idx = q->mq_map[i];
2116 /* unmapped hw queue can be remapped after CPU topo changed */
2117 if (!set->tags[hctx_idx] &&
2118 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2119 /*
2120 * If tags initialization fail for some hctx,
2121 * that hctx won't be brought online. In this
2122 * case, remap the current ctx to hctx[0] which
2123 * is guaranteed to always have tags allocated
2124 */
2125 q->mq_map[i] = 0;
2126 }
2127
2128 ctx = per_cpu_ptr(q->queue_ctx, i);
2129 hctx = blk_mq_map_queue(q, i);
2130
2131 cpumask_set_cpu(i, hctx->cpumask);
2132 ctx->index_hw = hctx->nr_ctx;
2133 hctx->ctxs[hctx->nr_ctx++] = ctx;
2134 }
2135
2136 mutex_unlock(&q->sysfs_lock);
2137
2138 queue_for_each_hw_ctx(q, hctx, i) {
2139 /*
2140 * If no software queues are mapped to this hardware queue,
2141 * disable it and free the request entries.
2142 */
2143 if (!hctx->nr_ctx) {
2144 /* Never unmap queue 0. We need it as a
2145 * fallback in case of a new remap fails
2146 * allocation
2147 */
2148 if (i && set->tags[i])
2149 blk_mq_free_map_and_requests(set, i);
2150
2151 hctx->tags = NULL;
2152 continue;
2153 }
2154
2155 hctx->tags = set->tags[i];
2156 WARN_ON(!hctx->tags);
2157
2158 /*
2159 * Set the map size to the number of mapped software queues.
2160 * This is more accurate and more efficient than looping
2161 * over all possibly mapped software queues.
2162 */
2163 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2164
2165 /*
2166 * Initialize batch roundrobin counts
2167 */
2168 hctx->next_cpu = cpumask_first(hctx->cpumask);
2169 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2170 }
2171 }
2172
2173 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2174 {
2175 struct blk_mq_hw_ctx *hctx;
2176 int i;
2177
2178 queue_for_each_hw_ctx(q, hctx, i) {
2179 if (shared)
2180 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2181 else
2182 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2183 }
2184 }
2185
2186 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2187 {
2188 struct request_queue *q;
2189
2190 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2191 blk_mq_freeze_queue(q);
2192 queue_set_hctx_shared(q, shared);
2193 blk_mq_unfreeze_queue(q);
2194 }
2195 }
2196
2197 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2198 {
2199 struct blk_mq_tag_set *set = q->tag_set;
2200
2201 mutex_lock(&set->tag_list_lock);
2202 list_del_init(&q->tag_set_list);
2203 if (list_is_singular(&set->tag_list)) {
2204 /* just transitioned to unshared */
2205 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2206 /* update existing queue */
2207 blk_mq_update_tag_set_depth(set, false);
2208 }
2209 mutex_unlock(&set->tag_list_lock);
2210 }
2211
2212 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2213 struct request_queue *q)
2214 {
2215 q->tag_set = set;
2216
2217 mutex_lock(&set->tag_list_lock);
2218
2219 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2220 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2221 set->flags |= BLK_MQ_F_TAG_SHARED;
2222 /* update existing queue */
2223 blk_mq_update_tag_set_depth(set, true);
2224 }
2225 if (set->flags & BLK_MQ_F_TAG_SHARED)
2226 queue_set_hctx_shared(q, true);
2227 list_add_tail(&q->tag_set_list, &set->tag_list);
2228
2229 mutex_unlock(&set->tag_list_lock);
2230 }
2231
2232 /*
2233 * It is the actual release handler for mq, but we do it from
2234 * request queue's release handler for avoiding use-after-free
2235 * and headache because q->mq_kobj shouldn't have been introduced,
2236 * but we can't group ctx/kctx kobj without it.
2237 */
2238 void blk_mq_release(struct request_queue *q)
2239 {
2240 struct blk_mq_hw_ctx *hctx;
2241 unsigned int i;
2242
2243 /* hctx kobj stays in hctx */
2244 queue_for_each_hw_ctx(q, hctx, i) {
2245 if (!hctx)
2246 continue;
2247 kobject_put(&hctx->kobj);
2248 }
2249
2250 q->mq_map = NULL;
2251
2252 kfree(q->queue_hw_ctx);
2253
2254 /*
2255 * release .mq_kobj and sw queue's kobject now because
2256 * both share lifetime with request queue.
2257 */
2258 blk_mq_sysfs_deinit(q);
2259
2260 free_percpu(q->queue_ctx);
2261 }
2262
2263 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2264 {
2265 struct request_queue *uninit_q, *q;
2266
2267 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2268 if (!uninit_q)
2269 return ERR_PTR(-ENOMEM);
2270
2271 q = blk_mq_init_allocated_queue(set, uninit_q);
2272 if (IS_ERR(q))
2273 blk_cleanup_queue(uninit_q);
2274
2275 return q;
2276 }
2277 EXPORT_SYMBOL(blk_mq_init_queue);
2278
2279 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2280 struct request_queue *q)
2281 {
2282 int i, j;
2283 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2284
2285 blk_mq_sysfs_unregister(q);
2286 for (i = 0; i < set->nr_hw_queues; i++) {
2287 int node;
2288
2289 if (hctxs[i])
2290 continue;
2291
2292 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2293 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2294 GFP_KERNEL, node);
2295 if (!hctxs[i])
2296 break;
2297
2298 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2299 node)) {
2300 kfree(hctxs[i]);
2301 hctxs[i] = NULL;
2302 break;
2303 }
2304
2305 atomic_set(&hctxs[i]->nr_active, 0);
2306 hctxs[i]->numa_node = node;
2307 hctxs[i]->queue_num = i;
2308
2309 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2310 free_cpumask_var(hctxs[i]->cpumask);
2311 kfree(hctxs[i]);
2312 hctxs[i] = NULL;
2313 break;
2314 }
2315 blk_mq_hctx_kobj_init(hctxs[i]);
2316 }
2317 for (j = i; j < q->nr_hw_queues; j++) {
2318 struct blk_mq_hw_ctx *hctx = hctxs[j];
2319
2320 if (hctx) {
2321 if (hctx->tags)
2322 blk_mq_free_map_and_requests(set, j);
2323 blk_mq_exit_hctx(q, set, hctx, j);
2324 kobject_put(&hctx->kobj);
2325 hctxs[j] = NULL;
2326
2327 }
2328 }
2329 q->nr_hw_queues = i;
2330 blk_mq_sysfs_register(q);
2331 }
2332
2333 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2334 struct request_queue *q)
2335 {
2336 /* mark the queue as mq asap */
2337 q->mq_ops = set->ops;
2338
2339 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2340 if (!q->queue_ctx)
2341 goto err_exit;
2342
2343 /* init q->mq_kobj and sw queues' kobjects */
2344 blk_mq_sysfs_init(q);
2345
2346 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2347 GFP_KERNEL, set->numa_node);
2348 if (!q->queue_hw_ctx)
2349 goto err_percpu;
2350
2351 q->mq_map = set->mq_map;
2352
2353 blk_mq_realloc_hw_ctxs(set, q);
2354 if (!q->nr_hw_queues)
2355 goto err_hctxs;
2356
2357 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2358 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2359
2360 q->nr_queues = nr_cpu_ids;
2361
2362 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2363
2364 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2365 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2366
2367 q->sg_reserved_size = INT_MAX;
2368
2369 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2370 INIT_LIST_HEAD(&q->requeue_list);
2371 spin_lock_init(&q->requeue_lock);
2372
2373 if (q->nr_hw_queues > 1)
2374 blk_queue_make_request(q, blk_mq_make_request);
2375 else
2376 blk_queue_make_request(q, blk_sq_make_request);
2377
2378 /*
2379 * Do this after blk_queue_make_request() overrides it...
2380 */
2381 q->nr_requests = set->queue_depth;
2382
2383 /*
2384 * Default to classic polling
2385 */
2386 q->poll_nsec = -1;
2387
2388 if (set->ops->complete)
2389 blk_queue_softirq_done(q, set->ops->complete);
2390
2391 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2392
2393 get_online_cpus();
2394 mutex_lock(&all_q_mutex);
2395
2396 list_add_tail(&q->all_q_node, &all_q_list);
2397 blk_mq_add_queue_tag_set(set, q);
2398 blk_mq_map_swqueue(q, cpu_online_mask);
2399
2400 mutex_unlock(&all_q_mutex);
2401 put_online_cpus();
2402
2403 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2404 int ret;
2405
2406 ret = blk_mq_sched_init(q);
2407 if (ret)
2408 return ERR_PTR(ret);
2409 }
2410
2411 return q;
2412
2413 err_hctxs:
2414 kfree(q->queue_hw_ctx);
2415 err_percpu:
2416 free_percpu(q->queue_ctx);
2417 err_exit:
2418 q->mq_ops = NULL;
2419 return ERR_PTR(-ENOMEM);
2420 }
2421 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2422
2423 void blk_mq_free_queue(struct request_queue *q)
2424 {
2425 struct blk_mq_tag_set *set = q->tag_set;
2426
2427 mutex_lock(&all_q_mutex);
2428 list_del_init(&q->all_q_node);
2429 mutex_unlock(&all_q_mutex);
2430
2431 wbt_exit(q);
2432
2433 blk_mq_del_queue_tag_set(q);
2434
2435 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2436 }
2437
2438 /* Basically redo blk_mq_init_queue with queue frozen */
2439 static void blk_mq_queue_reinit(struct request_queue *q,
2440 const struct cpumask *online_mask)
2441 {
2442 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2443
2444 blk_mq_sysfs_unregister(q);
2445
2446 /*
2447 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2448 * we should change hctx numa_node according to new topology (this
2449 * involves free and re-allocate memory, worthy doing?)
2450 */
2451
2452 blk_mq_map_swqueue(q, online_mask);
2453
2454 blk_mq_sysfs_register(q);
2455 }
2456
2457 /*
2458 * New online cpumask which is going to be set in this hotplug event.
2459 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2460 * one-by-one and dynamically allocating this could result in a failure.
2461 */
2462 static struct cpumask cpuhp_online_new;
2463
2464 static void blk_mq_queue_reinit_work(void)
2465 {
2466 struct request_queue *q;
2467
2468 mutex_lock(&all_q_mutex);
2469 /*
2470 * We need to freeze and reinit all existing queues. Freezing
2471 * involves synchronous wait for an RCU grace period and doing it
2472 * one by one may take a long time. Start freezing all queues in
2473 * one swoop and then wait for the completions so that freezing can
2474 * take place in parallel.
2475 */
2476 list_for_each_entry(q, &all_q_list, all_q_node)
2477 blk_mq_freeze_queue_start(q);
2478 list_for_each_entry(q, &all_q_list, all_q_node)
2479 blk_mq_freeze_queue_wait(q);
2480
2481 list_for_each_entry(q, &all_q_list, all_q_node)
2482 blk_mq_queue_reinit(q, &cpuhp_online_new);
2483
2484 list_for_each_entry(q, &all_q_list, all_q_node)
2485 blk_mq_unfreeze_queue(q);
2486
2487 mutex_unlock(&all_q_mutex);
2488 }
2489
2490 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2491 {
2492 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2493 blk_mq_queue_reinit_work();
2494 return 0;
2495 }
2496
2497 /*
2498 * Before hotadded cpu starts handling requests, new mappings must be
2499 * established. Otherwise, these requests in hw queue might never be
2500 * dispatched.
2501 *
2502 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2503 * for CPU0, and ctx1 for CPU1).
2504 *
2505 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2506 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2507 *
2508 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2509 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2510 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2511 * ignored.
2512 */
2513 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2514 {
2515 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2516 cpumask_set_cpu(cpu, &cpuhp_online_new);
2517 blk_mq_queue_reinit_work();
2518 return 0;
2519 }
2520
2521 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2522 {
2523 int i;
2524
2525 for (i = 0; i < set->nr_hw_queues; i++)
2526 if (!__blk_mq_alloc_rq_map(set, i))
2527 goto out_unwind;
2528
2529 return 0;
2530
2531 out_unwind:
2532 while (--i >= 0)
2533 blk_mq_free_rq_map(set->tags[i]);
2534
2535 return -ENOMEM;
2536 }
2537
2538 /*
2539 * Allocate the request maps associated with this tag_set. Note that this
2540 * may reduce the depth asked for, if memory is tight. set->queue_depth
2541 * will be updated to reflect the allocated depth.
2542 */
2543 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2544 {
2545 unsigned int depth;
2546 int err;
2547
2548 depth = set->queue_depth;
2549 do {
2550 err = __blk_mq_alloc_rq_maps(set);
2551 if (!err)
2552 break;
2553
2554 set->queue_depth >>= 1;
2555 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2556 err = -ENOMEM;
2557 break;
2558 }
2559 } while (set->queue_depth);
2560
2561 if (!set->queue_depth || err) {
2562 pr_err("blk-mq: failed to allocate request map\n");
2563 return -ENOMEM;
2564 }
2565
2566 if (depth != set->queue_depth)
2567 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2568 depth, set->queue_depth);
2569
2570 return 0;
2571 }
2572
2573 /*
2574 * Alloc a tag set to be associated with one or more request queues.
2575 * May fail with EINVAL for various error conditions. May adjust the
2576 * requested depth down, if if it too large. In that case, the set
2577 * value will be stored in set->queue_depth.
2578 */
2579 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2580 {
2581 int ret;
2582
2583 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2584
2585 if (!set->nr_hw_queues)
2586 return -EINVAL;
2587 if (!set->queue_depth)
2588 return -EINVAL;
2589 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2590 return -EINVAL;
2591
2592 if (!set->ops->queue_rq)
2593 return -EINVAL;
2594
2595 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2596 pr_info("blk-mq: reduced tag depth to %u\n",
2597 BLK_MQ_MAX_DEPTH);
2598 set->queue_depth = BLK_MQ_MAX_DEPTH;
2599 }
2600
2601 /*
2602 * If a crashdump is active, then we are potentially in a very
2603 * memory constrained environment. Limit us to 1 queue and
2604 * 64 tags to prevent using too much memory.
2605 */
2606 if (is_kdump_kernel()) {
2607 set->nr_hw_queues = 1;
2608 set->queue_depth = min(64U, set->queue_depth);
2609 }
2610 /*
2611 * There is no use for more h/w queues than cpus.
2612 */
2613 if (set->nr_hw_queues > nr_cpu_ids)
2614 set->nr_hw_queues = nr_cpu_ids;
2615
2616 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2617 GFP_KERNEL, set->numa_node);
2618 if (!set->tags)
2619 return -ENOMEM;
2620
2621 ret = -ENOMEM;
2622 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2623 GFP_KERNEL, set->numa_node);
2624 if (!set->mq_map)
2625 goto out_free_tags;
2626
2627 if (set->ops->map_queues)
2628 ret = set->ops->map_queues(set);
2629 else
2630 ret = blk_mq_map_queues(set);
2631 if (ret)
2632 goto out_free_mq_map;
2633
2634 ret = blk_mq_alloc_rq_maps(set);
2635 if (ret)
2636 goto out_free_mq_map;
2637
2638 mutex_init(&set->tag_list_lock);
2639 INIT_LIST_HEAD(&set->tag_list);
2640
2641 return 0;
2642
2643 out_free_mq_map:
2644 kfree(set->mq_map);
2645 set->mq_map = NULL;
2646 out_free_tags:
2647 kfree(set->tags);
2648 set->tags = NULL;
2649 return ret;
2650 }
2651 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2652
2653 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2654 {
2655 int i;
2656
2657 for (i = 0; i < nr_cpu_ids; i++)
2658 blk_mq_free_map_and_requests(set, i);
2659
2660 kfree(set->mq_map);
2661 set->mq_map = NULL;
2662
2663 kfree(set->tags);
2664 set->tags = NULL;
2665 }
2666 EXPORT_SYMBOL(blk_mq_free_tag_set);
2667
2668 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2669 {
2670 struct blk_mq_tag_set *set = q->tag_set;
2671 struct blk_mq_hw_ctx *hctx;
2672 int i, ret;
2673
2674 if (!set)
2675 return -EINVAL;
2676
2677 blk_mq_freeze_queue(q);
2678 blk_mq_quiesce_queue(q);
2679
2680 ret = 0;
2681 queue_for_each_hw_ctx(q, hctx, i) {
2682 if (!hctx->tags)
2683 continue;
2684 /*
2685 * If we're using an MQ scheduler, just update the scheduler
2686 * queue depth. This is similar to what the old code would do.
2687 */
2688 if (!hctx->sched_tags) {
2689 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2690 min(nr, set->queue_depth),
2691 false);
2692 } else {
2693 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2694 nr, true);
2695 }
2696 if (ret)
2697 break;
2698 }
2699
2700 if (!ret)
2701 q->nr_requests = nr;
2702
2703 blk_mq_unfreeze_queue(q);
2704 blk_mq_start_stopped_hw_queues(q, true);
2705
2706 return ret;
2707 }
2708
2709 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2710 {
2711 struct request_queue *q;
2712
2713 if (nr_hw_queues > nr_cpu_ids)
2714 nr_hw_queues = nr_cpu_ids;
2715 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2716 return;
2717
2718 list_for_each_entry(q, &set->tag_list, tag_set_list)
2719 blk_mq_freeze_queue(q);
2720
2721 set->nr_hw_queues = nr_hw_queues;
2722 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2723 blk_mq_realloc_hw_ctxs(set, q);
2724
2725 /*
2726 * Manually set the make_request_fn as blk_queue_make_request
2727 * resets a lot of the queue settings.
2728 */
2729 if (q->nr_hw_queues > 1)
2730 q->make_request_fn = blk_mq_make_request;
2731 else
2732 q->make_request_fn = blk_sq_make_request;
2733
2734 blk_mq_queue_reinit(q, cpu_online_mask);
2735 }
2736
2737 list_for_each_entry(q, &set->tag_list, tag_set_list)
2738 blk_mq_unfreeze_queue(q);
2739 }
2740 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2741
2742 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2743 struct blk_mq_hw_ctx *hctx,
2744 struct request *rq)
2745 {
2746 struct blk_rq_stat stat[2];
2747 unsigned long ret = 0;
2748
2749 /*
2750 * If stats collection isn't on, don't sleep but turn it on for
2751 * future users
2752 */
2753 if (!blk_stat_enable(q))
2754 return 0;
2755
2756 /*
2757 * We don't have to do this once per IO, should optimize this
2758 * to just use the current window of stats until it changes
2759 */
2760 memset(&stat, 0, sizeof(stat));
2761 blk_hctx_stat_get(hctx, stat);
2762
2763 /*
2764 * As an optimistic guess, use half of the mean service time
2765 * for this type of request. We can (and should) make this smarter.
2766 * For instance, if the completion latencies are tight, we can
2767 * get closer than just half the mean. This is especially
2768 * important on devices where the completion latencies are longer
2769 * than ~10 usec.
2770 */
2771 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2772 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2773 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2774 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2775
2776 return ret;
2777 }
2778
2779 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2780 struct blk_mq_hw_ctx *hctx,
2781 struct request *rq)
2782 {
2783 struct hrtimer_sleeper hs;
2784 enum hrtimer_mode mode;
2785 unsigned int nsecs;
2786 ktime_t kt;
2787
2788 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2789 return false;
2790
2791 /*
2792 * poll_nsec can be:
2793 *
2794 * -1: don't ever hybrid sleep
2795 * 0: use half of prev avg
2796 * >0: use this specific value
2797 */
2798 if (q->poll_nsec == -1)
2799 return false;
2800 else if (q->poll_nsec > 0)
2801 nsecs = q->poll_nsec;
2802 else
2803 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2804
2805 if (!nsecs)
2806 return false;
2807
2808 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2809
2810 /*
2811 * This will be replaced with the stats tracking code, using
2812 * 'avg_completion_time / 2' as the pre-sleep target.
2813 */
2814 kt = nsecs;
2815
2816 mode = HRTIMER_MODE_REL;
2817 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2818 hrtimer_set_expires(&hs.timer, kt);
2819
2820 hrtimer_init_sleeper(&hs, current);
2821 do {
2822 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2823 break;
2824 set_current_state(TASK_UNINTERRUPTIBLE);
2825 hrtimer_start_expires(&hs.timer, mode);
2826 if (hs.task)
2827 io_schedule();
2828 hrtimer_cancel(&hs.timer);
2829 mode = HRTIMER_MODE_ABS;
2830 } while (hs.task && !signal_pending(current));
2831
2832 __set_current_state(TASK_RUNNING);
2833 destroy_hrtimer_on_stack(&hs.timer);
2834 return true;
2835 }
2836
2837 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2838 {
2839 struct request_queue *q = hctx->queue;
2840 long state;
2841
2842 /*
2843 * If we sleep, have the caller restart the poll loop to reset
2844 * the state. Like for the other success return cases, the
2845 * caller is responsible for checking if the IO completed. If
2846 * the IO isn't complete, we'll get called again and will go
2847 * straight to the busy poll loop.
2848 */
2849 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2850 return true;
2851
2852 hctx->poll_considered++;
2853
2854 state = current->state;
2855 while (!need_resched()) {
2856 int ret;
2857
2858 hctx->poll_invoked++;
2859
2860 ret = q->mq_ops->poll(hctx, rq->tag);
2861 if (ret > 0) {
2862 hctx->poll_success++;
2863 set_current_state(TASK_RUNNING);
2864 return true;
2865 }
2866
2867 if (signal_pending_state(state, current))
2868 set_current_state(TASK_RUNNING);
2869
2870 if (current->state == TASK_RUNNING)
2871 return true;
2872 if (ret < 0)
2873 break;
2874 cpu_relax();
2875 }
2876
2877 return false;
2878 }
2879
2880 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2881 {
2882 struct blk_mq_hw_ctx *hctx;
2883 struct blk_plug *plug;
2884 struct request *rq;
2885
2886 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2887 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2888 return false;
2889
2890 plug = current->plug;
2891 if (plug)
2892 blk_flush_plug_list(plug, false);
2893
2894 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2895 if (!blk_qc_t_is_internal(cookie))
2896 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2897 else
2898 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2899
2900 return __blk_mq_poll(hctx, rq);
2901 }
2902 EXPORT_SYMBOL_GPL(blk_mq_poll);
2903
2904 void blk_mq_disable_hotplug(void)
2905 {
2906 mutex_lock(&all_q_mutex);
2907 }
2908
2909 void blk_mq_enable_hotplug(void)
2910 {
2911 mutex_unlock(&all_q_mutex);
2912 }
2913
2914 static int __init blk_mq_init(void)
2915 {
2916 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2917 blk_mq_hctx_notify_dead);
2918
2919 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2920 blk_mq_queue_reinit_prepare,
2921 blk_mq_queue_reinit_dead);
2922 return 0;
2923 }
2924 subsys_initcall(blk_mq_init);