]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
UBUNTU: [Config] Sync config with master
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25
26 #include <trace/events/block.h>
27
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
38 /*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int i;
44
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
48
49 return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54 {
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66 {
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 int freeze_depth;
84
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
89 }
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
153 }
154
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
163 {
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
170 rq->mq_ctx = ctx;
171 rq->cmd_flags |= rw_flags;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
176 rq->rq_disk = NULL;
177 rq->part = NULL;
178 rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
181 set_start_time_ns(rq);
182 rq->io_start_time_ns = 0;
183 #endif
184 rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187 #endif
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
191
192 rq->cmd = rq->__cmd;
193
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
199 INIT_LIST_HEAD(&rq->timeout_list);
200 rq->timeout = 0;
201
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 struct request *rq;
213 unsigned int tag;
214
215 tag = blk_mq_get_tag(data);
216 if (tag != BLK_MQ_TAG_FAIL) {
217 rq = data->hctx->tags->rqs[tag];
218
219 if (blk_mq_tag_busy(data->hctx)) {
220 rq->cmd_flags = REQ_MQ_INFLIGHT;
221 atomic_inc(&data->hctx->nr_active);
222 }
223
224 rq->tag = tag;
225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 return rq;
227 }
228
229 return NULL;
230 }
231
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 unsigned int flags)
234 {
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
237 struct request *rq;
238 struct blk_mq_alloc_data alloc_data;
239 int ret;
240
241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 if (ret)
243 return ERR_PTR(ret);
244
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248
249 rq = __blk_mq_alloc_request(&alloc_data, rw);
250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 __blk_mq_run_hw_queue(hctx);
252 blk_mq_put_ctx(ctx);
253
254 ctx = blk_mq_get_ctx(q);
255 hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
259 }
260 blk_mq_put_ctx(ctx);
261 if (!rq) {
262 blk_queue_exit(q);
263 return ERR_PTR(-EWOULDBLOCK);
264 }
265 return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268
269 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
270 unsigned int flags, unsigned int hctx_idx)
271 {
272 struct blk_mq_hw_ctx *hctx;
273 struct blk_mq_ctx *ctx;
274 struct request *rq;
275 struct blk_mq_alloc_data alloc_data;
276 int ret;
277
278 /*
279 * If the tag allocator sleeps we could get an allocation for a
280 * different hardware context. No need to complicate the low level
281 * allocator for this for the rare use case of a command tied to
282 * a specific queue.
283 */
284 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
285 return ERR_PTR(-EINVAL);
286
287 if (hctx_idx >= q->nr_hw_queues)
288 return ERR_PTR(-EIO);
289
290 ret = blk_queue_enter(q, true);
291 if (ret)
292 return ERR_PTR(ret);
293
294 hctx = q->queue_hw_ctx[hctx_idx];
295 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
296
297 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
298 rq = __blk_mq_alloc_request(&alloc_data, rw);
299 if (!rq) {
300 blk_queue_exit(q);
301 return ERR_PTR(-EWOULDBLOCK);
302 }
303
304 return rq;
305 }
306 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
307
308 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
309 struct blk_mq_ctx *ctx, struct request *rq)
310 {
311 const int tag = rq->tag;
312 struct request_queue *q = rq->q;
313
314 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
315 atomic_dec(&hctx->nr_active);
316 rq->cmd_flags = 0;
317
318 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
319 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320 blk_queue_exit(q);
321 }
322
323 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
324 {
325 struct blk_mq_ctx *ctx = rq->mq_ctx;
326
327 ctx->rq_completed[rq_is_sync(rq)]++;
328 __blk_mq_free_request(hctx, ctx, rq);
329
330 }
331 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
332
333 void blk_mq_free_request(struct request *rq)
334 {
335 struct blk_mq_hw_ctx *hctx;
336 struct request_queue *q = rq->q;
337
338 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
339 blk_mq_free_hctx_request(hctx, rq);
340 }
341 EXPORT_SYMBOL_GPL(blk_mq_free_request);
342
343 inline void __blk_mq_end_request(struct request *rq, int error)
344 {
345 blk_account_io_done(rq);
346
347 if (rq->end_io) {
348 rq->end_io(rq, error);
349 } else {
350 if (unlikely(blk_bidi_rq(rq)))
351 blk_mq_free_request(rq->next_rq);
352 blk_mq_free_request(rq);
353 }
354 }
355 EXPORT_SYMBOL(__blk_mq_end_request);
356
357 void blk_mq_end_request(struct request *rq, int error)
358 {
359 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
360 BUG();
361 __blk_mq_end_request(rq, error);
362 }
363 EXPORT_SYMBOL(blk_mq_end_request);
364
365 static void __blk_mq_complete_request_remote(void *data)
366 {
367 struct request *rq = data;
368
369 rq->q->softirq_done_fn(rq);
370 }
371
372 static void blk_mq_ipi_complete_request(struct request *rq)
373 {
374 struct blk_mq_ctx *ctx = rq->mq_ctx;
375 bool shared = false;
376 int cpu;
377
378 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
379 rq->q->softirq_done_fn(rq);
380 return;
381 }
382
383 cpu = get_cpu();
384 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
385 shared = cpus_share_cache(cpu, ctx->cpu);
386
387 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
388 rq->csd.func = __blk_mq_complete_request_remote;
389 rq->csd.info = rq;
390 rq->csd.flags = 0;
391 smp_call_function_single_async(ctx->cpu, &rq->csd);
392 } else {
393 rq->q->softirq_done_fn(rq);
394 }
395 put_cpu();
396 }
397
398 static void __blk_mq_complete_request(struct request *rq)
399 {
400 struct request_queue *q = rq->q;
401
402 if (!q->softirq_done_fn)
403 blk_mq_end_request(rq, rq->errors);
404 else
405 blk_mq_ipi_complete_request(rq);
406 }
407
408 /**
409 * blk_mq_complete_request - end I/O on a request
410 * @rq: the request being processed
411 *
412 * Description:
413 * Ends all I/O on a request. It does not handle partial completions.
414 * The actual completion happens out-of-order, through a IPI handler.
415 **/
416 void blk_mq_complete_request(struct request *rq, int error)
417 {
418 struct request_queue *q = rq->q;
419
420 if (unlikely(blk_should_fake_timeout(q)))
421 return;
422 if (!blk_mark_rq_complete(rq)) {
423 rq->errors = error;
424 __blk_mq_complete_request(rq);
425 }
426 }
427 EXPORT_SYMBOL(blk_mq_complete_request);
428
429 int blk_mq_request_started(struct request *rq)
430 {
431 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
432 }
433 EXPORT_SYMBOL_GPL(blk_mq_request_started);
434
435 void blk_mq_start_request(struct request *rq)
436 {
437 struct request_queue *q = rq->q;
438
439 trace_block_rq_issue(q, rq);
440
441 rq->resid_len = blk_rq_bytes(rq);
442 if (unlikely(blk_bidi_rq(rq)))
443 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
444
445 blk_add_timer(rq);
446
447 /*
448 * Ensure that ->deadline is visible before set the started
449 * flag and clear the completed flag.
450 */
451 smp_mb__before_atomic();
452
453 /*
454 * Mark us as started and clear complete. Complete might have been
455 * set if requeue raced with timeout, which then marked it as
456 * complete. So be sure to clear complete again when we start
457 * the request, otherwise we'll ignore the completion event.
458 */
459 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
460 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
461 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
462 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
463
464 if (q->dma_drain_size && blk_rq_bytes(rq)) {
465 /*
466 * Make sure space for the drain appears. We know we can do
467 * this because max_hw_segments has been adjusted to be one
468 * fewer than the device can handle.
469 */
470 rq->nr_phys_segments++;
471 }
472 }
473 EXPORT_SYMBOL(blk_mq_start_request);
474
475 static void __blk_mq_requeue_request(struct request *rq)
476 {
477 struct request_queue *q = rq->q;
478
479 trace_block_rq_requeue(q, rq);
480
481 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
482 if (q->dma_drain_size && blk_rq_bytes(rq))
483 rq->nr_phys_segments--;
484 }
485 }
486
487 void blk_mq_requeue_request(struct request *rq)
488 {
489 __blk_mq_requeue_request(rq);
490
491 BUG_ON(blk_queued_rq(rq));
492 blk_mq_add_to_requeue_list(rq, true);
493 }
494 EXPORT_SYMBOL(blk_mq_requeue_request);
495
496 static void blk_mq_requeue_work(struct work_struct *work)
497 {
498 struct request_queue *q =
499 container_of(work, struct request_queue, requeue_work);
500 LIST_HEAD(rq_list);
501 struct request *rq, *next;
502 unsigned long flags;
503
504 spin_lock_irqsave(&q->requeue_lock, flags);
505 list_splice_init(&q->requeue_list, &rq_list);
506 spin_unlock_irqrestore(&q->requeue_lock, flags);
507
508 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
509 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
510 continue;
511
512 rq->cmd_flags &= ~REQ_SOFTBARRIER;
513 list_del_init(&rq->queuelist);
514 blk_mq_insert_request(rq, true, false, false);
515 }
516
517 while (!list_empty(&rq_list)) {
518 rq = list_entry(rq_list.next, struct request, queuelist);
519 list_del_init(&rq->queuelist);
520 blk_mq_insert_request(rq, false, false, false);
521 }
522
523 /*
524 * Use the start variant of queue running here, so that running
525 * the requeue work will kick stopped queues.
526 */
527 blk_mq_start_hw_queues(q);
528 }
529
530 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
531 {
532 struct request_queue *q = rq->q;
533 unsigned long flags;
534
535 /*
536 * We abuse this flag that is otherwise used by the I/O scheduler to
537 * request head insertation from the workqueue.
538 */
539 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
540
541 spin_lock_irqsave(&q->requeue_lock, flags);
542 if (at_head) {
543 rq->cmd_flags |= REQ_SOFTBARRIER;
544 list_add(&rq->queuelist, &q->requeue_list);
545 } else {
546 list_add_tail(&rq->queuelist, &q->requeue_list);
547 }
548 spin_unlock_irqrestore(&q->requeue_lock, flags);
549 }
550 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
551
552 void blk_mq_cancel_requeue_work(struct request_queue *q)
553 {
554 cancel_work_sync(&q->requeue_work);
555 }
556 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
557
558 void blk_mq_kick_requeue_list(struct request_queue *q)
559 {
560 kblockd_schedule_work(&q->requeue_work);
561 }
562 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
563
564 void blk_mq_abort_requeue_list(struct request_queue *q)
565 {
566 unsigned long flags;
567 LIST_HEAD(rq_list);
568
569 spin_lock_irqsave(&q->requeue_lock, flags);
570 list_splice_init(&q->requeue_list, &rq_list);
571 spin_unlock_irqrestore(&q->requeue_lock, flags);
572
573 while (!list_empty(&rq_list)) {
574 struct request *rq;
575
576 rq = list_first_entry(&rq_list, struct request, queuelist);
577 list_del_init(&rq->queuelist);
578 rq->errors = -EIO;
579 blk_mq_end_request(rq, rq->errors);
580 }
581 }
582 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
583
584 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
585 {
586 return tags->rqs[tag];
587 }
588 EXPORT_SYMBOL(blk_mq_tag_to_rq);
589
590 struct blk_mq_timeout_data {
591 unsigned long next;
592 unsigned int next_set;
593 };
594
595 void blk_mq_rq_timed_out(struct request *req, bool reserved)
596 {
597 struct blk_mq_ops *ops = req->q->mq_ops;
598 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
599
600 /*
601 * We know that complete is set at this point. If STARTED isn't set
602 * anymore, then the request isn't active and the "timeout" should
603 * just be ignored. This can happen due to the bitflag ordering.
604 * Timeout first checks if STARTED is set, and if it is, assumes
605 * the request is active. But if we race with completion, then
606 * we both flags will get cleared. So check here again, and ignore
607 * a timeout event with a request that isn't active.
608 */
609 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
610 return;
611
612 if (ops->timeout)
613 ret = ops->timeout(req, reserved);
614
615 switch (ret) {
616 case BLK_EH_HANDLED:
617 __blk_mq_complete_request(req);
618 break;
619 case BLK_EH_RESET_TIMER:
620 blk_add_timer(req);
621 blk_clear_rq_complete(req);
622 break;
623 case BLK_EH_NOT_HANDLED:
624 break;
625 default:
626 printk(KERN_ERR "block: bad eh return: %d\n", ret);
627 break;
628 }
629 }
630
631 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
632 struct request *rq, void *priv, bool reserved)
633 {
634 struct blk_mq_timeout_data *data = priv;
635
636 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
637 /*
638 * If a request wasn't started before the queue was
639 * marked dying, kill it here or it'll go unnoticed.
640 */
641 if (unlikely(blk_queue_dying(rq->q))) {
642 rq->errors = -EIO;
643 blk_mq_end_request(rq, rq->errors);
644 }
645 return;
646 }
647 if (rq->cmd_flags & REQ_NO_TIMEOUT)
648 return;
649
650 if (time_after_eq(jiffies, rq->deadline)) {
651 if (!blk_mark_rq_complete(rq))
652 blk_mq_rq_timed_out(rq, reserved);
653 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
654 data->next = rq->deadline;
655 data->next_set = 1;
656 }
657 }
658
659 static void blk_mq_timeout_work(struct work_struct *work)
660 {
661 struct request_queue *q =
662 container_of(work, struct request_queue, timeout_work);
663 struct blk_mq_timeout_data data = {
664 .next = 0,
665 .next_set = 0,
666 };
667 int i;
668
669 /* A deadlock might occur if a request is stuck requiring a
670 * timeout at the same time a queue freeze is waiting
671 * completion, since the timeout code would not be able to
672 * acquire the queue reference here.
673 *
674 * That's why we don't use blk_queue_enter here; instead, we use
675 * percpu_ref_tryget directly, because we need to be able to
676 * obtain a reference even in the short window between the queue
677 * starting to freeze, by dropping the first reference in
678 * blk_mq_freeze_queue_start, and the moment the last request is
679 * consumed, marked by the instant q_usage_counter reaches
680 * zero.
681 */
682 if (!percpu_ref_tryget(&q->q_usage_counter))
683 return;
684
685 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
686
687 if (data.next_set) {
688 data.next = blk_rq_timeout(round_jiffies_up(data.next));
689 mod_timer(&q->timeout, data.next);
690 } else {
691 struct blk_mq_hw_ctx *hctx;
692
693 queue_for_each_hw_ctx(q, hctx, i) {
694 /* the hctx may be unmapped, so check it here */
695 if (blk_mq_hw_queue_mapped(hctx))
696 blk_mq_tag_idle(hctx);
697 }
698 }
699 blk_queue_exit(q);
700 }
701
702 /*
703 * Reverse check our software queue for entries that we could potentially
704 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
705 * too much time checking for merges.
706 */
707 static bool blk_mq_attempt_merge(struct request_queue *q,
708 struct blk_mq_ctx *ctx, struct bio *bio)
709 {
710 struct request *rq;
711 int checked = 8;
712
713 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
714 int el_ret;
715
716 if (!checked--)
717 break;
718
719 if (!blk_rq_merge_ok(rq, bio))
720 continue;
721
722 el_ret = blk_try_merge(rq, bio);
723 if (el_ret == ELEVATOR_BACK_MERGE) {
724 if (bio_attempt_back_merge(q, rq, bio)) {
725 ctx->rq_merged++;
726 return true;
727 }
728 break;
729 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
730 if (bio_attempt_front_merge(q, rq, bio)) {
731 ctx->rq_merged++;
732 return true;
733 }
734 break;
735 }
736 }
737
738 return false;
739 }
740
741 /*
742 * Process software queues that have been marked busy, splicing them
743 * to the for-dispatch
744 */
745 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
746 {
747 struct blk_mq_ctx *ctx;
748 int i;
749
750 for (i = 0; i < hctx->ctx_map.size; i++) {
751 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
752 unsigned int off, bit;
753
754 if (!bm->word)
755 continue;
756
757 bit = 0;
758 off = i * hctx->ctx_map.bits_per_word;
759 do {
760 bit = find_next_bit(&bm->word, bm->depth, bit);
761 if (bit >= bm->depth)
762 break;
763
764 ctx = hctx->ctxs[bit + off];
765 clear_bit(bit, &bm->word);
766 spin_lock(&ctx->lock);
767 list_splice_tail_init(&ctx->rq_list, list);
768 spin_unlock(&ctx->lock);
769
770 bit++;
771 } while (1);
772 }
773 }
774
775 /*
776 * Run this hardware queue, pulling any software queues mapped to it in.
777 * Note that this function currently has various problems around ordering
778 * of IO. In particular, we'd like FIFO behaviour on handling existing
779 * items on the hctx->dispatch list. Ignore that for now.
780 */
781 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
782 {
783 struct request_queue *q = hctx->queue;
784 struct request *rq;
785 LIST_HEAD(rq_list);
786 LIST_HEAD(driver_list);
787 struct list_head *dptr;
788 int queued;
789
790 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
791 return;
792
793 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
794 cpu_online(hctx->next_cpu));
795
796 hctx->run++;
797
798 /*
799 * Touch any software queue that has pending entries.
800 */
801 flush_busy_ctxs(hctx, &rq_list);
802
803 /*
804 * If we have previous entries on our dispatch list, grab them
805 * and stuff them at the front for more fair dispatch.
806 */
807 if (!list_empty_careful(&hctx->dispatch)) {
808 spin_lock(&hctx->lock);
809 if (!list_empty(&hctx->dispatch))
810 list_splice_init(&hctx->dispatch, &rq_list);
811 spin_unlock(&hctx->lock);
812 }
813
814 /*
815 * Start off with dptr being NULL, so we start the first request
816 * immediately, even if we have more pending.
817 */
818 dptr = NULL;
819
820 /*
821 * Now process all the entries, sending them to the driver.
822 */
823 queued = 0;
824 while (!list_empty(&rq_list)) {
825 struct blk_mq_queue_data bd;
826 int ret;
827
828 rq = list_first_entry(&rq_list, struct request, queuelist);
829 list_del_init(&rq->queuelist);
830
831 bd.rq = rq;
832 bd.list = dptr;
833 bd.last = list_empty(&rq_list);
834
835 ret = q->mq_ops->queue_rq(hctx, &bd);
836 switch (ret) {
837 case BLK_MQ_RQ_QUEUE_OK:
838 queued++;
839 break;
840 case BLK_MQ_RQ_QUEUE_BUSY:
841 list_add(&rq->queuelist, &rq_list);
842 __blk_mq_requeue_request(rq);
843 break;
844 default:
845 pr_err("blk-mq: bad return on queue: %d\n", ret);
846 case BLK_MQ_RQ_QUEUE_ERROR:
847 rq->errors = -EIO;
848 blk_mq_end_request(rq, rq->errors);
849 break;
850 }
851
852 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
853 break;
854
855 /*
856 * We've done the first request. If we have more than 1
857 * left in the list, set dptr to defer issue.
858 */
859 if (!dptr && rq_list.next != rq_list.prev)
860 dptr = &driver_list;
861 }
862
863 if (!queued)
864 hctx->dispatched[0]++;
865 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
866 hctx->dispatched[ilog2(queued) + 1]++;
867
868 /*
869 * Any items that need requeuing? Stuff them into hctx->dispatch,
870 * that is where we will continue on next queue run.
871 */
872 if (!list_empty(&rq_list)) {
873 spin_lock(&hctx->lock);
874 list_splice(&rq_list, &hctx->dispatch);
875 spin_unlock(&hctx->lock);
876 /*
877 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
878 * it's possible the queue is stopped and restarted again
879 * before this. Queue restart will dispatch requests. And since
880 * requests in rq_list aren't added into hctx->dispatch yet,
881 * the requests in rq_list might get lost.
882 *
883 * blk_mq_run_hw_queue() already checks the STOPPED bit
884 **/
885 blk_mq_run_hw_queue(hctx, true);
886 }
887 }
888
889 /*
890 * It'd be great if the workqueue API had a way to pass
891 * in a mask and had some smarts for more clever placement.
892 * For now we just round-robin here, switching for every
893 * BLK_MQ_CPU_WORK_BATCH queued items.
894 */
895 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
896 {
897 if (hctx->queue->nr_hw_queues == 1)
898 return WORK_CPU_UNBOUND;
899
900 if (--hctx->next_cpu_batch <= 0) {
901 int next_cpu;
902
903 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
904 if (next_cpu >= nr_cpu_ids)
905 next_cpu = cpumask_first(hctx->cpumask);
906
907 hctx->next_cpu = next_cpu;
908 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
909 }
910
911 return hctx->next_cpu;
912 }
913
914 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
915 {
916 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
917 !blk_mq_hw_queue_mapped(hctx)))
918 return;
919
920 if (!async) {
921 int cpu = get_cpu();
922 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
923 __blk_mq_run_hw_queue(hctx);
924 put_cpu();
925 return;
926 }
927
928 put_cpu();
929 }
930
931 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
932 &hctx->run_work, 0);
933 }
934
935 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
936 {
937 struct blk_mq_hw_ctx *hctx;
938 int i;
939
940 queue_for_each_hw_ctx(q, hctx, i) {
941 if ((!blk_mq_hctx_has_pending(hctx) &&
942 list_empty_careful(&hctx->dispatch)) ||
943 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
944 continue;
945
946 blk_mq_run_hw_queue(hctx, async);
947 }
948 }
949 EXPORT_SYMBOL(blk_mq_run_hw_queues);
950
951 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
952 {
953 cancel_delayed_work(&hctx->run_work);
954 cancel_delayed_work(&hctx->delay_work);
955 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
956 }
957 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
958
959 void blk_mq_stop_hw_queues(struct request_queue *q)
960 {
961 struct blk_mq_hw_ctx *hctx;
962 int i;
963
964 queue_for_each_hw_ctx(q, hctx, i)
965 blk_mq_stop_hw_queue(hctx);
966 }
967 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
968
969 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
970 {
971 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
972
973 blk_mq_run_hw_queue(hctx, false);
974 }
975 EXPORT_SYMBOL(blk_mq_start_hw_queue);
976
977 void blk_mq_start_hw_queues(struct request_queue *q)
978 {
979 struct blk_mq_hw_ctx *hctx;
980 int i;
981
982 queue_for_each_hw_ctx(q, hctx, i)
983 blk_mq_start_hw_queue(hctx);
984 }
985 EXPORT_SYMBOL(blk_mq_start_hw_queues);
986
987 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
988 {
989 struct blk_mq_hw_ctx *hctx;
990 int i;
991
992 queue_for_each_hw_ctx(q, hctx, i) {
993 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
994 continue;
995
996 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
997 blk_mq_run_hw_queue(hctx, async);
998 }
999 }
1000 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1001
1002 static void blk_mq_run_work_fn(struct work_struct *work)
1003 {
1004 struct blk_mq_hw_ctx *hctx;
1005
1006 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1007
1008 __blk_mq_run_hw_queue(hctx);
1009 }
1010
1011 static void blk_mq_delay_work_fn(struct work_struct *work)
1012 {
1013 struct blk_mq_hw_ctx *hctx;
1014
1015 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1016
1017 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1018 __blk_mq_run_hw_queue(hctx);
1019 }
1020
1021 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1022 {
1023 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1024 return;
1025
1026 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1027 &hctx->delay_work, msecs_to_jiffies(msecs));
1028 }
1029 EXPORT_SYMBOL(blk_mq_delay_queue);
1030
1031 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1032 struct request *rq,
1033 bool at_head)
1034 {
1035 struct blk_mq_ctx *ctx = rq->mq_ctx;
1036
1037 trace_block_rq_insert(hctx->queue, rq);
1038
1039 if (at_head)
1040 list_add(&rq->queuelist, &ctx->rq_list);
1041 else
1042 list_add_tail(&rq->queuelist, &ctx->rq_list);
1043 }
1044
1045 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1046 struct request *rq, bool at_head)
1047 {
1048 struct blk_mq_ctx *ctx = rq->mq_ctx;
1049
1050 __blk_mq_insert_req_list(hctx, rq, at_head);
1051 blk_mq_hctx_mark_pending(hctx, ctx);
1052 }
1053
1054 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1055 bool async)
1056 {
1057 struct blk_mq_ctx *ctx = rq->mq_ctx;
1058 struct request_queue *q = rq->q;
1059 struct blk_mq_hw_ctx *hctx;
1060
1061 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1062
1063 spin_lock(&ctx->lock);
1064 __blk_mq_insert_request(hctx, rq, at_head);
1065 spin_unlock(&ctx->lock);
1066
1067 if (run_queue)
1068 blk_mq_run_hw_queue(hctx, async);
1069 }
1070
1071 static void blk_mq_insert_requests(struct request_queue *q,
1072 struct blk_mq_ctx *ctx,
1073 struct list_head *list,
1074 int depth,
1075 bool from_schedule)
1076
1077 {
1078 struct blk_mq_hw_ctx *hctx;
1079
1080 trace_block_unplug(q, depth, !from_schedule);
1081
1082 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1083
1084 /*
1085 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1086 * offline now
1087 */
1088 spin_lock(&ctx->lock);
1089 while (!list_empty(list)) {
1090 struct request *rq;
1091
1092 rq = list_first_entry(list, struct request, queuelist);
1093 BUG_ON(rq->mq_ctx != ctx);
1094 list_del_init(&rq->queuelist);
1095 __blk_mq_insert_req_list(hctx, rq, false);
1096 }
1097 blk_mq_hctx_mark_pending(hctx, ctx);
1098 spin_unlock(&ctx->lock);
1099
1100 blk_mq_run_hw_queue(hctx, from_schedule);
1101 }
1102
1103 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1104 {
1105 struct request *rqa = container_of(a, struct request, queuelist);
1106 struct request *rqb = container_of(b, struct request, queuelist);
1107
1108 return !(rqa->mq_ctx < rqb->mq_ctx ||
1109 (rqa->mq_ctx == rqb->mq_ctx &&
1110 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1111 }
1112
1113 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1114 {
1115 struct blk_mq_ctx *this_ctx;
1116 struct request_queue *this_q;
1117 struct request *rq;
1118 LIST_HEAD(list);
1119 LIST_HEAD(ctx_list);
1120 unsigned int depth;
1121
1122 list_splice_init(&plug->mq_list, &list);
1123
1124 list_sort(NULL, &list, plug_ctx_cmp);
1125
1126 this_q = NULL;
1127 this_ctx = NULL;
1128 depth = 0;
1129
1130 while (!list_empty(&list)) {
1131 rq = list_entry_rq(list.next);
1132 list_del_init(&rq->queuelist);
1133 BUG_ON(!rq->q);
1134 if (rq->mq_ctx != this_ctx) {
1135 if (this_ctx) {
1136 blk_mq_insert_requests(this_q, this_ctx,
1137 &ctx_list, depth,
1138 from_schedule);
1139 }
1140
1141 this_ctx = rq->mq_ctx;
1142 this_q = rq->q;
1143 depth = 0;
1144 }
1145
1146 depth++;
1147 list_add_tail(&rq->queuelist, &ctx_list);
1148 }
1149
1150 /*
1151 * If 'this_ctx' is set, we know we have entries to complete
1152 * on 'ctx_list'. Do those.
1153 */
1154 if (this_ctx) {
1155 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1156 from_schedule);
1157 }
1158 }
1159
1160 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1161 {
1162 init_request_from_bio(rq, bio);
1163
1164 if (blk_do_io_stat(rq))
1165 blk_account_io_start(rq, 1);
1166 }
1167
1168 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1169 {
1170 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1171 !blk_queue_nomerges(hctx->queue);
1172 }
1173
1174 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1175 struct blk_mq_ctx *ctx,
1176 struct request *rq, struct bio *bio)
1177 {
1178 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1179 blk_mq_bio_to_request(rq, bio);
1180 spin_lock(&ctx->lock);
1181 insert_rq:
1182 __blk_mq_insert_request(hctx, rq, false);
1183 spin_unlock(&ctx->lock);
1184 return false;
1185 } else {
1186 struct request_queue *q = hctx->queue;
1187
1188 spin_lock(&ctx->lock);
1189 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1190 blk_mq_bio_to_request(rq, bio);
1191 goto insert_rq;
1192 }
1193
1194 spin_unlock(&ctx->lock);
1195 __blk_mq_free_request(hctx, ctx, rq);
1196 return true;
1197 }
1198 }
1199
1200 struct blk_map_ctx {
1201 struct blk_mq_hw_ctx *hctx;
1202 struct blk_mq_ctx *ctx;
1203 };
1204
1205 static struct request *blk_mq_map_request(struct request_queue *q,
1206 struct bio *bio,
1207 struct blk_map_ctx *data)
1208 {
1209 struct blk_mq_hw_ctx *hctx;
1210 struct blk_mq_ctx *ctx;
1211 struct request *rq;
1212 int rw = bio_data_dir(bio);
1213 struct blk_mq_alloc_data alloc_data;
1214
1215 blk_queue_enter_live(q);
1216 ctx = blk_mq_get_ctx(q);
1217 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1218
1219 if (rw_is_sync(bio->bi_rw))
1220 rw |= REQ_SYNC;
1221
1222 trace_block_getrq(q, bio, rw);
1223 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1224 rq = __blk_mq_alloc_request(&alloc_data, rw);
1225 if (unlikely(!rq)) {
1226 __blk_mq_run_hw_queue(hctx);
1227 blk_mq_put_ctx(ctx);
1228 trace_block_sleeprq(q, bio, rw);
1229
1230 ctx = blk_mq_get_ctx(q);
1231 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1232 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1233 rq = __blk_mq_alloc_request(&alloc_data, rw);
1234 ctx = alloc_data.ctx;
1235 hctx = alloc_data.hctx;
1236 }
1237
1238 hctx->queued++;
1239 data->hctx = hctx;
1240 data->ctx = ctx;
1241 return rq;
1242 }
1243
1244 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1245 {
1246 int ret;
1247 struct request_queue *q = rq->q;
1248 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1249 rq->mq_ctx->cpu);
1250 struct blk_mq_queue_data bd = {
1251 .rq = rq,
1252 .list = NULL,
1253 .last = 1
1254 };
1255 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1256
1257 /*
1258 * For OK queue, we are done. For error, kill it. Any other
1259 * error (busy), just add it to our list as we previously
1260 * would have done
1261 */
1262 ret = q->mq_ops->queue_rq(hctx, &bd);
1263 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1264 *cookie = new_cookie;
1265 return 0;
1266 }
1267
1268 __blk_mq_requeue_request(rq);
1269
1270 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1271 *cookie = BLK_QC_T_NONE;
1272 rq->errors = -EIO;
1273 blk_mq_end_request(rq, rq->errors);
1274 return 0;
1275 }
1276
1277 return -1;
1278 }
1279
1280 /*
1281 * Multiple hardware queue variant. This will not use per-process plugs,
1282 * but will attempt to bypass the hctx queueing if we can go straight to
1283 * hardware for SYNC IO.
1284 */
1285 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1286 {
1287 const int is_sync = rw_is_sync(bio->bi_rw);
1288 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1289 struct blk_map_ctx data;
1290 struct request *rq;
1291 unsigned int request_count = 0;
1292 struct blk_plug *plug;
1293 struct request *same_queue_rq = NULL;
1294 blk_qc_t cookie;
1295
1296 blk_queue_bounce(q, &bio);
1297
1298 blk_queue_split(q, &bio, q->bio_split);
1299
1300 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1301 bio_io_error(bio);
1302 return BLK_QC_T_NONE;
1303 }
1304
1305 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1306 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1307 return BLK_QC_T_NONE;
1308
1309 rq = blk_mq_map_request(q, bio, &data);
1310 if (unlikely(!rq))
1311 return BLK_QC_T_NONE;
1312
1313 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1314
1315 if (unlikely(is_flush_fua)) {
1316 blk_mq_bio_to_request(rq, bio);
1317 blk_insert_flush(rq);
1318 goto run_queue;
1319 }
1320
1321 plug = current->plug;
1322 /*
1323 * If the driver supports defer issued based on 'last', then
1324 * queue it up like normal since we can potentially save some
1325 * CPU this way.
1326 */
1327 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1328 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1329 struct request *old_rq = NULL;
1330
1331 blk_mq_bio_to_request(rq, bio);
1332
1333 /*
1334 * We do limited pluging. If the bio can be merged, do that.
1335 * Otherwise the existing request in the plug list will be
1336 * issued. So the plug list will have one request at most
1337 */
1338 if (plug) {
1339 /*
1340 * The plug list might get flushed before this. If that
1341 * happens, same_queue_rq is invalid and plug list is
1342 * empty
1343 */
1344 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1345 old_rq = same_queue_rq;
1346 list_del_init(&old_rq->queuelist);
1347 }
1348 list_add_tail(&rq->queuelist, &plug->mq_list);
1349 } else /* is_sync */
1350 old_rq = rq;
1351 blk_mq_put_ctx(data.ctx);
1352 if (!old_rq)
1353 goto done;
1354 if (test_bit(BLK_MQ_S_STOPPED, &data.hctx->state) ||
1355 blk_mq_direct_issue_request(old_rq, &cookie) != 0)
1356 blk_mq_insert_request(old_rq, false, true, true);
1357 goto done;
1358 }
1359
1360 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1361 /*
1362 * For a SYNC request, send it to the hardware immediately. For
1363 * an ASYNC request, just ensure that we run it later on. The
1364 * latter allows for merging opportunities and more efficient
1365 * dispatching.
1366 */
1367 run_queue:
1368 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1369 }
1370 blk_mq_put_ctx(data.ctx);
1371 done:
1372 return cookie;
1373 }
1374
1375 /*
1376 * Single hardware queue variant. This will attempt to use any per-process
1377 * plug for merging and IO deferral.
1378 */
1379 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1380 {
1381 const int is_sync = rw_is_sync(bio->bi_rw);
1382 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1383 struct blk_plug *plug;
1384 unsigned int request_count = 0;
1385 struct blk_map_ctx data;
1386 struct request *rq;
1387 blk_qc_t cookie;
1388
1389 blk_queue_bounce(q, &bio);
1390
1391 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1392 bio_io_error(bio);
1393 return BLK_QC_T_NONE;
1394 }
1395
1396 blk_queue_split(q, &bio, q->bio_split);
1397
1398 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1399 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1400 return BLK_QC_T_NONE;
1401 } else
1402 request_count = blk_plug_queued_count(q);
1403
1404 rq = blk_mq_map_request(q, bio, &data);
1405 if (unlikely(!rq))
1406 return BLK_QC_T_NONE;
1407
1408 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1409
1410 if (unlikely(is_flush_fua)) {
1411 blk_mq_bio_to_request(rq, bio);
1412 blk_insert_flush(rq);
1413 goto run_queue;
1414 }
1415
1416 /*
1417 * A task plug currently exists. Since this is completely lockless,
1418 * utilize that to temporarily store requests until the task is
1419 * either done or scheduled away.
1420 */
1421 plug = current->plug;
1422 if (plug) {
1423 blk_mq_bio_to_request(rq, bio);
1424 if (!request_count)
1425 trace_block_plug(q);
1426
1427 blk_mq_put_ctx(data.ctx);
1428
1429 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1430 blk_flush_plug_list(plug, false);
1431 trace_block_plug(q);
1432 }
1433
1434 list_add_tail(&rq->queuelist, &plug->mq_list);
1435 return cookie;
1436 }
1437
1438 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1439 /*
1440 * For a SYNC request, send it to the hardware immediately. For
1441 * an ASYNC request, just ensure that we run it later on. The
1442 * latter allows for merging opportunities and more efficient
1443 * dispatching.
1444 */
1445 run_queue:
1446 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1447 }
1448
1449 blk_mq_put_ctx(data.ctx);
1450 return cookie;
1451 }
1452
1453 /*
1454 * Default mapping to a software queue, since we use one per CPU.
1455 */
1456 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1457 {
1458 return q->queue_hw_ctx[q->mq_map[cpu]];
1459 }
1460 EXPORT_SYMBOL(blk_mq_map_queue);
1461
1462 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1463 struct blk_mq_tags *tags, unsigned int hctx_idx)
1464 {
1465 struct page *page;
1466
1467 if (tags->rqs && set->ops->exit_request) {
1468 int i;
1469
1470 for (i = 0; i < tags->nr_tags; i++) {
1471 if (!tags->rqs[i])
1472 continue;
1473 set->ops->exit_request(set->driver_data, tags->rqs[i],
1474 hctx_idx, i);
1475 tags->rqs[i] = NULL;
1476 }
1477 }
1478
1479 while (!list_empty(&tags->page_list)) {
1480 page = list_first_entry(&tags->page_list, struct page, lru);
1481 list_del_init(&page->lru);
1482 /*
1483 * Remove kmemleak object previously allocated in
1484 * blk_mq_init_rq_map().
1485 */
1486 kmemleak_free(page_address(page));
1487 __free_pages(page, page->private);
1488 }
1489
1490 kfree(tags->rqs);
1491
1492 blk_mq_free_tags(tags);
1493 }
1494
1495 static size_t order_to_size(unsigned int order)
1496 {
1497 return (size_t)PAGE_SIZE << order;
1498 }
1499
1500 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1501 unsigned int hctx_idx)
1502 {
1503 struct blk_mq_tags *tags;
1504 unsigned int i, j, entries_per_page, max_order = 4;
1505 size_t rq_size, left;
1506
1507 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1508 set->numa_node,
1509 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1510 if (!tags)
1511 return NULL;
1512
1513 INIT_LIST_HEAD(&tags->page_list);
1514
1515 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1516 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1517 set->numa_node);
1518 if (!tags->rqs) {
1519 blk_mq_free_tags(tags);
1520 return NULL;
1521 }
1522
1523 /*
1524 * rq_size is the size of the request plus driver payload, rounded
1525 * to the cacheline size
1526 */
1527 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1528 cache_line_size());
1529 left = rq_size * set->queue_depth;
1530
1531 for (i = 0; i < set->queue_depth; ) {
1532 int this_order = max_order;
1533 struct page *page;
1534 int to_do;
1535 void *p;
1536
1537 while (left < order_to_size(this_order - 1) && this_order)
1538 this_order--;
1539
1540 do {
1541 page = alloc_pages_node(set->numa_node,
1542 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1543 this_order);
1544 if (page)
1545 break;
1546 if (!this_order--)
1547 break;
1548 if (order_to_size(this_order) < rq_size)
1549 break;
1550 } while (1);
1551
1552 if (!page)
1553 goto fail;
1554
1555 page->private = this_order;
1556 list_add_tail(&page->lru, &tags->page_list);
1557
1558 p = page_address(page);
1559 /*
1560 * Allow kmemleak to scan these pages as they contain pointers
1561 * to additional allocations like via ops->init_request().
1562 */
1563 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1564 entries_per_page = order_to_size(this_order) / rq_size;
1565 to_do = min(entries_per_page, set->queue_depth - i);
1566 left -= to_do * rq_size;
1567 for (j = 0; j < to_do; j++) {
1568 tags->rqs[i] = p;
1569 if (set->ops->init_request) {
1570 if (set->ops->init_request(set->driver_data,
1571 tags->rqs[i], hctx_idx, i,
1572 set->numa_node)) {
1573 tags->rqs[i] = NULL;
1574 goto fail;
1575 }
1576 }
1577
1578 p += rq_size;
1579 i++;
1580 }
1581 }
1582 return tags;
1583
1584 fail:
1585 blk_mq_free_rq_map(set, tags, hctx_idx);
1586 return NULL;
1587 }
1588
1589 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1590 {
1591 kfree(bitmap->map);
1592 }
1593
1594 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1595 {
1596 unsigned int bpw = 8, total, num_maps, i;
1597
1598 bitmap->bits_per_word = bpw;
1599
1600 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1601 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1602 GFP_KERNEL, node);
1603 if (!bitmap->map)
1604 return -ENOMEM;
1605
1606 total = nr_cpu_ids;
1607 for (i = 0; i < num_maps; i++) {
1608 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1609 total -= bitmap->map[i].depth;
1610 }
1611
1612 return 0;
1613 }
1614
1615 /*
1616 * 'cpu' is going away. splice any existing rq_list entries from this
1617 * software queue to the hw queue dispatch list, and ensure that it
1618 * gets run.
1619 */
1620 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1621 {
1622 struct blk_mq_ctx *ctx;
1623 LIST_HEAD(tmp);
1624
1625 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1626
1627 spin_lock(&ctx->lock);
1628 if (!list_empty(&ctx->rq_list)) {
1629 list_splice_init(&ctx->rq_list, &tmp);
1630 blk_mq_hctx_clear_pending(hctx, ctx);
1631 }
1632 spin_unlock(&ctx->lock);
1633
1634 if (list_empty(&tmp))
1635 return NOTIFY_OK;
1636
1637 spin_lock(&hctx->lock);
1638 list_splice_tail_init(&tmp, &hctx->dispatch);
1639 spin_unlock(&hctx->lock);
1640
1641 blk_mq_run_hw_queue(hctx, true);
1642 return NOTIFY_OK;
1643 }
1644
1645 static int blk_mq_hctx_notify(void *data, unsigned long action,
1646 unsigned int cpu)
1647 {
1648 struct blk_mq_hw_ctx *hctx = data;
1649
1650 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1651 return blk_mq_hctx_cpu_offline(hctx, cpu);
1652
1653 /*
1654 * In case of CPU online, tags may be reallocated
1655 * in blk_mq_map_swqueue() after mapping is updated.
1656 */
1657
1658 return NOTIFY_OK;
1659 }
1660
1661 /* hctx->ctxs will be freed in queue's release handler */
1662 static void blk_mq_exit_hctx(struct request_queue *q,
1663 struct blk_mq_tag_set *set,
1664 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1665 {
1666 unsigned flush_start_tag = set->queue_depth;
1667
1668 blk_mq_tag_idle(hctx);
1669
1670 if (set->ops->exit_request)
1671 set->ops->exit_request(set->driver_data,
1672 hctx->fq->flush_rq, hctx_idx,
1673 flush_start_tag + hctx_idx);
1674
1675 if (set->ops->exit_hctx)
1676 set->ops->exit_hctx(hctx, hctx_idx);
1677
1678 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1679 blk_free_flush_queue(hctx->fq);
1680 blk_mq_free_bitmap(&hctx->ctx_map);
1681 }
1682
1683 static void blk_mq_exit_hw_queues(struct request_queue *q,
1684 struct blk_mq_tag_set *set, int nr_queue)
1685 {
1686 struct blk_mq_hw_ctx *hctx;
1687 unsigned int i;
1688
1689 queue_for_each_hw_ctx(q, hctx, i) {
1690 if (i == nr_queue)
1691 break;
1692 blk_mq_exit_hctx(q, set, hctx, i);
1693 }
1694 }
1695
1696 static void blk_mq_free_hw_queues(struct request_queue *q,
1697 struct blk_mq_tag_set *set)
1698 {
1699 struct blk_mq_hw_ctx *hctx;
1700 unsigned int i;
1701
1702 queue_for_each_hw_ctx(q, hctx, i)
1703 free_cpumask_var(hctx->cpumask);
1704 }
1705
1706 static int blk_mq_init_hctx(struct request_queue *q,
1707 struct blk_mq_tag_set *set,
1708 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1709 {
1710 int node;
1711 unsigned flush_start_tag = set->queue_depth;
1712
1713 node = hctx->numa_node;
1714 if (node == NUMA_NO_NODE)
1715 node = hctx->numa_node = set->numa_node;
1716
1717 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1718 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1719 spin_lock_init(&hctx->lock);
1720 INIT_LIST_HEAD(&hctx->dispatch);
1721 hctx->queue = q;
1722 hctx->queue_num = hctx_idx;
1723 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1724
1725 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1726 blk_mq_hctx_notify, hctx);
1727 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1728
1729 hctx->tags = set->tags[hctx_idx];
1730
1731 /*
1732 * Allocate space for all possible cpus to avoid allocation at
1733 * runtime
1734 */
1735 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1736 GFP_KERNEL, node);
1737 if (!hctx->ctxs)
1738 goto unregister_cpu_notifier;
1739
1740 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1741 goto free_ctxs;
1742
1743 hctx->nr_ctx = 0;
1744
1745 if (set->ops->init_hctx &&
1746 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1747 goto free_bitmap;
1748
1749 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1750 if (!hctx->fq)
1751 goto exit_hctx;
1752
1753 if (set->ops->init_request &&
1754 set->ops->init_request(set->driver_data,
1755 hctx->fq->flush_rq, hctx_idx,
1756 flush_start_tag + hctx_idx, node))
1757 goto free_fq;
1758
1759 return 0;
1760
1761 free_fq:
1762 kfree(hctx->fq);
1763 exit_hctx:
1764 if (set->ops->exit_hctx)
1765 set->ops->exit_hctx(hctx, hctx_idx);
1766 free_bitmap:
1767 blk_mq_free_bitmap(&hctx->ctx_map);
1768 free_ctxs:
1769 kfree(hctx->ctxs);
1770 unregister_cpu_notifier:
1771 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1772
1773 return -1;
1774 }
1775
1776 static int blk_mq_init_hw_queues(struct request_queue *q,
1777 struct blk_mq_tag_set *set)
1778 {
1779 struct blk_mq_hw_ctx *hctx;
1780 unsigned int i;
1781
1782 /*
1783 * Initialize hardware queues
1784 */
1785 queue_for_each_hw_ctx(q, hctx, i) {
1786 if (blk_mq_init_hctx(q, set, hctx, i))
1787 break;
1788 }
1789
1790 if (i == q->nr_hw_queues)
1791 return 0;
1792
1793 /*
1794 * Init failed
1795 */
1796 blk_mq_exit_hw_queues(q, set, i);
1797
1798 return 1;
1799 }
1800
1801 static void blk_mq_init_cpu_queues(struct request_queue *q,
1802 unsigned int nr_hw_queues)
1803 {
1804 unsigned int i;
1805
1806 for_each_possible_cpu(i) {
1807 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1808 struct blk_mq_hw_ctx *hctx;
1809
1810 memset(__ctx, 0, sizeof(*__ctx));
1811 __ctx->cpu = i;
1812 spin_lock_init(&__ctx->lock);
1813 INIT_LIST_HEAD(&__ctx->rq_list);
1814 __ctx->queue = q;
1815
1816 /* If the cpu isn't online, the cpu is mapped to first hctx */
1817 if (!cpu_online(i))
1818 continue;
1819
1820 hctx = q->mq_ops->map_queue(q, i);
1821
1822 /*
1823 * Set local node, IFF we have more than one hw queue. If
1824 * not, we remain on the home node of the device
1825 */
1826 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1827 hctx->numa_node = cpu_to_node(i);
1828 }
1829 }
1830
1831 static void blk_mq_map_swqueue(struct request_queue *q,
1832 const struct cpumask *online_mask)
1833 {
1834 unsigned int i, hctx_idx;
1835 struct blk_mq_hw_ctx *hctx;
1836 struct blk_mq_ctx *ctx;
1837 struct blk_mq_tag_set *set = q->tag_set;
1838
1839 /*
1840 * Avoid others reading imcomplete hctx->cpumask through sysfs
1841 */
1842 mutex_lock(&q->sysfs_lock);
1843
1844 queue_for_each_hw_ctx(q, hctx, i) {
1845 cpumask_clear(hctx->cpumask);
1846 hctx->nr_ctx = 0;
1847 }
1848
1849 /*
1850 * Map software to hardware queues
1851 */
1852 for_each_possible_cpu(i) {
1853 /* If the cpu isn't online, the cpu is mapped to first hctx */
1854 if (!cpumask_test_cpu(i, online_mask))
1855 continue;
1856
1857 hctx_idx = q->mq_map[i];
1858 /* unmapped hw queue can be remapped after CPU topo changed */
1859 if (!set->tags[hctx_idx]) {
1860 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);
1861
1862 /*
1863 * If tags initialization fail for some hctx,
1864 * that hctx won't be brought online. In this
1865 * case, remap the current ctx to hctx[0] which
1866 * is guaranteed to always have tags allocated
1867 */
1868 if (!set->tags[hctx_idx])
1869 q->mq_map[i] = 0;
1870 }
1871
1872 ctx = per_cpu_ptr(q->queue_ctx, i);
1873 hctx = q->mq_ops->map_queue(q, i);
1874 cpumask_set_cpu(i, hctx->cpumask);
1875 ctx->index_hw = hctx->nr_ctx;
1876 hctx->ctxs[hctx->nr_ctx++] = ctx;
1877 }
1878
1879 mutex_unlock(&q->sysfs_lock);
1880
1881 queue_for_each_hw_ctx(q, hctx, i) {
1882 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1883
1884 /*
1885 * If no software queues are mapped to this hardware queue,
1886 * disable it and free the request entries.
1887 */
1888 if (!hctx->nr_ctx) {
1889 /* Never unmap queue 0. We need it as a
1890 * fallback in case of a new remap fails
1891 * allocation
1892 */
1893 if (i && set->tags[i]) {
1894 blk_mq_free_rq_map(set, set->tags[i], i);
1895 set->tags[i] = NULL;
1896 }
1897 hctx->tags = NULL;
1898 continue;
1899 }
1900
1901 hctx->tags = set->tags[i];
1902 WARN_ON(!hctx->tags);
1903
1904 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1905 /*
1906 * Set the map size to the number of mapped software queues.
1907 * This is more accurate and more efficient than looping
1908 * over all possibly mapped software queues.
1909 */
1910 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1911
1912 /*
1913 * Initialize batch roundrobin counts
1914 */
1915 hctx->next_cpu = cpumask_first(hctx->cpumask);
1916 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1917 }
1918 }
1919
1920 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1921 {
1922 struct blk_mq_hw_ctx *hctx;
1923 int i;
1924
1925 queue_for_each_hw_ctx(q, hctx, i) {
1926 if (shared)
1927 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1928 else
1929 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1930 }
1931 }
1932
1933 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1934 {
1935 struct request_queue *q;
1936
1937 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1938 blk_mq_freeze_queue(q);
1939 queue_set_hctx_shared(q, shared);
1940 blk_mq_unfreeze_queue(q);
1941 }
1942 }
1943
1944 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1945 {
1946 struct blk_mq_tag_set *set = q->tag_set;
1947
1948 mutex_lock(&set->tag_list_lock);
1949 list_del_init(&q->tag_set_list);
1950 if (list_is_singular(&set->tag_list)) {
1951 /* just transitioned to unshared */
1952 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1953 /* update existing queue */
1954 blk_mq_update_tag_set_depth(set, false);
1955 }
1956 mutex_unlock(&set->tag_list_lock);
1957 }
1958
1959 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1960 struct request_queue *q)
1961 {
1962 q->tag_set = set;
1963
1964 mutex_lock(&set->tag_list_lock);
1965
1966 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1967 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1968 set->flags |= BLK_MQ_F_TAG_SHARED;
1969 /* update existing queue */
1970 blk_mq_update_tag_set_depth(set, true);
1971 }
1972 if (set->flags & BLK_MQ_F_TAG_SHARED)
1973 queue_set_hctx_shared(q, true);
1974 list_add_tail(&q->tag_set_list, &set->tag_list);
1975
1976 mutex_unlock(&set->tag_list_lock);
1977 }
1978
1979 /*
1980 * It is the actual release handler for mq, but we do it from
1981 * request queue's release handler for avoiding use-after-free
1982 * and headache because q->mq_kobj shouldn't have been introduced,
1983 * but we can't group ctx/kctx kobj without it.
1984 */
1985 void blk_mq_release(struct request_queue *q)
1986 {
1987 struct blk_mq_hw_ctx *hctx;
1988 unsigned int i;
1989
1990 /* hctx kobj stays in hctx */
1991 queue_for_each_hw_ctx(q, hctx, i) {
1992 if (!hctx)
1993 continue;
1994 kfree(hctx->ctxs);
1995 kfree(hctx);
1996 }
1997
1998 kfree(q->mq_map);
1999 q->mq_map = NULL;
2000
2001 kfree(q->queue_hw_ctx);
2002
2003 /* ctx kobj stays in queue_ctx */
2004 free_percpu(q->queue_ctx);
2005 }
2006
2007 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2008 {
2009 struct request_queue *uninit_q, *q;
2010
2011 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2012 if (!uninit_q)
2013 return ERR_PTR(-ENOMEM);
2014
2015 q = blk_mq_init_allocated_queue(set, uninit_q);
2016 if (IS_ERR(q))
2017 blk_cleanup_queue(uninit_q);
2018
2019 return q;
2020 }
2021 EXPORT_SYMBOL(blk_mq_init_queue);
2022
2023 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2024 struct request_queue *q)
2025 {
2026 struct blk_mq_hw_ctx **hctxs;
2027 struct blk_mq_ctx __percpu *ctx;
2028 unsigned int *map;
2029 int i;
2030
2031 ctx = alloc_percpu(struct blk_mq_ctx);
2032 if (!ctx)
2033 return ERR_PTR(-ENOMEM);
2034
2035 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
2036 set->numa_node);
2037
2038 if (!hctxs)
2039 goto err_percpu;
2040
2041 map = blk_mq_make_queue_map(set);
2042 if (!map)
2043 goto err_map;
2044
2045 for (i = 0; i < set->nr_hw_queues; i++) {
2046 int node = blk_mq_hw_queue_to_node(map, i);
2047
2048 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2049 GFP_KERNEL, node);
2050 if (!hctxs[i])
2051 goto err_hctxs;
2052
2053 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2054 node))
2055 goto err_hctxs;
2056
2057 atomic_set(&hctxs[i]->nr_active, 0);
2058 hctxs[i]->numa_node = node;
2059 hctxs[i]->queue_num = i;
2060 }
2061
2062 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2063 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2064
2065 q->nr_queues = nr_cpu_ids;
2066 q->nr_hw_queues = set->nr_hw_queues;
2067 q->mq_map = map;
2068
2069 q->queue_ctx = ctx;
2070 q->queue_hw_ctx = hctxs;
2071
2072 q->mq_ops = set->ops;
2073 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2074
2075 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2076 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2077
2078 q->sg_reserved_size = INT_MAX;
2079
2080 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2081 INIT_LIST_HEAD(&q->requeue_list);
2082 spin_lock_init(&q->requeue_lock);
2083
2084 if (q->nr_hw_queues > 1)
2085 blk_queue_make_request(q, blk_mq_make_request);
2086 else
2087 blk_queue_make_request(q, blk_sq_make_request);
2088
2089 /*
2090 * Do this after blk_queue_make_request() overrides it...
2091 */
2092 q->nr_requests = set->queue_depth;
2093
2094 if (set->ops->complete)
2095 blk_queue_softirq_done(q, set->ops->complete);
2096
2097 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2098
2099 if (blk_mq_init_hw_queues(q, set))
2100 goto err_hctxs;
2101
2102 get_online_cpus();
2103 mutex_lock(&all_q_mutex);
2104
2105 list_add_tail(&q->all_q_node, &all_q_list);
2106 blk_mq_add_queue_tag_set(set, q);
2107 blk_mq_map_swqueue(q, cpu_online_mask);
2108
2109 mutex_unlock(&all_q_mutex);
2110 put_online_cpus();
2111
2112 return q;
2113
2114 err_hctxs:
2115 kfree(map);
2116 for (i = 0; i < set->nr_hw_queues; i++) {
2117 if (!hctxs[i])
2118 break;
2119 free_cpumask_var(hctxs[i]->cpumask);
2120 kfree(hctxs[i]);
2121 }
2122 err_map:
2123 kfree(hctxs);
2124 err_percpu:
2125 free_percpu(ctx);
2126 return ERR_PTR(-ENOMEM);
2127 }
2128 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2129
2130 void blk_mq_free_queue(struct request_queue *q)
2131 {
2132 struct blk_mq_tag_set *set = q->tag_set;
2133
2134 mutex_lock(&all_q_mutex);
2135 list_del_init(&q->all_q_node);
2136 mutex_unlock(&all_q_mutex);
2137
2138 blk_mq_del_queue_tag_set(q);
2139
2140 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2141 blk_mq_free_hw_queues(q, set);
2142 }
2143
2144 /* Basically redo blk_mq_init_queue with queue frozen */
2145 static void blk_mq_queue_reinit(struct request_queue *q,
2146 const struct cpumask *online_mask)
2147 {
2148 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2149
2150 blk_mq_sysfs_unregister(q);
2151
2152 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2153
2154 /*
2155 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2156 * we should change hctx numa_node according to new topology (this
2157 * involves free and re-allocate memory, worthy doing?)
2158 */
2159
2160 blk_mq_map_swqueue(q, online_mask);
2161
2162 blk_mq_sysfs_register(q);
2163 }
2164
2165 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2166 unsigned long action, void *hcpu)
2167 {
2168 struct request_queue *q;
2169 int cpu = (unsigned long)hcpu;
2170 /*
2171 * New online cpumask which is going to be set in this hotplug event.
2172 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2173 * one-by-one and dynamically allocating this could result in a failure.
2174 */
2175 static struct cpumask online_new;
2176
2177 /*
2178 * Before hotadded cpu starts handling requests, new mappings must
2179 * be established. Otherwise, these requests in hw queue might
2180 * never be dispatched.
2181 *
2182 * For example, there is a single hw queue (hctx) and two CPU queues
2183 * (ctx0 for CPU0, and ctx1 for CPU1).
2184 *
2185 * Now CPU1 is just onlined and a request is inserted into
2186 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2187 * still zero.
2188 *
2189 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2190 * set in pending bitmap and tries to retrieve requests in
2191 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2192 * so the request in ctx1->rq_list is ignored.
2193 */
2194 switch (action & ~CPU_TASKS_FROZEN) {
2195 case CPU_DEAD:
2196 case CPU_UP_CANCELED:
2197 cpumask_copy(&online_new, cpu_online_mask);
2198 break;
2199 case CPU_UP_PREPARE:
2200 cpumask_copy(&online_new, cpu_online_mask);
2201 cpumask_set_cpu(cpu, &online_new);
2202 break;
2203 default:
2204 return NOTIFY_OK;
2205 }
2206
2207 mutex_lock(&all_q_mutex);
2208
2209 /*
2210 * We need to freeze and reinit all existing queues. Freezing
2211 * involves synchronous wait for an RCU grace period and doing it
2212 * one by one may take a long time. Start freezing all queues in
2213 * one swoop and then wait for the completions so that freezing can
2214 * take place in parallel.
2215 */
2216 list_for_each_entry(q, &all_q_list, all_q_node)
2217 blk_mq_freeze_queue_start(q);
2218 list_for_each_entry(q, &all_q_list, all_q_node) {
2219 blk_mq_freeze_queue_wait(q);
2220
2221 /*
2222 * timeout handler can't touch hw queue during the
2223 * reinitialization
2224 */
2225 del_timer_sync(&q->timeout);
2226 }
2227
2228 list_for_each_entry(q, &all_q_list, all_q_node)
2229 blk_mq_queue_reinit(q, &online_new);
2230
2231 list_for_each_entry(q, &all_q_list, all_q_node)
2232 blk_mq_unfreeze_queue(q);
2233
2234 mutex_unlock(&all_q_mutex);
2235 return NOTIFY_OK;
2236 }
2237
2238 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2239 {
2240 int i;
2241
2242 for (i = 0; i < set->nr_hw_queues; i++) {
2243 set->tags[i] = blk_mq_init_rq_map(set, i);
2244 if (!set->tags[i])
2245 goto out_unwind;
2246 }
2247
2248 return 0;
2249
2250 out_unwind:
2251 while (--i >= 0)
2252 blk_mq_free_rq_map(set, set->tags[i], i);
2253
2254 return -ENOMEM;
2255 }
2256
2257 /*
2258 * Allocate the request maps associated with this tag_set. Note that this
2259 * may reduce the depth asked for, if memory is tight. set->queue_depth
2260 * will be updated to reflect the allocated depth.
2261 */
2262 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2263 {
2264 unsigned int depth;
2265 int err;
2266
2267 depth = set->queue_depth;
2268 do {
2269 err = __blk_mq_alloc_rq_maps(set);
2270 if (!err)
2271 break;
2272
2273 set->queue_depth >>= 1;
2274 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2275 err = -ENOMEM;
2276 break;
2277 }
2278 } while (set->queue_depth);
2279
2280 if (!set->queue_depth || err) {
2281 pr_err("blk-mq: failed to allocate request map\n");
2282 return -ENOMEM;
2283 }
2284
2285 if (depth != set->queue_depth)
2286 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2287 depth, set->queue_depth);
2288
2289 return 0;
2290 }
2291
2292 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2293 {
2294 return tags->cpumask;
2295 }
2296 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2297
2298 /*
2299 * Alloc a tag set to be associated with one or more request queues.
2300 * May fail with EINVAL for various error conditions. May adjust the
2301 * requested depth down, if if it too large. In that case, the set
2302 * value will be stored in set->queue_depth.
2303 */
2304 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2305 {
2306 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2307
2308 if (!set->nr_hw_queues)
2309 return -EINVAL;
2310 if (!set->queue_depth)
2311 return -EINVAL;
2312 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2313 return -EINVAL;
2314
2315 if (!set->ops->queue_rq || !set->ops->map_queue)
2316 return -EINVAL;
2317
2318 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2319 pr_info("blk-mq: reduced tag depth to %u\n",
2320 BLK_MQ_MAX_DEPTH);
2321 set->queue_depth = BLK_MQ_MAX_DEPTH;
2322 }
2323
2324 /*
2325 * If a crashdump is active, then we are potentially in a very
2326 * memory constrained environment. Limit us to 1 queue and
2327 * 64 tags to prevent using too much memory.
2328 */
2329 if (is_kdump_kernel()) {
2330 set->nr_hw_queues = 1;
2331 set->queue_depth = min(64U, set->queue_depth);
2332 }
2333
2334 set->tags = kmalloc_node(set->nr_hw_queues *
2335 sizeof(struct blk_mq_tags *),
2336 GFP_KERNEL, set->numa_node);
2337 if (!set->tags)
2338 return -ENOMEM;
2339
2340 if (blk_mq_alloc_rq_maps(set))
2341 goto enomem;
2342
2343 mutex_init(&set->tag_list_lock);
2344 INIT_LIST_HEAD(&set->tag_list);
2345
2346 return 0;
2347 enomem:
2348 kfree(set->tags);
2349 set->tags = NULL;
2350 return -ENOMEM;
2351 }
2352 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2353
2354 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2355 {
2356 int i;
2357
2358 for (i = 0; i < set->nr_hw_queues; i++) {
2359 if (set->tags[i])
2360 blk_mq_free_rq_map(set, set->tags[i], i);
2361 }
2362
2363 kfree(set->tags);
2364 set->tags = NULL;
2365 }
2366 EXPORT_SYMBOL(blk_mq_free_tag_set);
2367
2368 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2369 {
2370 struct blk_mq_tag_set *set = q->tag_set;
2371 struct blk_mq_hw_ctx *hctx;
2372 int i, ret;
2373
2374 if (!set || nr > set->queue_depth)
2375 return -EINVAL;
2376
2377 ret = 0;
2378 queue_for_each_hw_ctx(q, hctx, i) {
2379 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2380 if (ret)
2381 break;
2382 }
2383
2384 if (!ret)
2385 q->nr_requests = nr;
2386
2387 return ret;
2388 }
2389
2390 void blk_mq_disable_hotplug(void)
2391 {
2392 mutex_lock(&all_q_mutex);
2393 }
2394
2395 void blk_mq_enable_hotplug(void)
2396 {
2397 mutex_unlock(&all_q_mutex);
2398 }
2399
2400 static int __init blk_mq_init(void)
2401 {
2402 blk_mq_cpu_init();
2403
2404 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2405
2406 return 0;
2407 }
2408 subsys_initcall(blk_mq_init);